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The innovation of critical infrastructure plays a key role within sustaining a high-

functioning and content society in the 21st century. Demands regarding the nature

of critical infrastructure have been ever increasing in the current marketplace and new

challenges are constantly being presented. Such challenges include the reliability of

critical infrastructural systems in which this academic study aims to investigate, anal-

yse and communicate a system’s function with respects to a given time.

Resilience analysis simulation techniques are present in the current state of the art,

however, challenges remainwith regards tominimising high computational costs whilst

maintaining credible accuracy of results. Such techniques range from three phase re-

siliencemodelling, consequencemodelling and cost based resilience analysis. Another

limitation within the current literature is the scarcity of applied uncertainty to simula-

tion techniques. This desire for both epistemic and aleatory uncertainty is evident with

high academic and industrial demand for the communication of imprecise data.

The key findings of this Master of Philosophy thesis tackle the limitations and high-

light the strengths of three different resilience based techniques as applied to real world

scenarios. The research found credibility within the survival signature and probability

propagation for estimation of reliability within the simplified China railway network

with the addition of uncertainty. The load flow method was also applied and tested to

quantify operational resilience within power grids and displayed credible results for

the LODF, DC-OPF, AC-OPF and a surrogate model was implemented for the Great

Britain power network. A CFD based resilience model was also applied to a natural

gas pipeline and displayed imprecise results in a three phase resilience curve.
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Chapter 1

Introduction

1.1 Background

Critical Infrastructure is an integral part of modern society with all modern civilisa-

tions reliant on various types of infrastructural systems ranging from power grids to

water distribution systems and transportation networks. One method to represent the

connective nature of critical infrastructure is to represent large structures as systems

with nodes and links connected via the respective topological nature of such systems.

Each system is allocated a specific mission time which is dictated using data from

prior mission times [1] of comparably merited systems and reliability estimations can

be postulated from this data.

Systems can be divided in sub-categories, such as discrete and continuous systems.

Discrete systems contain nodes and links and use Boolean algebra to define an indi-

vidual node’s state, with either 1 indicating a functioning component or 0 indicating a

failed component [2]. Continuous systems differ from discrete systems as their mis-

sion time is infinite and their outputs are not defined by Boolean algebra and are alter-

natively defined as continuous values representing a magnitude of a specified output

parameter. The majority of systems applied in critical infrastructure analysis are clas-

sified as continuous systems and therefore a large volume of work has been researched

on such systems. It is also key to analyse discrete systems prior to the analysis of con-

tinuous systems as discrete systems can provide estimations regarding system failures

1
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in the field of reliability analysis. Such examples include fault tree analysis [3], sur-

vival signature analysis and Bayesian networks.

Systems can also be classified as either repairable or non-repairable systems with re-

pairable systems containing components that can be restored to their optimal state dur-

ing the downtime of a mission. Conversely, the components of non-repairable systems

cannot be restored mid-mission and are classified as failed until the mission ends [4].

1.2 Motivation

Prior events in history have shown that disasters of critical infrastructure systems have

induced detrimental impacts to communities, both socio-economically and towards

quality of life. The motivation for this research project therefore, is to communicate

risk in the form of resilience to experts with intentions to mitigate the likelihood of

impacts and minimise the consequences of disasters in critical infrastructure systems.

Before the aims and objectives are addressed, it is important to highlight the severity

of a range of past events that have occurred to remind the reader of the motivation for

this research project. Consequences from each event vary depending on the nature of

the event and its respective severity. It is also vital to admit that a failure in a system is

inevitable as a system ages and the reliability of the system decreases over time. This

is when resilience analysis is applied, as resilience aims to accept the reality of possi-

ble disasters, but aims to minimise consequences. Such methods include redundancy

analysis and resourceful analysis, both which assess different routes and look for other

pathways to establish mission efficiency and completion despite the system taking on

damage and performance loss.

This work is formulated to provide a balanced analysis to resilience in both a qualita-

tive and quantitative angle. The scarcity of data uncertainty in the literature provides

a drive to explore resilience in a potentially novel approach as researchers can work

together to improve scientific literature for this particular void.

All research carried out has been trialed in an academic perspective and gaining a deep

understanding of the data analysis, simulations and communicating work in confer-

ences is a positive step into the work of resilience as all the knowledge obtained from

this work is transferable into industry.
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1.2.1 1999 Ladbroke Grove Rail Crash

The 1999 Ladbroke Grove rail disaster [5] currently registers as the worst British rail

disaster in modern times accounting for 31 fatalities and injuring over 400 people [6].

The disaster occurred approximately two miles before the train reached its terminal

destination. A three car train filled with commuters in London’s early morning rush

hour collided with an eight coach high speed train at a combined speed of 130 mph

[7].

The direct cause of this incident can be linked to a long standing human factor prob-

lem known as a signal passed at danger (SPAD) occurring when a train driver passes

through a signal with a stop sign. In this case the driver believed a “proceed” signal

was delivered. The defence system of the railway was composed of multiple layers to

prevent an accident occurring. The defences for this particular system are displayed

on Table 1.1 [6].

Defence Driver response Train response

SN63 AWS horn Cancel AWS AWS horn cancelled

SN63 at double

yellow

Select speed control

notch 0 and brake level

1 applied and released

Train coasting at 45 mph then

braking to 41mph and coast-
ing to 39mph

SN87 AWS horn Cancel AWS AWS horn cancelled

SN87 at single

yellow

Allow train to continue

coasting for 30 s, then
select speed control

notch 5

Train coasting at 39mph then
cruising at 38mph

Driver Reminder

Appliance

Not applied Train coasting but driver is

still able to draw power

SN109 AWS

horn

Cancel AWS Select

speed control notch 7

AWS horn cancelled Train

accelerating from 38 mph to

50mph
SN109 at red No response Train accelerating from 38

mph to 50mph

Table 1.1: Defences for Ladbroke Grove Rail crash

The LadbrokeGrove train disaster follows a storywhich violates every layer of defence

designed on the system. These events are extremely rare due to the multiple layers of

defence the system has to offer.
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1.2.2 2012 India Blackout

The 2012 India blackout occurred on the 31st July 2012 and was the largest blackout

in human history [8] with an estimated 620 million people or 9% of the world’s pop-

ulation affected and lasted for 8 hours [9]. The event is believed to be caused by the

transmission line tripping as a result of being overloaded and an estimated power loss

of 48 GW was recorded.

The direct causes of the disaster are human factors and are also believed to be attributed

to the engineering design of the system. The inter-regional corridors were believed to

be weakened and this was thought to be caused by an overload of outages on the trans-

mission lines with an excessively high load between the northern region to western

region transmission lines in particular. The response team working on state load dis-

patch centres are believed to have miss-communicated information for the instructions

to regional load dispatch centres regarding reducing the load emitted from the north-

ern region to the western region. Additionally, there were issues with the protection

system for safeguarding such events such as a 400 kV line being tripped due to load

encroachment [10].

The other factors contributing to this event include [11];

• Frequency control

• Primary response from generators

• Operation of defence mechanisms

• Transfer capability

• Co-ordination of outage planning for transmission elements

• Reactive power compensatory tools

• Analysis tools

• Support assets for the occurrence of load contingencies

• Wide area measurement systems

• Analysis tools
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1.2.3 Deepwater Horizon Oil Spill

A pipe burst of a an oil or water distribution system is a common occurrence. Most no-

tably one of themost targeted disasters was the 2010Deepwater Horizon oil spill which

occurred in the Gulf of Mexico. During April of 2010, the semi-submersable oil rig

Deepwater Horizon caught fire and exploded, taking the lives of 11 people and injuring

17 more [12]. Following this event, global media was highlighted at British Petroleum

(BP), the lease operator. The consequences of the disaster were huge ranging from the

fatalities caused, the long term effects such as cardiovascular health conditions caused

by exposure to the leaked crude oil [13] to the adverse mental health affects for those

directly or indirectly affected [14].

The system’s failure was caused by multiple failures in combination. Labib [15] pro-

vides a full technical analysis of the causes of the disaster;

• Poor design of cement barriers - The primary cause of the system failure was

due to an engineering design problem [16]. This cause was the leakage of hy-

drocarbons from the bottom of the well into the drilling tower. This event further

caused the leakage of gas into the engine room. After the disaster, investigators

noticed that the cement barrier was poorly designed when they tested for the

robustness of pressure management and discovered from past history that the

cement barrier was not even tested for pressure handling.

• Mechanical failure of the blowout preventionmechanism - The Blowout Preven-

ter (BOP) is an important component in the system as it mimics the function of

valves to regulate pressure in the system. It was soon discovered that this BOP

was not tested to an adequate standard and was damaged due to the high pressure

hydrocarbon entering in from the cement barrier and into the BOP gasket [17].

Following this, oil and gas was released on to the oil rig’s surface, which was

expected to be ventilated by mud and gas separators. In this case, ignition was

initiated as the hydrocarbon gas entered the power generator room which pro-

vided the ignition source. Fire and gas mixing occurred as the planned safeguard

mechanism to prevent this was not functioning, resulting in the explosion.

• Control cables damaged - The second explosion which occurred 10 seconds after

the first explosion was caused by an indirect event following the first explosion.
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The BOP was connected to the control room and the cables used to connect

the two components were damaged from the first explosion [18], leading to no

communication to the control room.

It is clear to deduce that the Deepwater Horizon oil spill was a preventable disaster

given that sufficient safeguarding and audits were to be implemented. Both direct and

indirect causes led to this disaster with a mixture of technical, design and financial

reasons.

1.3 The role of Resilience in Critical Infrastructure

The examples listed above are just a small number of the many types of disasters for

a select few critical infrastructure systems. The list is ongoing and these examples

provide an insight into the possible disasters and disenfranchised performance losses

resulting from a lack of awareness of resilience based studies. There are various defi-

nitions and interpretations of resilience available, both in an engineering context and in

a general form [19]. The United Nations International Strategy for Disaster Reduction

defines resilience as “The capacity of a system, community or society potentially ex-

posed to hazards to adapt, by resisting or changing to reach and maintain an acceptable

level of functioning and structure” [20].

Academic research carried out shows a number of different angles that have been ap-

plied to resilience analysis when tested on critical infrastructure engineering systems.

These approaches can vary depending on the type of system that has been analysed

and the type of resilience that has been quantified. For example, with regards to rail

based infrastructure systems, an objective function can be developed based on the the

delay of train times when tackling the operational resilience and with regards to the in-

frastructural resilience, the type of analysis could be the structural loss over time with

respects to the railway track and its interaction with the train along as internal damage

recorded from use of passengers [21].

An example that can be applied to Section 1.4.2 is an approach to quantify resilience

as an objective function and has been carried out by Ghasemi et al. [22] who proposed

a new restoration strategy to re-energise the critical loads of the system. The approach

applies three objective functions to carry out a restoration plan. These three objective
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functions are restored weighted energy, preparation of time plans, and switching oper-

ations cost respectively. The methodology selects the most efficient objective function

at each stage of the simulation using the PROMOTHEE-II technique with a judgement

matrix further applied to select the correct weighting of the critical loads. The model

then displays the output curve with respects to uncertainties in the loads.

1.4 Challenges in Resilience Quantification

In the field of system simulation, there are many challenges that arise to provide accu-

rate results in a presentable manner. The first challenge is regarding data collection and

uncertainties around which data to use. Conflicting data is a very common challenge

in academic research papers and the way this constraint can be overcome is through

the introduction of data verification, data validation [23] and the addition of epistemic

uncertainty when multiple data sources are applied for a desired system’s input.

With regards to the simulation, the biggest constraint is often seen in systems with a

large amount of data and through very precise algorithms incorporating many stages

to achieve the output goal [24]. Realistic systems that contain thousands of nodes and

links are prone to computationally expensive simulations which is further elongated

depending on the methods applied for resilience quantification [25]. The challenges

addressed within the simulation methods presented in this thesis tackle the issue of bal-

ancing computational expense with input data accuracy, system size and uncertainties.

Each method presented provides the computational approach recorded in MATLAB

2021b and the alternative approaches to minimise computational time have been tri-

aled out.

The challenges faced within the software that have been applied have been found to be

within the applicability to provide sufficient simulation techniques in order quantify

the objective purpose. In order to tackle this limitation, a combination of the various

toolboxes are applied where applicable and results are transferred from one piece of

software to the next. Such examples are highlighted in Chapter 3 where the GeNIe

Bayesian Network software has been tested alongside the Credal Network toolbox in

OpenCossan to convert precise data and deduce its respective imprecise form. A fur-

ther example of this is presented in Chapter 5 which also applies conversion of data
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from PipeFlow Expert into MATLAB 2021b in order to derive the simulation results

as presented in the respective chapter of this thesis.

1.5 Aims and Objectives

In the field of resilience, although significant research and efforts have been dedi-

cated to resilience analysis, there are still a number of open research questions and

challenges. It is not always straightforward to develop realistic models with scarce

literature and a lack of data. Therefore, the primary aim and objective of this thesis

is to present an analysis of various resilience models in engineering systems with real

world applications to represent an illustration of each model’s respective results.

A list of these aims include;

1. Understanding the state of the art of resilience as applied to engineering systems;

2. Exploring computational reliability models with regards to discrete binary-state

systems with respects to the connectivity of a system’s topology;

3. Application of current resilience models to multi-state systems with regards to

respective output models;

4. Linking multiple forms of resilience quantification into one output metric to

enable a clear and concise method for the user to interpret;

5. Highlighting the strengths and diagnosing the limitations as discovered in the

resilience methods explored.

With respects to the objectives, a series of tasks have been carried out to produce the

credible data, results and information for this thesis including;

1. Investigating resilience via collecting real world data for the desired systems and

analysing this data to be applied to the respective simulations;

2. Organising data for evaluation and simplifying this data for the required inputs

for the respective models;
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3. Implementing resilience algorithms and numerical solutions from the literature

into a computational package for MATLAB 2021b;

4. Innovating current resilience based algorithms with the addition of uncertainty;

5. Writing up the results in a cohesive manner to clearly communicate and evaluate

the findings of resilience as applied to critical infrastructure.

1.6 Thesis Structure

This thesis is divided into six (6) chapters, with each chapter focusing on a different

aspect of resilience quantification and different applications with real world critical

infrastructure systems. Chapter 1 includes the necessary background information and

main motivations of this research thesis along with the examples stated before. The

aims and objectives presented in the problem are clearly addressed along with the re-

search questions needed to be asked.

Chapter 2 lists a full and updated literature review that has been carried during this

research project, displaying the most important papers analysed for prior knowledge

to aid with the writing of this thesis. The current resilience techniques along with their

challenges are presented.

Chapter 3 for instance, combines two approaches, the survival signature and analytical

probability propagation method to quantify reliability in a discrete system and expands

this into resilience analysis with the addition of uncertainty.

Chapter 4 provides an application of an existing resilience quantification technique,

the load flow Monte Carlo simulation model into a real world study of the UK power

network. The chapter uses artificial neural networks to add a surrogate model for faster

simulation techniques when applied to various optimal power flow simulations.

Chapter 5 provides a gas pipeline network application and explores resilience with re-

gards to the mass flowrates of gas.

The final chapter concludes the various topics explored in the thesis and provides a

critical analysis of the successes, failures and limitations within the study along with

future work that can be carried out in more advanced scenarios to innovate the current

state of the art as mentioned on this thesis.



Chapter 2

The State of the art in Reliability and

Resilience Modelling

2.1 Current Reliability Estimation Techniques

Techniques to estimate reliability of a system have been developed in order to min-

imise computational time with respects to analysing the topology of a system. These

techniques provide a different approach to reliability analysis with respects to the per-

formance parameters being analysed and the methodology of evaluation.

The traditional method of Monte Carlo simulation has been a technique used for the

estimation of components and furthermore subset simulation has been developed in

order to provide an estimate of reliability. Subset simulation works by performing a

limited number of samples extracted from a complete set of samples by converting

small failure probabilities into a series of larger failure probabilities by introducing

intermediate events in stages [26].

When quantifying failure probabilities which are considered too small for the appli-

cability of Monte Carlo simulation (e.g.P < 10−4), line sampling [27] has been im-

plemented to quantify reliability in these extremely unlikely probabilistic events by

computing the “Important Direction” and is estimated by the gradient of the standard

normal space of the performance function.

Other techniques use fault trees to represent system reliability and furthermore include

10
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dynamic fault trees [28] which apply graphical models that describe how failures prop-

agate through the system and how these component failures affect the whole system

leading to failure. This is represented by a Direct Acyclic Graph (DAG) with logic

gates representing how failures propagate through the system. Static fault trees use

“AND” and “OR” gates to represent the path set into failure for a system. Dynamic

fault trees extend the idea of a static fault tree by introducing additional dynamic

gates including priority sequence enforcing, functional dependency, spare gate and

load sharing gates [29]. Other dynamic reliability assessment techniques include dy-

namic reliability block diagrams (RBDs) [30], dynamic flow graphs [31] and petri-nets

[32].

Along with petri-nets, artificial neutral networks (ANNs) are used to provide a meta-

model route in estimating reliability for a system and can be seen as an alternative to

traditional techniques as it employs machine learning techniques to use past historical

data as network architecture which involves training a genetic algorithm to mimic an

original model [33][34]. The universal generating function (UGF) was introduced to

evaluate reliability in multi-state systems and uses reliability optimisation algorithms

to map out the system’s performance distribution function [35].

2.1.1 The Survival Signature

The survival signature, a method developed by Coolen and Coolen-Maturi first pub-

lished in the article [36] was first developed in 2013. The survival signature is amethod

which extends on the work of the general system signature by the addition of the topo-

logical analysis of systems with multiple types of components which contain indepen-

dent failure times. The survival signature approach is a means invented to estimate

a network’s reliability given the condition that a certain number of random nodes are

active for any defined number of component types. It has been developed from the

general system signature, previously developed by Samaniego [37] and extends this

concept to enable the signature’s analysis for system’s with multiple types of compo-

nents that contain non-exchangeable failure times, which could include systems with

two or more types of components.

The first approach to uncertainty for the survival signature was tested by Coolen et
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al. [38] as an application of non-parametric predictive inference for the survival func-

tion, using bounds to denote uncertainty. Patelli et al. [39] published another approach

to uncertainty for the survival signature, and takes an approach of adding bounds to

the Weibull shape and scale parameters in the survival function. The authors propose

three different algorithms, two on non-repairable systems and one on a repairable sys-

tem. Further works on the survival signature have been carried out and include the

application of marginal and joint reliability importance as applied to coherent systems

consisting of multiple types of components [40] and reliability analysis of phased mis-

sion systems (PMS) with the implementation of the traditional survival signature to

PMS with similar types of components in each phase [41]. Furthermore, Li et al. [42]

developed a reliability-redundancy allocation optimisation and reliability sensitivity

analysis for redundant components. Most recently, Behrensdorf et al. extended the

work on the survival signature to enable the application of efficient computation in

very large networks [43], extending the survival signature to systems that can contain

thousands of nodes.

2.1.2 The Analytical Probability Propagation Method

The Analytical probability propagation method (PrPm) developed by Tien and Tong

[44][45], which incorporates belief propagation in order to perform inference on a net-

work is an innovation to current reliability techniques applied to Markov models. It

computes the joint probability distribution between nodes on each stage of the prop-

agation and carries this information on to the next propagation step until the terminal

node is propagated. It can be argued that the PrPm is favourable over Monte Carlo

simulation methods as Tien and Tong have proved that the deviation from the actual

values are less than the Monte Carlo based methods, arguing greater accuracy with the

results. The PrPm also has certain advantages over the imprecise bayesian network,

known as the credal network as the computational times are significantly shorter too.

The fundamental difference between the survival signature and the probability propa-

gationmethod is the addition of line probabilities to the probability propagationmethod

which is also not applied in a bayesian network. The line probabilities influence the

reliability of the system’s terminal probability and are included in the updating calcu-

lations for the progressive steps of the method.
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Both the survival signature and the PrPm methods are applied in Chapter 3, and this

thesis innovates on the current literature applied to the probability propagation method

by adding the bounds for epistemic and aleatory uncertainty.

2.1.3 Limitations of the Proposed Approaches

The major limitations of these two approaches include the approximation of the uncer-

tainties being deduced from estimation. It is not always clear that these input estima-

tions are reliable when data is so scarce for these estimations to be applied.

The system simulation procedure for the survival signature becomes exponentially

computationally expensive as more types of nodes are introduced and eventually be-

comes unfeasible for imprecise probabilistic quantification.

The PrPm also becomes exponentially computationally expensive when the inner ap-

proximation algorithm is applied and becomes computationally impossible in a larger

size network to produce results with the exact algorithm. The outer approximation is

computationally feasible for larger networks, but produces confidence bounds with a

wide range of uncertainties.

These limitations do not greatly affect the credibility of the results due to the aim of

Chapter 3 focusing on estimation towards reliability of systems, therefore results are

deemed as credible despite potential accuracy loss throughout these assumptions and

limitations.

2.2 System Resilience

The field of reliability is a well established research field in system engineering with

journals such as the “Journal of Risk and Reliability” containing years of literature on

this topic. However, the field of resilience is a newly established topic in recent years.

Resilience plays an important part in terms of extending reliability analysis with the

aims of this new analysis contributing to the creation a safer world by minimising

probabilities of failures and furthermore accepting failures with the minimisation of

infrastructural and operational damage.



Assessing Resilience of Smart Critical Infrastructures to Deal with Emerging Risks and Threats 14

2.2.1 The Four R’s

Works on availability and reliability aim to quantify and communicate the minimisa-

tion of the probability of failures from occurring. In contrary, resilience analysis aims

to accept the occurrence of these disasters, however aims to minimise the impacts and

consequences of such disasters in different approaches and furthermore aims to pro-

duce recovery data in a post disaster phase, applying the process known as three-phase

resilience. These models were one of the earliest academic developments in the field

of resilience, and were developed by Bruneau et al. [46] and they include operational

lossminimisation, rapiditymodelling to analyse recovery time analysis, resource based

analysis to search for alternative routes for mission time for success, and redundancy

modeling to accept the loss of a system but quantifying and communicating work de-

spite the partial loss. Each particular sub-field of resilience analysis adds a different

utility in the overall picture and these individual metrics can be used to communicate

the relevant information as applied to a particular system. The four R’s developed by

Bruneau et al. are detailed as follows;

• Robustness - The analysis of the strength and ability to withstand a given stress

level without damaging the operation of a system. A robust system is able to

undergo a large level of stress without reduction in performance, whereas a less

robust system will fail with respects to the same levels of stress [47].

• Redundancy - Analysing the system’s performance based on the desired metrics

with the known state that a damaging event has been done to the system. A

redundant system is able to satisfy its purpose even when post-disaster damage

has occurred [48].

• Resourcefulness - The system’s ability to utilise resources in the event of a dis-

aster. This could range from finding alternative routes to a system’s success, or

the application of human resources to achieve certain goals [49].

• Rapidity - The speed of a recovery during the post disaster phase. This is a vital

parameter to assess when analysing transient based resiliencemodels as it is used

to communicate the minimisation of future disruptions in the system [50].
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This method to represent resilience can be related to technical, social, organisational

and economic resilience based models as further explain by Bruneau et al. [46];

• Technical resilience - Resilience analysis based on the topology of a physical

system. This could incorporate component analysis based on operational per-

formance, connectivities and interdependencies.

• Social resilience - Focusing on analysing and therefore minimising the negative

social consequences caused from disasters to critical infrastructure. This in-

cludes predictive modelling to analyse potential consequences caused to a com-

munity if a certain type of disaster occurs.

• Organisational resilience - Assessing the role and responsibilities of third party

organisations to ensure resilient critical infrastructure is developed to support

the four R’s.

• Economic resilience - Analysing a system’s resilience with respects to the four

R’s to quantify possible direct or indirect economic losses in the event of a dis-

aster or downtime in the system.

2.2.2 Definitions of Resilience

Various definitions of resilience have been proposed in recent works, however themost

applicable definition applied to critical infrastructure is defined by H2020 European

project Improved Risk Evaluation and Implementation of Resilience Concepts to Criti-

cal Infrastructure (IMPOVER) stating resilience as “the ability of a CI system exposed

to hazards to resist, absorb, accommodate to and recover from the effects of a hazard in

a timely and efficient manner, for the preservation and restoration of essential societal

services.” [51], a definition extended from the UNDRR (United Nations Office for

Disaster Risk Reduction). However when applied to specific measures of resilience,

further definitions can be applied and the work of Plotnek and Slay [52] provides a

table of these definitions when applied to various resilience output parameters, with

the most important listed in Table 2.1.
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Definition Application Real world

threat

“The resilience of a system presented with

an unexpected set of disturbances is the

systems ability to reduce the magnitude

and duration of the disruption. A resilient

system downgrades its functionality and

alters its structure in an agile way.” [53]

Reduce intensity,

event duration

unplanned dis-

ruptions such as

earthquakes and

storms

“The ability of an entity to anticipate, re-

sist, absorb, respond to, adapt to and re-

cover from a disturbance” [54]

absorption,

response

any event

“Anticipate possible disasters, adopt ef-

fective measures to decrease system com-

ponents and load losses before and dur-

ing disasters, and restore power supply

quickly. Additionally, valuable experi-

ence and lessons can be absorbed from

disasters suffered, to prevent or mitigate

the impact of similar events in future.”

[55]

restore, rehabili-

tate, adopt

natural disasters

Table 2.1: Resilience definitions

Every definition of resilience applies its significance on different parameters on the

output of the system and applies a definition regarding the various stages of the sim-

ulation. This could range from initial shock in the system, to downtime and finally

recovery. The table highlights which instance the particular definition of resilience is

applied to and also possible examples of real world applications for which the respec-

tive study can be tested on.

2.2.3 Operational Resilience and Infrastructural Resilience

In the field of critical infrastructure, resilience analysis can be divided into two major

categories, operational resilience and infrastructural resilience as defined by Panteli

et al. [56]. Operational resilience is defined as the characteristics of a system that

is required to provide the system’s respective utility for function. In the case of wa-

ter distribution systems, this could be defined as the volumetric flow rate supplied to

the pumps of the system. An event which causes a decrease of volumetric flowrate
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Figure 2.1: An expansion of the three phase resilience plot

quantity to a pump classifies as an operational loss and therefore a loss in function-

ality of the system. Infrastructural resilience on the other hand refers to the state of

the physical system and specialises on the mitigation of loss in the system’s structural

failure. The two are interconnected and can be modelled together to quantify a com-

bined resilience based function. Figure 2.1 [57] highlights the difference between a

typical resilience simulation model between operational resilience and infrastructural

resilience as displayed by Panteli et al. with the authors highlighting the stages of the

four R’s of resilience which have been discussed in Section 2.2.1.

The three phase resilience model is expanded into a five phase resilience model with

operational resilience being the driving factor between phases 1-4 and the final phase

solely containing infrastructural resilience. The primary phase is the resilient state, and

represents the time of the event prior to disaster, and therefore the optimal function is

retained throughout this phase. Robustness and resistance are the key parameters dur-

ing this early state. This is followed by the event where the performance disintegrates

and reaches the post event degraded state. In this phase, resourcefulness, redundancy

and re-organisation are applied as the key parameters for resilience. Upon restoration,

the performance function increases due to the repairs taken place within the interior

in the system and the key parameters are the rapidity and recovery magnitude of the
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system. This is followed by a post restoration phase as the final phase of operational re-

silience. During this phase, the performance efficiency stays static and the key param-

eter during this stage is the robustness parameter. Finally, the infrastructural resilience

is applied to the model and is the terminal stage to rehabilitate the system.

2.3 Current Resilience Analysis Techniques

As an extension to the reliability analysis techniques mentioned in Section 2.1, the

application of resilience is also implemented in system simulation. Different forms

of critical infrastructure contain varying parameters to model and system safety. The

analysis of system resilience requires the collection of credited data, modelling and

testing of system performance and its evolution as a function of internal and external

events. These techniques range from resilience analysis as applied to the connectivities

of the system to time based analysis methods to quantify resilience as a transient output

parameter. Infrastructural resilience has been portrayed in the field of structural engi-

neering in the work of Chhaia et al. [58] by associating a structural resilience index

to both a pre-event and a post-event state. The arbitrary structural resilience index is

conformed from certain parameters deduced by the nature of the structure as stated in

the article. This approach is applied to general systems, and shows a flexible approach

to the quantification of multi-dimensional resilience.

Lu et al. [59] investigated the post-disaster phase of resilience with respects to ur-

banised areas. The work includes splitting resilience into physical resilience and socio-

economic resilience. The method combines Bruneau’s work [46] with the addition of

Xiong et al. [60] and proposed a new framework for a city scaled transient history

analysis for quantify building seismic resilience in repairable systems. The model

computes post-earthquake residual functionalities using engineering demand parame-

ters and scheduling repairs. Ma et al. [61] developed an approach to quantify resilience

in general power systems by combining both infrastructural resilience and operational

resilience. The infrastructural resilience is modelled by analysing the topology of the

system and deducing the pertinent static and dynamic network characteristics and the

operational resilience is deduced via assessing the progression of extreme events and

how this affects the system. The approach applies complex network theory to analyse
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the structural resilience and operational resilience of power systems and results in the

evaluation of preventative, corrective and restoration strategies.

2.3.1 Resilience Applied to Train Networks

In recent works such as Bešinović et al. [62], the authors developed a technique for

a passenger centred resilience assessment taking into account scenarios with multi-

ple disruption events. Infrastructural resilience is the output measurement goal and

an optimisation based restoration function has been developed combining traffic op-

erations and passenger flows as inputs to the restoration function. The novelty of the

technique combines redundancy with restoration by finding routes for the best possible

infrastructural restoration path and enables decision makers to quantify the effects of

multiple sources of infrastructural damage in the angle of resilience.

Fang et. al [21] applied Monte Carlo simulation to mimic multiple hazards from ty-

phoons in a multi-phase model. The typhoons are generated by a spatially localised

failure model which is simulated via Monte Carlo into both single and multi-mode

failure scenarios. The authors also experimented the effect of resilience with differ-

ent typhoon intensities and results displaying the different restoration scenarios of the

various modes.

Chen et al. [63] applied a three phase resilience model incorporating a disturbance, re-

sponse and recovery phase. The performance is measured using the author’s developed

indicator which is the demand-impedance indicator. This metric is defined through the

passenger frequency of trips and the time of each trip. An effective path betweenness

indicator is proposed which takes into account the passenger’s travel path and and the

stations which are represented by nodes are given various importance factors. The per-

formance function during these phases are defined through the demand-impedance in-

dicator and a three phase resilience triangle is formulated. The correlation coefficient

matching the betweenness factor and the betweenness centrality is finally deduced.

The application of this work was applied to Chengdu’s subway network and can pos-

sibly be expanded using the wider China network for further investigation.

Chapter 3 applies train networks with an estimation of reliability to provide a strong

foundation for resilience studies which could be expanded with applications of the

work listed above.
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2.3.2 Resilience Analysis applied to the Power Grid

An example of efforts applied to analyse resilience in power grids have been studied

by Jufri et al. [64] who included various techniques such as transient performance

modelling for the case study of typhoon Bolaven in South Korea. However the au-

thors mentioned that the limitations in their study included only computing resilience

in the form of restorative and absorptive capacity without considering anticipated and

adaptive capacities and also did not include a cost-benefit analysis to analyse resilience

in an economic angle.

Panteli et al. [65] developed a resilience based method for power grids with extreme

weather events by developing the three phase resilience trapezoid [56]. The authors

define resilience as “the network’s ability to withstand high-impact low-probability

events, rapidly recovering and improving operations and structures to mitigate the im-

pact of similar events in the future”. This is an extension to the traditional resilience

triangle developed [66] which involves three stages to the disintegration, stagnation

and recovery of the structure. Kim et al. [67] developed a novel function to analyse

the South Korean power grid network using cascading failure analysis by applying

three different node centrality metrics; degree, clustering coefficient and betweenness.

A high clustering coefficient of a network indicates a more resilient network as it con-

tains a higher redundancy potential to utilise alternative paths within the network.

The performance of systems and networks are usually analysed adopting complex

models able to provide a range of different metrics that can be analysed individually

or simultaneously. For instance, George-Williams and Patelli [68] proposed a simula-

tion driven approach coupled with load-flow methods for estimating the reliability of

complex and multi-state systems and later extended to the analysis of reconfigurable

systems with interdependencies [69]. One of the main limitations of the use of mod-

els for analysing large complex systems is due to the computational time required to

produce accurate results. To overcome such limitation, surrogates or emulator models

are often used. Rocchetta et al. proposed the used of a Power-Flow Emulator for the

resilience analyse regarding the effect of weather induced failures [70] by applying

an artificial neural network model to replace the computational expensive original AC

optimal power flow model [71]. The proposed approach has been further extended to

deal with data deficiency and imprecision adopting p-boxes for the robust quantifica-

tion of uncertainty [72, 73].
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Chapter 4 presents a holistic analysis of resilience applied to power grids in the context

of a load flow approach.

2.3.3 Resilience Analysis applied to Gas Pipelines

Works carried out on resilience applied to gas pipelines are relatively recent in con-

temporary literature with examples of works such as Sang et al. [74] proposing a novel

framework for restoration strategy optimisation of gas networks. The method applies

system functionality metrics to define the operational characteristics and mimics real-

time performances followed by developing resilience metrics by recording past recov-

ery features of the system performance. The authors developed a restoration sequence

based optimisation model to determine the restoration phase and optimise resilience

with respects to recovery nodes, repair times and recovery costs. The proposed method

minimises computational expense by the application of a skeleton network based re-

configuration model to identify any critical components in the system. Linearisation

methods are also used for the optimisation to transform models into mixed-integer lin-

ear programming (MILP) problems. The results concluded explaining that the method

is an effective way to guide system operators and perform restoration decisions of

failed components in downtime situations.

Su et al. [74] also developed an integrated dynamic model including input parameters

such as pipelines, compressor stations, junctions and liquefied nitrogen gas (LNG) ter-

minals. The properties of these parameters are integrated into graph theory to be mod-

elled. The quantifying method for resilience applies this model by simulating system

response given the conditions of different operational methods and evaluates resilience

consequences from this, which is specifically applied to gas pipelines.

This work is expanded by Marino and Zio [75] who developed a robustness model

to quantify resilience with the considerations of cybernetic interdependence of gas

pipeline networks with the application of a supervisory control and data acquisition

(SCADA) system. The quantification of resilience is achieved through specific per-

formancemetrics and themaximum flow algorithm calculates the gas network’s supply

which is subject to change through pressure changes in the system. This method in-

tegrates thermal-hydraulic simulation, graph theory and wireless network simulation

collectively and applies a sensitivity analysis to analyse the uncertainty of the system.
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These two approaches are tested in Chapter 5 which carries out work to combine the

efforts placed in these two papers.

2.4 Uncertainty

In the field of resilience applied to engineering systems, the literature almost exclu-

sively communicates data as precise figures, with lack of efforts placed into imprecise

data to communicate to experts.

Uncertainty quantification for reliability analysis has been shown to cause simulation

times to increase by a large fraction of original simulation time and yet for this reason

remains a less studied concept in the analysis of systems. However it still remains a

vital topic to explore despite this limitation. Every system in life is bound to contain

some type of uncertainty within the input and output parameters.

2.4.1 Epistemic and Aleatory Uncertainty

Modern uncertainty models include both epistemic and aleatory uncertainty. Epis-

temic uncertainty arises due to the lack of sufficient input data into the model to obtain

sufficient accuracy for the definition of the output distribution [76], whereas aleatory

uncertainty arises due to the inherent variability in output data with regards to the stud-

ied phenomenon [77].

Uncertainty with regards to epistemic data is communicated in intervals, written as

lower bounds and upper bounds respectively. An example of another method to com-

municate epistemic uncertainty includes fuzzy sets, and applying the fuzzy set theory

to model uncertainties via the natural language. Zheng et al. [78] developed a fuzzy

optimisation model of control design to minimise fuzzy performance with respects to

uncertainty.

Gray et al. [79] proposed a new Bayesian calibration model to display uncertainty

capturing both epistemic and aleatory uncertainty uncertainty via the application of a

multi-dimensional second-order probability distribution. The authors proposed that all

engineering design problems share common challenges with regards to uncertainty;
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• Variability - It is inevitable that engineering systems will experience operation

under different environments. The conditions of these environments affect the

performance of the systems operation and therefore the system should be de-

signed to withstand changes in the variability of such conditions.

• Inference - Epistemic uncertainty arising as a result of novelty in engineering de-

sign. In some scenarios, data is so sparse that it is lacking entirely, and therefore

expert judgements may be applicable. A suitable design agenda incorporates this

data as it progressively becomes available and innovates on a system’s design

to optimise performance.

• Ignorance - The design phase of engineering systems are conformed of several

parameters with many unknowns, or even in some cases dependencies on pa-

rameters that are unknown. A conservative agenda for engineering design will

take into account all uncertainties that could play out as a result of the lack of

knowledge of the parameters in the system.

• Decision making - Uncertainties in the engineering system from decision mak-

ing such as data collection contribute to uncertainty within the design phase.

Such decisions are postulated with limited information and therefore must take

into account the uncertainty present in the available data and adequate flexibility

should be provided in the design stage.

All of these components are essential andmust be considered whenmodelling a system

with respects to uncertainty by developing a framework to quantify all these forms of

uncertainty simultaneously whilst keeping output parameters optimised.

2.4.2 Characterisation of Uncertainty

Uncertainty in engineering systems is characterised in various forms depending on

the proposed display outcomes. Interval probabilities are used to represent bounds

in a probabilistic variable and can be defined to be the upper and lower bounds of

a probability distribution. Lower bound probabilities denoted as P and upper bound

probabilities denoted as P can be applied to a value X as a super additive capacity

[80]. P and P are direct complements of each other such that P (A) = 1− P (Ac).
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The credal set is given as;

Pp = {P ∈ PX |∀A ⊂ X,P (A) ≥ P (A)} (2.1)

Probability intervals are defined as the lower and upper bounds of a probability dis-

tribution and can be defined as a set of numeric intervals, L = {[l(x), u(x)] |x ∈ X}
such that l(x) ≤ p(x) ≤ u(x),∀x ∈ X where p(x) = P ({x}). A probability interval

denotes the credal set as applied;

PL = {P ∈ PX |∀x ∈ X, l(x) ≤ p(x) ≤ u(x)} (2.2)

2.4.2.1 PDFs and CDFs

The probability density function (PDF) is used as a means of modelling the generative

process for observed data [81] and is used to predict the likely outcome of a discrete

random variable. Recovery and modelling the generative distribution is the objective

in statistical inference, which enables the analysis of uncertainty in various parameters

and can be used to produce predictions in future data. PDFs are often displayed as

bell curves, with the peak of the curve being the most likely output, or specifically, the

expectation of the discrete random variable. The PDF f(x) has contains two important

properties;

1. f(x) ≥ 0 for all x

2.
∫∞
−∞ f(x) dx = 1

A simple way of displaying a PDF is through the normal (Gaussian) distribution, in

which the equation is displayed below;

PDF (X) =
1√

2π · σ
exp

[
− 1

2

(X − µ
σ

)2]
(2.3)

where µ represents the Gaussian’s mean and σ is the standard deviation.
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Figure 2.2: A PDF of a Gaussian distribution

Figure 2.2 displays a PDF of a Gaussian distribution for µ = 1, σ = 1 [82];

Cumulative distribution functions (CDFs) can be applied to model the distribution of

random variables in cases where the inputs are either discrete, continuous or mixed,

and can be defined as the integral of a function’s PDF;

F (x) =

∫ x

−∞
f(t) dt (2.4)

An example of a CDF is presented as a p-box in Figure 2.3

2.4.2.2 Monte Carlo Sampling

An alternative method of deducing uncertainty is through Monte Carlo sampling of a

system. This procedure consists of sampling the system simulation procedure multi-

ple times and computing a probabilistic estimation of the reliability. The maximum a

posteriori estimation is deduced as the most probable value and the uncertainty bounds

provide the degree of confidence of the estimation. Zio et al. [83] developed a novel

systematic procedure to evaluate the availability of multi-state, multi-output plant sys-

tems. The authors approach applied a Monte Carlo simulation model to generate a

random walk which guides the system from one state to the next state and uses the
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history of these samples providing a mean availability level of the production system

at a given time. Lye et al. [84] applied double loop Monte Carlo sampling to esti-

mate the reliability of a dynamical black box system under uncertainty as part of the

NASA-Langley Uncertainty Quantification Challenge 2019 [85].

2.4.2.3 Probability Boxes

Ferson et al. [86] developed Probability boxes (p-boxes) as a method to represent

uncertainty. P-boxes are imprecise probabilistic distributions which reflect both epis-

temic and aleatory uncertainty of a given quantity of interest. Beer et al. [87] states

that the representation of p-boxes combines the dual ideas from evidence theory and

probability intervals. Representing imprecise probability distributions as p-boxes are

advantageous as the approach allows analysts to deduce the output without any pre-

cise figures for the system’s input distributions. When data is in mass and is strong in

confidence, output confidence bounds of the p-box is slim, and provides and approx-

imate of the precise distribution applied in Monte Carlo simulation. However, when

data is scarce and weak in confidence, output confidence bounds of the p-box is wide,

representing a greater quantity of uncertainty.

P-boxes can further be divided between parametric and non-parametric models [88],

with parametric p-boxes modelling the set of all the possible combinations of distri-

butions obtained from a stated distribution function with the imprecise parameters set

as known values. A non-parametric p-box models all the non-decreasing distributions

that are present between upper and lower probability bounds.

A simple p-box can be mathematically represented as [89];

F (x) =
[
F (x), F (x)

]
, F (x) ≥ F (x) ∀x ∈ R (2.5)

where F (x) represents the lower bound function of the p-box and F (x) represents the

upper bound function of the p-box.

Ferson also developed a method to convolute continuous p-boxes [86]. This method

involves discretising the p-box into a finite list of pairs, (A1,m1)...(An,mn), where

Ai represents an interval, mi represents the mass probability of A with respects to
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∑n
i=1mi = 1.

A discretised p-box is represented in Figure 2.3 [90].

Figure 2.3: Discretisation of a p-box

2.4.3 Uncertainty in Resilience Quantification

The current state of the art is limited for uncertainty analysis applied to resilience

quantification techniques. However, recent work has been carried out on imprecise

resilience analysis.

Al Khaleen et al. [91] contributed to uncertainty by adding two-stage risk and optimi-

sation models accounting for uncertainty with respects to travel times and repair times

based on a given scenario based optimisation technique. Wu andWang [92] developed

a post-disruptionmanagement framework to improve resilience under uncertainty. The

method uses MILP and co-ordinates recovery agents applying stochastic optimisation

techniques to challenge the uncertainties in the restoration phase. The research eval-

uated that risk adverse optimisation produces more reliable random outcomes and ap-

plied the technique to a power system study. Cicilio et al. [93] presented an electrical

grid framework for resilience and applied variance in the system through the input val-

ues of loads and generation. The uncertainty applied used Monte Carlo simulation to
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sample the load uncertainties. Filippi et al. [94] developed a novel approach to quan-

tify resilience in aerospace systems with the addition of epistemic uncertainties. The

authors applied Dempster-Shafer theory to estimate belief and plausibility curves in

polynomial time. A novelty in this research was the development of a min-max al-

gorithm for worst case scenario optimisation and its development was applied to the

global system reliability model with respects to epistemic uncertainty. Li et al. [95]

contributed to resilience with network transportation recovery by developing a network

recovery strategy during an emergency recovery phase under uncertainty for both de-

terministic and stochastic scenarios. The proposed resilience metrics used are rapidity

of the network and the cumulative loss of the network performance. A resilience based

bi-level programming model developed for both scenarios was postulated. The upper

level determines the road segments required for restoration and repair times to max-

imise the resilience of the system, and the lower level formulates the user response to

the upper decision as a user equilibrium. This is used for the input of the algorithm to

integrate a genetic algorithm for the parallel machine scheduling program.

2.5 Chapter Summary

This chapter provides a summary of the current work carried out in academic literature

for the current resilience analysis techniques. This reading provides a strong founda-

tion to exploring and innovating on this thesis to obtain the optimal results and provides

the reader with an insight to resilience quantification for understanding this thesis. Re-

silience has been defined in a multi-dimensional approach and has been separated into

its respective operational and infrastructural states. This chapter has also presented the

current state of the art of the literature with regards to uncertainty, highlighting both

epistemic and aleatory uncertainty which has been applied to the various chapters in

this thesis. It is important to note that the current research gaps in the literature are

within the limitations of uncertainty as applied to resilience and the purpose of this

thesis is to provide an innovation to the current state of the art of resilience as applied

with respects to uncertainty and is presented in Chapters 3, 4 and 5.



Chapter 3

New Methods to Quantify Uncertainty

in Binary-state Systems

3.1 Introduction

A system can be thought of as a mechanism consisting of a combination of nodes and

links which contain properties that are interconnected. The goal of a system is to reach

the terminal node in a mission which starts from the source node. The likelihood of

this goal being attained is defined by the reliability of the system. A more general

definition of reliability is the probability of success of a system has at given period of

time and the knowledge of this when applied to systems enables maintenance planning

to be carried out with risk-based optimal intentions [96].

A binary-state system is defined as a type of systemwhich contains nodes characterised

by Boolean algebra, with 1 representing the node’s success state and 0 representing

the node’s failed state respectively. Binary-state systems are often used to represent

systems with discrete characteristics. Such systems have been implemented into fault

trees and Boolean logic gates. An example of a binary-state system includes a failure

in a gate system such as the status of a valve in a water distribution network, with

“1” representing a valve’s open state for flow, and 0 representing the closed state of

the valve. Binary-state systems are often applied to larger systems, which can contain

many nodes of different types. Such systems include subsea production networks [97]

29
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which contain a large number of nodes ranging from wells, flow lines, manifolds, x-

trees, risers and pipelines.

A binary-state system can be described as coherent if removing a component from

the system does not make the system worse, in other words that every component is

relevant to the system’s structural function [98].

Contrary to binary-state systems exist multi-state systems which can contain several

different outputs defined by their failure times, operating conditions, age or another

desired parameter as defined by the user [99].

This chapter focuses on binary-state systems solely, as the objective is to produce an

estimate of reliability in the most computationally efficient manner.

3.1.1 Overview of the Proposed Approach

In this work, two different methods to quantify an estimate of transient reliability are

tested. These two methods are the survival signature and the analytical probability

propagation method (PrPm).

These two approaches are applied with the assumption of applied Boolean algebra to

binary-state networks, where the individual nodes of the network can either be in a

functioning or a failed state.

This chapter focuses on a case study from China’s high speed train network [100]. The

network is composed of 26 nodes which contain all the major cities of China and 48

links which represent the respective train lines connecting the various cities.

The novel theme of this chapter is the addition of imprecise probability to both the

survival signature and PrPm. The two types of uncertainty being combined in both

methods are epistemic and aleatory uncertainty, both which have been applied simul-

taneously. The survival signature has been applied with uncertainty based on non-

parametric predictive inference and estimation is applied as applied to the survival

function. The approach to epistemic uncertainty regarding the PrPm involves apply-

ing differing input probabilities into the desired nodes and links whilst for aleatory

uncertainty the addition of approximation algorithms have been implemented.
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3.2 Background and Theory

The idea behind reliability estimation is to minimise computational time as opposed

to traditional quantification techniques which are known to be computationally expen-

sive. The proposed approaches for this work are the survival signature technique and

the PrPm. The general theory behind the two methods are outlined in this section.

3.2.1 The Survival Signature

Coolen and Coolen-Maturi developed the survival signature to extend the general sys-

tem signature by separating components into different types with non-exchangeable

failure times.

3.2.1.1 Theory

The following equations are taken from Coolen and Coolen-Maturi [36]. It can be

assumed that a system is composed of m components, and its state vector is defined

as x = (x1, x2, ..., xm) ∈ {0, 1}m with xi = 1 denoting a functioning component and

xi = 0 denoting a failed component. The structural function φ : {0, 1}m → {0, 1}
defines all possible x values as 1 if the system functions and 0 if the system fails,

therefore φ(0) = 0 and φ(1) = 1. If Ts, the random failure time of the system is

greater than 0 and Tj : m, the j-th order statistic of randomness of m independent and

identically distributed (iid) component failure times for j = 1, ...,m, with T1: m ≤
T2: m ≤ ...Tm : m, the general system signature can be denoted as;

qj = P (Ts = Tj : m) (3.1)

with qj representing the probability of system failure at the time of j-th component

failure. The general system signature describes the system in a quantitative manner

which can be applied for binary-state reliability calculations. Furthermore, the survival

function of the system’s failure can be defined as;
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P (Ts > t) =
m∑
j=1

qjP (Tj : m > t) (3.2)

when Equation 3.2 is applied to a CDF, the survival function is defined as;

P (Tj : m > t) =
m∑

l=m−j+1

(
m

l

)
[1− F (t)]l[F (t)]m−l (3.3)

The general system signature is sufficient for reliability analysis when applied to sys-

tems with m components that have iid failure times with a single type of component.

In extension to the general signature, the proposed approach for the survival signature

further expands the framework implemented from the general system signature and

innovates this to be applied to systems with multiple types of components [36].

We denote φ(l) for 0 = 1, ...,m as the probability of the system functioning given

that l components are functioning. The assumption for the general system signature

of φ(0) = 0 and φ(m) = 1 still exists and we assume

(
m

l

)
state vectors x with l

components xi = 1 and therefore,
∑m

x=1 xi = l. All states of Sl are equally likely to

occur due to iid for allm components, and therefore;

φ(l) =

(
m

l

)−1∑
x∈Sl

φ(x) (3.4)

If the number of components in the system is set as a function of time t > 0, Ct ∈
{0, 1, ...,m}, the CDF of the failure time can be defined as;

P (Ct = l) =

(
m

l

)
[F (t)]m−l[1− F (t)]l (3.5)

and therefore;

P (TS > t) =
m∑
l=0

φ(l)P (Ct = l) (3.6)
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We can extend these definitions to systems containing multiple types of components

with non-exchangable failure times. Consider a system withK ≥ 2 types ofmk com-

ponents, and therefore φ(l1, 12, ..., lK) with lk = 0, 1, ...,mk for k = 1, 2, ..., K, the

probability of the system functioning given lk of mk components of type k work for

each k ∈ {1, 2, ..., K}. This means there are

(
mk

lk

)
state vectors xk with lk compo-

nents xki = 1. Therefore
∑mk

i=1 x
k
i = lk(k = 1, 2, ..., K) and Sl1,l2,...,lK are the set of

state vectors for the system.. With the assumption that the component failure times

for different component types are independent, and for the same component types are

exchangeable, the survival signature from Equation 3.4 can be extended to;

Φ(l1, ..., lK) =

[
K∏
k=1

(
mk

lk

)−1 ] ∑
x∈Sl1,l2,...,lK

φ(x) (3.7)

In this case, the survival function from Equation 3.2 can be extended whenK types of

components are applied;

P (Ts > t) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK)P
(
∩Kk=1 {Ct(t) = lk}

)
(3.8)

where Ct(t) ∈ {0, 1, ...,mk} represents the number of components, k working at time
t.

When this is applied to a CDF, the survival function from Equation 3.3 translates to;

P
(
∩Kk=1 {Ct(t) = lk}

)
=

K∏
k=1

P (Ct(t) = lk) =

K∏
k=1

(
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]
lk (3.9)

The survival signature has been derived from the general system signature and its re-

spective survival function assuming that component failures can be applied in the form

of a CDF. In comparison, the survival signature is advantageous over the general sys-

tem signature as it contains all the properties of the system signature applied to mul-

tiple types of components and has the flexibility to be applied to either coherent or

non-coherent systems.
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3.2.1.2 The Bridge System

A six node system containing two different types of components is presented byCoolen

andCoolen-Maturi [36]. Figure 3.1 reconstructs this system inDAG format conformed

from the connnectivities in an adjacency matrix. Type 1 components are represented in

red and type 2 components are represented in blue respectively. The system contains a

source node, 1 and a terminal node, 6 with the specific mission of the system to travel

from the source to terminal nodes in the quickest and most efficient manner.

Figure 3.1: The bridge system DAG

In a system withA set of componentsC, Samaniego [101] defines a cut set as a system

that fails when the components selected in set C fail, and conversely a path set is de-

fined when a set of components P is applied and all components in the set P function.

A minimal path set contains no subsets of P that are also path sets, and conversely a

minimal cut set is defined as a cut set which contains no subsets of C that are also cut

sets. It is also important to note the critical components in a system which is a single

component that is required to function for the whole system to function. Specifically,

if this component fails, the system fails regardless of functioning status of any other

components the system contains. In this bridge system shown on Figure 3.1, the crit-

ical components are component 1 and component 6 as either of of these components

failing will prevent any opportunity for a path set to be established.
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Table 3.1 displays the survival signature values for the bridge system where l1 repre-

sents components in red and l2 res presents components in blue.

l1 l2 φ(l1l2) l1 l2 φ(l1l2)

0 0 0 2 0 0

0 1 0 2 1 0

0 2 0 2 2 4
9

0 3 0 2 3 6
9

1 0 0 3 0 1

1 1 0 3 1 1

1 2 1
9

3 2 1

1 3 3
9

3 3 1

Table 3.1: Survival signature values for the bridge system

3.2.2 Analytical Probability Propagation Method

Tong and Tien developed a new method for estimating reliability for networks repre-

sented by DAGs. The approach comes in the form of Bayesian statistics and provides

a more computationally efficient alternative to the traditional Bayesian Network. This

approach is used for the calculation of reliability in networks when both nodes and

links contain attributes which affect the reliability of the whole system, a fundamen-

tal difference to the survival signature which does not associate reliability values to

the individual components and links. The method uses belief propagation to apply

inference in a DAG, a message passing algorithm which produces an exact solution

for propagation steps. The propagation message is sent to other neighbouring nodes in

sequence. Themessage is then calculated using the marginal distribution of each unob-

served node conditioned from the highlighted node. This message is then received and

carried on to its respective neighbours. The joint distribution can be derived from the

Hammersley-Clifford theorem, p(X) = 1
Z

∏
c∈ξ Ψxc , where Z represents the normal-

isation constant, ξ represents the set of maximal cliques and Ψ represents the desired

function. Computational time increases exponentially as the number nodes in the given

network increases. The two node joint probability distribution has been calculated and

the message is passed from the source node to its direct neighbours. The message

passed to the terminal node provides an estimate for the reliability of the network. The

examples in this paper use a propagation sequence based on message updating from
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one direct neighbour, and not multiple neighbours. All equations for this method have

been obtained from Tong and Tien [44].

3.2.2.1 Bayesian Belief Updating

In order to calculate probabilistic inference for the network, a queried node,M is cho-

sen and the calculation of the posterior probability of this queried node is computed.

During the posterior probability calculation, the known variable is defined as the evi-

dence variable, E, and the evidence probability denoted as e.The equation applied to

compute the posterior probability conditioned to evidence, P (M |E = e) is Bayes’

rule derived from Bayes’ theorem.

The joint probability P (M,E = e) is calculated as follows [102];

P (M |E = e) =
P (E = e|M)P (M)

P (E = e)
(3.10)

P (M) represents the prior probability and P (E = e|M) represents the likelihood

probability.

During the computation of the queried node, M , the summation for all the combina-

torics of the local joint probability distribution is known as the marginalisation process.

This process becomes exponentially computationally expensive as the number of nodes

required for the process increases, and therefore, the PrPm only obtains inference from

one direct neighbour during each propagation step to minimise computational expense.

3.2.2.2 A 25 Node System

A 5x5 system consisting of 25 nodes with all nodes having equidistant links is pro-

posed. The system contains one chosen source node and one chosen terminal node.

The various nodes and links have been implemented in a DAG are displayed in Figure

3.2. The source node is highlighted as S and the terminal node is highlighted as T .

These nodes can be ascribed to any node in the network as desired. The remaining

nodes are all numbered from 1 to 25. It is also important to note that this method can



Assessing Resilience of Smart Critical Infrastructures to Deal with Emerging Risks and Threats 37

be used for both DAGs and non-DAGs as the rules are not defined by the directivity

of the links.

Figure 3.2: A 25 node network

A non-propagated node is defined as a node that has not yet received a propagation

message which is represented by a red node in Figure 3.3. A propagated node which

carries on a further propagation sequence is represented as a yellow node and a prop-

agated node which carries no more propagation steps is represented as a green node.

The sequences of nodes to be propagated for this method are based on three rules;

1. A node can only be propagated if it is a direct neighbour of a propagated node.

2. During the propagation of a selected node, this node must not separate any two

non-propagated nodes to ensure that every node in the network is considered.

3. A newly defined propagated node should not connect with another propagated

node to ensure that every link is considered.

It is crucial that all three rules are obeyed when propagating a sequence to ensure

validity and credibility with this method.

In order to numerically represent these three updating rules as applied to a general

system, Table 3.2 has been constructed to represent the rules as applied to the 5x5

example system;
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A C Pr A C N Updates

0 0 P1 0 0 0 P1(1−R1R)
0 0 1 P1R1R

0 1 P2 0 1 0 P2(1−R1R)
0 1 1 P2R1R

1 0 P3 1 0 0 P3(1−R1R)
1 0 1 P3R1R

1 1 P4 1 1 0 P4(1−R1R)
1 1 1 P4R1R

Table 3.2: PrPm Updating rules for one direct neighbour

Using these updating rules, the steps for the network in Figure 3.2 are displayed in

Figure 3.3. The first step of propagation excludes node 6 because of rule 2, as two

non-propagated nodes cannot be separated during this step. Therefore only nodes 2,

8 and 12 are propagated. Node 6 is not propagated in the following step as a newly

propagated node cannot be connected to another newly propagated node as explained

in rule 3.This sequence and the respective rules of the sequence are applied to each

step of the network’s propagation until the terminal node is propagated and the termi-

nal reliability value is deduced.

In order to provide a clear demonstration of the initial configuration, the first two prop-

agation step and the final propagation step, Figure 3.3 has been composed;

Figure 3.3: PrPm Updating steps
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The rules of updating and the message passing on Figure 3.3 can be applied to any

proposed DAG or non-DAG as the user desires. The node receiving the message is

defined as N and the node passing the message is defined as A. A boundary node

which is not a direct neighbour is defined as C and R1 represents the reliability of the

link, A−N .

N receives a message from its direct neighbour A, which is currently the joint distri-

bution of A and C from the previous propagation step. During the first step, the prior

probability distribution is the probability of the source node. The probability distri-

bution during the next step is composed of the joint distribution between A, C and N

which is derived from the updating rules in Table 3.2. In each step, a new joint dis-

tribution is derived from all the propagation data obtained from the prior steps of the

calculation.

Each new step only uses the joint probability distribution between two nodes rather

than the whole network which has been designed to reduce computational cost from

an exponential cost of O(2n) to a quartic cost O(n4).

3.2.2.3 Message Passing

Figure 3.4: PrPm message passing
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The PrPm applies joint probability distributions to pass probabilistic information from

one node in the sequence to the next node. The assumption is that a single node re-

ceives a message from one direct neighbour, and that the network is binary so that “1”

represents a node’s success and “0” represents a node’s failure. Figure 3.4 displays the

process of message passing for the PrPm with nodes N and A as described in Section

3.2.2.2 and an additional nodeC, representing the node which is not propagated during

this step. Themessage directed at nodeN is composed of the joint distribution between

nodes A and C as acquired from the previous step of the propagation sequence. Dur-

ing the initial step, the prior probability for the joint distribution is equal to the source

node. R1 represents the reliability of the linkA−N , therefore the reliability of nodeN

is determined by the reliability of nodeA and the reliability of linkR1. This means that

the new joint reliability distribution is defined as P (A,C,N) and is obtained using the

updating rules displayed on Table 3.1. The probability obtained from this distribution

is the probability that the node is in a successful state and is listed as an exact solution

without any approximations. R denotes the reliability of the previously propagated

node to be applied in the next propagation step. After the joint probability distribution

of P (A,C,N) is obtained, the new two intermediate joint distributions P (A,N) and

P (C,N) can also be extracted. This process is repeated constantly until the terminal

node’s probability is propagated.

3.3 A Framework for Imprecise Probability

Imprecise probability is key when deducing the possible confidence bounds and un-

certainty targets which is a prone phenomena in real world models. Uncertainty is

classified in two categories as mentioned in Section 2.4.1; epistemic and aleatory un-

certainty [103][104]. Epistemic uncertainty is caused by the lack of sufficient informa-

tion for input data in models, with techniques ranging from expert judgement data and

estimation of uncertainties from prior models to tackle this constraint [94]. Aleatory

uncertainty is also known as stochastic randomness and is caused by inherent random-

ness of behaviour in a model’s physical system or environment [105]. Both of these

types of uncertainty have been implemented for both the survival signature and PrPm,

innovating on these to quantify uncertainty in both an epistemic and aleatory angle.
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3.3.1 Survival Signature Uncertainty

The survival signature method has been tested in academic literature with respects

to various forms and various methods to apply uncertainty. All the methods applied

are listed in this subsection which aims to produce uncertainty in the form of non-

parametric predictive inference, epistemic uncertainty applied to the survival function

and aleatory uncertainty within the final output function. The components are assumed

to be non-repairable in order to simplify the computational cost.

3.3.1.1 Non-Parametric Predictive Inference

An approach to quantify uncertainty for the survival function was first implemented by

applying the non-parametric predictive inference (NPI) method [38], a statistical tech-

nique developed by Coolen which applies conditional probabilities to obtain multiple

possibilities of future random observable quantities as conditioned on current data.

This form of epistemic uncertainty is applied in the case with very little knowledge of

uncertainties that can arise on the system.

Upper and lower probability bounds are applied in the form of imprecise probabil-

ities as explained in Section 2.4.2 and applies consistency properties with Bayesian

attributes. The outcome is to provide a solution to the goals set by Bayesian inference

which cannot be obtained through the precise probabilistic approach. This approach

has been used in the field of reliability for systems with restrictions on their structures

[106].

A binary state system containing nodes of multiple types is proposed and its failure

time is represented as Ts. The system applies the same rules of the general survival

signature and combines this with NPI for Bernoulli data. This application enables the

NPI method to be applied to all systems and carries out the same assumptions of iid for

the general survival signature. NPI is applied to a specified type of component in the

system using data and this data is derived from components that have exchangeable

failure times to the selected component. For k ∈ {1, ..., K}, nk represents the number
of components of type k given that data specifying failure times are available. Ck(t)

represents the number of type k components functioning at time t and sk(t) represents

the number of type k components still functioning at time t.
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The various steps to apply the NPI method are displayed below;

The survival function from Equation 3.8 is applied to obtain the lower bound of the

survival function;

P (Ts > t) ≥
m1∑
l1=0

...

mK∑
lK=0

φ(l1, ..., lK) ·
( K∏
k=1

D(Ck(t) = lk)
)

(3.11)

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(
nk +mk

nk

)−1(
sk(t)− 1 + lk

sk(t)− 1

)
×

(
nk − sk(t) +mk − lk

nk − sk(t)

)
(3.12)

P represents the upper probability interval for Bernoulli data, D represents the max-

imum possible probabilistic value with the application of this Bernoulli data and is

applied at the time Ck(t) = 0 and therefore D(Ck(t) = 0) = P (Ck(t) = 0). After

this step, D(Ck(t) = 1) is deduced by applying the maximum possible probabilis-

tic quantity from the total probabilistic quantity in surplus from the event Ck(t) = 1

and is performed by applying D(Ck(t) = 1) = P (Ck(t) ≤ 1) − P (Ck(t) = 0).

The maximum possible probabilistic quantify is now applied to an increasing lk with

D(Ck(t) = lk). The right side of the inequality equation is therefore the lower proba-

bility interval and represents the maximum possible probabilistic quantity for the lower

bound and is therefore the NPI lower bound for Ts ≥ t providing the lower bound sur-

vival function is at t > 0;

STS = P (Ts > t) =

m1∑
l1=0

...

mK∑
lK=0

φ(l1, ..., lK) ·
( K∏
k=1

D(Ck(t) = lk)
)

(3.13)

The NPI upper bound is then applied to define the upper bound survival function;

P (Ts > t) ≤
m1∑
l1=0

...

mK∑
lK=0

φ(l1, ..., lK) ·
( K∏
k=1

D(Ck(t) = lk)
)

(3.14)

with;
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D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(
nk +mk

nk

)−1(
sk(t) + lk

sk(t)

)
×

(
nk − sk(t) +mk − lk − 1

nk − sk(t)

)
(3.15)

where P represents the NPI lower bound probability for Bernouli data. This implies

that a minimal probabilistic quantity is applied to Ck(t), yielding the NPI upper sur-

vival function for t > 0;

STS = P (Ts > t) =

m1∑
l1=0

...

mK∑
lK=0

φ(l1, ..., lK) ·
( K∏
k=1

D(Ck(t) = lk)
)

(3.16)

3.3.1.2 Estimation of Uncertainty

The survival function obtained from Equation 3.9 is implemented and the means of

imprecision are the epistemic uncertainty as applied to the Weibull parameters.

The epistemic uncertainty based on Weibull parameters in the general Weibull equa-

tion is denoted below;

f(t) =
β

η

(
t− γ
η

)β−1

e
−
(

t−γ
η

)β

(3.17)

The shape parameter, β and scale parameter, η are subject to epistemic uncertainty via

estimation, and the location parameter, γ is set to 0. A lower bound and upper bound

has been proposed for both the shape parameter β and scale parameter η. Applying

these parameters of uncertainty to Equation 3.17 yields;

λ(t) =
f(t)

R(t)
=
β

η

(
t− γ
η

)β−1

(3.18)
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3.3.1.3 Aleatory Uncertainty

This paper takes an additional approach to uncertainty by adding aleatory uncertainty

in the form of a Gaussian;

g(x) =
1

σ
√
2π
e−

1
2

(
x− µ
σ

)
(3.19)

The parameters of uncertainty for the Gaussian are the mean survival limit, µ and the

standard deviation, σ is computed to a 95% confidence interval as this is deemed to be

a suitable confidence bound with respects to the number of samples being applied for

the Gaussian.

Both forms of transient uncertainty have been applied simultaneously to the survival

function plotted using the survival signature attributes, with the combined equation for

uncertainty yielding;

h(x) =

[
β

η

(
t− γ
η

)β−1]
+

[
1

σ
√
2π
e−

1
2

(
x− µ
σ

)]
(3.20)

3.3.2 PrPm Uncertainty

Uncertainty applied to the the PrPm in the forms of both epistemic and aleatory uncer-

tainty are used simultaneously. Epistemic uncertainty is applied through estimation

of the input probabilities, source node reliability, link reliability and node R relia-

bility. The input interval probabilities have been defined by the user in upper and

lower bounds, and these bounds define the output probability of the terminal node.

The aleatory uncertainty for the PrPm is implemented in the form of approximation

algorithms, which include the inner approximation algorithm and outer approximation

algorithm as applied for the credal network by Estrada-Lugo et al. [107]. These two

forms of uncertainty have been combined to attain the upper and lower confidence

bounds deduced from each step of the propagation sequence. The purpose of adding

uncertainty for the PrPm is to attain the imprecise probabilistic value for the terminal

node of the propagation sequence.
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This subsection aims to present the various forms of uncertainty as applied to the PrPm

and all the relevant equations required for deriving these are presented.

Consider the three node binary DAG as presented in Figure 3.5 whereC represents the

child node of parent nodes A and B;

Figure 3.5: Three node DAG

The interval probabilities can be represented as P (ai) = [P (ai), P (ai)] with P (ai)

representing the lower bound and P (ai) representing the upper bound respectively.

A general joint probability distribution is defined as;

P (X) =

{
∪
n

[
∪
m
P(xmn )

]}
(3.21)

In the case for the network in Figure 3.5, the lower and upper bounds can be inserted

into Equation 3.21 to yield;

P (A,B,C) =


[P (a1), (b1), (c1)] [P (a1), (b2), (c1)]

[P (a2), (b1), (c1)] [P (a2), (b2), (c1)]

[P (a1), (b1), (c2)] [P (a1), (b2), (c2)]

[P (a2), (b1), (c2)] [P (a2), (b2), (c2)]

 (3.22)

P (A,B,C) =


[P (a1), (b1), (c1)] [P (a1), (b2), (c1)]

[P (a2), (b1), (c1)] [P (a2), (b2), (c1)]

[P (a1), (b1), (c2)] [P (a1), (b2), (c2)]

[P (a2), (b1), (c2)] [P (a2), (b2), (c2)]

 (3.23)
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The authors outline the two approximation computational algorithms and the theory

behind these as listed below.

3.3.2.1 Outer Approximation Algorithm

The outer approximation algorithm aims to provide an overestimation of the interval

probabilities for the PrPm and marginalises the joint probability distribution. The in-

terval probabilities as mentioned in Equation 3.22 and Equation 3.23 are applied to

obtain the outer approximation algorithm as follows;

1. Identifying the lower and upper bounds of the initial network as applied in Equa-

tion 3.22 and Equation 3.23.

2. Computing inference by marginalising the joint probability distributions from

this initial network configuration.

3. Identify the upper and lower bounds of the marginalised values.

4. Including the precise value of the network as queried into the computation of the

joint probability value.

The lower bound probability in state 1, P (a1) can be applied to marginalise the joint

probability distribution by marginalising B and C;

P (a1) = Σn
i=1,j=1[P (a1), P (bi), P (cj)]

= P (a1), P (b1), P (c1) + P (a1), P (b2), P (c1)

+P (a1), P (b1), P (c2) + P (a1), P (b2), P (c2)

(3.24)

After normalising the probability values from the joint probability distribution, the

lower bound value is computed from Equation 3.24. The same method is applied to

compute the upper bound probability and the complement for the outer approximation

regarding the queried variable.
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3.3.2.2 Inner Approximation Algorithm

The inner approximation algorithm is used for approximating the minimum possible

variance in the network, computing all the minimum possible permutations of uncer-

tainty for every possible node in the network. This method is applied after the joint

probability bounds have been obtained. If a node’s marginal probability is required,

one of the bounds of a single state must be fixed. For example,A can be fixed to a1 and

the combinations of the bounds are fixed to this particular interval. Themarginalisation

combinations of P (a1) from the joint probability of P (a1, B, C) are represented;

P (a1)comb1 = P (a1, b1, c1) + P (a1, b2, c1) + P (a1, b1, c2) + P (a1, b2, c2) (3.25)

P (a1)comb2 = P (a1, b1, c1) + P (a1, b2, c1) + P (a1, b1, c2) + P (a1, b2, c2) (3.26)

P (a1)comb3 = P (a1, b1, c1) + P (a1, b2, c1) + P (a1, b1, c2) + P (a1, b2, c2) (3.27)

P (a1)comb4 = P (a1, b1, c1) + P (a1, b2, c1) + P (a1, b1, c2) + P (a1, b2, c2) (3.28)

The max(P (a1|b2)) and max(P (a1|c2)) can be quantified with respects to bounds

P (A,B,C) and P (A,B,C) from the outer approximation algorithm;

max(P (a1|B)) = max

[ ∑
C P (a1B,C)∑

B,C P (A,B,C)

]
= max

[
P (a1, B)pseudoUP

P (B)PseudoUP

]
(3.29)

max(P (a1|C)) = max

[ ∑
B P (a1B,C)∑

A,B P (A,B,C)

]
= max

[
P (a1, C)pseudoUP

P (C)PseudoUP

]
(3.30)

The full proof of the inner approximation algorithm is stated in Estrada-Lugo et al.

[107].

3.4 Implementation of Techniques

The program used for both of the techniques is the OpenCossan software interface on

MATLAB 2021b. This section highlights the steps taken in each method.
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3.4.1 Survival Signature Implementation

The survival signature uses the application of adjacency matrix dimensions to model

the topology of the system and uses mathematical probability calculations to compute

the exact survival signature. The survival function is then computed by either the

analytical solution or through Monte Carlo sampling.

The first step of simulation provides an approximation of the survival signature and

applies percolation theory. This is divided into two stages;

1. Computing areas of the network that are negligible based on the critical perco-

lation threshold with inputs set to 0.

2. Applying Monte Carlo simulation to provide an approximation of the surplus

inputs to sample the entries.

The percolation process is carried out by deleting nodes from the DAG without repair-

ing the edges of the graph. f denotes the fraction of deleted nodes of the system. In

the event of a negligible value of f , this indicates a very high probability of the system

containing a path set, and therefore a higher probability of survival. This is referred to

as giant connected cluster [108]. As an increasing number of nodes are deleted from

the system, the value of f increases until it reaches the point where the network con-

tains a cut set, known as the critical fraction, fc. The three exponents defining the

interactions a network are detailed below with respects to fc [109];

(s) ∼ |f − fc|−γ mean cluster size

pin ∼ (f − fc)β probability of random node

Ξ ∼ |f − fc|−v mean distance to cluster

(3.31)

Th equations depict the phase transitions showing the topological interdependencies

of the network. A path set is established until the condition, fc ·
∑K

k=1mk is revoked,

and the network breaks down into various isolated parts without a functioning path set.

The Molloy-Reed Criterion, which states that for a graph to contain a giant connected

component, the majority of the nodes must be connected by two adjacent nodes [110].

Cohen developed a series of equations to express this [111];
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κ =
(d2)

(d)
> 2 (3.32)

where d represents the node degree, (d) represents the first moment of degree distri-

bution over the network and (d2) represents the second moment of degree distribution

over the network.

κ is calculated through graph representation of the adjacency matrix double loop. The

ratio of the κ critical threshold obtained with the following equation;

fc = 1− 1

κ− 1
(3.33)

If more than the number of components to achieve fc has reached a failed state, the

probability that the system has failed is close to zero as depicted in;

K∑
k=1

= lk < (1− fc) ·
K∑
k=1

mk ⇒ φ(l) ≈ 0 (3.34)

The algorithm to approximate the survival signature, φ as available on Github [112];

Algorithm 1 Survival signature approximation algorithm

1: function APPROX(l, ϕ,N,C)
2: c,n, ω, φ← 0 . Initialise variables
3: while c > C & n ≤ N do

4: n← n+ 1
5: s← rand state l
6: if ϕ(s) = 1 then
7: ω← ω +1

8: φ← ω
n

9: c←
√

(φ−φ2)n−1

φ

10: return φ, c . Signature entry and coefficient of variation

Provided that the coefficient of variation target C has been achieved, generating a

random network state for the vector l as dictated by s. Following this, the sample

number nl increases by one value.

If ϕ(s) = 1, increase the counter ωl by one value and the approximation is updated by;
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φ(l) ≈
ωl
nl

(3.35)

and the current coefficient of variation is estimated with;

cl =

√
φ(l)− φ(l)2 n−1

l

φ(l)
(3.36)

The survival function is then simulated and the procedure is adopted through a Monte

Carlo implemented simulation to estimate the reliability of the system. Random events

are sampled and the outcome of the reliability is determined through the sequential

mean of the Monte Carlo sampling results.

The pseudo-code for obtaining the survival function of a non-repairable system is listed

below;

Algorithm 2 Survival function algorithm

Require: N , No. of simulations; dt, Discretisation time; Fk, CDF Failure times; Vc =
[m1,m2, ...,mk], No. components per type; Nt, N0. discretisation steps

1: Set Vr(1 : Nt) = 0 . Initialise counter
2: Set C=Sum(VC) . Compute No. components
3: Set Φ = Survival Signature . Compute survival signature
4: for n = 1 : N do . Loop over No. samples
5: for k = 1 : K do . Loop over component type
6: for j = 1 : mk do . Loop over No. components
7: M f(j, k) ∼ Fk . Sample failure time component j of type k

8: [Vt,Vi]= sort(M f ) . Reorder transition times (Vt)
9: . Return component index vector (Vi)
10: z = 1 . Initialise index
11: form = 1 : C do . Loop over number of components
12: Vc(Vi(m)) = Vc(Vi(m))− 1 . Update No. working components
13: while z · dt ≤ Vt(m) do
14: Vr(z) = Vr(z) + Φ(Vc) . Update counter
15: z = z + 1 . Update index

16: Vr = VrN
−1

The survival function algorithm is implemented with the desired Monte Carlo sam-

ples as chosen by the user. Increasing the number of Monte Carlo samples increases

computational expense and using too few Monte Carlo samples produces a survival
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function with a wide range of uncertainty. The user can experiment with the number

of samples to deduce the optimum number of samples required.

3.4.2 PrPm Implementation

The PrPm explained in Section 3.2.2 applies various steps to obtain the desired output

values. The reliability of the links are mimicked as nodes and all the nodes are listed

on the topology with both their lower bound and upper bounds values.

Start

Add links

All links added?

Refine the

bounds

Network

connection and

link reliability

Remove links

only keeping

source nodes

Try different

link sequence

End

Find bounds

of X

Find link from

type B node

yes

no

yes

no
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The flowchart above displays steps and conditions required to obtain successful simu-

lation of the PrPm.

3.4.2.1 Summary of the Proposed Method

The method applied is displayed on the above flowchart. The propagation sequence

is first obtained based on the network’s topology and the rules explained on Section

3.2.2.2 are applied. The sequence of the steps for the PrPm is obtained for the nature

of message passing carried out for a given example of a network. The nodes are prop-

agated in the network to ensure that each node received its required joint probability

distribution. The messages are passed between the respective nodes and the updated

joint probability distributions are derived for further message passing for the sequen-

tial nodes. The approximated PrPm terminal node probability is obtained during the

final propagation step.

Tong and Tien provides a flowchart of the summary of the proposed method in Figure

3.6.

Figure 3.6: Basic PrPm work flowchart

3.5 Case Study: China’s High-Speed Rail Network

Applications of both methods can be applied to both theoretical and real world sys-

tems. The case study chosen for this chapter is the China’s high-speed rail network

as presented by Hu et al. [100] in which the author reconstructed the current modern

day topology of China’s high-speed rail network and included the most important and

high traffic stations as nodes updated as the 2016 version. The network is composed

of 26 nodes and 48 links and is displayed in Figure 3.7. Links which do not connect

a node to a neighbouring node with respects to the cities represented on the figure are
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negated. The authors also innovated on the current literature by adding three separate

categories for the links which are categorised by three different velocity bounds of the

trains traveling within this track. This is displayed as the maximum velocity capacity

which is displayed as

Figure 3.7: China’s high-speed rail network

Table 3.3 displays the cities from Figure 3.7 that have been applied to this case study

and presents these cities by their respective nodes 1-26. The table also discriminates

the nodes between the three node types applied to the survival signature method. These

three node types are discriminated based on the input and output train line maximum

operating speed (MOS). Type 1 represents nodes with the slowest input MOS of 200

kmh−1, type 2 represents nodes with input an MOS of 250 kmh−1 and type 3 rep-

resents nodes with an input MOS exclusively of 310 kmh−1. The MOS lines at 160

kmh−1 are negated due to not contributing to any major city input and are scaled up

during the rail input into a city at 200 kmh−1.
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City Node No. Node type City Node No. Node type

Harbin 1 3 Hefei 14 1

Changchun 2 3 Fuzhou 15 1

Shenyang 3 2 Nanjing 16 2

Beijing 4 1 Shanghai 17 3

Tianjin 5 3 Hangzhou 18 3

Shijiazhuang 6 1 Nanchang 19 1

Taiyuan 7 2 Changsha 20 3

Jinan 8 3 Guiyang 21 2

Xi’an 9 2 Kunming 22 2

Zhengzhou 10 3 Nanning 23 2

Wuhan 11 2 Guangzhou 24 1

Chongqing 12 1 Macao 25 1

Chengdu 13 3 Hong Kong 26 1

Table 3.3: Node numbers and types for China’s high-speed rail network

3.5.1 Survival Signature Results

The survival signature algorithm, Algorithm 1 from section 3.4.1 has been tested for

China’s high-speed rail network three times and the computational simulation expense

is noted in the figure below;

Figure 3.8: Survival signature computational time

3.5.1.1 DAG Construction

A DAG has been constructed from the information on Figure 3.7 and Table 3.3 and is

shown in Figure 3.9. The types of nodes have been discriminated based on the node

conditions as displayed on the table. Type 1 nodes are filled in blue, type 2 nodes are

filled in black and type 3 nodes are filled in red. The arrows of the DAG display the

direction of the train’s flow in the network from the source node to the terminal node.
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Figure 3.9: DAG of China’s high-speed rail network displaying the node types

3.5.1.2 Four-Dimensional Survival Signature Results

Figure 3.10: Survival signature 4D results

Since the chosen network contains three different node types, the simulation contains

three input variables and one output variable. The individual surface plots in Figure

3.10 presents each combination of the states for type 3 nodes exclusively and presents

the various survival probabilities (z-axis) subject to the number of nodes functioning

for both type 1 nodes (x-axis) and type two nodes (y-axis).
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The surface plots display the nature of the increasing likelihood of a network’s path

set forming as the combined number of nodes increase. In the event of only two type

3 nodes functioning, there is no probability of any path set regardless of the number of

type 1 and type 2 nodes functioning. This changes when three components of type 3 are

functioning and contains a small probability of a path set given that all the components

of type 1 and type 2 are functioning. As the number of type 3 nodes are increasing on

the individual surface plots, the observable significance of interest shows the likelihood

of survival rapidly increasing.

Figure 3.11: China’s high-speed network

Figure 3.11 displays the surface plots for the coefficient of variation, cl for every dis-

tinguishable combination of nodes trialed out from Figure 3.10. There are no cl values

for the simulations regarding the events concerning less than three type 3 components

functioning. This is due to the negligible survival probability of the system when con-

ditioned on this state. However, when the number of type 3 nodes functioning reaches

4, the variance is observable when the majority of type 1 and 2 nodes are also func-

tioning. As an increasing number of type 3 nodes function, this peak of the cl slowly

withdraws into conditions where a decreasing value of type 1 nodes function. The cl

does not exceed 0.1 for any of the combinations of nodes in the survival signature,

however peaks at the conditions with path sets of low probability. This is due to the

uncertainty build-up for conditions of possible path sets with low likelihoods of sur-

vival. When all the nodes of type 3 are in a functioning state, the cl is completely

eliminated due to the very high survival probability of the system.
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3.5.1.3 Survival Function Simulation

The survival function is estimated with the three types of components being assigned

imprecise attributes regarding their failure characteristics. The table below shows the

types of distributions selected and their respective epistemic uncertainties;

Component Type Distribution Scale parameter (η) Shape parameter (β)
1 Weibull 1.9± 0.2 2.8± 0.4
2 Weibull 2.3± 0.3 2.6± 0.2
3 Weibull 1.5± 0.5 1.8± 0.4

Table 3.4: Survival function component failure types with distribution parameters

All three components for the survival function are attributed with Weibull distribu-

tion failure characteristics. The interval bounds contain varying values and both the

upper and lower bounds have been simulated in the analytical solution. However, it

is first important to deduce the precise survival function which has been tested with

both the analytical solution and the Monte Carlo simulation method as presented in

the Algorithm 2 in Section 3.4.1. The chosen number of samples for this Monte Carlo

simulation is 10000 samples, costing a computational time of 158 seconds.

Figure 3.12 presents the results of both methods in one graph with respects to non-

dimensional time.

Figure 3.12: Survival function for both analytical solution and Monte Carlo
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The accuracy of the Monte Carlo simulation with respects to the analytical solution is

evident from Figure 3.12 via the display of congruence between both methods. The

survival function for both methods declines sharply within moments of simulation and

decelerates until it reaches a complete failure at 0.8 non-dimensional time. The system

is assumed to be non-repairable and therefore must be reset before the system can be

re-simulated.

Uncertainty from the NPI method as mentioned in Section 3.3.1.1, epistemic uncer-

tainty from estimation as explained in Section 3.3.1.2 and is presented in Table 3.4 ,

and aleatory uncertainty as described as a Gaussian in Section 3.3.1.3 is also applied

to the survival function as displayed in Figure 3.12.

Figure 3.13 displays the imprecise survival function with three different inputs of un-

certainty applied;

Figure 3.13: Imprecise survival function

The confidence bounds as displayed in 3.13 show the lower and upper survival func-

tions respectively. Both bounds start at a high amount of divergence within the sur-

vival function and slowly converge until the failure time of 0.8 non-dimensional time

is achieved as matched in Figure 3.12. It is also important to note that this is only the

analytical solution for the survival function as it is not necessary to carry out a Monte

Carlo simulation as congruence between the two methods has been proved in Figure

3.12.
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3.5.2 PrPm Results

The PrPm has also been tested for China’s high-speed rail network. The flowchart

presented in Section 3.4.2 has been implemented to this case study and the input and

output targets have been kept consistent with the survival signature implementation in

Section 3.5.1. The exact solution for PrPm has been confirmed in GeNie Academic

2.5, a software to construct, implement and test out Bayesian networks.

3.5.2.1 Non-Directed Acyclic Graph

The PrPm method has been applied to the same topology of the DAG in Figure 3.9,

however does not use the nodal directions as displayed on this figure. The graph is

therefore a non-directed acyclic graph and displays the respective nodes and links used

for the PrPm as applied to this case study. The types of nodes listed in Table 3.3 are

negated as node type discrimination is only applied in the survival signature and is not

applied in the PrPm. The source nodes applied to this case study are nodes 1 and 4

respectively, and the terminal node is node 26, and matches the terminal node for the

survival signature implementation.

Figure 3.14: Non-DAG for China’s high-speed rail network
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3.5.2.2 Propagation Step Results

Each node has been propagated sequentially in numerical order and the posterior proba-

bilities have been recorded and plotted for the both the outer approximation algorithm

and the inner approximation algorithm. For the outer approximation algorithm, the

data for every step in the propagation sequence is recorded and is plotted in Figure

3.15, along with the precise PrPm solution for comparison.

Figure 3.15: PrPm outer approximation algorithm

Figure 3.15 highlights the divergence between the upper and lower bounds from the

exact solution of the propagation sequence. The outer approximation algorithm shows

a relatively conservative estimate for the reliability values as shown in the sparse nature

of the interval bounds. These bounds diverge as the propagation sequence progresses

and peaks in divergence at propagation step 15 where the upper and lower bounds

are bounded by approximately 0.5. This increasing divergence is due to the increased

overload of joint probability data being accumulated for the nodes during the propa-

gation sequence. This divergence is then reduced towards the end of the propagation

sequence and the terminal node probabilities are deduced as [0.1844, 0.2647, 0.3912].

The same method has been applied for deducing the propagation sequence with the

application of the inner approximation algorithm and the results for each propagation

step are displayed in Figure 3.16.
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Figure 3.16: PrPm inner approximation algorithm

The approximation bounds for the inner approximation algorithm display a very low

level of variance as expected when compared to the outer approximation algorithm in

Figure 3.15. This is especially prevalent in the first and latter stages of the propagation

sequence where the bounds barely differ from the exact solution. The terminal node’s

probability is finally yielded as [0.2602, 0.2647, 0.2650].

3.6 Chapter Summary

This chapter presents the theory, system simulation and a case study into both the sur-

vival signature and the analytical probability propagation method. The chapter also

compares the two methods and states the advantages and limitations in each method.

Both epistemic and aleatory uncertainties have been applied in different angles to the

binary-state system of China’s high-speed rail network. The results conclude by show-

ing that thesemethods are suitable for quick and efficient simulation and can be applied

as a useful tool to compute the reliability of a binary state system with minimal compu-

tational expense. The limitations of both techniques are also discussed and therefore

it is recommended to use both of these methods for preliminary estimation of system

reliability, rather than with in-depth analysis motives.



Chapter 4

A Weather-based Contingency Model

to Quantify Resilience in Power Grids

4.1 Introduction

The power grid is an essential tool for modern society and its function is crucial for

society. A single failure of the system can lead to major consequences in a socio-

economic context. Events such as the 2003 British National Power Grid Corporation

outage which was responsible for the load loss of 724MW , or approximately 20 % of

London’s power supply have costed the UK a significant economic burden [113].

The assessment of reliability in power grid systems and the parameters incorporating

reliability such a availability, consequence modelling and load outages have been of

great significance for research in the IEEE (Institute of Electrical and Electronics En-

gineers) community with examples of works mentioned in section 2.3.3.

The constraint with power grid systems as with other realistic engineering systems is

the complexity of their parameters and conditions such as the topology, interdepen-

dencies and behavioural interaction from external factors. This makes analytical tech-

niques such as those trialed out in Chapter 3 unfeasible and inaccurate. Performance

parameters in power grid analytics are varied, with the role of load supply and demand

as the main analysis metrics being used for most works.

This chapter analyses howMonte Carlo simulation can be applied into resilience quan-

tification for operational resilience in general power grid systesms containing both

62
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buses and generators. More specifically the aim of this chapter is to provide a study

into different types of simulation methods for quantification of resilience under un-

certainty highlighting all the theory, simulation algorithms and limitations with these

approaches. This chapter also provides the user with an insight to the basics of MAT-

POWER, an open-source toolbox applied onMATLAB 2021bwhich is used to analyse

electric power simulation and optimisation.

4.1.1 Overview and Proposed Approach

In this chapter, three approaches to quantify resilience in power grids have been ap-

plied. Firstly a method using Line Outage Distribution Factors (LODFs) to measure

contingencies to localised areas acting as a surrogate for DC power has been simulated.

The other two methods use power flow equations which implement DC optimal power

flow (DC-OPF) and AC optimal power flow (AC-OPF) calculations respectively to

quantify load outage and operational recovery in proportion to the network’s expected

load demand.

The technique that has been trialed out is the load-flow simulation technique and

utilises Monte Carlo simulation to approximate the resilience profile of the load recon-

struction following the event of a disaster caused by possible weather-induced outages

triggered by both high winds and lightning strikes. The chapter also proposes uncer-

tainty in the form of both epistemic and aleatory uncertainty, and have been applied

for all three of the approaches stated above.

Due to the high computational cost of the AC-OPF model, a surrogate model of the

power grid performance is trained using the initial AC-OPF and has been trialed out

on the same case study for comparative means. This approach is based on the use of

artificial neural networks (ANNs) and is applied using the load outage data to assess

the expected energy-not-supplied to the network.

Finally, the ANN surrogate model is applied to estimate the resilience of the case study

and the results displayed by the this model have been been compared to the original

model AC-OPF model. The validity of the ANN performance parameters with re-

spects to its the congruence to the original AC-OPF model has been fully tested and

the credibility of this surrogate is discussed.
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4.2 Background and Theory

Before the model is applied, it is vital to understand the theory behind the three tech-

niques as applied to MATPOWER, as the equations used in each method provides a

different angle to quantifying the load values.

Figure 4.1 displays a simple power grid network as obtained from the MATPOWER

case files.

Figure 4.1: Case 9 network topology

The network displays the electrical topology of a 9 node network containing 9 links.

All the nodes have been labelled and the base voltage capacity of the links are equal

at 345kV . The MATPOWER values displaying the specific attributes of the network

which have been applied for power flow calculations are provided on theMATPOWER

file. These parameters include the real power demand represented as Pd, the reactive

power demand represented as Qd, the voltage magnitude represented as Vm and the

voltage angle represented as Va.



Assessing Resilience of Smart Critical Infrastructures to Deal with Emerging Risks and Threats 65

4.2.1 Line Outage Distribution Factors

The first optimisation problem uses line outage distribution factors (LODFs) and can

be described as a sensitivity measure applied to compute a change in a line’s status as

influenced by changes to the adjacent lines of the system. The concept of the LODF

has been developed and expanded from the power transfer distribution factor (PTDF)

which is a linear based sensitivity analysis based on DC-OPF assumptions. PTDFs

calculate differences in real power, P being transferred on the transmission lines of

the power grid system for the user’s selected source and terminal observation ranges

of the system.

LODF’s are obtained by expanding the PTDFs to compute the change in active power

after the transmission lines are being removed sequentially. The LODF dkl calculates

the difference in active power flow from a pre-contingency state to post-contingency

state on a specific line l as a result of the complete removal of the line [114].

Assume a network line, l with power flow fl and failure flow, fk.

The post-contingency flow is calculated as;

fkl = fl + dkl fk (4.1)

where dkl represents the value of the l
th row and kth column of the LODF matrix.

Equation 4.1 provides an approximation of the post-contingency power flow rate, as

this applies a linear approximation to provide an estimation of the power flow equation.

The degree of accuracy of the LODF calculation has a general positive consensus and is

commonly used by operators in contingency analysis. This is why it is commonly used

as an estimation of DC optimal power flow models and when applied sequentially, is

regarded as a computationally inexpensive means to estimate the severity of the overall

contingencies of the system.

Given that N − 1 line failures occur, the composite risk index is computed as;

R(ζ) =

nC∑
k=1

P(Ck|ζ)
nl∑
l=1

SO,L,l(Ci, ζ) (4.2)
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where nl represents the total number of transmission lines within the system, nc rep-

resents the total number of contingency failures, ζ represents a given operational con-

dition and Ci represents a given contingency.

Equation 4.2 is applied to compute the risk index via a power flow analysis computing

fl for the pre-contingency driven network. This provides much faster computational

efficiency as opposed to the general DC-OPF algorithm as it does not require the so-

lution of nc to deduce power flow.

4.2.2 Power Flow Equations

With regards to power flow optimisation, the two models are the DC optimal power

flow (DC-OPF) approach and the AC optimal power flow (AC-OPF) approach. In

real world power grid systems, the electricity is generated in power plants using meth-

ods such as fossil fuels, converted fuels or geothermal steam and transfers this energy

through the transmission network at high voltage using either DC or AC flow [115].

This high voltage steps down into a medium voltage range.

The primary difference between the DC and AC optimal power flow models is within

the nature of the convexity. DC stands for direct current and the power flow is con-

stantly in a steady state, therefore the constraints are presented as both a linear and

convex optimisation problem. AC stands for alternating current and the optimal power

flow calculations are non-linear and non-convex in nature leading to a significantly

higher computational expense. It should also be noted that in high-fidelity models,

DC-OPF simulation techniques are limited in terms of details for these networks [116].

This is due to DC-OPF models containing an estimation of AC-OPF models only ac-

counting for real power, P , and negating the effects of reactive power, Q in the model

[117].

The general optimal power flow approach is formulated as follows [118]:

The standard objective function is denoted as;

min
x
f(x) (4.3)

subject to the equality constraint;
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g(x) = 0 (4.4)

subject to the inequality constraint;

h(x) ≤ 0 (4.5)

and subject to parameter constraint;

xmin ≤ x ≤ xmax (4.6)

4.2.2.1 AC Optimal Power Flow

In the case of AC-OPF, the model is the AC cascade failure model (ACCF), which

assumes that certain nodes in the system have failed. The failed nodes have been

removed from the system and the updated system status is computed through the use

of optimisation equations with necessary load outages. If steady state has still not

been achieved, the model will break the overload branches and an updated calculation

of the power flow distribution is performed for the whole network. This process is

repeated until the system achieves a new balance satisfying all the constraints, and

finally the load deficiency is computed through the final state of the system’s post-

cascading failure.

The assumptions of the model are as follows;

1. The line status is assumed to have binary-state characteristics which indicate

either “1” for a functioning or “0” for a failed line.

2. The initial grid failures are not considered mutually dependent.

3. Artificial repair does not play a role in the process of the cascading failures.

4. Node failure will cause the branches connected with the associated node to also

fail
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The power grid is denoted as a network consisting of N nodes and K branches with

the nodes representing the buses as displayed on Figure 4.1. The buses are either

classified as load buses, generator buses or slack buses and are discriminated using the

data obtained from the MATPOWER file.

In the case that the selected bus, i is a generator bus, the inequalities 0 ≤ Pmin
i ≤ Pmax

i

and 0 ≤ Qmin
i ≤ Qmax

i apply during function.

TheACCFmodel identifies the isolated parts of the grid that are conformed through the

initial failure. Cascading failures are then simulated until all these failures terminate

and the optimisation simulation also terminates.

The optimisation equations are subject to the following assumptions;

The optimisation vector, x for AC- OPF is as follows:

x =


Va

Vm

Pg

Qg

 (4.7)

where Va represents the voltage angle, Vm represents the voltage magnitude, Pg repre-

sents the real power output and Qg represents the reactive power output. The voltage

phase angle vector for the respective buses is set at nb × 1 with nb representing the

number of buses in the power grid system. The reactive power vector is set at ng × 1

where ng represents the number of generators in the power grid system.

For each individual generator, the cost function of real power, f iP and reactive power,

f iQ are applied to Equation 4.4 to be satisfied as;

min
Θ,Vm,Pg ,Qg

ng∑
i=1

f iP (p
i
g) + f iQ(q

i
g) (4.8)

This can be expanded into the real power and reactive power balance constraints;

gP (Va, Vm, Pg) = Pbus(Va, Vm) + Pd − CgPg = 0 (4.9)

gQ(Va, Vm, Qg) = Qbus(Va, Vm) +Qd − CgQg = 0 (4.10)
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The inequality constraint displayed in Equation 4.5 contains two sets of nl branch flow

equations in non-linear form with the application of Vm and Va;

hf (Va, Vm) = |Ff (Va, Vm)| − Fmax ≤ 0 (4.11)

ht(Va, Vm) = |Ft(Va, Vm)| − Fmax ≤ 0 (4.12)

Fmax represents the vector flow limits of the branch. The flows are active or current

flows, which result in the equations;

Ff (Va, Vm) =


Sf (Va, Vm)

Pf (Va, Vm)

If (Va, Vm)

(4.13)

Sf represents the apparent power flow, Pf represents the real power flow, and If rep-

resents the current flow.

Sf is computed through the equation;

Sf (V ) = [CfV ]I∗f = [CfV ]Y ∗
f V

∗ (4.14)

and If is calculated by applying the admittance matrix Yf ;

If = YfV

where Yf is composed of nl × nb.

Equation 4.6 is extracted into multiple constraints as displayed in the equations below;

V i,ref
a ≤ V i

a ≤ V i,ref
a , i ∈ Γref (4.15)

vi,minm ≤ vim ≤ vi,maxm , i = 1, 2, ..., nb (4.16)

pi,ming ≤ pig ≤ pi,maxg , i = 1, 2, ..., ng (4.17)

qi,ming ≤ qig ≤ qi,max,g i = 1, 2, ..., nq (4.18)
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4.2.2.2 DC Optimal Power Flow

The DC-OPF equation follows similar suit, however neglects the parameters of reac-

tive power and voltage magnitude;

x =

[
Va

Pg

]
(4.19)

which reduces Equation 4.8 to;

min
Va,Pg

ng∑
i=1

f iP (p
i
g) (4.20)

where f iP represents the real power cost function and pig represents the real power

output.

with respects to;

gP (Va, Pg) = BbusVa + PBus,shift + Pd +Gsh − CgPg = 0 (4.21)

hf (Va) = BfVa + Pf,shift − Fmax ≤ 0 (4.22)

ht(Va) = −BfVa − Pf,shift − Fmax ≤ 0 (4.23)

V i,ref
a ≤ V i

a ≤ V i,ref
a , i ∈ Γref (4.24)

pi,ming ≤ pig ≤ pi,maxg , i = 1, 2, ..., ng (4.25)

The following equations prove that DC-OPF provides a linear approximation solution

to the AC-OPF equations as stated in Section 4.2.2.1. This is due to the various as-

sumptions for deriving Equation 4.20 fromEquation 4.8, which include the assumption

of a flat voltage profile, negligible differences between Va values and negligible volt-

age resistance within the transmission lines [73]. All three assumptions are not present

in AC-OPF.
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4.3 The Weather Based Contingency Model

The general topology of the power grid is represented in a graph as shown in Figure

4.1 and can be mathematically expressed as G (N ,E ) [119], whereN represents a set

of nodes and E represents edges denoting a set of transmission lines between a given

set of nodes i and j. The other parameters in this model include the number of loads

denoted as nL, the number of lines denoted as nl and the number of generators denoted

as ng.

The proposed weather based contingency model can be applied with respects to any

of the three approaches listed in Section 4.2. These power flow models are applied to

obtain the solution for the power dispatch constraint [120] and failure of the nodes can

cause load curtailment. The cost of this is expensive for the network and occurs on

the condition that the minimisation constraint from Equation 4.3 is unsolvable. This

constraint is expanded for this model as;

min
Pg ,Lcut

f(Pg, Lcut) (4.26)

where Lcut represents the value of the load curtailed.

4.3.1 Load Contingencies

A contingency is an event occurring that is not considered predictable at a given time.

When applied to the power grid network, contingencies imply the network’s architec-

ture is is experiencing a disruption of the load transfer from one bus to the next. This

is commonly caused by a failure by extremely hot weather, system failures such as

outages and human errors [121].

The chosen parameter to measure the resilience quantification for the power grid sys-

tem is the Expectation of Energy-Not-Supplied (ENS) which is deemed to be the most

appropriate performance indicator and has historically been used as an indicator of re-

liability. The ENS acts as the ratio between the actual load received as compared to

the maximum load demand and is averaged over a defined period of time;
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ENS =

Tsim∑
t=1

∑
i∈ N

Lcut,i,t · t (4.27)

whereT represents the time of interest, Tsim represents a user defined simulation period

and Lcut,i,t represents the load curtailed at each individual node i at a given time t.

The general Expectation of the ENS, E[ENS] is obtained by averaging the samples of
Ns independent simulations and is denoted as;

E[ENS] =
∑Ns

i=1

Ns

(4.28)

4.3.2 Severe Weather Model

As an extension to the contingencies faced in the system, a weather model has been

proposed in the simulation algorithm to mimic the real life application of an event.

These events include lightning strikes, extremely high winds and natural disasters. The

occurrence of normal weather conditions can be modelled as a homogeneous Poisson

process [122];

P (Nf (t) = k) =
[λn · t]k

k!
e−λn·t k = 0, 1, ..., N (4.29)

where P (Nf (t) = k) represents the probability that k failures happen within the net-

work given the time (0, t), λn represents the line failure rate under normal conditions

and Nf (t) represents the number of failures per km of grid line.

However, in a more realistic perspective, the weather model is more likely to be af-

fected by uncertainty. This is why the occurrence of severe weather events is more

suited to be modelled by a non-homogeneous Poisson process;

P (Ne(t) = k) =
[Ve(t)]

k

k!
e−Ve(t) k = 0, 1, ..., N (4.30)

In this case, Ve(t) represents the time dependent probability of the event occurring and

can be obtained by applying the following equation;
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Ve(t) =

∫ t

0

ve(t
′) dt′ (4.31)

where ve(t
′) represents the rate at which the disturbance occurs.

Given a severe weather occurrence, the time of the event is obtained from data ex-

tracted from previous events and has beenmodelled using probability distribution func-

tions.

4.3.2.1 High Winds

In the case of high winds, the wind storm intensity is obtained via the following equa-

tion;

Ww(t) = Wcrt +∆w(t) (4.32)

where Ww(t) represents the wind speed intensity at time t for the event w and Wcrt

represents a datumwind speed known as the critical wind speed set at 10ms−1. ∆w(t)

represents the difference between the critical wind speed and the actual wind speed

during the event.

When considering individual lines, the contribution to the line failure due to highwinds

can be denoted in the equation;

λw(Ww(t)) = λn

(
Ww(t)

2

W 2
crt

− 1

)
αw (4.33)

where αw represents the regression parameter for failure data obtained.

4.3.2.2 Lightning Strikes

The other weather parameter involved in this model is the effect of lightning strikes.

The intensity of the chosen parameter is represented by the lightning strike ground
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density, Ng(t), which is characterised by the units of ground flashes per unit time and

area occ h−1km−2. The parameter is modelled with log-normal variability.

The line failure rate as a result of lightning can be denoted as:

λlg(Ng(t)) = λnβlgNg(t) (4.34)

βlg is the regression coefficient obtained from prior data [122].

4.3.2.3 Combined Weather Model with Uncertainty

The combined weather model contains parameters for the various weather models pro-

posed with respects to epistemic uncertainty. These parameters include the duration

of the wind storm event, Dω and the duration of the lightning storm event, Dlg.

The various parameters of the weather model have been assigned intervals as denoted

in Table 4.1;

Distribution Scale parameter (η) Shape parameter (β)
Dω Weibull 9.89± 1.42 1.17± 0.57
Dlg Weibull 0.96± 0.16 0.85± 0.09
∆ω(t) Weibull 1.23± 0.36 1.05± 0.17

Mean (µ) SD (σ)
Ng(t) Log-normal -5.34 1.07

Table 4.1: Weather model parameters

Both high winds and lightning strikes are a cause of contingency and therefore it is

crucial to define an equation which takes into account both forms contingencies to

calculate the total failure rate;

λ(t) = λn + λw(Ww(t)) + λlg(Ng(t)) (4.35)

where λw represents the total line failure contribution during time t due to high wind

measured per km and λ(lg) represents the lightning storms contribution.
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4.3.3 Weather Model Repair Speed

The recovery model [123] takes into consideration the efficiency of the repair crew

as they are also affected by the adverse weather conditions. The assumptions in this

model are:

1. The repair is instantly initiated following failure.

2. A line is considered instantaneously fully functioning in a post-repair state.

3. The time of for the transition of the failure is negligible with respects to the repair

time.

vrepair =



vnorm

1+η·(Ww(t)−Wcrt)
,

if Ww(t) ≥ Wcrt, Ng = 0

vnorm

1+ψ·Ng
,

Ww(t) < Wcrt, Ng > 0

vnorm

[1+η·(Ww(t)−Wcrt)]+[1+ψ·Ng ]
,

ifWw(t) ≥ Wcrt, Ng > 0

(4.36)

In this model, ψ and η are positive parameters and the normal average repair speed,

vnorm is set at 20 %h−1. The values for ψ and η are set to 40 and 0.4 respectively.

4.3.3.1 Aleatory Uncertainty

The aleatory uncertainty applied to the repair speed is taken from a Gaussian stochastic

model and is denoted as:

f(Li(t)) =
1√

2πσLi(t)
e
− (Li(t)−µLi(t)

2σ(Li)(t)
2 (4.37)
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4.4 Implementation of Technique

The proposed framework for this study has been tested for all three power flow tech-

niques. The AC-OPF model has also been modelled alongside its surrogate model.

This proposed methodology has been implemented in OpenCossan in a MATLAB

2021b environment. The proposed steps for the implementation of the technique is

explained by Rocchetta et al. [72];

4.4.1 Power Flow Analysis

The first part of implementation requires the user to compute the basic power flow

attributes as applied to a given network. A pre-contingency power flow model is ap-

plied as selected by the user from Section 4.2 obtaining the line flow values, fl and the

power rating, PRl in a pre-contingency state. This provides the required data for the

demand loads which is applied within the resilience analysis framework.

The individual line failures are deduced sequentially using the power flow analysis as

follows;

1. A chosen line, l is removed from the intact network.

2. Compute post-contingency fl and PRl using the power flow equations.

3. Identify the connected components within the post-contingency network.

4. If all lines are intact, the power equations are already solved, therefore fl and

PRl are obtained.

5. If the network is not intact, single node islands, Gis are removed and negated.

6. For Gis clusters remaining, post-contingency load values are obtained.

7. The overload severity is calculated and the cascading failure probability is ob-

tained for the surviving lines j.

8. Repeat steps (1)-(7) until all islands are isolated.
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The general algorithm for the post-contingency power flow equation is summarised

follows;

Algorithm 3 Power Flow

1: procedure (Post-Contingency Power Flow)

2: Find connected components

3: if cc > 1 then
4: Remove isolated nodes

5: ∀Gis

6: Select slack bus amongst P − V nodes

7: Run selected flow equations

4.4.2 Power Grid Monte Carlo Simulation

The weather model described in Section 4.3 has been implemented into the system.

Both homogeneous Poisson processes (HPPs) and non-homogeneous Poisson pro-

cesses (non-HPPs) are applied to this model. A vector representing the “Time-To-

events” (TTEs) is formulated after deducing the type of event and the time of which

this event occurs. The sequential Monte Carlo simulation (SMC) is applied until all

the samples of the system have been analysed.

Rocchetta et al. [70] provides a summary of the SMC technique;

1. The time, t is set as the time of the first event occuring and the failure index,

f = 0. If a normal failure is applied, go to (2). If a non-normal failure is

applied, go to (3).

2. f = f+1 is set and a chosen line, l is sampled from the probability mass function

(PMF) distribution and values
λ(t)·li·Xf,i∑Nl
l=1 λ(t)·li·Xf,i

with l = 1, ..., Nl. Xf,i are set at 0

and a load profile,Lf is sampled at time t. The failed line replacement is restored

and is therefore deemed to be functioning. TheXf andLf values are saved for f .

The load recovery is computed from the replacement with TTE(e+1)−TTE(e)
and after this is completed, go to (5).

3. The duration of the severe weather model, Te is sampled with respects to its

intensity, Ng,∆ω to calculate the increasing total failure rate, λ(t) by imple-

menting Equation 4.35. The time samples are simulated using the HPP method
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with the input of λ(t) and interval [t t+ Te]. In the event that single or multiple

failure events have been sampled, t is set to the next failure event. After this is

completed, go to (4). If no failure events have occurred, go to (5).

4. f = f +1 is set and one failed line, l is sampled using the PMF distribution and

values
λ(t)·li·Xf,i∑Nl
l=1 λ(t)·li·Xf,i

with l = 1, ..., Nl. A load profile, Lf is sampled at time

t and the replacement line, l is restored with the state vector, Xf and new load

profile Lf is saved. The load recovery is computed by applying Equation 4.36

and if severe weather failures are found in the system then go to (5). If severe

weather failures are not found, then repeat this step.

5. Stop the simulation if t > Tsim or if the final event, e in the simulation has

occurred. Otherwise e is set to e + 1 and t = TTE(e). Restart the simulation

from (2).

Upon completion of the simulation, the output data is saved for the use of the surrogate

model as applied in Section 4.4.3. The values of Lf and Xf are stored to be applied as

a vector input for the (nl + nL) · F matrix, where F represents the number of annual

failures experienced by the network.

4.4.3 ANN Surrogate Model for the Power Flow models

The purpose of an emulator is to minimise computational time for the simulation and

few attempts have been carried out in the context of finding a surrogate model incor-

porating contingencies. The artificial neural network (ANN) is a proposed method

which has increased in popularity for various applications as its flexibility to be ap-

plied in various projects such as in finance [124], data validation [125] and weather

modelling [126]. The applied network is modelled using the ANN toolbox on MAT-

LAB 2021b. This toolbox enables the user to input data from the original model and

mimic the simulation method using a certain set of epochs as desired. The output,

which is the ENS value produces a final result based on the conditions inputted into

the network’s architecture.

Rocchetta et al. [70] innovated the original model from Section 4.4.2 and developed a

surrogate model based on the load data obtained from the original model.
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4.4.3.1 Network Architecture

An ANN can be mathematically expressed to define the function K : I → Y, where

K represents a composition of various weighted functions, gi(s). The type of neural

network applied to this model is a feed-forward neural network with the Levenberg-

Marquadt algorithm applied. The architecture of a feed-forward ANN consists of an

input layer, at least one hidden layer and an output layer [127]. The hidden layers

represent artificial neurons and the number of nodes can be selected by the user on

the MATLAB 2021b toolbox. Each of the artificial neurons, represented as nodes are

connected to their respective adjacent nodes and the number of hidden layers applied

increases the depth of the ANN. However, increasing the depth of the ANN by a sig-

nificant fraction requires more training time for the network, which contradicts the

purpose of implementing a surrogate when training time is too high.

In each node, the inputs are given a weight and therefore the outputs are computed as:

g(x) =
n∑
i=1

wi · gi(x) + b (4.38)

where wi represents the the weight of the node, gi(x) is the output of the node in the

previous layer and b represents the weighted bias. The bias plays a role in the input

and output layers and sets out an argument for the activation function K.

The activation function is used to produce the network’s output and the equation for

this function can be defined as:

K(g) =
1

(1 + e−g)
(4.39)

The input vector is defined by the load demanded in each node represented by the jth

input vector and the state vector of the lines connecting the two nodes Ij = [L,X]j . In

a failed state, the load profile is defined as Lf = [L1, ..., LNL]f and the state vector is

denoted as Xf = [X1, ..., X|ξ|]f where L1 ∈ R+ and Xi ∈ {0, 1}. The minimisation
problem from Equation 4.26 can be solved in the equation below to obtain the load

curtailed Yj =
∑

i∈N Lcut,i,j,.



Assessing Resilience of Smart Critical Infrastructures to Deal with Emerging Risks and Threats 80

4.4.3.2 Pseudo-code of the SMC model

The pseudo-code for this whole process is displayed in Algorithm 4:

Algorithm 4 Risk Assessment Model

1: procedure ENS (Risk Assessment based on SMC)
2: Input = (λn, βlg, αw,Wcrt, bDw, aDlg, bDlg, a∆w, b∆w , vnorm, µNg, σng)
3: t = 0, e = 1, f = 0
4: Normal failure events for [0, Tsim] with HPP
5: Extreme weather events for [0, Tsim] with NHPP
6: t = TTE(e)
7: if event i is a failure then
8: f = f + 1
9: Sample Xf and Lf for t
10: Update TTR
11: if t > Tsim or e is last event then
12: Compute ANNLcut(f) . Surrogate model applied
13: Compute ENS(f) from ANNLcut(f)
14: Go to (25)
15: else e = e+ 1
16: Go to (6)

17: else Sample extreme weather Td
18: Compute failure rates and sample TTF
19: if t+ TTF (f) > t+ Td then
20: Go to (11)
21: else t = t+ Td and f = f + 1
22: Sample Xf and Lf for t
23: Update TTR
24: Go to (19)

25: OUTPUT ENS

4.4.4 Imprecision

The model can be represented with the addition of imprecise probabilities. The pa-

rameters of uncertainty include both epistemic and aleatory uncertainty. The need for

imprecision is advantageous in the analysis of the power grid model in events such as

varied load inputs for epistemic uncertainty and weather models containing imprecise

parameters leading to fluctuating results. Table 4.1 displays the confidence bounds for

the imprecise input for the implemented weather model.
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4.5 Case Study: GB Power Network

The GB Power Grid is a large and complex real-world system consisting of thousands

of nodes. For practical reasons, a simplified version of the GB power grid, originally

developed at the University of Edinburgh [128] has been chosen as the case study for

this chapter. The primary data for the model was developed and obtained through

a spreadsheet from the University of Strathclyde in 2010 and was converted into a

MATPower file by the University of Edinburgh. The original network contains 2224

nodes and 3204 links, and this network has been reduced to 29 nodes and 50 links with

the authors only including the most significant nodes being applied from the original

file. These significant nodes represent electricity generators from major cities in the

UK. The network has been implemented and analysed in MATPOWER and the DAG

of the system is displayed in Figure 4.2 along with the line power rating values;

Figure 4.2: Simplified GB Power Network

The system is composed of 5 load buses, 23 generator buses and 1 slack bus. The dis-

tance of each line has been estimated using distance measurements from maps and the

failure rates have been obtained from the same file. It is assumed that the transformers

in each branch are working to full efficiency. The source node is set at node 1 and the

terminal node is set at node 29. Table 4.2 provides details of all 50 branches on the
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system with their respective distance, li and the total failure rate, λn,i (
occ
kmy

) in occur-

rences per kilometer per year. The data is derived from the original paper as presented

by Rocchetta and Patelli [72] and represents the expected failure occurrence per year

for each kilometer of the transmission line.

Line i li (km) λn,i (
occ
kmy

) Line i li (km) λn,i (
occ
kmy

)

1-2 135 2.760× 10−3 14-16 15 3.500× 10−3

1-3 45 6.797× 10−3 15-16 15 1.966× 10−3

2-3 100 6.551× 10−3 16-17 100 2.511× 10−3

2-4 200 1.626× 10−3 16-19 15 6.160× 10−3

3-4 20 1.190× 10−3 16-21 90 4.733× 10−3

4-5 25 4.984× 10−3 16-22 25 3.517× 10−3

4-6 25 9.597× 10−3 17-18 130 8.308× 10−3

4-7 35 3.404× 10−3 17-22 25 5.853× 10−3

5-6 20 5.853× 10−3 18-23 120 5.497× 10−3

6-7 70 2.238× 10−3 19-20 95 9.172× 10−3

6-9 100 7.513× 10−3 19-21 20 2.858× 10−3

7-8 15 2.551× 10−3 20-21 20 7.572× 10−3

8-10 80 5.060× 10−3 20-26 100 7.537× 10−3

9-10 80 6.991× 10−3 21-22 15 3.804× 10−3

9-11 135 8.909× 10−3 21-25 20 5.678× 10−3

10-15 135 9.593× 10−3 22-23 50 7.590× 10−3

11-12 30 5.472× 10−3 22-25 20 5.401× 10−3

11-13 20 1.386× 10−3 23-24 15 5.308× 10−3

11-15 110 1.493× 10−3 23-29 20 7.792× 10−3

12-13 25 2.575× 10−3 24-25 15 9.340× 10−3

12-18 130 8.407× 10−3 24-28 15 1.299× 10−3

13-14 20 2.543× 10−3 25-26 15 5.688× 10−3

13-15 100 8.143× 10−3 26-27 20 4.694× 10−3

13-18 120 2.435× 10−3 27-28 60 1.190× 10−3

14-15 15 9.293× 10−3 28-29 40 3.371× 10−3

Table 4.2: Branch properties for the GB power network

4.5.1 Original Models

The original model proposed for this simulation has been tested first without the use

of an emulator. All three approaches as stated in Section 4.2 have been applied to the

GB Power Network and the results obtained have been saved. The AC-OPF results
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have been stored for further use of the surrogate model applied from Section 4.4.3.

The simulation times for the three models have been recorded and are displayed in

Figure 4.3. “CPUtime1” represents the LODF approach, “CPUtime2” represents the

DC-OPF approach and “CPUtime3” represents the AC-OPF approach;

Figure 4.3: Simulation times for the power flow models

4.5.1.1 DC-OPF Results

The DC-OPF risk model has been tested with 10000 Monte Carlo samples applied.

Figure 4.4 displays the results of the resilience index with respects to dimensionless

time. The confidence bounds with respects to both epistemic and aleatory uncertainty

is also displayed alongside the results for the original simulation.

Figure 4.4: DC-OPF simulation results
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The restoration function does not start immediately and only initiates after 0.1 dimen-

sionless time. After initiation, the model slowly recovers and the uncertainty bounds

are barely noticeable. The uncertainty bounds start to widen as the simulation runs as

a result of the increasing load values to be analysed. This stage of restoration shows

a rapidly recovering model which then decelerates due to the overload of recovery

delivered to the nodes. The uncertainty bounds also diminish during the end of the

simulation and the system is fully restored.

4.5.1.2 AC-OPF Results

The same model has been implemented with regards to AC-OPF. However, due to the

the greater computational cost by nearly five-fold as compared to the DC-OPF model,

only 1000 Monte Carlo samples have been applied.

Figure 4.5 shows the resilience profile of the case study with respects to AC-OPF;

Figure 4.5: AC-OPF simulation results

As compared to the DC-OPF results, the AC-OPF starts recovery slightly at approx-

imately 0.113 dimensionless time. This is due to the higher computational cost as

the AC-OPF implements a non-linear and non-convex approximation algorithm. The

model follows similar suit to the DC-OPF as recovery initiates with smaller initial

confidence bounds. However, these uncertainty bounds increase more rapidly as com-

pared to the DC-OPF technique due to the fewer Monte Carlo samples applied and
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produces results with more uncertainty. The acceleration of the recovery is also slower

than the DC-OPFmodel which shows that it requires significantly more volume to sim-

ulate the model successfully. The uncertainty bounds close near the terminal stages of

the simulation and the full recovery is achieved at 0.14 dimensionless time.

4.5.2 Surrogate Models

The two surrogate models for DC-OPF and AC-OPF have also been applied for the GB

power network. The LODF approach has been applied to act as a surrogate for DC-

OPF and the ANN model acts as a surrogate for the highly computationally expensive

AC-OPF.

4.5.2.1 LODF Results

The LODF model has been applied to the same model as the DC-OPF by applying

10000Monte Carlo simulations and the simulation time is over 20 times faster than the

regular DC-OPF which indicates that it is a useful tool for larger power grid networks.

The recovery function for the LODF simulation is displayed in Figure 4.6;

Figure 4.6: LODF simulation results
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The recovery function follows the same initial pattern as the original DC-OPF results

displayed in Figure 4.4. However this model shows initial stagnation stage at a slightly

longer time than the DC-OPF model. The recovery function starts to slowly accelerate

with minimal uncertainty bounds visible and then starts to rapidly accelerate at a much

faster pace than the original DC-OPF model. The uncertainty bounds are kept tight

throughout this whole simulation, suggesting a significantly lower internal volume re-

garding the inner parameters within the LODF algorithm as compared to the traditional

DC-OPF technique. This suggests that the LODF surrogate model is a very quick and

efficient computational shortcut for the estimation of DC-OPF and is appropriate for

use within larger power grid networks.

4.5.2.2 ANN Surrogate Model Results

The ANN model has been developed on MATLAB 2021b and the network’s architec-

ture has been trialed with 70% training, 15% testing and 15% validation. The chosen

attributes of the architecture is composed of a single input layer containing 100 nodes,

2 hidden layers both consisting of 50 nodes and a single output layer consisting of 100

nodes. Approximately 100 years of failures have been simulated and 35000 random

events are selected. The line state vector, Xf and load samples, Li,f (t) are applied to

train the ANN.

The surrogate model is validated using the data validation tool on MATLAB. This tool

tests the surrogate model output data and selects samples from the original model. The

data from the original model is compared and a regression plot is plotted displaying

the regression coefficient.

The surrogate model is also tested alongside the original model to compare consis-

tencies of the performance with the original model. This is carried out by simulating

the original model and testing the performance output of the code with the behaviour

of the new ANN developed. The ANN is also trained and this is an essential part of

initiating the ANN simulation.

Figure 4.7 displays the regression plots of the ANN for all three simulation stages and

also displays the overall regression plot for the whole simulation;
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Figure 4.7: ANN regression plots

All four regression plots show correlations of R > 0.95 showing adequate consistent

results. However, the validation and testing components have produced minor incon-

sistencies with obtaining the target values, producing regression values of 0.95422 and

0.96008 respectively. Due to the complexity of the original AC-OPF model with the

application of a medium to large scale system, it is very difficult to obtain highly cred-

ible results without extreme computational expense. Therefore, the values shown in

Figure 4.7 are considered adequate and credible with opportunities for improvement.

A more in depth approach to comparing the two simulation results is displayed in

Figure 4.8 showing the two respective model targets in both a histogram and a CDF.

A histogram is useful as it presents the most densely populated output frequencies

of the data as compares all the outputs within bounds of the input data, providing a

comparison of both the original model and the surrogate. The CDF is also useful as it

provides a more precise way to communicate the performance of the surrogate model

compared to the original model.

The figures below present the ANN performance on both a histogram and a CDF;
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Figure 4.8: Monte Carlo simulation comparison of AC-OPF and surrogate

The histogram and CDF show congruence within the general pattern of their respective

simulation. However, inconsistencies are visible with the ANN diverging from the

AC-OPF results as the simulation progresses. This divergence continues throughout

the heart of the simulation, and slowly converges towards the end of the simulation.

This reflects on the regression results as displayed on Figure 4.7 and this divergence

can be minimised by applying more nodes and hidden layers to the ANN architecture

for a more in-depth simulation. Further work can be carried out in order to improve

the consistencies of these results.

4.6 Chapter Summary

This chapter presents the fundamental theory of optimal power flow, the applications

and implementation of various optimal power flow techniques, and a real-world case

study to test these ideas. This chapter also implements a weather model to add to the

contingency analysis of the power flow model incorporating for the loss of perfor-

mance function and adds both high winds and lightning strikes as input parameters for

this chosen model.

Both the DC-OPF and AC-OPF power flow techniques have been successfully tested

on the 29 node 50 link GB network. The resilience performance index has been applied
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to all three techniques in the form of relative energy resupplied. The results show that

the computational expense is significantly higher in the AC-OPF model as compared

to the DC-OPF model and therefore fewer Monte Carlo simulations can be applied for

feasible computation. This results in a much greater amount of uncertainty within the

restoration function for the AC-OPF model. It is however important to note that DC-

OPF negates reactive power and therefore provides less accurate results in the precise

case when applied to a network of this nature.

The two respective surrogate models, the LODF and ANN approaches have been tri-

aled out and have proven to be efficient and computationally less expensive techniques

for both the DC-OPF and AC-OPF. The LODF implementation shows consistency

with the DC-OPF and has proved to be significantly less computationally expense.

The ANN model has also been successful to act as a meta-model for the AC-OPF and

shows adequate but consistent results for a network tested at this magnitude. There is

however possibilities for improvement regarding this model as the network’s architec-

ture can be deepened with the burden of computational expense.



Chapter 5

A Failure-based CFD Model to

Quantify Resilience in Gas Pipelines

5.1 Introduction

The gas network is a system designed to efficiently transport gas though a series of

pipelines to achieve an industrial goal. The demand for natural gas is ever increasing

with global energy inflation and the demand for natural gas alone is estimated to reach

200 quadrillion BTU by 2035 [129] making natural gas the fastest increasing source

of energy. The Deepwater Horizon oil spill mentioned in Section 1.2.3 is an example

of a disaster with severe consequences that has occurred as a result of a failing gas

pipeline, leading to a leak and eventually an explosion.

The structure of a gas pipeline system is composed of various sub-components and

when compiled together compiles the whole gas pipeline system into a single entity.

This network is unique in behavior due to the physical and chemical properties of

natural gas which provide additional constraints when assessing the nature of safety,

risks and uncertainties of gas pipeline failure. The flow rate of natural gas is dictated

through the gas pressure which is prone to dropping due to the friction which is present

in the pipe’s inner surface with the gas. In order to tackle these drops in pressure, com-

pression stations (CSs) are present in areas of the network suffering from low pressure

and transmission system operators (TSOs) act to control pressure as required for the

90
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demand nodes. Underground gas storage systems are also applied to increase the flex-

ibility of the system in events such as disruptions, high demand times and increased

gas congestion.

The motivation of this chapter is to provide an insight into resilience modelling of a

natural gas pipeline. This chapter aims to present a model for a natural gas pipeline

as represented by nodes and links and perform computational fluid dynamic (CFD)

equations to assess the resilience profile. The parameters of resilience assessed in this

chapter are the network’s robustness and the ability for the network to recover in post-

disaster state.

5.1.1 The Proposed Approach

The proposed approach applies an integrated model to a selected gas pipeline network

accounting for performance factors with respect to mass flow rates to quantify the

supply, demand and uncertainty profiles within the gas pipeline system. The primary

model is taken from Marino and Zio [75], and has been innovated with the addition

of works to deduce the gas flow rate profile from momentum heat and mass transfer

(MHMT) equations as expressed in Su et al. [74].

This approach aims to combine mathematical modelling and the complex reality of

physical critical infrastructures when applied to gas pipelines. The approach taken

follows a set of steps to obtain the various resilience profiles, listed as follows;

1. Modelling the network - The topology of the gas pipeline network is deduced

through the construction of a DAG and the network’s attributes are applied for

the simulation of system.

2. Modelling the failures - The physical failures to the system once a disaster has

occurred are modelled to understand the consequences of performance loss.

3. Modelling cybernetic failures - The complexity of pressure integrity of the sys-

tem is modelled to understand the consequences of worst case scenarios.

4. Resilience computation - The robustness and recovery is measured as an impre-

cise function to quantify the resilience profile under the system’s uncertainty.



Assessing Resilience of Smart Critical Infrastructures to Deal with Emerging Risks and Threats 92

5.2 Theoretical Background

When dealing with the nature of a general gas pipeline, it is crucial to underline the

fundamental theory of CFD equations to compute a performance profile for mass flow.

Works include full MHMT equations used from the literature such as the conservation

of mass, conservation energy, conservation of momentum and the ideal gas law.

Figure 5.1 displays a general gas pipeline with the respective equations highlighting

the nature of mass flow with all the theory as established by Su. et al. [74];

Figure 5.1: A general gas pipeline

In thismodel, the pipeline is represented by dx and is considered infinitesimal in length,

cross-sectional area is represented as S and the pipeline diameter is represented asD. ρ

represents the fluid density, p represents pipeline pressure, v represents the pipeline ve-

locity and g represents the velocity of gravity. The assumption included in this model

is that the gas flow properties are averaged over the cross-sectional area, S.

The laws that have been applied to this model produce various partial differential equa-

tions as mentioned on succeeding subsections. These equations derived are used to be
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implemented to a real world gas pipeline system in order to understand the attributes

of fluid flow in a topological manner.

5.2.1 General Equations for the Gas Pipeline

The continuity equation is denoted as;

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (5.1)

where ∂ρ represents the density partial differential, ∂t represents the time partial dif-

ferential and ∂x represents the partial profile differential.

The momentum equation is denoted as;

∂(ρv)

∂t
+
∂(ρv2)

∂x
+
∂p

∂x
+
fρv|v|
2D

+ ρg sin a = 0 (5.2)

where f represents the friction factor and a represents the angle of the pipeline.

This equation is built up of four terms in respective order of the inertia term, the con-

vective term, the pressure force term and the gravity term.

In order to calculate f , the friction factor, the Coolebrook-White correlation is applied;

1√
f
= −2 log10

( 2.51

Re
√
f
+

r

3.71D

)
(5.3)

where r represents the absolute pipe roughness andRe represents the Reynolds number

which is computed as;

Re =
ρvD

µ
(5.4)

where µ represents the dynamic viscosity.

However, an approximation for the friction factor, f is applied in the case of turbulent

flow;
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f =

[
2 log10

(4.518
Re

log10

(Re
7

)
+

r

3.71D

)]−2

(5.5)

The energy equation is denoted as;

∂

∂t

[(
CvT +

1

2
v2
)
ρS

]
+

∂

∂x

[(
CvT +

p

ρ
+

1

2
v2
)
ρS

]
+ ρvSg sinα = Ω̇ (5.6)

where Cv represents the specific heat capacity at constant volume, T represents the

temperate in K and Ω̇ represents the energy flux.

The state equation is denoted as;

p

ρ
= ZRT (5.7)

where Z represents the comprehensibility factor, R represents the gas constant.

As a consequence of natural gas pipelines containing many nodes and links within

the topology of the system, the proposed models in this chapter take assumptions to

simplify the above equations which neglect certain terms to maximise computational

expense. These assumptions are listed below [130];

1. The flow of gas is not affected by the temperature of the gas pipeline and is

considered a negligible factor and is therefore assumed as constant. The tem-

perature is equal to the ambient temperature and remains constant throughout

the simulation.

2. For Equation 5.2, the convective term is considered negligible. All other terms in

this equation are not considered to be negligible and play a role on the system’s

MHMT characteristics.
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5.2.2 Nodal Modelling

The mass conservation law is applied to develop a dynamic model. The momentum

equation and the state equation are simplified in the model;

∂p

∂t
= −ρc

2

S

∂Q

∂x
(5.8)

where ∂p represents the pressure partial differential, c represents the speed of sound

and ∂Q represents the volumetric flow rate partial differential.

This equation provides the correlation between pressure change and mass flow. ∆x is

assumed to be 0 at any j-th node and therefore the mass flow equation transforms into;

dQj =
ρc2

Σk
n=1Sj,n∆xj,n

Σk
n=1Qj,n − Lj (5.9)

whereQj,n represents gas flow from pipeline n to node j and is an absolute value when

gas is flowing in this direction, Sj,n represents the cross sectional area from pipeline n

to node j and Lj represents the transfer of gas when the node represents the junction

Lj = 0.

These two equations are combined to provide the dynamic model of node j;

dpj
dt

=
ρc2

Σk
n=1Sj,n∆xj,n

Σk
n=1Qj,n − Lj (5.10)

Equation 5.10 is further implemented in the pipeline dynamic model in Section 5.2.3;

d(pj − pj0)
dt

=
ρc2

Σk
n=1Sj,n∆xj,n

Σk
n=1(Qj,n −Qj,n0)− (Lj − Lj0) (5.11)

where pj0, Qj,n0 and Lj0 represent the respective variables at steady state.

This finally yields the equation of model as;

d∆pj
dt

=
ρc2

Σk
n=1Sj,n∆xj,n

Σk
n=1∆Qj,n −∆Lj (5.12)
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The nodes represent the relevant junctions, suppliers or demand sites as characterised

for the given system. The suppliers are also divided into three sub-types consisting of

gas plants, LNG terminals and underground storage systems.

5.2.3 Pipeline Modelling

Only mass and momentum equations are considered for the pipeline modelling. Kirch-

hoff’s first law at pipe nodes is negated due to the increase in computational cost of

implementing transient pipeline models. Despite this assumption, the model is able

to maintain a suitable level of accuracy and reduces the scale of the model enabling

larger networks to be analysed. Such networks are applied when working with real-

world systems.

Equations 5.2, 5.3 and 5.4 are simplified as;

∂Q

∂t
= −S ∂p

ρ∂x
− fcρc

2

2µ2
cDSp

Q|Q| − gSsin(α)

ρc2
p (5.13)

Where Sp represents the cross sectional area at constant pressure.

This equation is transformed into a discrete state using the finite differential approach;

dQi

dt
= −Spk − pr

2ρ∆x
− fcρc

2

2µ2
cDSpi

Qi|Qi| −
gSsin(α)

ρc2
pi (5.14)

where pi is the mean pressure with respects to pipe i and is computed as as;

pi =
2

3

p2k + pkpr + p2r
pk + pr

(5.15)

This mean pressure, pi is further transformed into a linear equation using Taylor’s

formula;

d∆Qi

dt
=

∂F

∂Qi

∣∣∣∣
(Qi0,pk0,pr0)

∆Qi +
∂F

∂pk

∣∣∣∣
(Qi0,pk0,pr0)

∆pk +
∂F

∂pr

∣∣∣∣
(Qi0,pk0,pr0)

∆pr (5.16)
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with;

F (Qi, pk, pr) = −S
pk − pr
ρ∆x

− feρ
2c2

2ρµ2
eDS

(
2
3

p2
k+pkpr+p2

r

pk+pr

)Qi|Qi| −
gSsin(α)

ρc2

(2
3

p2k + pkpr + p2r
pk + pr

)
(5.17)

since ∂F
∂Qi

∣∣∣∣
(Qi0,pk0,pr0)

, ∂F
∂pk

∣∣∣∣
(Qi0,pk0,pr0)

and ∂F
∂pr

∣∣∣∣
(Qi0,pk0,pr0)

are constant values, the final

dynamic pipeline equations result in;

d∆Qi

dt
= Kqi∆Qi +Kpk∆pk +Kpr∆pr (5.18)

Kqi =
∂F

∂Qi

∣∣∣∣
(Qi0,pk0,pr0)

(5.19)

Kpk =
∂F

∂pk

∣∣∣∣
(Qi0,pk0,pr0)

(5.20)

Kpr =
∂F

∂pr

∣∣∣∣
(Qi0,pk0,pr0)

(5.21)

5.2.4 Control System Modelling

The demands of the natural gas pipeline are dictated through the adjustments within the

various components of the system. These components include the gas suppliers (GS),

demand sites (D), regulation stations (RS), compressor stations (CS) and underground

storage (UGS). For example, the RS and CS are defined by modelling the flow rate,

inlet and outlet pressures with respects to the required parameters. These additional

independent linear equations are crucial for modelling a system of this nature as the

original nodal and pipeline modelling equations stated in Sections 5.2.2 and 5.2.3 alone

are insufficient. This is due to the number of unknowns containing a higher quantity

of degrees of freedom than the number of set equations.

The application of the linear equations are displayed on Table 5.1 and satisfies this

constraint to negate the excess degrees of freedom;
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Type Control mode Control equation Constraints

GS Flow control dpGS

dt
=

∑k
n=1QGS,n −

LGS

|LGS| ≤Max supply

Pressure control
∑k

n=1QGS,n − LGS = 0 p ≤ pmax
Inactive LS = 0

D Flow control dpD
dt

=
∑k

n=1QD,n − LD |LD| ≥Min demand

Pressure control
∑k

n=1QD,n − LD = 0 p ≥ pmin
Inactive LD = 0

CS/RS Pressure ratio Pout − ϕPin = 0 Max outlet pressure

Outlet pressure Pout − Pout_set = 0 Min inlet pressure

Inlet pressure Pin − Pin_set = 0 Max flow rate

Flow control Q−Qset = 0 Max pressure ratio

Bypass Pin − Pout = 0
Inactive Q = 0

UGS Flow control dpUGS

dt
=
∑k

n=1QUGS,n −
LUGS − LUGS_withset

|LUGS| ≥Min demand

Pressure control
∑k

n=1QUGS,n−LUGS = 0 p ≥ pmin
Inactive LUGS = 0

Table 5.1: Control modes with their respective equations

The control equations are applied to the respective types of nodes and are maintained

by adjusting the parameters of the constraints. For instance, the CS and RS valves are

maintained through adjusting the parameters of outlet pressure, inlet pressure, flow

rate and pressure ratio.

5.3 An Imprecise Failure Based Resilience Model

The resilience based model is divided between the failure stage, the stagnation stage

and the recovery stage, in which all three phases have beenmodelled using the required

equations as stated in relevant literature. The innovation of this literature is the addition

of respective uncertainties that are trialed out during the input and output stages of the

simulation. The approach is taken from Marino and Zio [75].
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5.3.1 Probabilistic Modelling of Failure Scenarios

The gas pipeline in this model is subject to varying events contributing to the failure of

the system. During the degradation stage of the resilience model, the mass flow into

the respective nodes declines and therefore the overall performance disintegrates.

5.3.1.1 Pipeline Failure

The causes of pipeline failure includes leakage within the system, pipeline rupture

or inadequate operation of the pipeline. European Gas Pipeline Incident Data Group

(EGIG) [131] states that the mean failure rate of a European Gas pipeline is listed at

3.5× 105(km · y)−1.

5.3.1.2 Compressor Station Failure

The cause of compressor station failures are a result of the internal factors within the

compressor. A decreased performance of pipeline capacity occurs during the event of

compressor failure and this is believed to reduce the pressure within the pipelines by

approximately 20% [132].

5.3.1.3 Gas Storage Failure

The primary trigger for gas storage failures is constituted in the build-up of facility

failure and withdrawal. In the event of gas failure, it is assumed that the pipeline

function has also failed [133]. Ouyang estimates that the annual failure rate of the gas

storage system is at 10% [134].

5.3.1.4 Liquefied Natural Gas Terminal Failure

During the event of a Liquefied Natural Gas (LNG) terminal failure, it is also assumed

that the pipeline function has failed as the supply capacity of the required gas has

declined. It is estimated that the annual failure rate for this event is 15% [135].
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5.3.2 Cybernetic Failure Modelling

Natural gas pipelines are vulnerable to the threat of cyber-attacks [136], and most no-

tably pressure related cyber-attacks. This is most commonly carried out by increasing

the pressure throughout the pipeline system. Consequences of overpressure can lead

to economic loss and environmental disasters as demonstrated in Section 1.2.3.

5.3.2.1 Compressor Station Pressure Model

Themodel used for the pressure model as applied to the compressor station is presented

in Figure 5.2 [75]. The types of curves represent various linear or logarithmic based

responses.

Figure 5.2: Various pressure increasing functions for the internal pipeline

5.3.2.2 Overpressure

There are various triggers which induce the overpressure of a natural gas pipeline sys-

tem. The pipeline cannot deduce the irregularity of the system’s dysfunction until the

delivery node is met with an overpressure. The delivery time of the gas from one node

to the next node across the pipeline is computed in Pipe Flow Expert after the velocity

of flow in the pipe is computed. It is assumed that the pipeline fails once the pressure

overrides a maximum threshold of pressure known as the maximum allowable over-

pressure (MAOP).
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The three main common causes of this overpressure are spilling, jet fire and vapour

cloud explosion.

In the case of spilling, Casal [137] states that the mass flow rate is obtained from the

following equation;

ṁhole = AorCDPcontΨ

(
γ
( 2

γ + 1

)( γ+1
γ−1

))−2

(5.22)

where ṁhole represents the mass flow rate in kg s−1, γ represents the isentropic coeffi-

cient at 1.4, CD represents charge coefficient as a dimensionless value, Aor represents

the cross-sectional area of the orifice inm2, Z represents the gas compressibility factor

given the conditions of constant pressure Pcont in Pa and constant temperature Tcont

inK of the pipeline and Ψ represents the dimensionless factor which is influenced by

the gas velocity. Natural gas as applied in this chapter is assumed to have parameters

of Z = 1 and Ψ = 1.

In the event of a jet fire, irradiation values are obtained as 2.5 kW m−2 for equipment

and 12.5 kW m−2 for people [137]. It is also assumed that the spilling diameter is

approximately 20% of the pipeline diameter.

Vapour cloud explosions result in a release of energy at a rapid pace and form this

cloud due to the loss of containment of flammable gas. Overpressure is caused by the

mechanical energy of the explosion event which is released into the atmosphere. In the

event of a vapour cloud explosion, there is a delay in ignition, and therefore a mixture

of air and fuel is prone to develop into a cloud. The assumption used here is that the

time taken to produce this vapour cloud is the same time of detection of the MAOP on

the pipeline.

5.3.3 Parameters for Resilience

The chosen parameter for system’s performance is the actual gas flow rate in relation

to its respective demand. The transient resilience function for this parameter is denoted

as ϕ(t). Figure 2.1 from Section 2.2.3 describes a typical three phase resilience curve
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which is applied as a transient function. A similar model is implemented in this study

to quantify the characteristics of a three phase resilience performance profile.

5.3.3.1 Robustness Model

Robustness has been defined in Section 2.2.1 as “The analysis of the strength and

ability to withstand a given stress level without damaging the operation of the system”.

In this case, robustness refers to the capability of the gas pipeline system to transfer its

respective mass flow rates given the event of of a specific failure. In certain cases, the

failure affects multiple pipelines of the system which are blocked by remote control

valves (RCV’s) in order aid the process of maintaining adequate pressure to the given

system [138]. The respective pipelines are non-functioning when the threshold limit

of depressurisation occurs, in which the failure detection time is recorded. In this case,

when multiple pipelines fail, the average failure detection time is calculated.

The pipeline link(i, j) where (i, j) ∈ I is set as I . The equation to compute the

failure detection time for the respective pipelines from node i to node j is denoted as;

tdet(i, j) =
Kpr · Pinitial(i,j)

m
+mpd (5.23)

where Pinitial(i,j) represents the initial pipeline pressure in psi for the link between

nodes i and j,m represents the pressure degradation rate in the interior of the pipeline

measured in psi s−1, Kpr represents the promptness parameter which is set at 0.1 and

mpd represents the maximum packet delay.

The pressure of the pipeline (i, j) is assumed to be the pressure at node j as an as-

sumption to simplify the simulation. This assumption is automatically applied for the

simulation software applied PipeFlow Expert to reduce excess computational expense

and enabling the analysis of large pipeline networks.

The degradation function gdeg(t) is denoted as;

gdeg(t) = ṁft=0 · (−
t

tdet
) + 1 (5.24)
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where t represents the time in s, ṁft=0 is the maximum flow rate of the system prior

to failure and tdet is the average detection time in s.

The robustness capacity, GRobCap is computed by integrating gdeg(t);

GRobCap(tdet) =

∫ tdet

0

gdeg(t) dt (5.25)

A linear based function to simplify of this equation is proposed [139];

dP

dt
= m (5.26)

An underpressure situation is detected when the pipeline pressure falls below a certain

threshold as recorded by the remote terminal unit (RTU).

The general robustness performance function is derived [140];

Rob = 1−
ϕ(t0) · (td − te)−

∫ td
te
ϕ(t)(dt)

ϕ(t0) · (td − te)
(5.27)

This equation deduces the percentage of gas that is delivered in a post-failure event,

with the maximum percentage representing the network’s full performance at 100% .

5.3.3.2 Recovery Model

Whilst robustness deals with resilience during disaster as a quantification of potential

damage to the system, rapidity and resourcefulness are indicators of recovery to the

system in a post-disaster phase. Rapidity, as defined in Section 2.2.1 is referred to as

“the time that a system takes to recover”. The pipeline system recovers with the aid of

repair until the performance has been fully restored.

The recovery function is denoted as [136];

Pij(t) = pinit(i,j) + (pinit(i,j) − pfin(i,j)) · (1− exp(−bi,j · t)) (5.28)
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where Pi,j(t) represents the recovery function in s, pinit(i,j) represents the initial real

pressure of the pipeline, pfin(i,j) represents the final real pressure of the pipeline post-

disaster in psi and bi,j represents the semi-empirical parameter which defines the re-

covery speed of the pipeline.

The lack of data with this equation falls within obtaining values for bi,j as without this,

the estimation of the pressure response for pipeline (i, j) is unobtainable. These values

are obtained from the relation between the time constant τ being inversely proportional

to bi,j .

bi,j =
1

τ
(5.29)

The value of bi,j is related to the set point pressure Pinit(i,j). The higher the pressure

of the pipeline is, the greater the value of τ .

This phenomena is graphically represented in Figure 5.3 [75];

Figure 5.3: Gas pipeline pressure responses

Figure 5.3 displays the properties of the pressure response from Equation 5.28 along-

side the ideal linear pressure response. The graphs intersect at 98% of the set-point

pressure mark at a time constant τ at 4. This is the minimum time it is assumed that

the gas has been transferred from node i to node j and therefore tdest ≥ 4τ . This

means that pipelines which exhibit a lower set point pressure and contain pipes which
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are shorter in length achieve steady state at a quicker rate and therefore τ will be a

lower value whilst dP
dt

will be greater. It can be assumed that the velocity of the gas

flowing in the pipeline is less than 30ms−1 during the post-disaster phase [141].

tdest is computed as;

tdest =
L

vgas
(5.30)

From this information, bi,j is approximated;

bi,j ∼
pinit(i,j) − pfin(i,j)

4τ
(5.31)

A pipeline in a failed state recovers its transport capacity following the equation;

Qij(t) = Qij,0 · [1− exp(−bij · t)] (5.32)

Qij(t) represents the volumetric flow rate capacity for the pipeline from node i to node

j during time t and Qij,0 represents the volumetric flow rate capacity at t = 0.

This equation is then rearranged to;

Qij(t) = Dδ
ij ·
{
1− exp

[
−
(
vgas · (Kpr · Pinit(i,j) +mpd ·m

Lij

)
· t
]}

(5.33)

where Dij represents the diameter of the pipeline (i, j) in m, δ represents the non-

dimensional conversion coefficient and vgas represents the velocity of the recovery

gas. This is the quantity of gas required for the network to achieve sufficient nominal

performance.

As with the robustness model, the area below the recovery curve is also integrated to

obtain the network recovery capacity, GRecCap;

GRecCap(trec) =

∫ trec

0

grec(Qij(t), t)dt (5.34)
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where t represents the time in s, grec represents the network recovery curve and trec

represents the recovery time for the observation in s.

Finally, the network recovery performance index is denoted as;

Rec = 1−
ϕ(tf ) · (tf − te)−

∫ tf
te
ϕ(t)dt

ϕ(t0) · (td − te)
(5.35)

Rec represents the performance index with respects to the proportion of gas that has

been recovered during trec.

5.4 Implementation of the Technique

The implementation of this technique has been applied in MATLAB 2021b and the

data is collected, trialed out and computed from Pipe Flow Expert.

5.4.1 Implementing the Physical Model

The physical model is designed in the form of a direct weighted graph with nodes rep-

resenting demand stations such as LNG terminals, natural gas storage, and compressor

stations, and links representing pipelines.

A steady state thermal hydraulic analysis has been implemented in PipeFlow Expert

to obtain the data regarding the pressure of the various nodes and the vector based di-

rection of the pipe flow. The input data that is required from literature includes the

customer demand values for gas, dimensions of the pipelines and the pressure of the

gas in the source nodes.

5.4.1.1 The Capacity Model

The capacity weighting of the links are computed with the equation that relates Q, the

pipeline volumetric flow rate capacity and D, the pipeline diameter.
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w = QD−δ (5.36)

where Q represents the estimated volumetric flow rate of the pipeline inMCM h−1,

δ represents the constant conversion coefficient at 2.59 andD represents the diameter

of the pipeline inm.

5.4.1.2 Capacity Calculation

During transmission of gas from one node to the next node, the capacity of the gas

pipeline is computed by applying the Ford-Fulkerson maximum flow algorithm. This

method is used to calculate the supply capacity and the performance of the network by

applying the maximum possible flow as the metric.

The DAG, G(N,L) is presented with N denoting the nodes and L denoting the links

of the network. The links L ∈ (i, j) represent positive values of the flow variable fij

with the capacity of each link represented as uij .

The expression s represents the source node and t(s, t ∈ V ) represents the terminal

node of the network’s links. The aim of the maximum flow algorithm is to transfer the

maximum capable flow rate from s to t satisfying the constraint fij ≤ uij .

The maximum flow algorithm as applied to this case is expressed as;

max fst

with
∑

(i,j)∈L fij −
∑

(i,j)∈L fji = 0 j ∈ N{s, t}
0 ≤ fij ≤ uij, ∀(i, j) ∈ L

(5.37)

For simulations with multiple source and terminal nodes, a supersource and superter-

minal node is applied. However, this chapter focuses on a single source node and these

two nodes are selected by the user.

5.4.2 Uncertainty in Gas Pipeline Modelling

The approach taken to apply epistemic and aleatory uncertainty within this technique

applies both imprecise inputs to the original model and confidence bounds to the final
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outputs. Both of these techniques are applied to deduce the maximum performance

possibility and also the minimum performance possibility for all three stages of re-

silience within the simulation procedure. These include the robustness and recovery

function alongside the stagnation phase in between.

5.4.2.1 Epistemic Uncertainty

The form of epistemic uncertainty applied in this model is applied via estimation re-

garding the volumetric output from the source nodes and the volumetric input to the

demand nodes. The imprecise values regarding the supply and demand capacity mea-

sured inMCM h−1 are presented in Tables 5.2 and 5.3. Both the upper bound inputs

and the lower bound inputs have been applied to the respective model and the two

scenarios of outputs are recorded with respects to epistemic uncertainty.

5.4.2.2 Aleatory Uncertainty

The confidence bounds for the output distribution is modelled through Gaussian uncer-

tainty distributions with a confidence bounds of 10%. The equation for the Gaussian

applied to the output of this model is denoted as follows;

g(x) =
1

σ
√
2π
e−

1
2

(
x− µ
σ

)
(5.38)

where µ represents the mean of the output result and σ represents the standard devi-

ation with respects to 10% confidence. This output uncertainty is applied after the

epistemic uncertainty is obtained and adds additional uncertainty bounds for the re-

silience function. The final results display the robustness and recovery functions with

a combination of both epistemic and aleatory uncertainty.
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5.4.3 The Dynamic Model

The model is presented as an algebraic differential equation dynamic model. An im-

plicit differential model has been applied with variable-step and variable-order.

The simulation method of the dynamic model is displayed in Algorithm 5;

Algorithm 5 Dynamic flow model algorithm

1: procedure v (Dynamic flow model based on CFD)

2: Compute initial condition

3: Generate dt and dx using discretisation
4: Initiate time integration for tn+1 = tn + dt
5: Generate differential equations for each pipeline from Section 5.2.1

6: Verify control modes from Section 5.2.4

7: Compute equations from 5.2.2 and 5.2.3 with respects to the control modes

8: Iterate t to obtain an approximation for tn+1

9: if constraints violated then

10: Perform re-iteration using limitation bound as initial boundary conditions

11: Go to (8)
12: else Compute results at t = tn+1

13: if tn < tmax then
14: Set new boundary conditions for tn+1

15: Go to (4)
16: else End simulation

5.4.4 Limitations to the Proposed Approach

The model contains sufficient detail regarding the input parameters and included as-

sumptions. However, even with these assumptions, computational cost is still high in

networks with large numbers of nodes. Additionally, the dynamic model uses itera-

tion to quantify the flow properties of the system and provides an estimate. Despite the

iteration being constantly re-iterated until the boundary flow conditions are satisfied,

these are likely to provide results with some degree of uncertainty to output flow. The

other limitation within this technique is within the failure scenarios as it is assumed

that the failure scenarios can only occur independently without the consideration of

mutual sources of failure that happen simultaneously. An expectation of the average

reliability of all three failure scenarios are estimated, however this assumes that all

three scenarios are equally likely to happen.
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5.5 Case Study: Natural Gas Pipeline

In another paper, Su et al. [142] presents data for a natural gas pipeline consisting of 53

nodes and 68 links. The reliability analysis of this pipeline has already been tested for

this system. The approach presented in this chapter expands this and applies resilience

as described in Section 5.3.3. All the equations regarding the characteristics of the

system have been applied from Section 5.2 to deduce the general behaviour of flow

for the system.

The DAG for the natural gas pipeline has been constructed as an adjacency matrix on

MATLAB 2021b and this has been represented in graphical format;

Figure 5.4: Topology of the natural gas pipeline

Nodes 1 and 53 are considered as fictitious nodes and are both supersource and su-

persink nodes respectively. The internal source nodes are listed on Table 5.2 and the

internal demand nodes are listed on Table 5.3. It is assumed that all the pipelines are

operating under negligible frictional loss factors and that the fluid loss within the nodes

is also considered negligible.

The capacity model calculation from Equation 5.36 is applied and and the maximum

flow algorithm from Equation 5.37 which utilises the Ford Fulkerson algorithm is also

applied along with the constraint properties of the physical gas limits, node demand

values and the capacities of the connected elements.
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5.5.1 Input Data

The required data to successfully simulate the system is provided in different cate-

gories. Firstly, the data for the source nodes is required to estimate the maximum

performance that these source nodes can provide to demand nodes. The expectation

of demand nodes and their respective volumetric flow rates are also required. Both of

these data sets are applied simultaneously to the model to ensure congruence within

the supply and demand flow.

The other data-sets collected include collecting information regarding the failure sce-

narios and have been applied to the their desired equations as listed on Section 5.3.1

and the pressure response values for implementation on Figure 5.3 into the recovery

model.

5.5.1.1 Source Node Volumetric Data

The first step is to obtain data regarding the capabilities of performance for the source

nodes. The initial data required to simulate this system is the maximum output volu-

metric limit , measured in million cubic metres per hour (MCM h−1). This is obtained

from the basis of Su et al. [142] and is estimated with lower and upper bounds.

Table 5.2 displays the source node types with their respective imprecise volumetric

properties;

Node Type Qmax(MCM h−1)
9 Storage (85, 104)

10 Pipeline (673, 789)

15 LNG terminal (186, 303)

18 Pipeline (500, 700)

50 LNG terminal (5.4, 9.1)

Table 5.2: Volumetric properties for source nodes

5.5.1.2 Demand Node Volumetric Data

Alongwith source node data, the various demand nodes are also estimated and inputted

into the simulation with their respective volumetric flow rate demands. The units for
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this are maintained as the same units for the source nodes measured inMCM h−1.

Table 5.3 displays a list of the demand nodes with the respective volumetric flow rates

as imprecise values;

Node Qdem(MCM h−1) Node Qdem(MCM h−1)
4 (32.64, 37.48) 31 (17.53, 22.08)

5 (34.73, 39.96) 34 (17.52, 22.10)

7 (38.62, 41.87) 35 (23.78, 27.16)

12 (32.49, 37.75) 37 (19.42, 23.73)

16 (100.04, 109.75) 38 (37.33, 45.68)

17 (31.73, 40.97) 40 (28.78, 34.45)

20 (10.23, 13.95) 41 (44.25, 52.37)

24 (31.10, 39.71) 42 (35.27, 41.26)

25 (35.14, 42.36) 43 (30.05, 36.79)

26 (39.54, 47.83) 46 (10.58, 13.54)

28 (55.53, 66.48) 49 (26.73, 31.26)

29 (44.75, 52.09) 51 (21.04, 25.59)

Table 5.3: Volumetric properties for demand nodes

5.5.1.3 Node Pressure Data

The data for the pressure of the nodes is extracted from the simulation in PipeFlow

Expert with the application of the following assumptions;

1. The source node (node 1) pressure is 1000 psi.

2. The type of gas within the pipelines is methane which at ambient temperature

has as density of 0.7168 kg m−3 and a dynamic viscosity of 10.9× 10−6Pa s.

3. The minimum volumetric flow rate within the pipelines is 11 MCM h−1 and

the maximum volumetric flow rate was found to be 1180MCM h−1.

4. The internal roughness of the carbon steel pipelines are 0.07mm.

All of these assumptions have been accounted for and have been implemented into

the Pipeflow Expert simulation. The pressures are given as precise values as multiple

simulations need to be trialed out to contribute to epistemic uncertainty within the

pipeline pressures which is computationally unfeasible for a network of this size.
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The values of all the nodal pressures in the natural gas pipeline are displayed in Table

5.4;

Node Pressure (psi) Node Pressure (psi)
1 1000 28 124

2 875 29 121

3 875 30 104

4 924 31 98

5 924 32 103

6 924 33 101

7 1000 34 127

8 1000 35 850

9 1000 36 850

10 945 37 265

11 944 38 126

12 944 39 99

13 1000 40 68

14 949 41 924

15 945 42 925

16 944 43 925

17 945 44 924

18 1000 45 886

19 1000 46 885

20 805 47 912

21 807 48 946

22 806 49 995

23 850 50 855

24 1000 51 920

25 839 52 954

26 102 53 955

27 100

Table 5.4: Pressure properties for nodes

This data has been obtained fromPipeFlowExpert and the bounds have been estimated.

5.5.1.4 Gas Pipeline Data

The volumetric flow rate data for the gas pipelines has been obtained from the original

model used in reliability analysis from Su et. al [142] and has been converted into

the units applied for the supply and demand nodes, MCM h−1. This estimation is
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deemed valid due to the similarities of the nature of the two topologies. The length of

each pipeline is estimated and has been assigned a length from its starting node to its

respective connecting node.

Table 5.5 shows the gas pipeline data with all the lengths of each pipeline in km and

the respective volumetric flow rates as simulated for each pipeline;

Pipeline l(km) Qcap(MCM h−1) Pipeline l(km) Qcap(MCM h−1)
1-49 10 744 17-33 25 1180

2-3 10 1180 17-39 15 68

2-4 5 291 18-19 15 121

3-46 15 291 18-22 5 291

3-47 10 411 19-20 10 291

4-42 20 291 19-21 10 1180

5-6 10 48 20-21 10 291

5-7 15 291 20-27 15 291

5-34 15 121 21-22 15 291

5-43 15 291 21-23 15 168

6-7 10 121 23-24 15 291

6-50 5 121 24-25 10 20

7-8 20 121 24-26 10 291

7-50 10 1180 26-30 10 1180

8-9 20 291 26-31 10 121

9-52 10 68 27-28 15 121

9-53 10 291 28-31 10 121

10-11 30 68 29-30 10 1180

10-42 10 32 29-31 10 1180

10-49 15 121 29-32 10 121

11-12 20 48 31-32 10 11

11-16 20 291 32-37 10 11

11-51 10 1180 33-36 10 24

12-13 5 1180 35-45 20 121

12-52 15 1180 35-46 10 68

13-14 15 1180 38-49 10 121

13-53 15 291 39-40 10 121

14-15 20 734 39-41 10 32

14-42 20 48 43-44 10 121

15-16 5 121 43-45 15 291

15-33 15 121 43-46 10 121

16-33 15 291 45-46 10 411

17-18 15 291 48-53 10 24

17-22 15 600 52-53 10 1180

Table 5.5: Pipeline properties



Assessing Resilience of Smart Critical Infrastructures to Deal with Emerging Risks and Threats 115

5.5.2 Failure Scenario Data

The data to characterise the robustness and recovery functions have been collected

using the historical failure data from the reliability based study carried out for this

original model.

The resilience of the network is trialed out under three different failure scenarios as

listed on Table 5.6;

1. Gas Storage Failure at node 9.

2. Pipeline failures at nodes 15 and 18.

3. LNG terminal failures at nodes 15 and 50.

5.5.2.1 Robustness Data

The reliability data for the source nodes have been obtained from the reliability anal-

ysis carried out in the original study of this network. The type of source node failing

is mapped with the maximum degredation volumetric flow rate Qdeg, the annual reli-

ability, the annual mean time to fail (MTTF) and the maximum volumetric flow rate

performance drop.

Table 5.6 displays the data for these proposed parameters;

Node Type Qdeg Reliability MTTF (Y ) Maxdrop(%)
(MCM h−1)

9 Gas storage 67 0.9 9.5 58.6

10 Pipeline 238 0.999 198.2 11.8

15 LNG terminal 795 0.85 6.2 21.6

18 Pipeline 418 0.999 662.5 1.8

50 LNG terminal 23 0.85 6.2 21.6

Table 5.6: Robustness data for failure types

Failure scenarios 1 and 2 have been applied using Equation 5.28 to deduce the inner

pipeline real pressure values after the RCVs have been blocked. This real pressure has

been deduced using the simulation data in the case of scenario 3 as it is not viable to

apply the pressure degredation within the LNG terminal nodes.
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Equation 5.32 has been applied to each pipeline to compute the recovery speed param-

eter, and the recovery pressure for the delivery node has been computed using Equation

5.34 for each failure scenario.

5.5.2.2 Recovery Data

Asmentioned in Section 5.3.1, the different types of node failure scenarios are defined,

applied to the natural gas pipeline and are trialed out. These failures include pipeline

failure, compressor station failure, gas storage failure and LNG terminal failure. The

assumption is that the pressure degredation rate,m is 1 psi s−1 is applied to obtain the

simulation data for pinit and tdet. The recovery speed parameter, b is also obtained and

has been applied to the recovery function for the respective failure scenario.

Table 5.7 displays recovery data for the three types of failure applied to the simulation;

Failure type Nodes −10%pinit(psi) tdet(s) b
Gas storage 9 888 112 12.25

Pipeline 10, 18 940 N/A 0.01

LNG terminal 18, 50 842 131 0.02

Table 5.7: Recovery data for failure types

The recovery parameter, b is deduced from the simulation and is applied to the recovery

model. It can be concluded that in the event of a gas storage failure, the recovery

parameter is significantly higher than for the other two failure scenarios as the pipeline

reaches the recovery threshold value at a much slower rate. The value for tdet for

pipeline failure is considered negligible within this model and the recovery parameter

for this scenario is 0.01.

5.5.3 Resilience Results

The results for the implementation of the resilience based model are split between the

general resilience performance index, the graphical robustness function and the graph-

ical recovery function. All three parts of the model are subject to both the epistemic

and aleatory uncertainties as listed in Section 5.4.2. The overpressure data has also

been recorded for the compressor stations by applying the Weikma method. This rate
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of pressure increase has been tested out with various linear based and logarithmic-

increase based recovery models. The time taken for spilling to occur and the quantity

of overpressure is recorded as outputs to the model.

5.5.3.1 Resilience Performance Indexes

The three failure modes have been tested. The robustness (R1) performance index and

the recovery (R2) performance index during the three different recovery time phases

are obtained;

Failure type R1 R2 (60 s) R2 (120 s) R2 (180 s)
Gas Storage 0.6548 0.9217 0.9684 0.9981

Pipeline 0 0.8975 0.9389 0.9738

LNG terminal 0.8473 0.8492 0.8981 0.9472

Table 5.8: Simulation reliability values

These resilience based performance indexes have been applied to the three phase re-

silience function. The assumption of this function is that the stagnation period lasts

for a total of 60 s simulation time for all three of the failure scenarios. The simulation

carried out regarding the robustness and recovery functions have been measured in

intervals of 5 s. The robustness function values, R1 represent the terminal reliability

values of the system upon completion of the failure event. The simulation time to reach

this stage is found to be 120 s for all three failure scenarios and the recovery model’s

simulation time is 180 s.

5.5.3.2 Overpressure Results

TheWiekama method is applied to the compressor station and the values of time taken

for spilling to occur have been recorded in each of the failure scenarios under the condi-

tion that the mass flow rate, ṁ is 100 kg s−1. Both linear and logarithmic distributions

are applied to the pressure increase function yielding the respective spilling times and

overpressure values to the system.

Table 5.9 displays the various pressure increase models with the respective time taken

for spilling and overpressure values;
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Pressure increase ∆T spilling (s) Overpressure (Pa)
Linear (θ=0.5) 261 134

Linear (θ=1) 215 142

Logarithmic (λ=50) 1024 213

Logarithmic (λ=75) 268 137

Logarithmic (λ=100) 591 186

Table 5.9: Overpressure functions with effects

5.5.3.3 Robustness Function

The imprecise robustness function has been implemented for all three failure scenarios.

The precise robustness function is also implemented on the condition that all three

failure scenarios have been applied and this is compared with the imprecise robustness

function for the individual scenarios.

Figure 5.5 displays the various robustness functions trialed out for this case study;

Figure 5.5: Imprecise robustness functions for various failure types

The three different failure scenarios for the robustness function are displayed on Figure

5.5 with their upper and lower bound reliability values. The gas storage failure results

display increasingly diverging values from upper bound to lower bound reliability data

as the simulation progresses. This contrasts with the pipeline failure robustness func-

tion which rapidly declines and converges until the reliability values reach 0. The LNG

terminal failure slowly decreases and has a smaller divergence within the upper and
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lower bound reliability values when compared with the gas storage failure. This type

of failure generally produces the most robust loss function with a lower amount of

uncertainty. This is hugely contrasted with the pipeline failure loss function which is

guaranteed to drop to a minimal performance level. Finally, the precise loss function

displays the expectation of failure on the condition that all three failure scenarios are

equally likely to occur. The final reliability for this scenario equates to approximately

half in terms of performance of the pipeline system.

5.5.3.4 Recovery Function

The imprecise recovery function is also deduced for the three failure scenarios with

upper and lower bounds as displayed for the robustness function. This recovery func-

tion is implemented at a simulation time of 60 s after the robustness function ends and

it is assumed that reliability values are constant until the recovery function initiates.

Figure 5.6 displays the four respective recovery functions which are applied 60 s after

the terminating stage of the robustness based simulation;

Figure 5.6: Imprecise recovery functions for various failure types

The reliability values for the recovery based simulation displays the upper and lower

bounds for the recovery function when applied to the three respective failure scenar-

ios. All four graphs start with the same reliability values as displayed in the end of the

simulation from Figure 5.5. It can be deduced that the gas storage failure starts with
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the widest range of uncertainty and this discrepancy slowly converges as the model re-

covers from its partially failed state. This is contrasted with the results for the pipeline

failure recovery model which rapidly recovers from a completely failed state to a func-

tioning state with its upper bound peaking at a faster rate than its lower bound. The

LNG terminal failure recovers at a much slower rate as the initial reliability for this

scenario is significantly higher than the previous two failure scenarios. The bounds of

uncertainty slowly diverge until the simulation derives the terminal reliability values.

A precise model to display a combination of all three recovery models is displayed

with the assumption that each failure scenario is equally likely to occur.

5.6 Chapter Summary

This chapter presents the fundamental theory of momentum, heat and mass transfer

(MHMT) in gas pipeline networks and applies these fundamental equations to deter-

mine the properties of dynamic flow of a basic pipeline . A CFD-based failure model

has been proposed incorporating various triggers of performance loss within the gas

pipeline system. A case study of a natural gas pipeline has been applied to these pro-

posed techniques with the addition of epistemic uncertainty applied to the supply and

demand nodes and aleatory uncertainty applied to the respective output performance

functions.

Three different failure scenarios have been tested to show a wide range of possible

outcomes within the natural gas pipeline. These three situations are defined as the gas

storage failure, pipeline failure and LNG storage failure. Data has been obtained from

the literature to deduce the network’s properties including the volumetric flow rates

for the supply and demand nodes and the pipeline properties for the pressure and flow

rates which are internally present within the pipelines.

The simulations for the three models have been trialed out on PipeFlow Expert and the

results were imported into MATLAB for data analysis. The final results to communi-

cate resilience have been presented in the form of robustness for the loss function and a

recovery function for post-disaster simulation. Both models have been presented with

their respective uncertainty bounds and have been communicated in the form of their

separate components of the three phase resilience plot.



Chapter 6

Conclusion

This chapter is written to provide a closure towards the research carried out, applica-

tions and lessons learnt from this study. This chapter is divided into two (2) sections

with the concluding remarks discussed from this study and also suggestions for future

academic work to be carried out.

6.1 Concluding Remarks

The field of resilience in Engineering systems is a relatively new, but it is an impor-

tant component to reliability analysis. This thesis has presented the foundations of

resilience, starting from the origins and motivations of carrying out this study. Com-

munities such as the IChemE, IEEE and other Engineering entities have realised the

importance of resilience in order to mitigate consequences of disaster with respects to

their various applications from a social, technical and financial standpoint. As a result,

many nations and states have become aware of the increasingly important study in the

field of resilience, ranging from disaster prevention, consequence modelling and risk

management. National Rail, for example currently has plans to innovate the UK rail-

way network due to the old infrastructure used for British railway transport. Projects

such as Great North Rail Project (GNRP) have been initiated to improve connecting

network links in the north of England with intentions of providing a more reliable and

better customer experience.
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The introduction and literature review sections of this thesis clearly define the various

angles of resilience ranging from defining ”Four R’s” and discriminating resilience

between its infrastructural and operational characteristics to the motivations and appli-

cability in real life system examples as a result of past disasters.

Probabilistic resilience analysis incorporates a diverse range of techniques, models,

outputs and studies for the overall resilience framework, which is born from the base

of probabilistic reliability assessment and is not exclusive solely to the three examples

tested in this study. Applications of the studies carried out within this thesis are real

world systems of a diverse range and have been applied to demonstrate a fraction of

the complete literature and techniques to resilience quantification. The constraints of

balancing computational cost with the quality of results has been highlighted in this

thesis, with approaches such as estimation techniques and surrogate models being ap-

plied to combat this limitation. It has been shown that more complex, high parameter

systems require more computational expense and therefore models must be formulated

to reduce the computational expense whilst retaining the necessary parameter for ac-

curate simulation outputs.

This thesis also highlights uncertainty and also stresses the importance of quantify-

ing uncertainty in resilience based simulation techniques. Epistemic and aleatory un-

certainty have been trialed out into existing precise quantification techniques and are

clearly communicated in the results in the form of confidence bounds, p-boxes and

discrete probability bounds. This novel application provides a relatively flexible ap-

proach to developing current resilience based simulations and communicates important

information for risk based engineers with deducing possible consequences of their re-

spective systems.

The aims and objectives from Section 1.5 have been fulfilled and the desired under-

standing, computational techniques and applications of current resilience models have

been tested, linked and presented into a thesis. The strengths and limitations of each

technique have also been highlighted and the reasons on which the limitations do not

affect the credibility of the results are also discussed.

To summarise, this thesis has provided a successful and all-rounded approach to dis-

play and tackle the resilience based framework in current academic literature and pro-

vides the reader an early insight to the current state of the art and the possibilities of

further resilience based academic output. This current framework is being developed

on OpenCossan, an open source MATLAB toolbox for uncertainty quantification.
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6.2 Recommendations for Future Work

The investment of resilience in academic literature is expanding constantly, with new

challenges to face as interest grows in this field. There are still many scarcities in

this literature and these voids are a talking point for potential growth within resilience

based approaches. This section produces an array of current voids within this field and

presents possible works that can be carried out by future scholars;

1. The limitations of the techniques applied in Chapter 3 have been mentioned in

Section 3.4.3. The survival signature method becomes increasingly computa-

tionally expensive on an exponential level as more types of nodes are introduced

into the system. Further work needs to be carried out to tackle this, possibly in

the form of developing a survival signature meta-model for the application of

networks with large numbers of components. The PrPm does not contain this

limitation, however further work can be carried out in order to innovate this

method and its technicalities. A possible example of this is to model the failure

data using a Weibull distribution function as applied to the survival function.

2. With regards to resilience analysis as applied to the power grid in Chapter 4,

the various limitations are within the lack of uncertainty for the ANN surrogate

model which is a computationally arduous problem to solve. The possibility

of an interval predictor to be applied to ANNs is a potential route to estimate

uncertainty within ANNs and obtain credible imprecise results for the surrogate

model applied in this chapter.

3. The CFD resilience-based model applied in Chapter 5 contains certain limita-

tions within the framework as stated in Section 5.4.4. Issues regarding com-

putational cost on PipeFlow Expert were encountered for networks with large

numbers of nodes due to high volume of multi-dimensional input data applied

in the case study. As a result, output data was obtained in discrete intervals of 5

s with the missing data for the values between each interval being interpolated.

A more computationally efficient model can be developed using more advanced

software in order to obtain more accurate results between intervals. Addition-

ally, a model to combine the three failure scenarios without the assumption of

equal probability can be developed in the future.
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