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Abstract: This work addresses the issue of intelligent robot-human coordinated parts-to-picker order fulfillment 

carried out in a human-friendly manner. One unique feature of the proposed approach involves integrating a 

real-time data-driven stochastic-dynamic model with a fatigue accumulation function. The optimal solutions 

help achieve coordination between human pickers and robots such that robots agilely adapt to the coordinated 

pickers’ efficiency and fatigue conditions. Specifically, the proposed method estimates human pickers’ 

instantaneous performance and robot queue lengths, which are then fed back in real time as indexes to adjust 

robots’ speeds of handling racks and moving them to human pickers. Using data that are provided by a giant 

electronic-commerce company, our analyses demonstrate that the proposed robot-picker coordination system 

permits alleviating a picker’s fatigue without much influence on picking efficiency. In particular, a picker’s 

accumulated fatigue can be reduced by 53.74% at the expense of lowering picker efficiency by 14.79% if the 

proposed robot-picker coordination system is applied in the focal firm of the study case. Through our scenario 

design and sensitivity analysis, additional findings and insights, including the rules of human-friendly robot 

behaviors for coordination with human pickers in different operational scenarios are provided. They facilitate 

the development of “human-friendly” intelligent robot-human coordinated order-fulfillment systems for 

intelligent logistics operations. 

Keywords: Intelligent logistics; Automated warehousing system; Mobile rack; Robot-human coordination; 
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1. INTRODUCTION 

Business operations have entered the Industry 4.0 era in which robotics are widely applied in the production, 

logistics, and e-commerce companies (Olsen and Tomlin 2020; Rai et al. 2021; Loffler et al., 2021; Choi et al. 

2022). This is evidenced by the claims made by Amazon.com:  

“It’s better for everybody…Workers no longer would have to walk massive warehouse floors to find the right 

power drill – instead, robots would bring the drill directly to them… The hour or more it took to process a package had 

been shaved down to as little as 15 minutes…Robots, Amazon insists, are good for workers… “They make the job safer,”…” 

(Evans, 2020).  

“But picking three times faster also implies more wear and tear due to repetitive motion and working faster at 
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lifting and handling products… So along with the drive to automate more warehouse tasks comes much higher expectations 

for workers…The robots have raised the average picker’s productivity from around 100 items per hour to what Mr. Long 

and others have said is a target of around 300 or 400, though the numbers vary across teams and facilities…” (Del Rey, 

2019).  

Indeed, there is no doubt that advancements in such disruptive technologies as robotics and related 

applications (Azadeh et al., 2019; Perera 2020; Chung, 2021; Shi et al., 2021; Wang et al. 2022) have brought 

new benefits to electronic-commerce (e-commerce) companies (such as Amazon, Alibaba, and JingDong) by 

increasing the efficiency of order fulfillment. However, they are simultaneously creating new safety challenges. 

Order picking is a critical step in customer order fulfillment (Frazelle, 2002; de Koster et al. 2007; de 

Vries et al., 2016; Batt and Gallino, 2019). In a typical warehouse, it is not only costly and time-consuming but 

also labor-intensive. In general, the cost of order picking is estimated to account for more than 50% of the total 

warehousing cost (Tompkins et al., 2010). Furthermore, order picking typically relies on manual labors to 

retrieve multiple items from storage, sort them, and then package them to fulfill customer orders (de Koster et 

al. 2007; Chen et al., 2010; de Vries et al., 2016). Owing to the large variety of customer orders and stock 

keeping units (SKUs) in most e-commerce operations, each order picking task for a customer order is difficult 

to replicate. The ordering picking’s efficiency and accuracy depend mainly on the human pickers’ experience 

(Batt and Gallino, 2019) and performance (de Vries et al., 2016). Moreover, in e-commerce, agile order picking 

can be more challenging when the ordered products are diverse, demand is fluctuating, customer returns are 

increasing and customers expect more flexible and expeditious logistics services (Frazelle, 2002). Briefly, order 

picking, which depends on intensive labor and pickers’ performance, remains crucial to the success of fulfilling 

customer orders with high service quality, regardless of the methods/technologies that are deployed in a 

warehouse. 

Despite a variety of innovative automation technologies, such as autonomous mobile robots, have been 

increasingly introduced to carry out order fulfillment jointly with human pickers in warehouses (Banker, 2016; 

Tobe, 2018; Wang et al., 2022), “parts-to-picker” order fulfillment systems raise several new issues on humanity 

and safety. This creates a challenge on robot-human coordination. A certain number of robots that carry racks 

automatically from the storage area to the order picking area may be deployed to facilitate the picking tasks of 

human pickers. Poor robot-human coordination typically increases the number of robots that carry, queue and 

await handling by pickers in the order picking area. Note that a human picker’s efficiency is not as controllable 

as that of a robot, and may vary with time and her psychophysical condition. Thus, an unexpected delay in 

picking items may inevitably occur if robots just continue to carry racks to her and are unable to respond to her 

performance. More seriously, recent reports have revealed a substantial rising injury rates in automated 

warehouses (Al Elew and Oh, 2020; Doll, 2020; Evans, 2020). For example, Amazon’s warehouse injury rates 

have increased every year since 2016 after they began using robots in parts-to-picker order fulfillment. The 

serious injury rate in 2019 was 7.7 injuries per 100 employees, which was 33% higher than in 2016 and nearly 

double the corresponding recent industry standard (Evans, 2020). Order picking often requires pickers to 

perform repetitive tasks in awkward postures for a whole day, easily causing musculoskeletal disorders 

https://www.washingtonpost.com/technology/2019/05/21/missionracer-how-amazon-turned-tedium-warehouse-work-into-game/?noredirect=on&utm_term=.4862d90f8439
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(Lavender et al., 2012; Grosse et al., 2015), which accounts for up to 33% of all injuries and illnesses in the US 

in 2013 (Bureau of Labor Statistics, 2014). 

Motivated by the aforementioned robot-human coordination issues in parts-to-picker order fulfillment 

practices, this paper aims to answer the following questions. 

(1) How should human pickers and coordinated robots react and adapt to each other to fulfill orders in a 

human-friendly manner considering robot-human collaboration? 

(2) How does such a human-friendly robot-human coordination scheme affect the performance of an order 

fulfillment system in a parts-to-picker order fulfillment center? Specifically, what are the critical factors 

and how they influence the systems performance from humanity and safety perspectives? 

To address the above research questions, we build a stochastic optimal control-based data-driven 

solution approach. We propose a robot-picker coordinated order fulfillment mechanism under which the robot 

and picker efficiencies have the following characteristics: (i) The robot and picker efficiencies can be effectively 

controlled and coordinated if real-time data concerning newly arriving racks are available and used. (ii) The 

robot efficiency heavily depends on real-time data concerning newly arriving racks whereas picker efficiency 

highly depends on the length of the queue of unprocessed racks. (iii) The picker-to-robot relative performance 

from the perspective of either efficiency or effectiveness during peak hours is less than that during either normal 

or off-peak hours. The picker-to-robot relative performance is best in the “off-peak” scenario. Moreover, we 

find that the robot efficiency is not the most important metric. Rather, human efficiency dominates the efficiency 

of a parts-to-picker order fulfillment system, particularly during peak hours. Accordingly, controlling the 

number of queued racks by slowing down their delivery by robots to the picking-packaging area is in fact a 

more efficient measure than slowing down the rack-processing of a picker (in order to alleviate that picker’s 

fatigue); this is especially prominent during a peak-hour period. Last but not least, employing data that were 

provided by a well-established e-commerce company, our analyses demonstrate that a picker’s accumulated 

fatigue can be reduced by over 50% at the expense of lowering picker efficiency by around 15% if the proposed 

robot-picker coordination system is applied.  

The rest of this paper is organized as follows. Section 2 reviews the relevant literature to elucidate its 

contribution to the field of innovative logistics. Section 3 describes the problem and characterizes the proposed 

robot-picker coordinated order fulfillment system. Section 4 presents a proposed stochastic-dynamic optimal 

control model. Section 5 develops a real-time data-driven approach to estimating and controlling the state 

variables of the proposed robot-picker coordinated order fulfillment system. Section 6 presents the 

computational results of a practice-based real data analysis. Section 7 draws conclusions, provides managerial 

implications, and discusses future research. To enhance exposition, all technical proofs are put in an online 

appendix. 

 

2. LITERATURE REVIEW 
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Recently, in the Industry 4.0 era, robotic technologies (such as Amazon robotics and Jingdong (JD) 

robots) that are used by e-commerce companies (Luo and Choi 2022) for parts-to-picker order fulfillment have 

emerged (Tam, 2014; Banker, 2016; Tobe, 2018; Shi et al., 2021). They have revolutionalized the way of order 

fulfillment operated in warehouses. Most of extant literature on parts-to-picker order fulfillment systems focuses 

mainly on increasing the warehousing efficiency utilizing diverse methodologies. For example, Enright and 

Wurman (2011) identified several parts-to-picker order fulfillment-related resource allocation problems, 

including order allocation and robot allocation problems. Recently, Boysen et al. (2017) proposed a mixed-

integer programming model to minimize the number of rack visits to a stationary picking station in a mobile 

robot-based order-picking problem. The authors solved the optimization problem by first decomposing the 

problem into two sub-problems of rack sequencing (for a given order sequence) and order sequencing (for a 

given rack sequence). By contrast, Lamballais et al. (2017) proposed four queuing network models associated 

with various warehousing layouts and robot zoning strategies to analyze the performance of an automated 

storage and parts-to-picker system with the objectives of optimizing robot utilization, maximizing order 

throughput, and minimizing order cycle time. Differing from the above optimization-based analytical models, 

Bozer and Aldarondo (2018) utilized a simulation-based method to evaluate and compare the performances of 

two types of parts-to-picker picking systems (called “miniload” and “Kiva” systems) in the aspects of expected 

throughputs and expected container retrieval times in order processing. Some of the subsequent literature, 

including Weidinger et al. (2018) and Yuan et al. (2019), aimed at the problem of pod/rack storage which is the 

antecedent of parts-to-picker order fulfillment, where the inventory of items is stored and spread over multiple 

mobile pods that are carried by robots moving between storage and picking (stowing) zones. More recently, 

Wang et al. (2022) utilized an “approximate dynamic programming” (ADP) based branch-and-price approach 

to solving the optimal robot scheduling problem for parts-to-picker order fulfillment systems. Different from 

the above literature which solely focuses on efficiency, Wang et al. (2022) incorporated fluctuations of the 

working states of human pickers into the model, and hence, the human factor was explored. However, human 

safety was not yet examined by Wang et al. (2022). In addition, Boldrer et al. (2022) proposed a hierarchical 

framework to address the problem of multi-robot navigation in human-shared working environments. Even 

though the approach of Boldrer et al. does not aim at parts-to-picker order fulfillment systems, the authors’ idea 

of conceptualizing a safe and socially-aware navigation in their proposed methodological framework is 

noteworthy, and consistent with our research goal.    

Despite remarkable advances made to increase efficiency in parts-to-picker order fulfillment, issues 

such as safety and harmony in the human-robot interactions remain under-explored in relevant intralogistics 

operations and related areas (Enright and Wurman, 2011; Azadeh et al., 2019; Chen et al., 2022). As argued by 

Enright and Wurman (2011), systems optimization at the high level, considering dual objective functions for 

both workers and robots, remains challenging as these two objectives may not be compatible. Details of the 

operational features and challenges of parts-to-picker order fulfillment can also be found in Enright and Wurman 

(2011). Drawing from experimental results, Chen et al. (2022) further suggested the urgent necessity of 

developing novel robotic motion methods to ensure human safety for applications of human-robot coordination 
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in warehouses. Note that Azadeh et al. (2019) comprehensively reviewed the literature on robotized and 

automated warehouse systems. They pointed out that issues related to human-machine interaction in automated 

warehousing environments have not been fully addressed. 

Another stream of relevant literature concerns the association of human factors with order picking 

performance (Grosse at el., 2015; de Vries et al., 2016; Grosse et al., 2017; Batt and Gallino, 2019; Loske, 

2022). As argued by Grosse et al. (2017), human factors determine the performance of an order picking system, 

which is time-consuming and labor-intensive, but they are often ignored in management-oriented research. 

Incorporating human factors into order picking models for intralogistics operations and warehouse management 

is, thus, indispensable - particularly with respect to production, operations and logistics management (de Koster 

et al., 2007). Observe that the related literature can be divided into two categories: the first focuses on relevant 

aspects of human cognition (e.g., human learning) to improve productivity/efficiency, and the second cares 

about the welfare and health of workers. The corresponding literature reviews are detailed below. 

Prior studies on cognition have investigated its impact on order picking performance. Some of them 

(Grosse and Glock, 2015) have integrated the concept of human learning (characterized by learning curves) 

with mathematical models to study how pickers’ performance can be improved by learning from experience. de 

Vries et al. (2016) conducted a field experiment to examine three types of picker-to-parts order picking methods 

under two incentive schemes for pickers with different regulatory foci (“prevention-focus” vs. “promotion-

focus”). The work of de Vries et al. (2016) is pioneering in “elaborately” aligning order picking methods, 

incentive mechanisms, and regulatory focus to bridge the gap between organizational behavior theories and 

warehousing practices. Batt and Gallino (2019) empirically estimated the effects of several factors, including a 

picker’s learning from experience of walking and searching processes, on picking time for order fulfillment in 

online women’s apparel retailing. One remarkable feature of their work is the empirical demonstration of the 

effects of pickers’ heterogeneous learning capabilities, characterized by different learning curves, on order 

picking performance. Rather recently, Loske (2022) combined parametric and non-parametric approaches to 

analyze how the interactions between humans, machines, and intelligent software impact human learning and 

perception of work characteristics in the transition to an automated order picking system. The author’s empirical 

findings verified that the real-time feedback provided by the order picking system can facilitate human learning 

by doing tasks in the perception–cognition–motor–action cycle, thus clarifying the need for human-centered 

work system design. 

The literature on the welfare and health of order-picking workers aims to develop integrated models 

that consider both ergonomic (such as human energy expenditure and fatigue) and economic (such as picking 

time) performances in order picking (Grosse et al., 2015; 2017). For example, Grosse et al. (2015) proposed a 

conceptual framework that considers human factors in four critical categories (namely the “perceptual, mental, 

physical and psychosocial”). The authors suggested that the human factors can be incorporated into the planning 

models to improve the performance of order picking systems. More recently, Glock et al. (2019a) proposed an 

integrated model to determine the processing sequence for orders, pallet rotation, and picker routing to minimize 
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total picking effort. The authors considered the spinal loads on pickers and consequent risks of injury. Similar 

efforts had been made previously (Larco et al., 2017; Glock et al., 2019b).  

Despite the fact that the idea of integrating human factors into order picking decision support systems 

is promising and necessary for human wellbeing, the above-cited order picking literature on human factors is 

concerned mostly with manual order picking (picker-to-parts order picking), rather than parts-to-picker order 

picking systems, which are the focus of our study. A parts-to-picker order picking system has the following 

operational features that differentiate it from a traditional picker-to-parts order picking system, which relies 

mainly on manpower. 

First, a parts-to-picker ordering picking system relies substantially on the coordination between pickers 

and robots, to fulfill customer orders. Mobile robots lift racks that store SKUs and transport them from the 

storage area to stationary pickers to facilitate subsequent picking and packaging tasks by those pickers. In such 

parts-to-picker picking environments, robots must move forward and backward between the storage area and 

stationary pickers, forming closed loops between the storage area and the locations of the coordinated pickers. 

Accordingly, the efficiency of order fulfillment in a parts-to-picker picking system is contingent jointly upon 

the coordination between robots and pickers in carrying out the two consecutive tasks of handling racks (by 

mobile robots) and packaging (by pickers). Nevertheless, human-robot coordination often generates 

coordinating complexity and uncertainty as a result of the difficulty of sharing information, communication, 

and mutual adaption by the coordinated dyad (Faraj and Xiao, 2006). 

Second, from a managerial perspective, an environment that includes working robots/machines is likely 

to differ from one that includes only human labors. Psychological effects (e.g., stress and strains) have attracted 

attention since computer-integrated/computer-aided/robot-aided manufacturing technologies were introduced 

for factory automation (Rosenthal, 1984; Karuppan and Schniederjans, 1995). As argued in Rosenthal (1984), 

the most difficult problems in automating a factory are managerial rather than technical. Olsen and Tomlin 

(2020) further highlighted the issue of managing worker-machine interfaces when robotics and artificial 

intelligence were introduced to convert manual operations into lean, digitized, and highly automated operations. 

Therefore, the issues that are raised by working with robots/machines seem not to be limited to those around 

technology and productivity. Instead, in the post-automation era, new psychological (Karuppan and 

Schniederjans, 1995), behavioral (Hinds, 2004), and organizational behavioral (Barrett et al., 2012; Beane and 

Orlikowski, 2015) issues should be crucial for operations managers. 

Considering the above research gaps in the literature on parts-to-picker order fulfillment and 

intralogistics operations, this work contributes to the field of intelligent logistics in the following three ways. 

First, motivated by the sociotechnical theory (Cooper and Foster, 1971; Mumford, 2006), this work 

urges that the harmony of interrelations between human workers and robots in a parts-to-picker order fulfillment 

center should be considered in realizing intelligent logistics systems. In particular, this work promotes the 

development of adaptive human-friendly robotics to assist pickers in fulfilling orders with the fewest human-

robot coordination conflicts. On the way toward “perfect automation”, the coexistence of robots and humans in 
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task environments is inevitable, requiring carefully planned mechanisms for agile robot-human coordination 

that are humanity-oriented and machine-assisted. 

Second, the proposed methodology is novel in conceptualizing the aforementioned philosophy of 

machine-assisted humanity orientation into modeling and analysis to address the issue of robot-human 

coordination for parts-to-picker order fulfillment systems. Methodologically, this work integrates a discrete-

time nonlinear dynamic stochastic model with a time-varying fatigue accumulation function to characterize and 

estimate a human picker’s fatigue-dependent working states. Then, this work develops a stochastic optimal 

control-based data-driven solution approach, which permits not only estimating human pickers’ instantaneous 

performance and robot queue lengths but also feeding back the aforementioned human picker’s fatigue-

dependent working states in real time to the coordinated robots to adjust their efficiencies in handling and 

distributing mobile racks to the picker. Such a real-time data-driven stochastic optimal control-based approach 

has its unique features and relative merits in addressing the critical yet under-explored issue on real-time robot-

human coordination for machine-assisted order fulfillment systems.  

Third, this work is innovative in the realization of ideas from occupational psychology (psychology), 

organizational behavior (sociology) and robotics (engineering) to address picker-robot coordination for 

intelligent logistics in contemporary operations (management). Psychological factors are considered in the 

development of a novel robot-human coordinated mechanism for use in an automated parts-to-picker order 

fulfillment system. Through normative analysis and real-data based empirical studies, the above concept (i.e., 

machine-assisted humanity orientation) and proposed robot-picker coordinated order fulfillment mechanism are 

confirmed to be theoretically reasonable, and demonstrated to be of practical value in resolving the issue of 

interest. 

 

3. PROBLEM DESCRIPTION 

Typically, with our discussion with managers from a well-established e-commerce company in China and 

referring to the problem settings of Wang et al. (2022), the workflow of mobile robot-based parts-to-picker order 

fulfillment operations investigated in this paper contains the following steps. First, SKUs are received in the 

receiving area of a warehouse/distribution center; meanwhile, mobile robots that carry empty racks are 

dispatched to load the received SKUs. This is followed by the step of storage assignment, where mobile robots 

move loaded racks to the storage area (Li et al., 2020). If the SKUs in the racks are required in an order 

processing list, then the mobile robots move the racks with those required SKUs from the storage area to the 

picking-packaging area (termed as the step of rack handling and distribution). Then, stationary pickers in the 

picking-packaging area pick out the SKUs that are identified in the picking list, and package them into cardboard 

boxes to fulfill customer orders (termed as the step of picking and packaging). This step is followed by 

automatically moving the completed cardboard boxes by means of conveyers to the outbound area for vehicular 

loading and dispatching. Mobile robots that have completed the delivery of the racks with the required SKUs to 

the stationary pickers return from the picking area to the storage area for repeated execution of the step of rack 
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handling and distribution to facilitate pickers’ carrying out picking and packaging for order fulfillment. Similar 

mobile robot-based parts-to-picker order fulfillment operations can also be readily found in numerous practical 

cases, including in Amazon.com (Demaitre, 2019; Gharehgozli and Zaerpour. 2020; Garland , 2022).  

This work focuses on coordinating the step of rack handling and distribution (executed by robots) and 

the step of picking and packaging (executed by pickers). Specifically, the performance of mobile robots in 

handling and moving racks (number of racks handled and moved per robot per time unit) significantly influences 

the associated picker’s performance in the subsequent picking and packaging tasks. The effect of psychological 

and behavioral uncertainties, which may be evident in the interaction between pickers and robots, on an 

associated picker’s performance is considered herein. Accordingly, the problem of interest and goals of this 

work are as follows. 

Consider a few-to-one parts-to-picker picking system, in which a few mobile robots work 

collaboratively with a human picker. A set of C  customer orders, involving S  SKUs, and being stored in 

N  racks must be handled and moved by M  mobile robots from the storage area to the picking area. Then, 

they have to be picked and packaged by one associated picker in a given working period T  (e.g., 3 hours) 

without the intervention of scheduled breaks. A shared storage (scattered storage) policy, which is typically 

applied to mobile robot-based parts-to-picker picking systems (Weidinger et al., 2018), is adopted. Different 

SKUs may be stored in a rack, and each rack can be associated with one or more customer orders. Two goals 

must be achieved. The first is to complete picking and packaging of the aforementioned S SKUs that are stored 

and scattered over R  racks by smoothly coordinating the operations of M  mobile robots and the associated 

picker during a working period T . This goal must be achieved under the condition that the picker’s fatigue 

increment ( k ) in any time interval k ( {1,2,3... }k K= ;T K t=  ) during T should not exceed a predetermined 

fatigue degree ( ρ ), such that the accumulated fatigue degree ( K ) in the last time interval K  does not exceed 

its upper bound ( maxρ ), where t  is the length of a time interval. Meanwhile, in the few-to-one parts-to-picker 

picking system, the second goal is that the processed racks in the picking area are efficiently returned to the 

storage area by mobile robots for the next round of order processing. 

Based on the above problem description and defined goals, this work proposes a real-time robot-picker 

coordinated order fulfillment system that comprises the following four subsystems: (1) robot-based rack 

handling (Subsystem 1), (2) mobile robot-carried rack movement (Subsystem 2), (3) human-based picking and 

packaging (Subsystem 3), and (4) robot-based rack return (Subsystem 4), which are depicted in Fig. 1. The 

number of newly arriving ( kA ) racks that are loaded with SKUs from the receiving area to storage area is treated 

as an exogenous variable, which is given in each time interval k  ( k ). Subsystems 2 and 4 are virtual as they 

are specified to determine the time-varying distribution rates ( k  and k ) of forward and reverse logistics for 

mobile racks that move between the storage (Subsystem 1) and picking-packaging (Subsystem 3) areas in any 

time interval k  ( k  ). Subsystems 1 and 3 correspond to task operations that are executed by robots and 

associated pickers in the storage and picking-packaging areas, respectively. The outputs of Subsystems 1 and 3 
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are the number of racks (
kX ) that are handled by mobile robots and the number of racks (

kY ) that are processed 

by a picker in each time interval k  ( k ). Both 
kX  and 

kY  can be treated as metrics that are evaluated by 

contemporary detection technologies, such as image processing-based detectors. 

Storage area Picking-packaging area
Forward logistics

Reverse logistics

kA

Subsystem 1

Robot-based rack

handling

Subsystem 2

Mobile robot-carried rack

movement

Subsystem 3

Human-based picking

& packaging

Subsystem 4

Robot-based rack return

kX
1k kQ X− +

kY
kY

k
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Fig. 1. The proposed real-time robot-picker coordinated order fulfillment system. 

 

The proposed robot-picker coordinated order fulfillment system has three distinctive features. First, the 

rack-based order processing cycle, which integrates the forward and reverse logistical flows of mobile racks 

between the storage and picking-packaging areas, is considered. A closed-loop rack reuse process facilitates the 

corresponding logistical resource management in the system. Second, the interactions between robots and 

associated pickers are considered, and they are characterized by the instantaneous inputs (
kQ  and 

|k kQ ) , which 

are defined as the perceived queue lengths of unprocessed racks at the beginning and end of time interval k, 

respectively, and output (
kY , which is the number of racks that are processed by a picker in time interval k). 

kQ  

and 
|k kQ  are given by 

1| 1

|

k k k k

k k k k

Q Q X

Q Q Y

− −
 = +


= −

, k , (1)  

where 
1| 1k kQ − −

 (
1| 1 1 1k k k kQ Q Y− − − −= − ) represents the number of unprocessed racks in the queue in the picking-

packaging area (Subsystem 3) at the end of time interval 1k − ; and 
kX  represents the number of unprocessed 

racks that arrive at the picking-packaging area (Subsystem 3) in time interval k. Third, the picker’s psychological 

and physical conditions, characterized by the accumulated fatigue degree ( k ) and its association with 
kY  and 

kQ  , are considered, and fed back to adjust the handling, transportation, and return decisions of the robots that are 

executed in Subsystems 1, 2, and 4, respectively. Hence, the picking and packaging tasks can be completed in a 

manner that includes critical human factors. 
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4. MODELING 

This section proposes a discrete-time nonlinear dynamic stochastic model to formulate and solve the above 

problem. Specifically, subsection 4.1 defines the variables of system states (including state variables and control 

variables) and subsection 4.2 explicates the proposed dynamic stochastic model. 

 

4.1. Specification of System States 

The state variables of Subsystem 3 are specified to define the expected performance of a picker in 

coordination with mobile robots. Then, the state variables for Subsystem 1 are specified to characterize the 

performance of the coordinated robots. Thereafter, the state variables of Subsystems 2 and 4 are specified to 

characterize the forward and reverse logistical flows of mobile racks that are required for coordination between 

Subsystems 1 and 3 (robots’ and human pickers’ actions). 

4.1.1. States of human picker 

Consider the states that are ideally associated with a picker’s performance (Subsystem 3). Ideally, the 

picking and packaging tasks of a picker are carried out efficiently by seamlessly receiving and processing the 

loaded racks that are delivered by mobile robots. However, such an ideal state of Subsystem 3 is obtained at the 

cost of the picker’s accumulated fatigue ( k ). Worker fatigue is multidimensional, and often increases with time 

(Jaber et al., 2013; Glock et al., 2019b), stress and workload (MacDonald, 2003; Kc and Terwiesch, 2009; Do 

et al., 2018), particularly when a picker must perform repetitive picking and packaging tasks. Based on the 

learning-forgetting-fatigue–recovery models established in the ergonomics-related literature (Jaber et al. 2013; 

Glock et al., 2019b), the commonly used deterministic exponential form of accumulated fatigue is extended 

herein into a dynamic stochastic form. Specifically, the fatigue growth rate ( k ) that determines the speed of 

fatigue accumulation is associated with the perceived queue length of unprocessed racks (
kQ ) and work rate 

(
kY ). Therein, 

kQ  and 
kY  can be treated, respectively, as the instantaneous mental and physical workloads 

which have been empirically verified to have adverse impact on fatigue (Tan and Netessine, 2014). This work 

utilizes 
kQ  and 

kY  to capture how both the instantaneous mental and physical workloads affect a picker’s 

accumulated fatigue in any given time interval k ( k ). Thus, the picker’s accumulated fatigue ( k ) in time 

interval k  ( k ) varies with time, and can be expressed in a recursive form given by 

1 ,k k k k  −= +   , (2) 

where 1k −   is the picker’s accumulated fatigue in time interval 1k − , and  k   represents the fatigue 

increment in time interval k and equals 1 ke
−

−   ( 1 k

k e
 −

 = −  ). According to the empirical results of 

MacDonald (2003) from multiple regression analyses, both workloads (
kQ ) and work rates (

kY ) have amplified 

impact on fatigue, inferring that 
k  can be characterized by 

kQ  and 
kY  in a simple linear manner as 
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0 1 2 ,k k kY Q k   = + +  , (3) 

where 
0  (

0 0  ) is the intrinsic fatigue growth rate; 
1  (

1 0  ) and 
2  (

2 0  ) are the coefficients 

that capture the associations of 
kY  and 

kQ  with 
k , respectively. The following condition on the picker’s 

fatigue that accumulates in any time interval (Eq. (4)) must hold to ensure the well-being of the human worker). 

maxρ ,k k   , (4) 

The accumulated fatigue ( k ) in time interval k  may have a negative ergonomic effect on a picker’s 

work rate (
1kY +
 ) in the next time interval 1k + (MacDonald, 2003; Jaber et al. 2013): a higher k   often 

corresponds to a lower 
1kY +
. Similarly, as shown by Kc and Terwiesch (2009), the overwork that is associated 

with accumulated fatigue has been demonstrated to affect a worker’s performance (e.g., service rate). Do et al. 

(2018) assumed that the service rate has a multiplicative form under the effect of overwork. With reference to 

the fatigue-recovery model of Jaber et al. (2013) and the above literature, in this work, a simple negative 

exponential function ( ( )kf  , ( ) k

kf e
 −

 ) is used to capture the moderating effect of k , which can be 

expressed in a simple multiplicative form as shown in Eq. (5). 

( )1 ,k

k k k kY f Y e Y k
 −

+ = =  , (5) 

Accordingly, Eq. (5) can be used to elucidate how the accumulated fatigue in any given time interval 

k  influences a picker’s instantaneous picking and packaging performance in the next time interval 1k +  . 

Moreover, the system states and control variables of robots in response to a picker’s fatigue-dependent 

performance can also be determined. 

In addition to the above concern about accumulated fatigue, the efficiency of picking and packaging 

tasks in each time interval is an important issue. Ideally, a picker processes all loaded racks as they arrive to the 

picking-packaging area from the storage area so that no racks remain in a queue in any time interval (
k kQ Y= , 

k ). Let k  be the picker-efficiency state, which is defined as 
1

k k
k

k k k

Y Y

Q Q X


−

 =
+

 (Eq. (1)), and γ  ( γ=1  ,

k ) be the ideal state of k . Then, k  is expected to remain stable in each time interval ( 1k k + = , k ) 

under the ideal condition. If it does so, then 
1 γ 1k k + = = =  in all time intervals ( k ), including the initial 

time interval ( 0k = ). In practice, k  may change over time and exhibit stochastic features under the influence 

of other system states (e.g., accumulated fatigue k ) and exogenous variables (e.g., 
kA , k ). According to 

Eq. (5), 
1kY +
 which is one component of 1k + , can be influenced by ( )kf   owing to the moderating effect 

of accumulated fatigue. Given 
kQ  and 

1kX +
, which are exogenous variables to this subsystem (Subsystem 3), 

1k +   can be associated with k   in a simple deterministic form as 
1

k

k ke
 −

+ =   to indicate the effect of 

accumulated fatigue on worker performance (Jaber et al., 2013). If the stochastic features of the state variables 
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are further considered, the above deterministic form can be extended into a recursive form with a Gaussian 

white noise term (
k

w
), as shown in Eq. (6), to capture its dynamic and stochastic features. 

1

0

, ( 0),

1

k

kk ke w k k


 

 

−

+
 = +  


= =

                                                  (6) 

where 
k

w
is a Gaussian white noise term of k . Then, the ideal state of k  ( γ ) is γ 1=  ( k ), which means 

that no racks are queuing in the picking-packaging area in any time interval. 

4.1.2. States of mobile robots 

In the ideal state, robots handle SKUs and racks in the storage area (Subsystem 1) in a way that maintains 

equal volumes of inbound and outbound rack flows of Subsystem 1 (
k k kX A Y= + , k ). Let 

k  be the robot-

efficiency rate, which is defined as k
k

k k

X

A Y
 

+
, and δ  ( δ=1  , k ) be the ideal state of k . Then, k  should 

remain the same in all time intervals under the ideal condition, such that 
1 δ 1k k + = = =  ( k ). Despite the 

fact that fatigue accumulation does not apply to Subsystem 1, involving robots’ operations, a robot-efficiency 

state ( k ) can be influenced by the exogenous variables (e.g., 
kA , k ) and 

kY  which is contingent upon the 

picker’s performance. Like k , 
k  has dynamic and stochastic features. Thus, 

k  can be expressed in the 

recursive form with a Gaussian white noise term (
k

w
) as follows 

1

0

, ( 0),

δ 1.

kk k w k k 



+ = +  


= =
                                                    (7)4 

4.1.3. Control variables for forward and reverse logistics flows of racks 

Subsystems 2 and 4 are designed to regulate the forward and reverse logistical distribution flows of 

racks between the storage area and picking-packaging area. Let k  and k  be the rack distribution rates that 

are associated with Subsystems 2 and 4 (Fig. 1) and defined as k
k

k

X

X
   and k

k

k

Y
v

Y
 , respectively. Then, k  

and k  can be used as control variables to regulate the numbers of unprocessed (
kX ) and processed (

kY ) racks 

that arrive at Subsystem 3 and Subsystem 1 in each given time interval k  by setting
k k kX u X=   and 

k k kY Y= , respectively, such that the system states ( k  and 
k ) that are associated with the human picker and 

robots become 

1

,k
k

k k k

Y
k

Q X


−

= 
+

, (8) 

                                                   
4 We let δ0 (initial value of δ) start from the ideal value, meaning that its initial state starts from an ideal condition. 
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,k
k

k k k

X
k

A Y



= 

+
. (9) 

Based on the above efficiency-related states ( k  and 
k ) and control variables ( k  and k ) defined 

above, and given the number of newly arriving racks (
kA ) and the measured previous queue length of racks 

(
1kQ −
 ), the following analytical results (Theorem 4.1) regarding the outputs ˆ

kX  and ˆ
kY  (estimates of 

instantaneous efficiency rates associated with coordinated robots and picker) from Subsystems 1 and 3, 

respectively, can be derived . Note that all technical proofs are provided in Online Appendix A. 

Theorem 4.1. Given k  , 
k  , k  , k  , 

kA  , 
1kQ −   

and k k k k k   Ω  , the estimates of 

instantaneous projections of 
kX  and 

kY  (denoted by ˆ
kX  and ˆ

kY  are obtained as 

11ˆ ,
1

k k
k k k

k k

Q
X A k


−

 
= +  

−  

Ω

Ω
, (10) 

1

1ˆ ,
1

k k
k k k

k k

A
Y Q k


−

 
= +  

−  

Ω

Ω
. (11) 

In Eqs. (10) and (11) of Theorem 4.1, kΩ  is the product of the subsystem states ( k , 
k ) and control 

variables ( k , k ); 
kA  can be treated as an exogenous variable of the system; and 

1kQ −
 refers to queuing 

racks in the previous time interval 1k − . Both 
kA  and 

1kQ −
 are predetermined; however, k , 

k , k , and 

k  ( k ) are unknown, and must be estimated (as detailed in the next subsection (4.2)).  

Based on Theorem 4.1, Corollary 4.1 is also used to characterize and estimate the time-varying fatigue 

growth rate (
k ) and fatigue increment (

k ) in any time interval k ( k ). 

Corollary 4.1. Given Theorem 4.1, estimates of 
k   and 

k   (denoted by ˆ
k   and ˆ

k    are 

obtained as 

1
0 1 2

ˆ ( ) ,
1

k k k k
k k

k

A Q
k

 
     −

 +
= + +  

− Ω
, (12) 

1
0 1 2( )

1
ˆ 1 ,

k k k k
k

k

A Q

k e k

 
   



−
  +

− + +   −   = − 
Ω

, (13) 

Based on Corollary 4.1, substituting Eq. (13) into Eq. (2) yields 

1
0 1 2( )

1

1 1 ,

k k k k
k

k

A Q

k k e k

 
   

 

−
  +

− + +   −  
−= + − 

Ω
.                                      (14) 

Using the correlations between the system states and control variables specified above, the human 

picker and robots can be readily coordinated for superior performance in an order fulfillment center once the 

optimal values of the state and control variables can be determined. It is noted that the proposed model is data-

driven in which the input data required (including 
kY  and 

kA ) are collected in each time interval k ( k ) for 
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estimating efficiency-related states ( k  and 
k ) and control variables ( k  and k ) in each time interval k

( k ) such that the state variables ( k  and 
k ) can move toward the associated ideal values. Therein, the data 

used are collected in each time interval, which is expressed in a discrete-time manner rather than a continuous 

time manner for dynamically estimating and controlling state variables. Thus, the problem is formulated in a 

discrete-time rather than a continuous-time manner, as presented in the next subsection (4.2). 

 

4.2. Model 

This subsection proposes a discrete-time nonlinear dynamic stochastic model which is characterized by 

recursive and measurement equations subject to boundary constraints (Santina et al., 1994; Sheu, 2002; 

Anderson, Jr. et al., 2006). Specifically, the time-varying relationships among state variables, control variables, 

and measurement data defined in the previous section (Section 3), can be characterized in three forms: (1) 

recursive equations, (2) measurement equations, and (3) boundary constraints, as follows. 

The recursive equations specify time-varying relationships between the states of a dynamic and 

stochastic system in the next and current time intervals ( 1k +  and k, k ) . Among such system states, k , 

and 
k  are treated as independent states, whereas k  is a state that depends on k  and 

k , according to 

Corollary 4.1 and Eq. (14). In the proposed model, only the time-varying relationships of independent states 

( k , and 
k ) must be formulated recursively; then, the dependent state k  can be readily determined. Based 

on Eqs. (6) and (7), the recursive equations that are associated with k  and 
k  can expressed in a generalized 

vector form as in Eq. (15). 

1 ,k k k k+ = + Φ F W , (15) 

where 
1k+Φ , 

kF  and 
kW  are 2 1  time-varying state vectors, and can be further expressed as 

1

1

1

,
k

k

k

k




+

+

+

 
=  
 

Φ , (16) 

,
k

k

k

k

e
k

 



− 
=  
 

F , (17) 

,
k

k

k

w
k

w





 
=  
  

W , (18) 

where 

1
0 1 2( )

1

1 1

k k k k
k

k

A Q

k k e

 
   

 

−
  +

− + +   −  
−= + −

Ω
, as in Eq. (14) of Corollary 4.1.  

Accordingly, the recursive equations (Eqs. (15)-(18)) reveal that the system states k  and 
k  change 

over time, following the standard Gaussian-Markov processes and can be used to project 1k + , and 
1k +

 one 

time interval ahead, based on k  and 
k  in any time interval k ( k ). 
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The measurement equations characterize time-varying relationships between measurements and system 

states. In this work, 
kY  (the number of mobile racks that are processed by a picker in each given time interval 

k) is used as the measurement variable because it can be detected/measured readily using various detection 

technologies (such as image processing and automated counters). Based on Eq. (11) in Theorem 4.1, we can 

further postulate the deterministic form of time-varying relationships between the measurement (
kY ) and system 

states as 
1

1

1

k k
k k k

k k

A
Y Q


−

 
= + 

−  

Ω

Ω
. Owing to the measurement error in 

kY  in any given time interval 

k ( k ), a Gaussian white noise term k  is used to characterize this property. Since only one measurement 

variable (
kY ) is involved, one measurement equation is associated with 

kY  in the proposed model. The 

generalized form of the measurement equation is given by 

,k k k k= + Y H ε , (19) 

where 
kY , 

kH  and kε  are 1 1  time-varying state vectors, which can be further expressed as 

,k kY k= Y ,                                                               (20)

1

1
,

1

k k
k k k

k k

A
Q k


−

  
= +   

−   

Ω
H

Ω
, (21) 

,k k k= ε . (22) 

Additionally, the picker’s accumulated fatigue ( k , k ) in any time interval should not exceed a preset 

upper bound (
maxρ ), as indicated in Eq. (4). This constraint is incorporated into the proposed model. 

 

5. REAL-TIME DATA-DRIVEN STATE ESTIMATION 

This section presents a stochastic optimal control-based method for the real-time estimation of system states ( k  

and 
k ) and control variables ( k  and k ), given information about the number of newly arriving racks (

kA ) and 

the number of racks processed by the picker, 
kY , in each time interval ( k ). Based on the principles of optimality 

that are applied in stochastic optimal control theory (Santina et al., 1994), the proposed algorithm searches for the 

optimal solutions for k , 
k , k  and k  which are updated using measurements of 

kY  and the measurement 

equation (Eq. (19)) in each time interval k ( k ), and then fed back as inputs into the recursive equation (Eq. (15)) 

such that the objective function   (Eq. (23)) is minimized. 

( ) ( ) ( ) ( )
T T

* Φ * * U *

1

ˆ ˆ ˆ ˆmin
K

k k k k k k k k k k

k

E
=

 
= − − + − − 

 
 Φ Φ Ψ Φ Φ U U Ψ U U ,                          (23) 
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where ˆ
kΦ  and ˆ

kU  are 2 1  vectors that contain the estimated system states ( k  and 
k ) and estimated control 

variables ( k  and k ) in time interval k , respectively; *

kΦ  and *

kU  are 2 1  vectors that contain the 

ideal values of system states and control variables that are associated with ˆ
kΦ  and ˆ

kU , respectively; and 
k


Ψ  

and U

kΨ  represent 2 2  time-varying diagonal, positive-definite weighting matrixes that are associated with ˆ
kΦ  

and ˆ
kU , respectively. The objective function   in Eq. (23) is the cost function, which is a scalar quadratic 

performance measure that indicates the deviation of the estimated system states and control variables from their 

ideal values in the order processing period. 

To estimate the aforementioned system states and control variables in real time, a stochastic optimal 

control-based method is developed using an extended Kalman filter. Kalman filtering is a well-known statistical 

method for the linear-quadratic estimation of system states of dynamic and stochastic systems. It has been 

successfully and extensively utilized in solving diverse estimation and control problems in various fields, such as 

the tracking and navigation of different sorts of vehicles, and traffic signal control (Sheu, 2002). Whereas the basic 

Kalman filter applies to linear problems, the extended Kalman filter has been developed particularly for nonlinear 

problems that are characterized by either recursive or measurement equations in dynamic and stochastic models 

(Santina et al., 1994). The primary computational steps in the proposed estimation method are summarized below. 

 

5.1. Initialization 

This step initializes system states and all of the inputs that are required to trigger the subsequent 

computational steps. Let 0=k   and ˆ
k k k  −Φ Φ Φ   ( k  ). Then, preset the initial estimates of the 2 1  

state vector (
0Φ̂  ), the 2 1   control variable vector (

0Û  ), the number of queued racks (
0Q  ), and the 2 2  

covariance matrix of the state estimation error (
0|0P̂ ), where 

0 0Q = ; 
0Φ̂ , 

0Û  and 
0|0P̂  are given by 

0

0

0

0

0

0

ˆ γ
ˆ

ˆ δ

ˆ 1
ˆ

ˆ 1









    
 =    

   


   
 =   

  

Φ

U

    (when 0k = ), (24) 

T

0|0 0 0 0
ˆ ,E     = P Φ Φ P (where 0k = ). (25) 

 

5.2. Prior Prediction of System states 

In this step, the state vector 
1k+Φ  and covariance matrix of the state estimation error 

1k+P  in time interval 

1k +  are predicted using the estimates of system states and measurements made in time interval k ( k ). The 

prior prediction of 
1k+Φ  (

1|
ˆ

k k+Φ ) will be updated for the linear minimum mean square (LMMS) estimation of 

1k+Φ  using the extended Kalman filter in the next stage; and the prior prediction of 
1k+P (

1|
ˆ

k k+P ) is a prerequisite 
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for the aforementioned state estimation. Using Eq. (15), Corollary 5.1 and 5.2 are provided to facilitate the prior 

predictions of 
1|

ˆ
k k+Φ  and 1|

ˆ
k k+P , respectively. 

Corollary 5.1. Given Eq. (15  (recursive equation  and its characteristics, let 

ˆ ˆ
ˆ

ˆ

k

k

k

k

e
 



− 
  
  

F , where ˆ
k  

and ˆ
k  are the LMMS estimates of 

k  and 
k  that are based on the data regarding 

kA  and 
kY  collected 

in time interval k . Then, the prior prediction of the LMMS estimate of 
1k+Φ  (

1|
ˆ

k k+Φ   that is based on the data 

regarding 
kA  and 

kY  that were collected in time interval k  is given by 

1|
ˆ ˆ ,k k k k+ = Φ F , (26) 

The prior prediction ( 1|
ˆ

k k+P ) of the covariance matrix of the state estimation error 
1k+P  as well as 

1|
ˆ

k k+Φ  

must be determined in this stage. Using Eq. (15) and Eq. (26) (Corollary 5.1), Corollary 5.2 is obtained to determine 

1|
ˆ

k k+P . 

Corollary 5.2. Given Eq. (15  (the recursive equations  and Corollary 5.1, let 
ˆ

ˆ

k k

k
k

k =


 =


Φ Φ

F
F

Φ
based on 

the data regarding 
kA  and 

kY  that were collected in time interval k, and let T[ ]k k kER W W . Then, the 

prior prediction of 
1k+P  (

1|
ˆ

k k+P   that is based on the data regarding 
kA  and 

kY  that were collected in time 

interval k is given by 

T

1| |
ˆ ˆ ˆ ˆ ,k k k k k k k k+

 = + P F P F R . (27) 

 

5.3. Correction of Prior Predictions 

In this stage, the prior predictions 1|
ˆ

k k+Φ  and 
1|

ˆ
k k+P  are corrected using the Kalman gain (

1k+G ) and the 

measurements made through time interval 1k +  ( k ). To achieve this purpose, Corollary 5.3, which associates 

the corrected state vector (
1

ˆ
k+Φ ) with its prior prediction ( 1|

ˆ
k k+Φ ), the Kalman gain (

1k+G ) and the measurements 

made through time interval 1k +  ( k ), is provided. 

Corollary 5.3. Given Eqs. (5  (fatigue prediction function  and (19  (measurement equation , let 
1|k k+y  

be the measurement residual in time interval 1k +  , defined as 
ˆ

1| 1 1| 1
ˆ ˆk

k k k k k k ke
−

+ + + +  − = −y Y Y Y H   ( k   , 

where 
1

ˆ1ˆ ˆ
ˆ ˆ1

k k
k k k

kk

A
Q


−

  
= +  

−   

Ω
H

Ω
  (by Eq. (21  ,  and let 

kY   be a 1k   residual vector of the 
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measurement residuals through time interval k  that is defined  as

1|0

2|1

| 1

k

k k−

 
 
  
 
 
 

y

y
Y

y

. Then, the LMMS estimate 

of 
1k+Φ  (

1
ˆ

k+Φ   that is based on the data that were collected through time interval 1k +  is given by 

1 1| 1 1|
ˆ ˆ ,k k k k k k k+ + + += +  + ΦΦ Φ G y m , (28) 

where Φm  is the mean of 1k+Φ , and 
1k+G  is the Kalman gain, which is defined as 

T T 1

1 1 1| 1| 1|[ ] { [ ]} ,k k k k k k k kE E k−

+ + + + +     G Φ y y y . (29) 

As seen in Eqs. (28) and (29) of Corollary 5.3, the LMMS estimate of 
1k+Φ   (

1
ˆ

k+Φ  ) given the 

measurements made through time interval 1k +  can be derived following the determination of the Kalman 

gain 
1k+G  as in Eq. (29). Therefore, Corollary 5.4 is provided to determine the Kalman gain 

1k+G . 

Corollary 5.4. Given Corollaries 5.2 and 5.3, and Eq. (19  (measurement equation , let 

1 1|

1
1

ˆ1

ˆ

k k k

k
k

k
+ +

+
+

+ =


 =


Φ Φ

H
H

Φ
and T

1 [ ]k k kE+ Λ ε ε . Then, the Kalman gain 
1k+G  is given by 

T T 1

1 1| 1 1 1| 1 1
ˆ ˆ ˆ ˆ ˆ( ) ,k k k k k k k k k k−

+ + + + + + +
  = + G P H H P H Λ . (30) 

Based on Corollaries 5.3 and 5.4, the corrected state vector 
1

ˆ
k+Φ  can be obtained using Eqs. (28) and 

(30). Alternatively, 
1

ˆ
k+Φ  can also be expressed as 

T T 1

1 1| 1| 1 1 1| 1 1 1|
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ,k k k k k k k k k k k k k k−

+ + + + + + + + +
  = + +  + ΦΦ Φ P H H P H Λ y m . (31) 

Finally, the recursive equation for correcting the prior prediction of the covariance matrix of state 

estimation error 
1|

ˆ
k k+P  into 1| 1

ˆ
k k+ +P  must be derived for the recursive estimation of system states in the next time 

interval 1k + . To achieve this purpose, Corollary 5.5 is provided. 

Corollary 5.5. Given Corollaries 5.2 to 5.4, let the corrected covariance matrix of state estimation 

error 1| 1
ˆ

k k+ +P   be defined as 
T

1| 1 1| 1 1| 1
ˆ [ ]k k k k k kE+ + + + + +  P Φ Φ  , where 1| 1 1 1

ˆ
k k k k+ + + +  −Φ Φ Φ  . Then, 1| 1

ˆ
k k+ +P   is 

given by 

T

1| 1 1 1 1|
ˆ ˆ ˆ( ) ,k k k k k k k+ + + + +

= − + Φ ΦP I G H P m m . (32) 

The result of Corollary 5.5 in (32) is important for the estimation of the control variable vector as shown in 

the next sub-section. 

  

5.4. Estimation of Control Variable Vector  
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Using the corrected state vector 
1

ˆ
k+Φ  (Eq. (31)) and the covariance matrix of the state estimation error 

1| 1
ˆ

k k+ +P  (Eq. (32)), the control variable vector 
1

ˆ
k+U  ( 1

1

1

ˆ
ˆ

ˆ

k

k

k





+

+

+

 
  
 

U , k ) can be estimated. The principles of 

stochastic optimal control theory and existing algorithms (Santina et al., 1994; Sheu, 2002) are applied to 

estimate 
1

ˆ
k+U . Consistent with the principles of stochastic optimal control, the corrected state vector 

1
ˆ

k+Φ  is fed 

back through the optimal control gain matrix 
1k+Θ  to determine the control variable vector 

1
ˆ

k+U : 

1 1 1 1
ˆ ˆ ,k k k k k+ + + += − + U Θ Φ η . (33) 

In Eq. (33), 1k+Θ  and 1k+η  are given by 

1
T U T

1 1 2 1 1 1 2 1
ˆ ,k k k k k k k k k

−

+ + + + + + + +
 = +  Θ B Γ B Ψ B Γ F , (34) 

1
T U * U *

1 1 2 1 1 1 1 1 1 1 ,k k k k k k k k k k k
−



+ + + + + + + + + +
   = + +    η B Γ B Ψ B Ψ Φ Ψ U , (35) 

where 

1 |

1
1

ˆ1
k k k

k
k

k
+

+
+

+ =


=


U U

F
B

U
( k ), and matrix 

2k+Γ  should satisfy the Riccati equation as follows: 

Φ T T

1 1 1 2 1 1 2 1 1,k k k k k k k k k k+ + + + + + + + +
  = + − Γ Ψ F Γ F F Γ B Θ . (36) 

All of the system states that are characterized by the corrected state vector (
1

ˆ
k+Φ ) and the control variable 

vector (
1

ˆ
k+U ) in time interval 1k +  can be estimated using the aforementioned approach and the data that are 

collected through time interval 1k + . 

Utilizing the estimates of 
1

ˆ
k+Φ   and 

1
ˆ

k+U  , the state-dependent variables, including 
1

ˆ
kX +

 and 
1

ˆ
kY +

 

(by Theorem 4.1), together with 
1kQ +
 (by Eq. (1)), can be updated and used as indices of the instantaneous 

performance of the system in terms of the efficiencies of the coordinated robots and the picker. Moreover, a 

picker’s fatigue degree ( 1
ˆ

k + ) accumulated to time interval 1k +  can be estimated (by Corollary 4.1 and Eq. 

(14)) in real time to determine whether it satisfies the boundary constraint (Eq. (4)) that protects the safety of 

the workers. 
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1. Prior Prediction of

System States

2. Correction of Prior

Predictions

3. Estimation of

Control Variable

Vector

4. Assessment of

System Performance

1
ˆ

k+U

5. Updating Time

Interval (until k=K)

1kA +

1k k= +

0. Initialization
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Fig. 2. Algorithmic procedures for data-driven real-time state estimation-control. 

 

The proposed data-driven real-time state estimation-control approach can be coded in any appropriate 

computer programming language. This can not only facilitate the recursive calculation and optimal control of 

system states but also monitor system performance in real time. Figure 2 summarizes the primary algorithmic 

computational procedures based on the proposed approach. 

 

6. REAL-PRACTICE BASED ANALYSIS 

To demonstrate the validity and applicability of the proposed real-time data driven state estimation and control 

approach for robot-picker coordinated order fulfillment, data were collected from a dominant e-commerce 

company in China that uses robots for parts-to-picker order fulfillment. The data were obtained from a 

warehouse of that company, which is a 2,500m2 robot-carried mobile-rack warehouse that stores small cosmetic 

items, in which 11 human pickers work with mobile robots to pick out customer orders. The raw data provide 

details about the pickers’ picking and packaging tasks at the study site over six days in March, 2019. Data 

concerning the number of racks (
kA ) that carry newly arriving SKUs to the storage area and the number of racks 

(
kY ) that are processed by each picker in the picking-packaging area in each time interval are used.  

A total of 21 data sets which contain a total of 756 data points are generated from the collected raw data 

to facilitate real-time state estimation and control in this empirical study. Each data set contains 18 pairs of data 

points 
kA  and 

kY , measured every 10 minutes in a 3-hour task period. The data points 
kA  are inputs to, and 

kY  are the measurements for the proposed approach. The generated 21 data sets are classified into three groups, 

associated with peak-hour, normal, and off-peak operational scenarios, respectively, to demonstrate the 

applicability of the proposed approach to diverse operational scenarios in order fulfillment centers. Specifically, 

seven, eight, and six data sets are obtained for Scenarios I (peak-hour), II (normal), and III (off-peak), 

respectively. Using the 21 data sets, the robot-picker coordinated order fulfillment performance and accumulated 

fatigue of the pickers in peak-hour, normal, and off-peak operational scenarios (Scenarios I, II, and III) are 
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comparatively analyzed.  

Given the aforementioned 21 data sets (756 data points), the real-practice based empirical analysis is 

carried out through two phases to demonstrate the relative performance of the proposed robot-picker 

coordination mechanism for parts-to-picker order fulfillment.  

The first phase of the empirical analysis aims to compare the results generated using the proposed 

approach with the measurements gained from the 21 data sets in the aspects of picker efficiency (the average of 

kY  values) and accumulated fatigue (the average of K  values). The comparative results are presented in Fig. 

3, which help assess the relative performance of the proposed approach against the current parts-to-picker order 

fulfillment operations of the focal firm in the aspects of picker efficiency and fatigue alleviation, respectively.  

 

Systems performance (
kY  and k ) 

  
RP -14.09% -17.95% -12.33% -53.16% -47.99% -60.08% 

ARP  -14.79%   -53.74%  

Scenarios: I, II, and III represent “peak”, “normal”, and “off-peak” scenarios; Indexes: a and b represent the scenarios “with” and 

“without” considering robot-picker coordination; RP: Relative performance; ARP: Average of relative performance 

Fig. 3. Empirical results of phase I (robot-picker coordination relative to real operations). 

 

Overall, the empirical results yielded in the first phase provide the following findings as summarized in 

Observation 6.1. 

Observation 6.1. The proposed robot-picker coordination system permits alleviating a picker’s 

fatigue in order fulfillment without much influence on picking efficiency, compared with the current 

performance of the focal firm in the study case — As can be seen in Fig. 3, a picker’s accumulated fatigue can 

be reduced by 53.74% if the proposed robot-picker coordination system is applied in the focal firm of the study 

case. Such a fatigue alleviation, however, is carried out at the expense of lowering picker efficiency by 14.79%. 

Nevertheless, the above observation is encouraging for the applicability of the proposed method in practical 

cases of parts-to-picker order fulfillment systems as it implies that a more harmonious and enjoyable robot-

human co-working environments can be created to facilitate the development of intelligent and human-friendly 

robot-human coordinated order fulfillment systems. 

In the second phase of the empirical analysis, this work aims to demonstrate the relative performance 

of robot-picker coordination in contrast with the case without considering the robot-picker coordination for 

gaining more managerial implications. Therein, empirical results that are obtained with and without 
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consideration of the robot-picker coordination mechanism are compared. Without robot-picker coordination, 

both control variables k  and k  are set to 1 ( 1k k = = ) to mimic the current parts-to-picker order 

fulfillment operations of the focal firm of the case studied. 

Figure 4 plots the empirical results concerning practice-based empirical analysis, including the average 

values of scenario-based state variables, control variables, system performance, and associated relative 

performance, as determined by comparing the outputs with and without robot-picker coordination. The findings 

and managerial implications of Fig. 4 are discussed below. 

Observation 6.2. The proposed robot-picker coordination system outperforms the system without 

coordination in not only efficiency but also the fatigue of human pickers — As seen in Fig. 4, the relative 

performance (RP) values that are associated with k  in all three scenarios (peak-hour, normal, and off-peak 

scenarios) are positive, indicating that the pickers’ working performance with robot-picker coordination is more 

efficient than without coordination. This higher efficiency is attributed to shorter queues racks (
kQ ), owing to 

adjustments of the number of mobile racks that arrive at the picking and packaging area in each time interval 

based on estimates of the control variable k  in real time using the proposed approach. Additionally, the 

values of accumulated fatigue ( k ) that are found in all three scenarios with robot-picker coordination are 

lower than the scenarios without coordination. This observation is highly encouraging as it implies that customer 

orders can be efficiently fulfilled without the need for pickers to expend more energy and make more efforts 

while operating under the proposed robot-picker coordination, relative to the situation without it. 

Observation 6.3. Robot-picker coordination improves system performance more in the “normal” 

scenario (Scenario II) than in the “peak-hour” and “off-peak” scenarios (Scenarios I and III) — This 

inference is drawn by comparing the RP values, particularly those associated with 
kQ and k  in the three 

scenarios. The “minus” signs of the RP values that are associated with 
kQ and k  imply that the proposed 

robot-picker coordination system alleviates pickers’ accumulated fatigue (
k  ) by reducing the number of 

racks that queue (
kQ  ) in the picking-packaging area. Such an effect of robot-picker coordination on either 

kQ or k  is highly significant under normal conditions (Scenario II) and is reasonable as the length of queues 

of racks (
kQ ) is one of the key factors that is related to the stress and workloads of pickers, as captured by Eq. 

(3) in the proposed model. 

 

1. State variables ( k  and k ) 
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RP 7.84% 4.31% 1.24% -0.31% -10.28% -1.98% 

2. Control variables ( k  and k ) 

  
RP -1.68% -1.54% -1.09% -3.11% -2.18% -3.13% 

3. Systems performance (
kQ , k ,

kX , and 
kY ) 

  
RP -6.83% -6.97% -4.66% -13.65% -18.98% -16.42% 

  
RP 0.77% 1.44% -7.31% -3.16% -3.54% -7.73% 

Scenarios: I, II, and III represent “peak”, “normal”, and “off-peak” scenarios; Indexes: a and b represent the scenarios “with” and 

“without” considering robot-picker coordination; RP: Relative performance 

Fig. 4. Empirical results of phase II (robot-picker coordination performance). 

 

Observation 6.4 (Human-friendly robot behavior for coordination with human pickers in 

different operational scenarios). Under the proposed robot-picker coordination, robots can exhibit different 



-24- 

 

coordination behaviors in response to the instantaneous performance of coordinated pickers in different 

scenarios, as follows. 

(a) Under peak-hour conditions (Scenario I) — Robots tend to handle racks with high efficiency (by 

increasing 
kX   value  in the storage area, and this efficiency almost matches the coordinated 

picker’s efficiency in processing racks (
k kX Y  . Moreover, robots tend to stabilize the volume 

of racks that are delivered to the coordinated pickers (by stabilizing k  value ; meanwhile, the 

rack volume that is returned to the storage area is adjusted (by reducing k  value , based on the 

coordinated pickers’ instantaneous efficiency (by estimating 
kY   value . Consequently, the 

accumulated number of queuing racks in the picking-packaging area can be well controlled (by 

reducing the 
kQ   value  to mitigate the accumulated stress and fatigue of coordinated human 

pickers during peak hours. 

(b) Under normal conditions (Scenario II) — Robots adjust their efficiency of handling racks in the 

storage area to keep the number of racks that are moved to the picking-packaging area almost equal 

to the number of racks that are processed by the coordinated pickers (
k kX Y   per unit time 

such that the accumulated number of racks that queue in the picking-packaging area remains stable. 

(
kQ   remains approximately double the value of 

kY   in this case . Meanwhile, the volumes of 

mobile racks (carried by robots  that move between the storage and picking-packaging areas are 

controlled to be almost equal to each other ( k k   . 

(c) Under off-peak conditions (Scenario III) — Robots handle racks in the storage area more slowly 

(by reducing 
kX   value  to keep their efficiency a little lower than the coordinated pickers’ 

efficiency in processing racks (
k kX Y   . Meanwhile, the volumes of racks that are moved 

between the storage area and the picking-packaging area are adjusted in response to the 

coordinated picker’s processing of racks. Specifically, robots tend to move racks forward fast (by 

increasing k   value , and to return racks from the picking-packaging area more slowly (by 

reducing k  value  during off-peak hours. 

Three empirical examples, based on three selected datasets, are further used to present graphically the 

aforementioned characteristics of robot-picker coordination behavior that is typically exhibited during “peak”, 

“normal” and “off-peak” hours, as shown in Figs. 5 to 7. Briefly, the coordinated robots adjust their efficiency 

(
kX ) in handling racks in the storage area, and controlling the volumes of racks (by k  and k ) that move 

between the storage area and the picking-packaging area in response to the coordinated pickers’ efficiency in 

processing racks (by 
kY ) and accumulated fatigue ( k ). Under such a proposed robot-picker coordination, 

the lengths of the queues of racks in the picking-packaging area can also be controlled. 
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State variables Control variables 

  

Queue length (racks) Efficiency 

 
Accumulated fatigue 

Fig. 5. Empirical example (1) — system output during peak hours (Scenario I) 

 

  
State variables Control variables 

  
Queue length (racks) Efficiency 
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Accumulated fatigue 

Fig. 6. Empirical example (2) — system output during normal hours (Scenario II). 

 

  
State variables Control variables 

  
Queue length (racks) Efficiency 

 
Accumulated fatigue 

Fig. 7. Empirical example (3) — system output during off-peak hours (Scenario III). 

 

The results concerning empirical example 1 (Fig. 5) reveal a large difference between accumulated 

fatigue ( k ) in a 3-hour peak period in Scenario I and those shown in the other two scenarios. Thus, Scenario I 

is used to conduct sensitivity analysis on two key parameters ( 1 , and 
2 ) which determine the effects of picker 

efficiency (
kY ) and rack queue length (

kQ ), respectively, on the fatigue growth rate (
k ), as captured by Eq. 

(3). The parameter settings (
1 0.00005 =  and 

2 0.00005 = ) and dataset that are used in empirical example 1 

provide the baseline in the sensitivity analysis. Figure 8 plots the empirical results of the sensitivity analysis of 
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the relationships among k , 
1 , and 

2 , where the value of   
is the average of the k  values that are 

estimated during the 3-hour peak period. Figure 8 has managerial implications concerning the psychological 

and physical effects of workload on human pickers, which are determined by the perceived rack queue lengths 

and the picking efficiency of pickers in coordination with robots during peak hours. 

Observation 6.5. A picker’s accumulated fatigue (  ) increases significantly with either the picker’s 

efficiency (
kY ) or perceived rack queue length (

kQ ) during peak hours; the increase in   with 
kQ  

exceeds that with 
kY . 

During peak hours, a human picker is likely to be more sensitive to the perceived length of the queue 

of unprocessed mobile racks than to the number of racks processed. Therefore, perceiving any anomalous 

increase in the length of the queue of mobile racks would easily have a negative effect on the picker’s 

psychological and behavioral responses (such as stress, anxiety, and panic). 

 
Fig. 8. Sensitivity analysis of   (with respect to 

1  and 
2 ) in peak-hour scenario. 

 

7. CONCLUSIONS, MANAGERIAL IMPLICATIONS AND 

RECOMMENDATIONS 

7.1 Conclusions 

Motivated by the introduction of robots and advanced technologies into intelligent logistics operations and the 

impact thereof on worker safety and well-being, this work has presented a real-time data-driven stochastic 

optimal control-based approach to addressing the issue of robot-picker coordinated order fulfillment. 

Specifically, the proposed approach combines a discrete-time nonlinear stochastic-dynamic model with a fatigue 

accumulation function (Section 4) in a real-time system state estimation and control method (Section 5) to find 

the optimal solutions for the coordination between human pickers and robots. Theoretically and in practice, the 

coordinated robots can react and adapt to picker efficiency in real time, such that the coordinated robots and 
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pickers can jointly fulfill orders in collaboration and in a human-friendly manner. Sections 4 and 5 have 

presented the methodological characteristics and novelty of the proposed approach, which may help address the 

first research question raised in Section 1. To answer the second question (Section 1), an empirical analysis has 

been performed using actual data that were collected from a dominant e-commerce company in China that uses 

robots for “parts-to-picker” order fulfillment. An empirical study has been conducted to generate various 

insights (called “observations”) which help answer the second question, concerning how the proposed human-

friendly, robot-human coordination system improves the performance of a parts-to-picker order fulfillment 

center in terms of both safety and human well-being. 

7.2. Managerial Implications 

The analytical results that were obtained using the proposed model (Sections 4 and 5) and the empirical 

results of the empirical analysis of actual data (Section 6) provide the following managerial implications. 

Implication 1. Under the proposed robot-picker coordinated order fulfillment mechanism, the robot 

and picker efficiencies (
kX  and 

kY ) have the following characteristics.  

(a) The robot and picker efficiencies (
kX  and 

kY ) can be effectively controlled and coordinated if 

real-time data concerning newly arriving racks (
kA ) that are loaded with SKUs are obtained.  

(b) Robot efficiency (
kX ) depends strongly on 

kA  whereas picker efficiency (
kY ) depends strongly 

on the length of the queue of unprocessed racks (
kQ ). 

The above managerial insights are based on Theorem 4.1, Observations 6.2 and 6.5. The effect of the 

perceived length of the queue (
kQ ) of unprocessed racks on systems performance is emphasized and has 

implications for operations managers (e.g., in warehousing), enabling them better to manage the number of 

racks in queues by appropriately controlling the speeds with which robots deliver racks to the picking-packaging 

area. 

Implication 2. Under the proposed robot-picker coordinated order fulfillment mechanism, the 

picker-to-robot relative performance in the aspect of either efficiency (
k kY X ) or effectiveness (

k k  ) in 

peak hours is less than that in either normal or off-peak hours. The picker-to-robot relative performance is 

greatest in the “off-peak” scenario. This implication is drawn from a comparison of empirical results (Fig. 4) 

for 
k kY X  and 

k k   among the three scenarios. It may help operations managers to determine appropriate 

criteria and standards for evaluating the efficiency and effectiveness of pickers in different scenarios. 

Implication 3. Robot efficiency is not the most important metric. Rather, human efficiency dominates 

the efficiency of a parts-to-picker order fulfillment system, particularly during peak hours. Accordingly, 

controlling the number of queued racks by slowing down their delivery by robots to the picking-packaging 

area is more efficient than slowing down the rack-processing of a picker to alleviate that picker’s fatigue, 

particularly during a peak-hour period. This implication is drawn from the empirical results (Fig. 8), and is 

consistent with Observation 6.5 and Insight 1(b). It suggests the importance of accounting for human well-being 

and safety in the design and implementation of a human-friendly intelligent robot-human coordinated order 



-29- 

 

fulfillment system. In such a system, humans are the key element and robots should be sufficiently intelligent 

and accommodating to assist humans in the joint intelligent logistics task of order fulfillment. 

7.3. Recommendations for Future Research 

Despite the novelty of the proposed methodology and its advantages in realizing a human-friendly 

intelligent robot-human coordinated order fulfillment system, this research has several limitations. First, the 

proposed model has not incorporated factors related to worker psychology (e.g., perceived job worth, job 

attitude, and emotional involvement) and behavior (e.g., body posture) toward coordination and cooperation 

with robots, and these factors should be further explored and empirically verified in the future (MacDonald, 

2013; Tan and Netessine, 2014; Tan et al., 2021). For example, body posture is regarded as a kind of physical 

demands which may contribute to psychosocial hazards (i.e., negative effects on employees such as stress and 

health problems), as claimed in MacDonald (2013). Thus, body posture can be another issue to improve 

employees’ stress and health problems in human-robot collaborative work settings. Other related tasks that are 

undertaken in inbound logistics (such as storage assignment) and outbound logistics (such as resource/fleet 

management, vehicular loading, dispatching, and routing) have not yet been considered. They may be worthy 

of further investigation. Extending the proposed model for the cases of multiple working periods intervened by 

scheduled breaks is analytically challenging yet meaningful for future research. Last but not least, considering 

how robotics can be used to help cope with capacity bottlenecks and supply chain disruptions due to manpower 

shortage under/after the COVID-19 pandemic (Gupta et al. 2022) will also be interesting to study in the future. 
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