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In this work, we generalise the stochastic local time space integration introduced in [11] to the case of Brownian
sheet. This allows us to prove a generalised two-parameter Itô formula and derive Davie type inequalities for the
Brownian sheet. Such estimates are useful to obtain regularity bounds for some averaging type operators along
Brownian sheet curves.
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1. Introduction

The goal of this paper is three fold: we first extend the stochastic local time-space calculus introduced
by Eisenbaum [11] to the multidimensional standard Brownian sheet. We then obtain the Itô formula
under weaker condition on the function. Finally, we derive several estimate of the “averaging type
operator" introduced in [32] and further studied in [6].

The notion of integration with respect to space-time local time to our knowledge was introduced in
[11]. In that work, the author defined a stochastic integral of Borel measurable functions on R+ × R
with respect to the local time process of a linear Brownian motion. This allowed the author to extend the
Itô formula to a large class of differentiable random functions with locally bounded derivatives and to
define the local time of Brownian motion on any Borelian curve. The previous result were extended in
[12] to the case of Lévy process and reversible semimartingales in [13]. This powerful tool led to many
interesting generalisations of the Itô formula (see for example [22, 14, 29] and references therein).

In order to write a local time-space integral in the two-parameter setting, we consider the local time
of the Brownian sheet with respect to the Lebesgue measure on R2

+ defined by Walsh [33]. Observe
that the Lebesgue measure on R2

+ is the measure induced by the quadratic variation of the Brownian
sheet. As in [11], this local time can be expressed as the sum of a forward and a backward Itô integral.
Using a representation of the backward Itô integral, we define the stochastic integral with respect to
the local time for elements of a Banach space. This enables us to write a counterpart of Eisenbaum’s
local time-space integration formula and a generalised Itô formula for the Brownian sheet. A key step
in proving this result is the representation formula of the reversal process of the Brownian sheet in
one parameter at a fixed time obtained by Dalang and Walsh [9, Theorem 6.1]. Let us mention that
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Sanz [31] took advantage of the ideas developed in [33] to define a notion of local time for a class of
continuous two-parameter martingales with respect to the quadratic variation.

It is worth mentioning that there exists another notion of local time of the Brownian sheet
(Ws,t, (s, t) ∈R2

+) with respect to the measure on R2
+ induced by quadratic variation 〈J〉 of the mar-

tingale J = (Js,t, (s, t) ∈R2
+) given by

Js,t =

∫ t

0

∫ s

0

∫ t

0

∫ s

0
1{u<v,ξ>ζ}dWu,ξdWv,ζ .

This concept was introduced in [5] and led to the first results on local time for two-parameter processes.
Walsh [33] points the difference between the two definitions of local time. A complete study of local
time with respect to multi-parameter analogue of 〈J〉 for the multi-parameter Rd-valued Brownian
sheet was given by Imkeller [21]. The author also established a multi-parameter stochastic calculus
and a multiparameter Itô-Tanaka formulas (see [19, 20]). Nualart [25] proved existence of a local time
with respect to the measure induced by 〈J〉 for continuous fourth-power integrable (two-parameter)
martingales that vanish on the boundary of R2

+.
Finally, we consider the following average type transfrom averaging transforms of type

TWI [b](s,x) =

∫
I
b(t, x+Ws,t)dt, ∀ (s,x) ∈R+ ×Rd, (1)

where I is a finite sub-interval of R+, b : R+ × Rd → Rd is a bounded Borel measurable func-
tion and (Ws,t, (s, t) ∈ R2

+) is a Rd-valued Brownian sheet given on some filtered probability space
(Ω,F , (Fs,t, (s, t) ∈R2

+),P). The terminology averaging operator is borrowed from Catellier and Gu-
binelli [6] (see also Galeati and Gubinelli [16]) where the authors obtain regularising estimates of the
averaging transform along the paths of the d-dimensional fractional Brownian motion (BHt , t ≥ 0)
with Hurst parameter H defined by

TB
H

t [b](x) =

∫ t

0
b(x+BHs )ds, ∀ (t, x) ∈R+ ×Rd

and take advantage of these estimates to establish existence and uniqueness of solution to the ordinary
differential equation (ODE) in Rd, d ∈N,{

ẋ(t) = b(t, x(t)) + ẇ(t), t ∈R+,
x(0) = x0,

(2)

where x,w ∈ C([0,1],Rd), b is a time-dependent vector field which may be only a distribution in the
space variable and the dot denotes differentiation with respect to time. These results are counterparts
of those obtained by Davie [10] for the ODE (2), where w is a Rd-valued Brownian path and b is a
bounded Borel measurable function. One key result in [10] is that if b : [0,1]×Rd→Rd is a bounded
Borel measurable function, then, for almost all Rd-valued Brownian paths w, the function TBt [b] is
almost Lipschitz continuous with a modulus of continuity of the type |x| log1/2(1/|x|). To be more
precise, consider for a moment the integral form of ODE (2) given by

xt = x0 +

∫ t

0
b(s,xs)ds+wt, t ∈R+. (3)
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Setting wx0 = x0 +w and yt = xt −wt − x0, Equation (3) can be rewritten as

yt =

∫ t

0
b(s, ys + x0 +ws)ds= Tw

x0

t [b](y), t ∈R+, (4)

where wx0 = x0 + w and yt = xt − wt − x0. Any solution y of (4) is a fixed point of the map
z 7−→ Tw

x0
· [b](z) from C(R+,Rd) to itself. The existence and uniqueness of such a fixed point rely on

specific regularity properties of the operator Tw
x0
· [b]. Davie [10] exploited the almost Lipschitz regu-

larity of the averaging operator to prove uniqueness of fixed point for any Rd-valued Brownian path w
in a set of full mass. Catellier and Gubinelli [6] took advantage of almost sure continuity of Tw

x0
· [b] for

a large class of Hölder-Besov distributions b and a set of fractional Brownian perturbations of full mass
to prove existence and uniqueness of fixed point. Galeati and Gubinelli [16] provided smoothness con-
ditions on Tw

x0
· [b], under which the ODE admits a flow with prescribed regularity. They also establish

well-posedness for certain perturbed transport type partial differential equations (PDEs) under suitable
smoothness properties of the averaging map. Chouk and Gubinelli [7] analysed the regularising prop-
erties of fractional Brownian pathsw in terms of the averaging operator Twt in the context of non-linear
dispersive PDEs modulated by an irregular signal. In particular, they obtained global well-posedness
for the modulated Non-linear Shröndinger equation with generic power nonlinearity.

The averaging transform TW is the convolution with the curve of a Brownian sheet when one time
parameter is fixed, and can also be seen as the convolution against the measure induced by the local
time process (L1

x(s, t);x ∈ R, t ∈ R+) of the Brownian motion (Ws,t, t ∈ R+) (confer [6]). More
precisely, by an occupation time formula given in [33, Eq. (2.6)],

TWI [b](s,x) =

∫
I
b(t, x+Ws,t)dt=

∫
I

∫
R
b(t, x+ y)dtL

y
1(s, t)dy,

where I denotes a finite interval of R.
We wish to derive some regularity estimates of the averaging operator given by (1) (see Theorem

3.4 and Corollary 3.6). These estimates play a key role in the study of the path-by-path uniqueness of
solutions to the following hyperbolic differential equation

∂2x(s, t)

∂s∂t
= b(t, x(s, t)) +

∂2Ws,t

∂s∂t

x(0, t) = x0 = x(s,0),

(5)

It can easily be shown that the path-by-path uniqueness of the above equation (5) is equivalent to that
of the following integral equation:

y(s, t) =

∫ s

0

∫ t

0
b(t1, y(s1, t1) + x0 +Ws1,t1) dt1ds1 =

∫ s

0
TW

x0

[0,t] [b](y) ds1.

Such equation was studied in [3] by the same authors. More precisely, they show that the path-by-path
uniqueness of (5) is valid when the drift is componentwise nondecreasing and satisfies spatial linear
growth condition (see [3, Theorem 3.2]). In addition, since path-by-path uniqueness implies pathwise
uniqueness (confere [2, Section 1.8.5]), it follows from a Yamada-Watanabe type result for Brownian-
sheet (see for example [26]) that equation (5) has a unique strong solution (see [3, Corollary 3.3]). The
results obtained in [3] were generalised in [4] when the drift is the difference of two componentwise
monotone functions and staisfying the linear growth condition (see [4, Theorems 2.7 and 2.8]). In
addition, it was proved that the obtained solution is Malliavin differentiable; see [4, Theorem 3.4.]for
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bounded drift and [4, Theorem 3.13] for drift satisfying spatial linear growth condition). These results
constitute a big improvement in this direction since to the best of our knowledge there no results in this
direction under such conditions. The case of path-by-path uniquness of solution to (5) when the drift
b is merely measurable and bounded is at the moment still open. One difficulty relies on the choice
of a convenient Euler-Maruyama type scheme that would leads to an additional useful regularising
estimates which is key to obtaining a Gronwal type lemma (compare with [3, Lemma 3.9]). When the
noise is replaced by a fractional Brownian sheet, one of the main difficulty would be the definition of
a two-parameter Young integral, which is central in proving the regularity of the averaging operator.

There are many results in the analysis on weak and strong-type estimates for convolutions with
deterministic curves. These operators are investigated for instance in [32], where the authors establish
strong-type (Lp,Lq) in the interior of a trapezoid and failure of a restricted type (Lp,Lq) outside the
same trapezoid, when 1≤ p < q ≤∞. Futher results on estimates for convolutions with deterministic
curves may be found in [8, 17, 18, 24, 27, 28].

We now give rigourous definitions of filtered probability space and Rd-valued Brownian sheet in-
dexed by R2

+ with respect to a system of σ-algebras. We endow R2
+ with the following partial order

(s, t)� (s′, t′) when s≤ s′ and t≤ t′.

We also write

(s, t)≺ (s′, t′) when s < s′ and t < t′.

The next definitions may be found in [26, Section 1].

Definition 1.1. Let (Ω,F ,P) be a probability space and (Fs,t)(s,t)∈R2
+

be a system of sub-σ-algebras

of F . We say that (Ω,F , (Fs,t, (s, t) ∈R2
+),P) is a filtered probability space if

1. (Ω,F ,P) is a complete probability space;
2. (Fs,t, (s, t) ∈ R2

+) is a non-decreasing system in the sense that Fs,t ⊂ F(s′,t′) when (s, t) �
(s′, t′);

3. F(0,0) contains all the null sets in (Ω,F ,P),
4. (Fs,t, (s, t) ∈R2

+) is a right-continuous system in the sense that

Fs,t =
⋂

(s,t)≺(s′,t′)

Fs′,t′ .

We call filtration any non-decreasing system of sub-σ-algebras of F . We call natural filtration of a
process X = (Xs,t, (s, t) ∈R2

+) the system (FXs,t, (s, t) ∈R2
+) of sub-σ-algebras of F given by

FXs,t = σ(Xu,v,0≤ u≤ s,0≤ v ≤ t).

Definition 1.2. We call a one-dimensional (Fs,t)-Brownian sheet on a filtered probability space
(Ω,F , (Fs,t, (s, t) ∈ R2

+),P) any real valued two-parameter stochastic process W = (Ws,t, (s, t) ∈
R2

+) satisfying the following conditions:

1. W is (Fs,t)-adapted, i.e. Ws,t is Fs,t-measurable, for every (s, t) ∈R2
+.

2. Almost every sample function (s, t) 7−→Ws,t(ω) of W is continuous on R2
+.

3. Almost every sample function of W vanishes on ∂R2
+.
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4. For every finite rectangle of the type Π =]s, s′]×]t, t′]⊂R2
+, the random variable

W (Π) :=Ws′,t′ −Ws,t′ −Ws′,t +Ws,t

is centered, Gaussian with variance (s′ − s)(t′ − t) and independent of Fs,∞ ∨F∞,t, where

Fs,∞ = σ
( ⋃
v∈R+

Fs,v
)

and F∞,t = σ
( ⋃
u∈R+

Fu,t
)
.

We call a d-dimensional Brownian sheet any Rd-valued two-parameter processW = (W (1), . . . ,W (d))

such that W (i), i= 1, . . . , d, are independent one-dimensional Brownian sheets.

One useful caracterisation of the Brownian sheet W is that it is the only one centered and contin-
uous Gaussian process with covariance function [(s, t), (s′, t′)] 7−→ E[Ws,tWs′,t′ ] = (s ∧ s′)(t ∧ t′).
As a consequence, if W is a Brownian sheet on a given filtered probability space, then so are the pro-
cesses (Wa+s,t −Wa,t, (s, t) ∈R2) and

(
ε−1/2(Ws,a+εt −Ws,a), (s, t) ∈R2

+

)
with respect to their

natural filtrations. We mention that a rather complete analysis on multi-parameter processes and their
applications in Analysis is provided by Khoshnevisan [23].

The remainder of paper consists of two sections. In the first one, we propose a stochastic local time-
space calculus for the Brownian sheet. We then extend several formulas obtained by Eisenbaum [11]
to other classes of Brownian sheet processes. We also generalise an Itô formula obtained by Cairoli
and Walsh [5]. The last section is devoted to an application of the local time-space calculus presented
in the previous section. More specifically, we give several Davie types inequalities for the Brownian
sheet are given and exploited to obtain regularity estimates of some averaging operators .

2. Stochastic Integration over the space with respect to Local Time

2.1. Integration with respect to local time of deterministic functions

We aim at writting the integral of a R-valued Borel measurable function on [0,1]2 ×R with respect to
the local time in the plane of the Brownian sheet. Let (Ws,t;s≥ 0, t≥ 0) be a Brownian sheet given on
an equipped probability space. It is known that for s fixed, (Ws,t, t≥ 0) is a Brownian motion, and its
local time process (Lx1(s, t);x ∈ R, t≥ 0) is given by Tanaka’s formula (see for example [33, Section
1]): ∫ t

0
1{Ws,u≤x}duWs,u =

s

2
Lx1(s, t)− (Ws,t − x)− + x+. (6)

Moreover for any fixed s ∈ [0,1], let Ŵs,· be the time reversal process on [0,1] of the Brownian motion
Ŵs,·, i.e. Ŵs,t =Ws,1−t, and let (L̂x1(s, t);x ∈ R,0≤ t≤ 1) be the local time process of (Ŵs,t,0≤
t≤ 1). Then the following holds

L̂x1(s, t) = Lx1(s,1)−Lx1(s,1− t).

It follows from Tanaka’s formula that∫ 1

1−t
1{Ŵs,u≤x}duŴs,u =

s

2
Lx1(s, t) + (Ŵs,1−t − x)− − (Ŵs,1 − x)−. (7)
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Summing (6) and (7) yields

sLx1(s, t) =

∫ t

0
1{Ws,u≤x}duWs,u +

∫ 1

1−t
1{Ŵs,u≤x}duŴs,u. (8)

Next we introduce a notion of backward stochastic integral with respect to the Brownian motion
(Ws,t, t ≥ 0). Let f : [0,1]2 × R → R be a measurable function such that x 7−→ f(s, t, x) is lo-
cally square integrable for every s, t ∈ [0,1] and (s, t) 7−→ f(s, t, x) is weakly continuous for every
x ∈ R, that is (s, t) 7−→ f(s, t, x) is continuous for every x ∈ R as a map from [0,1]2 to L2

loc(R). For
s, t ∈ [0,1] fixed, it was shown in [15, Proposition 3.2] that the limit below exists in L1(Ω,P):

lim
supk |tk+1−tk|→0

∑
0<t1<···<t`<t

f(s, tk+1,Ws,tk+1)(Ws,tk+1 −Ws,tk),

where (tk)1≤k≤` is a subdivision of [0, t]. This limit is denoted by
∫ t

0 f(s,u,Ws,u)d∗uWs,u and called
a backward stochastic integral with respect to the Brownian motion (Ws,t,0 ≤ t ≤ 1). In addition,
using[15, Eq. (3.19), page 153]) and [30, Chapter II, Theorem 11], we also have∫ t

0
f(s,u,Ws,u)d∗uWs,u =−

∫ 1

1−t
f(s,1− u, Ŵs,u)duŴs,u. (9)

It follows from (8) and (9) that

sLx1(s, t) =

∫ t

0
1{Ws,u≤x}duWs,u −

∫ t

0
1{Ws,u≤x}d

∗
uWs,u. (10)

We call local time for the Brownian sheet W the process L := (Lxs,t;x ∈R, s≥ 0, t≥ 0) defined in [5,
Section 6, Page 157] (see also [33, Section 2]) by :

Lxs,t = lim
ε→0

1

2ε

∫ s

0

∫ t

0
1[x−ε,x+ε](Ws1,t1) dt1ds1. (11)

We deduce from (11) (see e.g. [33, Eq. (2.3)]) that∫ s

0
Lx1(s1, t)ds1 = Lxs,t =

∫ t

0
Lx2(s, t1)dt1, ∀x ∈R, ∀ (s, t) ∈R2

+, (12)

where (Lx2(s, t);x ∈R, s≥ 0) is the local time of the Brownian motion (Ws,t, s≥ 0).
Substituting (10) into (12) yields

Lxs,t =

∫ s

0

∫ t

0
1{Wξ,u≤x}

duWξ,u

ξ
dξ −

∫ s

0

∫ t

0
1{Wξ,u≤x}

d∗uWξ,u

ξ
dξ. (13)

Denote by (H,‖ · ‖) the space of Borel measurable functions f : [0, T ]×R2→R with the norm ‖ · ‖
defined by

‖f‖=2
(∫ 1

0

∫ 1

0

∫
R
f2(s, t, x) exp

(
− x2

2st

)dxdsdt√
2πst

)1/2

+

∫ 1

0

∫ 1

0

∫
R
|xf(s, t, x)| exp

(
− x2

2st

) dxdsdt

st
√

2πst
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=2
(∫ 1

0

∫ 1

0
E
[
f2(s, t,Ws,t)

]
dsdt

)1/2
+

∫ 1

0

∫ 1

0
E
[∣∣∣f(s, t,Ws,t)

Ws,t

st

∣∣∣]dsdt.
Then, endowed with the above norm,H is a Banach space. We show(see Proposition 2.1) that one can
define a stochastic integration over the time and space with respect to local time for the elements ofH.

We say that f∆ : [0,1]2 × R→ R is an elementary function if there exist two sequences of real
numbers (xi)0≤i≤n, (fijk; 0≤ i≤ n,0≤ j ≤m,0≤ k ≤ `) and two subdivisions of [0,1] (sj)0≤j≤m,
(tk)0≤k≤` such that

f∆(s, t, x) =
∑

(xi,sj ,tk)∈∆

fijk1(xi,xi+1](x)1(sj ,sj+1](s)1(tk,tk+1](t), (14)

where ∆ = {(xi, sj , tk); 0≤ i≤ n,0≤ j ≤m,0≤ k ≤ `}. For such a given function f∆, we define its
integral with respect to L as∫ 1

0

∫ 1

0

∫
R
f∆(s, t, x)dLxs,t =

∑
(xi,sj ,tk)∈∆

fijk

(
L
xi+1
sj+1,tk+1

−Lxi+1
sj ,tk+1

−Lxisj+1,tk+1
+Lxisj ,tk+1

−Lxi+1
sj+1,tk

+L
xi+1
sj ,tk

+Lxisj+1,tk
−Lxisj ,tk

)
.

Let f be an element ofH and let (fn)n∈N be a sequence of elementary functions converging to f inH.
We prove in the following result that

(∫ 1
0

∫ 1
0

∫
R fn(s, t, x)dLxs,t

)
n∈N

converge in L1(Ω,P) and that

the limit does not depend of the choice of the sequence (fn)n∈N. This limit is called integral of f with
respect to L.

Proposition 2.1. For any f ∈ H, the integral
∫ s

0

∫ t
0

∫
R f(ξ,u,x)dLxξ,u exists and is given for any

(s, t) ∈ (0,1]2 by∫ s

0

∫ t

0

∫
R
f(ξ,u,x)dLxξ,u =

∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

duWξ,u

ξ
dξ −

∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

d∗uWξ,u

ξ
dξ.

(15)

Moreover, we have

E
[∣∣∣ ∫ s

0

∫ t

0

∫
R
f(ξ,u,x)dLxξ,u

∣∣∣]≤ ‖f‖. (16)

Proof. We first show the Proposition for elementary function. Let f∆ be a simple function as defined
in (14). We deduce from (13) that

L
xi+1
sj+1,tk+1

−Lxi+1
sj ,tk+1

−Lxisj+1,tk+1
+Lxisj ,tk+1

−Lxi+1
sj+1,tk

+L
xi+1
sj ,tk

+Lxisj+1,tk
−Lxisj ,tk

=

∫ sj+1

sj

∫ tk+1

tk

1{xi<Wξ,u≤xj+1}
duWξ,u

ξ
dξ −

∫ sj+1

sj

∫ tk+1

tk

1{xi<Wξ,u≤xj+1}
d∗uWξ,u

ξ
dξ

=

∫ 1

0

∫ 1

0
1(sj ,sj+1](ξ)1(tk,tk+1](u)1]xi,xi+1](Wξ,u)

duWξ,u

ξ
dξ

−
∫ 1

0

∫ 1

0
1(sj ,sj+1](ξ)1(tk,tk+1](u)1]xi,xi+1](Wξ,u)

d∗uWξ,u

ξ
dξ.
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As a consequence, we get∫ s

0

∫ t

0

∫
R
f∆(ξ,u,x)dLxξ,u

=

∫ s

0

∫ t

0
f∆(ξ,u,Wξ,u)

duWξ,u

ξ
dξ −

∫ s

0

∫ t

0
f∆(ξ,u,Wξ,u)

d∗uWξ,u

ξ
dξ. (17)

Let us now show (16) holds for such a simple function. Observe that∫ s

0

∫ t

0
f∆(ξ,u,Wξ,u)

d∗uWξ,u

ξ
dξ =−

∫ s

0

∫ 1

1−t
f∆(ξ,1− u, Ŵξ,u)

duŴξ,u

ξ
dξ. (18)

We also know from [9, Theorem 6.1] that Ŵ admits the following representation

Ŵs,t =Ws,1 +Bs,t −
∫ t

0

Ŵs,u

1− u
du, (19)

where B is a standard Brownian sheet independent of (Ws,1, s ≥ 0). Using (9) and (18), (17) can be
rewritten as∫ s

0

∫ t

0
f∆(ξ,u,Wξ,u)

d∗uWξ,u

ξ
dξ

=−
∫ s

0

∫ 1

1−t
f∆(ξ,1− u, Ŵξ,u)

duBξ,u
ξ

dξ +

∫ s

0

∫ 1

1−t
f∆(ξ,1− u, Ŵξ,u)

Ŵξ,u

ξ(1− u)
dudξ. (20)

Substitute (20) into (17), take the absolute value on both sides, use the triangle, take the expectation
and use the Cauchy-Schwarz inequalities to obtain

E
[∣∣∣ ∫ s

0

∫ t

0

∫
R
f∆(ξ,u,x)dLxξ,u

∣∣∣]
≤E
[∣∣∣ ∫ s

0

∫ t

0
f∆(ξ,u,Wξ,u)

duWξ,u

ξ
dξ
∣∣∣]+E

[∣∣∣ ∫ s

0

∫ t

0
f∆(ξ,u,Wξ,u)

d∗uWξ,u

ξ
dξ
∣∣∣]

≤
(∫ 1

0

∫ 1

0
E
[
f2

∆(ξ,u,Wξ,u)
]
dudξ

)1/2
+
(∫ 1

0

∫ 1

0
E
[
f2

∆(ξ,1− u, Ŵξ,u)
]
dudξ

)1/2

+

∫ 1

0

∫ 1

0
E
[∣∣∣f∆(ξ,1− u, Ŵξ,u)

Ŵξ,u

ξ(1− u)

∣∣∣]dudξ,

which means that

E
[∣∣∣ ∫ s

0

∫ t

0

∫
R
f∆(ξ,u,x)dLxξ,u

∣∣∣]≤ ‖f∆‖. (21)

Thus (16) holds for simple functions. Using the above inequality, the extension of the definition of the
integral to the elements ofH follows by the density of elementary functions inH. Since the integrals∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

duWξ,u

ξ
dξ and

∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

d∗uWξ,u

ξ
dξ



Regularising properties of Brownian sheet paths 9

exist and are well defined, it follows that any function f inH satisfies:∫ s

0

∫ t

0

∫
R
f(ξ,u,x)dLxξ,u =

∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

duWξ,u

ξ
dξ −

∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

d∗uWξ,u

ξ
dξ.

This gives (15). To obtain (16), we apply (21) and a limit argument.

Remark 2.2.
1. For any 0≤ s1 < s2, 0≤ t1 < t2 and x1 < x2, we set A= [s1, s2]× [t1, t2]× [x1, x2]. Then one has∫

A
dLxs,t =Lx2s2,t2 −L

x2
s1,t2

−Lx1s2,t2 +Lx1s1,t2 −L
x2
s2,t1

+Lx2s1,t1 +Lx1s2,t1 −L
x1
s1,t1

=

∫ s2

s1

{
Lx21 (ξ, t2)−Lx11 (ξ, t2)−Lx21 (ξ, t1) +Lx11 (ξ, t1)

}
dξ =

∫
A
dx,tL

x
1(ξ, t) dξ.

By a monotone class argument,∫ 1

0

∫ 1

0

∫
R
g(s, t, x)dLxs,t =

∫ 1

0

∫ 1

0

∫
R
g(s, t, x)dx,tL

x
1(ξ, t) dξ (22)

for every bounded Borel measurable function g : [0,1]2×R→R. In particular, for any bounded Borel
measurable function ` : [0,1]2→R and any a ∈R,∫ 1

0

∫ 1

0
`(s, t)ds,tL

a
s,t =

∫ 1

0

∫ 1

0
`(s, t)dtL

a
1(ξ, t)dξ. (23)

2. Let f : [0,1]2 ×R→R be a continuous function in H. For a < b, let (xi)0≤i≤n be a subdivision of
[a, b], (sj)0≤j≤m be a subdivision of [0, s] and (tk)0≤k≤` be a subdivision of [0, t]. Denote by ∆ the
grid {(sj , tk, xi),0≤ i≤ n,0≤ j ≤m,0≤ k ≤ `}. Then, as |∆| tends to 0, the expression∑

0≤i≤n,0≤j≤m
0≤k≤`

f(sj , tk, xi)
(
L
xi+1
sj+1,tk+1

−Lxi+1
sj ,tk+1

−Lxisj+1,tk+1
+Lxisj ,tk+1

−Lxi+1
sj+1,tk

+L
xi+1
sj ,tk

+Lxisj+1,tk
−Lxisj ,tk

)
converges in L1 to

∫ t
0

∫ s
0

∫ b
a f(s, t, x) dLxs,t. In particular, when f is differentiable with respect to x

and ∂xf is continuous on [0,1]2 ×R, we deduce from [11, Theorem 5.1 (i) ] that for any s ∈ [0,1],∫ t

0

∫ b

a
f(s,u,x)dx,uL

x
1(s,u)

=−
∫ t

0
(1[a,b]∂xf)(s,u,Ws,u)du+

∫ t

0
f(s,u, b)duL

b
1(s,u)−

∫ t

0
f(s,u, a)duL

a
1(s,u).

Hence, integrating over [0, s], using (22) and (23) and integrating over [0, s] give∫ t

0

∫ s

0

∫ b

a
f(s, t, x) dLxs,t =−

∫ s

0

∫ t

0
(1[a,b]∂xf)(ξ,u,Wξ,u)dudξ +

∫ s

0

∫ t

0
f(ξ,u, b)dξ,uL

b
ξ,u
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−
∫ s

0

∫ t

0
f(ξ,u, a)dξ,uL

a
ξ,u. (24)

Hence, letting a (respectively b) goes to −∞ (respectively∞), we obtain∫ t

0

∫ s

0

∫
R
f(s, t, x) dLxs,t =−

∫ s

0

∫ t

0
∂xf(ξ,u,Wξ,u)dudξ. (25)

Corollary 2.3. Let
(
Ws,t := (W

(1)
s,t , · · · ,W

(d)
s,t );s ≥ 0, t ≥ 0

)
be a d-dimensional Brownian sheet

defined on an equipped probability space. Let f : [0,1]2 ×Rd→R be a continuous function such that
for any (s, t) ∈ [0,1]2, f(s, t, ·) is differentiable and for any i ∈ {1, . . . , d}, the partial derivative ∂xif
is continuous. Then for any (s, t) ∈ [0,1]2 and any i ∈ {1, . . . , d}, we have

∫ s

0

∫ t

0
∂xif(ξ,u,Wξ,u)dudξ =−

∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

duW
(i)
ξ,u

ξ
dξ

−
∫ s

0

∫ 1

1−t
f(ξ,1− u, Ŵξ,u)

duB
(i)
ξ,u

ξ
dξ +

∫ s

0

∫ 1

1−t
f(ξ,1− u, Ŵξ,u)

Ŵ
(i)
ξ,u

ξ(1− u)
dudξ, (26)

where Ŵ (i)
ξ,u = W

(i)
ξ,1−u and B(i) is a standard Brownian sheet independent of (W

(i)
s,1 , s ≥ 0). Conse-

quently for any s ∈]0,1], the d-dimensional Brownian motion (Ws,t, t≥ 0) satisfies∫ t

0
∂xif(s,u,Ws,u)du=−

∫ t

0
f(s,u,Ws,u)

duW
(i)
s,u

s

−
∫ 1

1−t
f(s,1− u, Ŵs,u)

duB
(i)
s,u

s
+

∫ 1

1−t
f(s,1− u, Ŵs,u)

Ŵ
(i)
s,u

s(1− u)
du. (27)

Proof. The proof is analogeous to [12, Section 6]. We denote by
(
Lxs,t(W

(i));x ∈R, s≥ 0, t≥ 0
)

the

local time on the plane of W (i) and we adopt the notation

g(s, t,W
(1)
s,t , · · · ,W

(i−1)
s,t , x,W

(i+1)
s,t , · · · ,W (d)

s,t ) = g(s, t,Ws,t)|W (k)
s,t =x

.

For any measurable function g : [0,1]2 ×Rd→R, we define the norm ‖ · ‖i by

‖g‖i = 2
(∫ 1

0

∫ 1

0
E
[
g2(s, t,Ws,t)

]
dsdt

)1/2
+

∫ 1

0

∫ 1

0
E
[∣∣∣g(s, t,Ws,t)

W
(i)
s,t

st

∣∣∣]dsdt.
For any continuous function f : [0,1]2×Rd→R and any i ∈ {1, . . . , d}, we note that, conditionally to
(W

(k)
s,t , (s, t) ∈ [0,1]2)1≤k≤d,k 6=i, f(s, t,Ws,t,0 ≤ s, t ≤ 1) is a deterministic function of (W

(i)
s,t ,0 ≤

s, t ≤ 1). Suppose that f(s, t, ·) is differentiable for any s, t, its partial derivative ∂xif is continuous
and ‖f‖i <∞ for any i. Then, using (25) in Remark 2.2, relation [15, (3.19) ], Proposition 2.1 and
[30, Chapter II, Theorem 11] we have∫ s

0

∫ t

0
∂xif(ξ,u,Wξ,u)dudξ =−

∫ s

0

∫ t

0

∫
R
f(s, t,Ws,t)|W (i)

s,t=x
dLxs,t(W

(i)
s,t )
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=−
∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

duW
(i)
ξ,u

ξ
dξ +

∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

d∗uW
(i)
ξ,u

ξ
dξ

=−
∫ s

0

∫ t

0
f(ξ,u,Wξ,u)

duW
(i)
ξ,u

ξ
dξ −

∫ s

0

∫ 1

1−t
f(ξ,1− u, Ŵξ,u)

duŴ
(i)
ξ,u

ξ
dξ. (28)

Equation (26) is obtained by substituting (19) into (28). We derive (27) by differentiating both sides of
(26) with respect to s.

2.2. Local time-space integration of two parameter random processes and a
generalized Itô formula

In this section, we derive an Itô formula for two parameter random processes.
Let h : [0,1]2 × Ω × R→ R be a random function. As before for a < b, consider (xi)0≤i≤n a

subdivision of [a, b], (sj)0≤j≤m a subdivision of [0, s] and (tk)0≤k≤` a subdivision of [0, t]. Denote
by ∆ the grid {(sj , tk, xi),0≤ i≤ n,0≤ j ≤m,0≤ k ≤ `}. When h is regular enough, we show that,
as |∆| tends to 0, the expression∑

0≤i≤n,0≤j≤m
0≤k≤`

h(sj , tk, ω,xi)
(
L
xi+1
sj+1,tk+1

−Lxi+1
sj ,tk+1

−Lxisj+1,tk+1
+Lxisj ,tk+1

−Lxi+1
sj+1,tk

+L
xi+1
sj ,tk

+Lxisj+1,tk
−Lxisj ,tk

)
admits a limit in L1 for any ω ∈Ω, denoted by

∫ t
0

∫ s
0

∫ b
a h(s, t,ω,x)dLxs,t.

The next result extends (25) to random functions and is a direct consequence of [11, Theorem 5.1]
for local times of the Brownian sheet.

Proposition 2.4. Let h : [0,1]2×Ω×R→R be a random real valued function such that for any ω ∈
Ω, (s, t, x) 7−→ h(s, t,ω,x) is continuous on [0,1]2×R, and for any (s, t,ω) ∈ [0,1]2×Ω, h(s, t,ω, ·)
is differentiable. We suppose that the partial derivative ∂xh is continuous on [0,1]2 × R for P-a.e.
ω ∈ Ω. Then for any (s, t) ∈ [0,1]2, any (a, b) ∈ R2 with a < b, and for P-a.e. ω ∈ Ω, the integral∫ s

0

∫ t
0

∫
R h(ξ,u,ω,x) dLxξ,u exists and we have∫ s

0

∫ t

0

∫ b

a
h(ξ,u,ω,x)dLxξ,u =−

∫ s

0

∫ t

0
(1[a,b]∂xh)(ξ,u,ω,Wξ,u)dudξ

+

∫ s

0

∫ t

0
h(ξ,u,ω, b)dξ,uL

b
ξ,u −

∫ s

0

∫ t

0
h(ξ,u,ω, a)dξ,uL

a
ξ,u.

Consequently, when a and b tend respectively to −∞ and∞, we get∫ s

0

∫ t

0

∫
R
h(ξ,u,ω,x)dLxξ,u =−

∫ s

0

∫ t

0
∂xh(ξ,u,ω,Wξ,u)dudξ. (29)

The relation (29) provides the definition of the integral with respect to the local time L for a smooth
random function h.



12

Let (Js,t, (s, t) ∈D) be the process defined by

Js,t =

∫ t

0

∫ s

0

∫ t

0

∫ s

0
1{u<v,ξ>ζ}dWu,ξdWv,ζ ,

where (Ws,t; (s, t) ∈D) denotes a real valued Brownian sheet given on an equipped probability space
(Ω,F ,{Fs,t; (s, t) ∈D},P). The next result is a generalised Itô formula for two-parameter Brownian
motion.

Proposition 2.5. Let h : [0,1]2 × Ω × R→ R be a random bounded function such that, for any

(s, t, x), h(s, t, ·, x) is Fs,t-measurable, and, P-a.e., the partial derivatives
∂h

∂x
,
∂h

∂s
,
∂2h

∂x2
,
∂2h

∂s∂x
and

∂3h

∂x3
exist and are continuous. Then

h(s, t,ω,Ws,t)− h(0, t, ω,0)

=

∫ s

0

∂h

∂s
(u, t,ω,Wu,t)ds−

s

2

∫ t

0

∫
R

∂h

∂x
(s, ξ, ,ω,x)dx,ξL

x
2(u, ξ)− t

2

∫ s

0

∫
R

∂h

∂x
(u, t,ω,x)dx,uL

x
1(u, t)

+

∫ t

0

∫ s

0

∂h

∂x
(u, ξ,ω,Wu,ξ)dWu,ξ +

∫ t

0

∫ s

0

∂2h

∂x2
(u, ξ,ω,Wu,ξ)dJu,ξ

+
1

2

∫ t

0

∫ s

0

∫
R

{
u
∂2h

∂s∂x
+
∂h

∂x
+ uξ

∂3h

∂x3

}
(u, ξ,ω,x)dLxu,ξ.

Proof. Let p : R → R+ be an infinitely differentiable function with compact support such that∫
R p(y)dy = 1. Let (hn, n ∈N) be the sequence of random functions defined by

hn(s, t,ω,x) =

∫
R
h(s, t,ω,x− y

n+ 1
)p(y)dy.

From Theorem 5.1 (ii) and [11, Theorem 5.3 ] applied along the line ξ =constant, we have

s

2

∂2hn
∂x2

(s, ξ,ω,Ws,ξ) =
1

2

∫ s

0

{
u
∂3hn
∂s∂x2

(u, ξ,ω,Wu,ξ) +
∂2hn
∂x2

(u, ξ,ω,Wu,ξ)
}

dξ

+

∫ s

0

u

2

∂3hn
∂x3

(u, ξ,ω,Wu,ξ)duWu,ξ −
∫ s

0

∫
R

uξ

2

∂3hn
∂x3

(u, ξ,ω,x)dx,uL
x
1(u, ξ)

=

∫ s

0

u

2

∂3hn
∂x3

(u, ξ,ω,Wu,ξ)duWu,ξ −
1

2

∫ s

0

∫
R

{
u
∂2hn
∂s∂x

+
∂hn
∂x

+ uξ
∂3hn
∂x3

}
(u, ξ,ω,x)dx,uL

x
1(u, ξ).

Integrating the above equality over [0, t], we obtain

− s

2

∫ t

0

∫
R

∂hn
∂x

(u, ξ,ω,x)dx,ξL
x
2(u, ξ) =

s

2

∫ t

0

∂2hn
∂x2

(u, ξ,ω,Wu,ξ)dξ (30)

=

∫ t

0

{∫ s

0

u

2

∂3hn
∂x3

(u, ξ,ω,Wu,ξ)duWu,ξ

}
dξ

− 1

2

∫ t

0

∫ s

0

∫
R

{
u
∂2hn
∂s∂x

+
∂hn
∂x

+ uξ
∂3hn
∂x3

}
(u, ξ,ω,x)dx,uL

x
1(u, ξ)dξ
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=

∫ t

0

{∫ s

0

u

2

∂3hn
∂x3

(u, ξ,ω,Wu,ξ)duWu,ξ

}
dξ − 1

2

∫ t

0

∫ s

0

∫
R

{
u
∂2hn
∂s∂x

+
∂hn
∂x

+ uξ
∂3hn
∂x3

}
(u, ξ,ω,x)dLxu,ξ.

Hence letting n tends to infinity, the dominated convergence theorem yields

− s

2

∫ t

0

∫
R

∂h

∂x
(u, ξ,ω,x)dx,ξL

x
2(u, ξ) (31)

=

∫ t

0

{∫ s

0

u

2

∂3h

∂x3
(u, ξ,ω,Wu,ξ)duWu,ξ

}
dξ − 1

2

∫ t

0

∫ s

0

∫
R

{
u
∂2h

∂s∂x
+
∂h

∂x
+ uξ

∂3h

∂x3

}
(u, ξ,ω,x)dLxu,ξ.

Moreover, applying [11, Theorem 5.3 ] along the line t=constant, it holds that

h(s, t,ω,Ws,t) = h(0, t, ω,0) +

∫ s

0

∂h

∂s
(u, t,ω,Wu,t)ds+

∫ s

0

∂h

∂x
(u, t,ω,Wu,t)duWu,t

− t

2

∫ s

0

∫
R

∂h

∂x
(u, t,ω,x)dx,uL

x
1(u, t). (32)

Using the Green formula (see for example [5, Theorem 6.3]), we have∫ s

0

∂h

∂x
(u, t,ω,Wu,t)duWu,t =

∫ t

0

∫ s

0

∂h

∂x
(u, ξ,ω,Wu,ξ)dWu,ξ +

∫ t

0

∫ s

0

∂2h

∂x2
(u, ξ,ω,Wu,ξ)dJu,ξ

+

∫ t

0

{∫ s

0

u

2

∂3h

∂x3
(u, ξ,ω,Wu,ξ)duWu,ξ

}
dξ.

Substituting (31) into the above equality, we obtain∫ s

0

∂h

∂x
(u, t,ω,Wu,t)duWu,t (33)

=

∫ t

0

∫ s

0

∂h

∂x
(u, ξ,ω,Wu,ξ)dWu,ξ +

∫ t

0

∫ s

0

∂2h

∂x2
(u, ξ,ω,Wu,ξ)dJu,ξ

− s

2

∫ t

0

∫
R

∂h

∂x
(s, ξ,ω,x)dx,ξL

x
2(u, ξ) +

1

2

∫ t

0

∫ s

0

∫
R

{
u
∂2h

∂s∂x
+
∂h

∂x
+ uξ

∂3h

∂x3

}
(u, ξ,ω,x)dLxu,ξ.

Finally, substituting (33) into (32) yields the desired formula.

3. Regularising properties of Brownian sheet paths

In this section, we use results in Section 2.1 to show regularity properties of some averaging type
operator. We first show some bounds.

3.1. Davie type Inequalities for the Brownian Sheet

The following estimate will be be used extensively.
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Proposition 3.1. Let W :=
(
W

(1)
s,t , · · · ,W

(d)
s,t ; (s, t) ∈ [0,1]2

)
be a Rd-valued Brownian sheet

(d ≥ 1) defined on an equipped probability space (Ω,F ,F,P), where F = (Fs,t;s, t ∈ [0,1]). Let

g ∈ C0
(

[0,1]2,C1(R2d)
)

such that there exists κ > 0 satisfying

g(s, t, x, y)≤ κ|y|, for all (s, t, x, y) ∈ [0,1]2 ×R2d. (34)

Let (a, ε) ∈ [0,1)× (0,1) such that a+ ε≤ 1. Then there exist positive constants α and C such that
for all (s, s′, y) ∈]0,1]2 ×Rd with s≤ s′, (s′ − s, y) 6= (0,0, . . . ,0) and all i ∈ {1, · · · , d}, we have

E
[

exp
( α

√
εs

|y|+
√
s′ − s

∣∣∣ ∫ 1

0
∂xig

(
s, t, W̃ ε

s,t, y+W ε
s′,t −W

ε
s,t

)
dt
∣∣∣)]≤C, (35)

where ∂xig denotes the partial derivative of g with respect to one component of the third variable,

| · | is the maximum norm on Rd, and W ε :=
(
W

(ε,1)
s,t , · · · ,W (ε,d)

s,t ; (s, t) ∈ [0,1]2
)

, respectively

W̃ ε :=
(
W̃

(ε,1)
s,t , · · · , W̃ (ε,d)

s,t ; (s, t) ∈ [0,1]2
)

is the Rd-valued two-parameter Gaussian process given

by W (ε,i)
s,t :=W

(i)
s,a+εt, respectively W̃ (i,ε)

s,t =W
(i)
s,a+εt −W

(i)
s,a for all i ∈ {1, · · · , d}.

Proof. The proof is based on the multidimensional local time-space calculus formula (27) and the
Barlow-Yor Inequality. We only prove (35) when s < s′. The proof in the case where s = s′ and
y 6= (0, . . . ,0) follows the same lines.
Fix (a, ε) ∈ [0,1] × (0,1) and i ∈ {1, · · · , d}. Observe that for any 0 < s < s′ ≤ 1, (W̃ ε

s,t; 0 ≤ t ≤
1) and (W ε

s′,t −W
ε
s,t; 0 ≤ t ≤ 1) are independent. Then, conditionally to (W ε

s′,t −W
ε
s,t; 0 ≤ t ≤ 1),

g
(
s, t, W̃ ε

s,t, y + W ε
s′,t −W

ε
s,t,0 ≤ t ≤ 1

)
is a deterministic function of (W̃ ε

s,t,0 ≤ t ≤ 1). Hence,
conditionally to (W ε

s′,t −W
ε
s,t; 0≤ t≤ 1), we may apply (27) to the d-dimensional Brownian motion

(Ys,t := ε−1/2W̃ ε
s,t; 0≤ t≤ 1) and to the function hs′ : [0,1]2 ×Rd→R given by

hs′(s, t, x) = g
(
s, t,
√
εx, y+W ε

s′,t −W
ε
s,t

)
.

We obtain
√
εs

|y|+
√
s′ − s

∫ 1

0
∂xig

(
s, t, W̃ ε

s,t, y+W ε
s′,t −W

ε
s,t

)
dt= frac

√
s|y|+

√
s′ − s

∫ 1

0
∂xihs′(s, t, Ys,t)dt

=− 1

|y|+
√
s′ − s

∫ 1

0
hs′(s, t, Ys,t)

dtY
(i)
s,t√
s
− 1

|y|+
√
s′ − s

∫ 1

0
hs′(s,1− t, Ys,1−t)

dtB
(i)
s,t√
s

+
1

|y|+
√
s′ − s

∫ 1

0

hs′(s,1− t, Ys,1−t)Y
(i)
s,1−t√

s(1− t)
dt

=− 1

|y|+
√
s′ − s

∫ 1

0
g(s, t, W̃ ε

s,t, y+W ε
s′,t −W

ε
s,t)

dtY
(i)
s,t√
s

− 1

|y|+
√
s′ − s

∫ 1

0
g(s,1− t, W̃ ε

s,1−t, y+W ε
s′,1−t −W

ε
s,1−t)

dtB
(i)
s,t√
s
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+
1

|y|+
√
s′ − s

∫ 1

0

g(s,1− t, W̃ ε
s,1−t, y+W ε

s′,1−t −W
ε
s,1−t)Y

(i)
s,1−t√

s(1− t)
dt= J1 + J2 + J3.

Using Jensen inequality, one has

E
[

exp
( α

√
εs

|y|+
√
s′ − s

∣∣∣ ∫ 1

0
∂xig

(
s, t, W̃ ε

s,t, y+W ε
s′,t −W

ε
s,t

)
dt
∣∣∣)]

≤1

3

(
E
[

exp(3α|J1|)
]

+E
[

exp(3α|J2|)
]

+E
[

exp(3α|J3|)
])
.

Hence, to get the desired estimate, it suffices to prove that, for every k ∈ {1,2,3}, there exist positive
constants αk and Ck such that E [exp(αk|Jk|)]≤Ck. Let us start with the estimate of J1. We consider
the martingale

(
N

(i)
t :=

∫ t

0

g(s,u, W̃ ε
s,u, y+W ε

s′,u −W
ε
s,u)

|y|+
√
s′ − s

duY
(i)
s,u√
s

, t ∈ [0,1]
)
.

For any constant α> 0, the following exponential expansion formula holds

E[exp(α|J1|)] = E
[

exp
(
α
∣∣∣N (i)

1

∣∣∣)]= 1 +

∞∑
m=1

αmE
[∣∣∣N (i)

1

∣∣∣m]
m!

.

Applying the Barlow-Yor inequality to the martingale
(
N

(i)
t , t ∈ [0,1]

)
(see [1]) and using (34), there

exists a universal constant c1 (not depending on m) such that,

E
[∣∣∣N (i)

1

∣∣∣m]≤ E
[

sup
0≤t≤1

|N (i)
t |

m
]
≤ cm1 mm/2E

[
〈N (i)〉m/21

]

≤ cm1 mm/2E
[(∫ 1

0

∣∣∣g(s, t, W̃ ε
s,t, y+W ε

s′,t −W
ε
s,t)

|y|+
√
s′ − s

∣∣∣2dt
)m/2]

≤ (c1κ)mmm/2E
[(∫ 1

0

∣∣∣y+W ε
s′,t −W

ε
s,t

|y|+
√
s′ − s

∣∣∣2dt
)m/2]

.

It follows from Hölder and triangle inequalities and the definition of W̃ that

E
[(∫ 1

0

∣∣∣y+W ε
s′,t −W

ε
s,t

|y|+
√
s′ − s

∣∣∣2dt
)m/2]

≤ E
[

sup
0≤t≤1

∣∣∣y+W ε
s′,t −W

ε
s,t

|y|+
√
s′ − s

∣∣∣m]

≤ 2mE
[
1 + sup

0≤t≤1

∣∣∣W ε
s′,t −W

ε
s,t√

s′ − s

∣∣∣m]= 2mE
[
1 + sup

0≤t≤1

∣∣∣W̃ ε
s′,t − W̃

ε
s,t +Ws′,a −Ws,a
√
s′ − s

∣∣∣m]

≤(6d)m
(

1 +

d∑
i=1

{
E
[

sup
0≤t≤1

∣∣∣W̃ (ε,i)
s′,t − W̃

(ε,i)
s,t√

s′ − s

∣∣∣m]+E
[∣∣∣W (i)

s′,a −W
(i)
s,a

√
s′ − s

∣∣∣m]})

≤(6d)m
(

1 +

d∑
i=1

{
εm/2E

[
sup

0≤t≤1

∣∣∣W̃ (ε,i)
s′,t − W̃

(ε,i)
s,t√

ε(s′ − s)

∣∣∣m]+E
[

sup
0≤t≤a

∣∣∣W (i)
s′,t −W

(i)
s,t√

s′ − s

∣∣∣m]}).
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Then, since for every i ∈ {1, · · · , d},

(W̃ (ε,i)
s′,t − W̃

(ε,i)
s,t√

ε(s′ − s)
,0≤ t≤ 1

)
and

(W (i)
s′,t −W

(i)
s,t√

s′ − s
,0≤ t≤ 1

)
are two standard Brownian motions starting from 0, we deduce from Barlow-Yor inequality that

E
[

sup
0≤t≤1

∣∣∣W̃ (ε,i)
s′,t − W̃

(ε,i)
s,t√

ε(s′ − s)

∣∣∣m]≤ cm1 mm/2

and

E
[

sup
0≤t≤a

∣∣∣W (i)
s′,t −W

(i)
s,t√

s′ − s

∣∣∣m]≤ E
[

sup
0≤t≤1

∣∣∣W (i)
s′,t −W

(i)
s,t√

s′ − s

∣∣∣m]≤ cm1 mm/2.

Thus,

E [exp (α |J1|)] = 1 +

∞∑
m=1

αmE
[∣∣∣N (i)

1

∣∣∣m]
m!

≤ 1 + 2d

∞∑
m=1

(6dακ)m(1 + c1)2mmm

m!
,

which is finite for α <
1

6dκe(1 + c1)2
. Then there exist positive constants α1 and C1 that do not

depend on h, a, s and s′ such that

E [exp (α1 |J1|)]≤C1.

The estimation of J2 follows in an analogous manner. More precisely, if we consider the martingale

(
N̂

(i)
t :=

∫ t

0

g(s,1− u, W̃ ε
s,1−u, y+W ε

s′,1−u −W
ε
s,1−u)

|y|+
√
s′ − s

duB
(i)
s,u√
s

, t ∈ [0,1]
)

then we deduce from the Barlow-Yor inequality that there exist positive constants α2 and C2 such that

E [exp (α2 |J2|)] = E
[
exp

(
α2

∣∣∣N̂ (i)
1

∣∣∣)]≤C2.

Next, we estimate J3. Applying (34) and Jensen inequality, we get

E
[

exp
( J3

16κ

)]
≤E
[

exp
( 1

16κ

∫ 1

0

|g(s,1− t, W̃ ε
s,1−t, y+W ε

s′,1−t −W
ε
s,1−t)Y

(i)
s,1−t|

(1− t)
√
s(|y|+

√
s′ − s)

dt
)]

≤E
[

exp
( 1

16

∫ 1

0

|y+W ε
s′,1−t −W

ε
s,1−t||Y

(i)
s,1−t|

(1− t)
√
s(|y|+

√
s′ − s)

dt
)]

=E
[

exp
(1

8

∫ 1

0

∣∣∣y+W ε
s′,1−t −W

ε
s,1−t

|y|+
√
s′ − s

∣∣∣∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣ dt

2
√

1− t

)]
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≤
∫ 1

0
E
[

exp
(1

8

∣∣∣y+W ε
s′,1−t −W

ε
s,1−t

|y|+
√
s′ − s

∣∣∣∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣)] dt

2
√

1− t

≤
∫ 1

0
E
[

exp
(1

8

(
1 +

∣∣∣W ε
s′,1−t −W

ε
s,1−t√

s′ − s

∣∣∣)∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣)] dt

2
√

1− t
.

Moreover, by Cauchy-Schwarz inequality, we have

E
[

exp
(1

8

(
1 +

∣∣∣W ε
s′,1−t −W

ε
s,1−t√

s′ − s

∣∣∣)∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣)]

≤E
[

exp
( 1

16

(
1 +

∣∣∣W ε
s′,1−t −W

ε
s,1−t√

s′ − s

∣∣∣)2
+

1

16

∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣2)]

≤E
[

exp
(1

8
+

1

8

∣∣∣W ε
s′,1−t −W

ε
s,1−t√

s′ − s

∣∣∣2 +
1

16

∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣2)]

=E
[

exp
(1

8
+
a+ ε(1− t)

8

∣∣∣ W ε
s′,1−t −W

ε
s,1−t√

(a+ ε(1− t))s′ − s

∣∣∣2 +
1

16

∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣2)]

≤E
[

exp
(1

8
+

1

4

∣∣∣ W ε
s′,1−t −W

ε
s,1−t√

(a+ ε(1− t))s′ − s

∣∣∣2 +
1

4

∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣2)].
Observe that for every t ∈ [0,1] fixed, the random variables

W
(ε,k)
s′,1−t −W

(ε,k)
s,1−t√

(a+ ε(1− t))(s′ − s)
, k = 1, . . . , d and

Y
(i)
s,1−t√
s(1− t)

are independent and normally distributed with mean 0 and variance 1. Thus

E
[

exp
(1

8
+

1

4

∣∣∣ W ε
s′,1−t −W

ε
s,1−t√

(a+ ε(1− t))(s′ − s)

∣∣∣2 +
1

4

∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣2)]

= e1/8
d∏

k=1

E
[

exp
(1

4

∣∣∣ W
(ε,k)
s′,1−t −W

(ε,k)
s,1−t√

(a+ ε(1− t))(s′ − s)

∣∣∣2)]E[ exp
(1

4

∣∣∣ Y
(i)
s,1−t√
s(1− t)

∣∣∣2)]<∞.
Hence, E [exp (J3/16κ)] is finite and, as a consequence, there exist positive constants α3 and C3

(which do not depend on a, ε, s and s′) such that E[exp(α3|J3|)]≤C3. This ends the proof.

Corollary 3.2. Let b : [0,1]2×Rd→R be a bounded Borel measurable function such that ‖b‖∞ ≤ 1.
Let W ε be defined as in Proposition 3.1. Then for every (a, ε) ∈ [0,1] × (0,1), every (s, s′, x, x′) ∈
]0,1]2 ×R2d with s≤ s′ and (s,x) 6= (s′, x′), we have

E
[
exp

(
α
√
εs

|x′ − x|+
√
s′ − s

∣∣∣∣∫ 1

0

{
b(s, t, x′ +W ε

s′,t)− b(s, t, x+W ε
s,t)
}
dt

∣∣∣∣)]≤C, (36)

where α and C are the constants in Proposition 3.1.
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Proof. We first suppose that b is differentiable and compactly supported. By the fundamental theorem
of vector calculus, we obtain∣∣∣ ∫ 1

0
{b(s, t, x′ +W ε

s′,t)− b(s, t, x+W ε
s,t)}dt

∣∣∣
=
∣∣∣ ∫ 1

0

∫ 1

0
∇xb(s, t, x+W ε

s,t + u(x′ − x+W ε
s′,t −W

ε
s,t)) · (x′ − x+W ε

s′,t −W
ε
s,t)dudt

∣∣∣
≤

d∑
i=1

∣∣∣ ∫ 1

0

∫ 1

0

∂b

∂xi
(s, t, W̃ ε

s,t + x+Ws,a + u(x′ − x+W ε
s′,t −W

ε
s,t))(x

′
i − xi +W ε,i

s′,t −W
ε,i
s,t )dudt

∣∣∣
≤

d∑
i=1

∣∣∣ ∫ 1

0

∫ 1

0

∂b̂u
∂xi

(s, t, W̃ ε
s,t +Ws,a, x

′ − x+W ε
s′,t −W

ε
s,t)dudt

∣∣∣,
where for every u ∈ [0,1], b̂u : [0,1]2 ×R2d is the function defined by

b̂u(s, t, y, z) = zib(s, t, x+ y+ uz).

Since (W̃ ε
s,t, t ∈ [0,1]) and Ws,a are independent, it follows from Jensen inequality and (35) applied to

the function gu : (s, t, y, z) 7−→ b̂u(s, t, y+ ζ, z) that there exist positive constants α and C such that

E
[

exp
( α

√
εs

|x′ − x|+
√
s′ − s

∣∣∣ ∫ 1

0

{
b(s, t, x′ +W ε

s′,t)− b(s, t, x+W ε
s,t)
}

dt
∣∣∣)]

≤1

d

d∑
i=1

∫ 1

0
E
[

exp
( α

√
εs

|x′ − x|+
√
s′ − s

∫ 1

0

∂b̂u
∂xi

(s, t, W̃ ε
s,t +Ws,a,W

ε
s′,t −W

ε
s,t + x′ − x)dt

)]
du

≤1

d

d∑
i=1

∫ 1

0

∫
R
E
[

exp
( αd

√
εs

|x′ − x|+
√
s′ − s

∣∣∣ ∫ 1

0

∂gu
∂xi

(s, t, W̃ ε
s,t + ζ,W ε

s′,t −W
ε
s,t + x′ − x)dt

∣∣∣)]PWs,a
(dζ)du

≤C. (37)

When b is not differentiable, then, since the set of compacly supported and differentiable functions
is dense in L∞([0,1]2 ×Rd), there exists a sequence (bn, n ∈ N) of compactly supported and differ-
entiable functions which converges a.e. to b on [0,1]2 × Rd, and the desired result follows from the
Vitali’s convergence theorem. The proof is completed.

Corollary 3.3. Let b : [0,1]×Rd→R be a Borel measurable function such that |b(t, x)| ≤ 1 every-
where on [0,1]×Rd. For (s, s′, x, x′) ∈]0,1]2 ×R2d with s≤ s′, (s,x) 6= (s′, x′), 0≤ a < a′ ≤ 1 and
(x,x′) ∈R2d, define

ρ(s,x;s′, x′) :=

∫ a′

a

{
b(t, x′ +Ws′,t)− b(t, x+Ws,t)

}
dt.

Then, for every (s, s′) ∈]0,1]2 and every η > 0,

P
(√

s|ρ(s,x;s′, x′)| ≥ η
√
ε(|x′ − x|+

√
s′ − s)

)
≤Ce−αη, (38)
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where ε= a′ − a.

Proof. Use the change of variable v = a+ εt to obtain

ρ(s,x;s′, x′) =

∫ a′

a

{
b(v,x′ +Ws′,v)− b(v,x+Ws,v)

}
dv

= ε

∫ 1

0

{
b(a+ εt, x′ +Ws′,a+εt)− b(a+ εt, x+Ws,a+εt)

}
dt

= ε

∫ 1

0

{
b̃ε(t, x

′ +W ε
s′,t)− b̃ε(t, x+W ε

s,t)
}

dt,

where ε= a′ − a and b̃ε : (t, x) 7−→ b(a+ εt, x). Hence, by (36) and Chebychev inequality, we have

P
(√

s|ρ(s,x;s′, x′)|> η
√
ε(|x′ − x|+

√
s′ − s)

)
= P

( α
√
εs

|x′ − x|+
√
s′ − s

∣∣∣ ∫ 1

0

{
b̃ε(t, x

′ +W ε
s′,t)− b̃ε(t, x+W ε

s,t)
}

dt
∣∣∣>αη

)
≤Ce−αη,

The proof is completed.

3.2. On the regularising properties of Brownian sheet paths

For any Bounded Borel measurable function b : R+×Rd→R such that |b(t, x)| ≤ 1 everywhere, any
nonnegative integers n, k, we define the averaging type operator TWInk [b] defined by

TWInk [b](s,x) =

∫
Ink

b(t,Ws,t + x)dt, ∀s ∈R+,

where Ink = [k2−n, (k+ 1)2−n]. Define also

ρnk(s,x;s′, x′) = TWInk [b](s′, x′)− TWInk [b](s,x) =

∫
Ink

{b(t,Ws′,t + x′)− b(t,Ws,t + x)}dt, ∀ (s, s′) ∈R2
+.

The aim of this section is to provide a continuity property of the operator TWInk [b]. In particular, we
derive the following result which gives the modulus of continuity of ρnk.

Theorem 3.4. Let b satisfy conditions of Corollary 3.3. Then there exists a subset Ω0 of Ω with
P(Ω0) = 1 and a positive random constant C0 such that

|ρnk(s,x;s′, x′)(ω)| ≤ C0(ω)2−n/2√
s

[
n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
(39)

for all ω ∈ Ω0, all (s, s′, x, x′) ∈]0,1]2 × [−1,1]2d with s ≤ s′, (s′, x′) 6= (s,x) and all choices of
integers n, k with n≥ 1, 0≤ k ≤ 2n − 1, where C0 does not depend on n, k, s and s′.
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Remark 3.5. The factor 1/
√
s on the right side of (39) shows that the averaging operator TWI [b]

has a singularity of order−1/2 at s= 0. This is a consequence of the scaling and boundary properties
of the Brownian sheet.

Corollary 3.6. Let b satisfy conditions of Corollary 3.3. There exist Ω1 ⊂ Ω with P(Ω1) = 1 and a
positive random constant C1 =C1(ω) such that∣∣∣TWI [b](s′, x′)− TWI [b](s,x)

∣∣∣≤ C1

√
|I|√
s

[
1 + log+ 1

(|x′ − x|+
√
s′ − s)|I|

](
|x′ − x|+

√
s′ − s

)
,

for all ω ∈ Ω1, all (s, s′, x, x′) ∈]0,1]2 × [−1,1]2d with s≤ s′, (s′, x′) 6= (s,x), all sub-interval I of
[0,1], where |I| denotes the length of I and C1 does not depend on n, k, s′ and x′.

The next result follows immediately from (39) when s= s′ by integrating with respect to s over In`.

Corollary 3.7. Let b satisfy conditions of Corollary 3.3. There exist Ω2 ⊂ Ω with P(Ω2) = 1 and a
positive random constant C2 =C2(ω) such that∣∣∣∣∫

In`

TWInk [b](s,x′)ds−
∫
In`

TWInk [b](s,x)ds

∣∣∣∣≤C22−n
(
n+ log+ 1

|x′ − x|

)
|x′ − x|,

for all ω ∈Ω2, all (x,x′) ∈ [−1,1]2d and all choices of integers n, k, `, n≥ 1, 0≤ k, `≤ 2n − 1.

The proof of Theorem 3.4 is done in two steps. We start by proving the when (s,x) and (s′, x′)
are dyadic couples. Then the desired estimate will follow from a density property of the set of dyadic
numbers and a continuity lemma.

Lemma 3.8. For every ε > 0, there exist a positive deterministic constant Cε such that, for any b
satisfying conditions of Corollary 3.3, we can find Ωε ⊂Ω with P(Ωε)≥ 1− ε/2 and

|ρnk(s,x;s′, x′)(ω)| ≤ Cε2
−n/2
√
s

[
n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
for all ω ∈Ωε, all dyadic quadruples (s, s′, x, x′) ∈]0,1]2× [−1,1]2d with s≤ s′, (s′, x′) 6= (s,x) and
all choices of integers n, k with n≥ 1, 0≤ k ≤ 2n − 1.

Proof. Denote by Q be the set of dyadic quadruples (s, s′, x, x′) ∈]0,1]2 × [−1,1]2d such that s≤ s′
and (s,x) 6= (s′, x′). Let us define

Qm =
{

(s, s′, x, x′) ∈]0,1]2 × [−1,1]2d : s≤ s′, (s′, x′) 6= (s,x), 4m(s, s′) ∈N2 and 2m(x,x′) ∈ Z2d
}
.

Observe that Qm does not have more than 24d26dm elements and it holds Q =
⋃
m∈N

Qm. For every

n ∈N, δ ∈Q+, consider the sets

Eδ,n =
{
ω ∈Ω : there exist k ∈ {0,1, · · · ,2n − 1}, m ∈N∗, and (s, s′, x, x′) ∈Qm

such that
√
s|ρnk(s,x;s′, x′)|(ω)≥ δ(1 + n+m)2−n/2(|x′ − x|+

√
s′ − s)}.



Regularising properties of Brownian sheet paths 21

Then

Eδ,n =

2n−1⋃
k=0

∞⋃
m=1

( ⋃
(s,s′,x,x′)∈Qm

{
ω ∈Ω :

√
s|ρnk(s,x;s′, x′)|(ω)≥ δ(1 + n+m)2−n/2(|x′ − x|+

√
s′ − s)

})
.

Let Eδ be defined as

Eδ :=

∞⋃
n=0

Eδ,n.

We deduce from (38) that

P(Eδ)≤
∞∑
n=0

2n−1∑
k=0

∞∑
m=0

∑
(s,s′,x,x′)∈Qm

P
(√

s|ρnk(s,x;s′, x′)| ≥ δ(1 + n+m)2−n/2(|x′ − x|+
√
s′ − s)

)

≤C24d
∞∑
n=0

∞∑
m=0

2n26dme−αδ(1+n+m).

In particular for δ ≥ δ0 := α−1(6d+ 1), we have

lim
δ→∞

P(Eδ)≤ lim
δ→∞

C24de−αδ
∞∑
n=0

∞∑
m=0

2−6dn−m ≤ lim
δ→∞

4C24de−αδ = 0. (40)

Hence for every ε > 0, there exists δε ∈ Q+ such that P(Eδε) < ε/2. Choose Ωε = Ω \ Eδε . Then
P(Ωε) = 1− ε/2 and for every ω ∈Ωε,

|ρnk(s,x;s′, x′)(ω)|< δε(1 + n+m)2−n/2√
s

(|x′ − x|+
√
s′ − s) (41)

for all choices of n, k, m and (s, s′, x, x′) ∈Qm.
Now, choose any quadruple (s, s′, x, x′) ∈Q and let m be the smallest nonnegative integer m such

that 2−m−1 ≤ |x′ − x|+
√
s′ − s. For r ≥m and for every i ∈ {1, . . . , d}, define the sequences

sr = 1− 4−r[4r(1− s)], s′r = 1− 4−r[4r(1− s′)], xi,r = 2−r[2rxi] and x′i,r = 2−r[2rx′i],

where [·] denotes the integer part function. Observe that for every (α,β) ∈ R2, we have |[α]− [β]| ≤
1 + |α− β|, 0≤ [4α]− 4[α]≤ 3 and 0≤ [2α]− 2[α]≤ 1, then it holds

|sm − s′m| ≤ 2× 4−m, |x′m − xm| ≤
√
d21−m,

and for every r ≥m, we obtain

|sr+1 − sr| ≤ 3× 4−r−1, |s′r+1 − s′r| ≤ 3× 4−r−1, |xr+1 − xr| ≤
√
d2−r−1 and |x′r+1 − x′r| ≤

√
d2−r−1.

It follows from the definition of ρnk that

ρnk(s,x;s′, x′) = ρnk(s,x;sm, xm) + ρnk(sm, xm;s′m, x
′
m) + ρnk(s′m, x

′
m;s′, x′). (42)
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Moreover for every integer q ≥m+ 1, we have

ρnk(s′q+1, x
′
q+1;s′m, x

′
m) =

q∑
r=m

ρnk(s′r+1, x
′
r+1;s′r, x

′
r) and

ρnk(sm, xm;sq+1, xq+1) =

q∑
r=m

ρnk(sr, xr;sr+1, xr+1),

from which we deduce that

ρnk(s′, x′;s′m, x
′
m) =

∞∑
r=m

ρnk(s′r, x
′
r;s
′
r+1, x

′
r+1) and ρnk(sm, xm;s,x) =

∞∑
r=m

ρnk(sr+1, xr+1;sr, xr).

The above equalities come from the fact that for some integer q ≥m + 1, we have s′r = s′, sr = s,
xr = x and x′r = x′ for all r ≥ q. Using (41), (42) and the fact that s′r ≥ sr ≥ s for r ≥m, we obtain
that for every ω ∈Ωε,

2n/2 |ρnk(s,x;s′, x′)(ω)|

≤ 2n/2

(
|ρnk(sm, xm;s′m, x

′
m)(ω)|+

∞∑
r=m

|ρnk(sr+1, xr+1;sr, xr)(ω)|+
∞∑
r=m

|ρnk(s′r, x
′
r;s
′
r+1, x

′
r+1)(ω)|

)

≤ 4
√
dδε

(1 + n+m)
√
sm

2−m + 4
√
dδε

∞∑
r=m

(2 + n+ r)
√
sr+1

2−r−1 + 4
√
dδε

∞∑
r=m

(2 + n+ r)√
s′r+1

2−r−1

≤ 4
√
dδε(1 + n+m)√

s
2−m +

8
√
dδε(n+ 1)√

s

∞∑
r=m

2−r−1 +
8
√
dδε√
s

∞∑
r=m

(r+ 1)2−r−1.

Using the facts that
∞∑

r=m+1
2−r = 2−m,

∞∑
r=m+1

r21−r = (2 + m)21−m and 2−m−1 ≤ |x′ − x| +
√
s′ − s < 2−m, we obtain

2n/2 |ρnk(s′, x′;s,x)| ≤36
√
dδε(n+m+ 1)√

s
2−m

≤108dδε√
s

[
1 + n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
.

The result follows by taking Cε = 108dδε.

Subsequently, 1U denotes the indicator function of a given Borel set U and |U | denotes the Lebesgue
measure of U , when there is no confusion.

Lemma 3.9. For all ε > 0, there exists ηε > 0 such that, if U ⊂ (0,1) × Rd is open and satisfies
|U |< ηε, then

P
({√

s

∫ 1

0
1U (t,Ws,t + x)dt≤ ε, ∀ (s,x) ∈]0,1]× [−1,1]d

})
≥ 1− ε.
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Proof. For every n ∈N∗, let

On = {(s, s′, x, x′) ∈Q : |x′ − x|+
√
s′ − s≤

√
d21−n}.

It follows from Lemma 3.8 that for every ε > 0, there exists a deterministic constant Cε such that for
any Borel measurable real valued function ϕ on [0,1] × Rd satisfying |ϕ| ≤ 1, we can find Ωε with
P(Ωε)≥ 1− ε/2 and

√
s|ρ(ϕ)

nk (s,x;s′, x′)(ω)|=
√
s

∫
Ink

{
ϕ(t, x′ +Ws′,t)−ϕ(t, x+Ws,t)

}
dt

≤Cε2−n/2
(
n+ log+ 1

|x′ − x|+
√
s′ − s

)
(|x′ − x|+

√
s′ − s)

≤2
√
dCε

(
1 + log+ 1

|x′ − x|+
√
s′ − s

)
(|x′ − x|+

√
s′ − s)1/3n2−7n/6 ≤Kεn2−7n/6

for every ω ∈ Ωε, every (n,k) ∈ N2, 0 ≤ k ≤ 2n − 1 and every (s, s′, x, x′) ∈ On, where Kε =

2
√
dCε sup

ζ∈]0,1]

[
1 + log+(1/ζ)

]
ζ1/3. Now, take m such that Kε

∞∑
k=m

n2−n/6 < ε/2. Let us consider

the set of dyadic numbers

Jm =
{
k4−m : k = 0,1, . . . ,4m

}
×
{
−1 + `2−m : `= 0,1,2, · · · ,2m+1

}d
.

Let δ be small enough. Then for any bounded Borel measurable function ϕ : [0,1]×Rd→R such that
‖ϕ‖L2d([0,1]×Rd) < δ, it holds that

P
(∣∣∣ ∫

Imk

√
sϕ(t, x+Ws,t)dt

∣∣∣≥ ε

2m+2

)
≤ ε

2m+1#(Jm)

for some k and (s,x) ∈ Jm, where #(Jm) denotes the number of elements in Jm. Indeed, if we set
g(s, t, y) = (2πst)−d/2e−|y|

2/2st, then by Markov inequality and Hölder inequality, we have

P
(∣∣∣ ∫

Imk

√
sϕ(t, x+Ws,t)dt

∣∣∣≥ ε

2m+2

)
≤(2m+2/ε)E

[∣∣∣ ∫
Imk

√
sϕ(t, x+Ws,t)dt

∣∣∣]
≤(2m+2√s/ε)

∫ 1

0

∫
Rd
|ϕ(t, x+ y)|g(s, t, y) dydt

≤(2m+2√s/ε)
(∫ 1

0

∫
Rd
|ϕ(t, x+ y)|2d dydt

) 1
2d
(∫ 1

0

∫
Rd
g(s, t, y)

2d
2d−1 dydt

)1− 1
2d

≤(2m+2c(d)/ε)‖ϕ‖L2d([0,1]×Rd) ≤ (2m+2c(d)/ε)δ,

since
∫
Rd g(s, t, y)

2d
2d−1 dy = c(d)(st)

− d
2(2d−1) , where c(d) is a constant that depends on d.

Hence, it suffices to take δ such that δ < ε22−m−3/c(d)#(Jm) to get the above claim. Therefore, we
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have

P
(∣∣∣ ∫

Imk

√
sϕ(t, x+Ws,t)dt

∣∣∣< ε

2m+2
, ∀k ∈ {0,1, · · · ,2m − 1}, ∀ (s,x) ∈ Jm

)
≤ 1− ε/2.

Let U ⊂ [0,1]×Rd be an open set such that |U |< η := δ2d and consider a non-decreasing sequence
(ϕr)r∈N of continuous nonnegative functions on [0,1]×Rd that converges pointwise to 1U . Observe
that for every r ∈ N, ‖ϕr‖L2d([0,1]×Rd) < δ since 0 ≤ ϕr ≤ 1U . Let r ∈ N and define the events Ar
and Br by

Ar :=
{∣∣∣∫

Imk

√
sϕr(t, x+Ws,t)dt

∣∣∣< ε

2m+2
, ∀k, ∀ (s,x) ∈ Jm

}
and

Br :=
{∫

Ink

√
s
[
ϕr(t, x

′ +Ws′,t)−ϕr(t, x+Ws,t)
]

dt≤Kεn2−7n/6, ∀n ∈N∗, ∀k, ∀ (s, s′, x, x′) ∈On
}
.

Then P(Ar)≥ 1− ε/2, P(Br)≥ 1− ε/2, P(Ar ∩Br)≥ 1− ε and for any ω ∈Ar ∩Br,

∣∣∣ ∫ 1

0

√
sϕr(t, x+Ws,t)(ω)dt

∣∣∣≤ 2m−1∑
k=0

∣∣∣ ∫
Imk

√
sϕr(t, x+Ws,t)(ω)dt

∣∣∣< ε/2, ∀ (s,x) ∈ Jm,

(43)

and∣∣∣ ∫ 1

0

√
s{ϕr(t, x′ +Ws′,t)−ϕr(t, x+Ws,t)}(ω)dt

∣∣∣ (44)

≤
2n−1∑
k=0

∣∣∣ ∫
Ink

√
s{ϕr(t, x′ +Ws′,t)−ϕr(t, x+Ws,t)}(ω)dt

∣∣∣≤Kεn2−n/6, ∀ (s, s′, x, x′) ∈On.

For a fixed s ∈]0,1], let (sn, n ∈N) and (xn, n ∈N) be given respectively by sn = 1− 4−n[4n(1− s)]
and xi,n = 2−n[2nxi] for every i ∈ {1, · · · , d} and n ∈N. Since (sm, xm) ∈ Jm, (sn+1, sn, xn, xn+1) ∈
On and sn ≥ s, we deduce from (43) and (44) that for any ω ∈Ar ∩Br,∣∣∣√s ∫ 1

0
ϕr(t, x+Ws,t)(ω)dt

∣∣∣
≤
√
s
∣∣∣ ∫ 1

0
ϕr(t, xm +Wsm,t)(ω)dt

∣∣∣+ ∞∑
n=m

√
s
∣∣∣ ∫ 1

0
{ϕr(t, xn+1 +Wsn+1,t)−ϕr(t, xn +Wsn,t)}(ω)dt

∣∣∣
≤
√
sm

∣∣∣ ∫ 1

0
ϕr(t, xm +Wsm,t)(ω)dt

∣∣∣+ ∞∑
n=m

√
sn+1

∣∣∣ ∫ 1

0
{ϕr(t, xn+1 +Wsn+1,t)−ϕr(t, xn +Wsn,t)}(ω)dt

∣∣∣
≤ ε/2 +Kε

∞∑
n=m

n2−n/6 ≤ ε/2 + ε/2 = ε.

Define the set Dr by

Dr :=
{
ω ∈Ω :

√
s

∫ 1

0
ϕr(t, x+Ws,t)(ω)dt≤ ε, ∀ (s,x) ∈]0,1]× [−1,1]d

}
.
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Then, one sees that Ar ∩ Br ⊂ Dr and thus P(Dr) ≥ 1 − ε. We set D =
⋂
r∈NDr. Since (ϕr)r∈N

is non-decreasing, (Dr)r∈N is non-increasing and as a consequence, P(D)≥ 1− ε. Moreover, by the
Beppo-Levy theorem

lim
r→∞

√
s

∫ 1

0
ϕr(t, x+Ws,t)dt=

√
s

∫ 1

0
1U (t, x+Ws,t)dt

and then

D ⊂
{
ω ∈Ω :

√
s

∫ 1

0
1U (t, x+Ws,t)dt≤ ε, ∀ (s,x) ∈]0,1]× [−1,1]d

}
,

which yields the desired result.

The next result shows that the two-parameter Wiener process regularises the averaging operator
TW[0,1][b] for any bounded Borel measurable function b.

Lemma 3.10. Let b satisfy conditions of Corollary 3.3 and let (sn, xn)n∈N be a sequence in ]0,1]×
[−1,1]d that converges to (s,x), where s > 0. Then

lim
n→∞

∫ 1

0
b(t, xn +Wsn,t)dt=

∫ 1

0
b(t, x+Ws,t)dt, P-a.s. (45)

Remark 3.11. Notice that the above result which is key to prove the regularisation by noise is not
valid if one replaces the Brownian sheet by any two dimensional continuous function. For example,
consider the function w : [0,1]2→R defined by

w(s, t) =

1− exp
(
− 1

t(1− s)

)
if (s, t) ∈ [0,1[×]0,1],

1 otherwise.

Then w is continuous. Let b be the usual integer part function on [0,1] and consider the sequence
(sn, n ∈N) defined by sn = 1− 1/n. Then lim

n→∞
sn = 1 and

lim
n→∞

∫ 1

0
b(w(sn, t))dt= 0 6= 1 =

∫ 1

0
b(w(1, t))dt.

Proof of Lemma 3.10. For every r ∈ N, set εr = 2−r and consider the corresponding ηr := ηεr of
Lemma 3.9. By Lusin’s theorem applied to each r ∈N, we can find a function br ∈ Cb([0,1]×Rd) and
an open set Ur ⊂ [0,1]×Rd such that

‖br‖∞ ≤ 1, |Ur| ≤ ηr, br(t, x) = b(t, x) for all (t, x) /∈ Ur.

By Lemma 3.9, there exists a subset Ωr of Ω with P(Ωr) ≥ 1− εr such that for any (s,x) ∈]0,1]×
[−1,1]d, ∫ 1

0
1Ur (t, x+Ws,t)dt≤

εr√
s
, on Ωr.
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Next, observe that for any r ∈N,∫ 1

0
b(t, x+Ws,t)dt=

∫ 1

0
b1Ur (t, x+Ws,t)dt+

∫ 1

0
b1Ucr (t, x+Ws,t)dt

and ∫ 1

0
br(t, x+Ws,t)dt=

∫ 1

0
br1Ur (t, x+Ws,t)dt+

∫ 1

0
br1Ucr (t, x+Ws,t)dt,

where Ucr = ([0,1]×Rd) \Ur. Hence, we have∫ 1

0
br(t, x+Ws,t)dt− 2

∫ 1

0
1Ur (t, x+Ws,t)dt≤

∫ 1

0
b(t, x+Ws,t)dt

≤
∫ 1

0
br(t, x+Ws,t)dt+ 2

∫ 1

0
1Ur (t, x+Ws,t)dt.

(46)

Now, let (sn, xn)n∈N be a sequence in [0,1]× [−1,1]d that converges to (s,x). We deduce from (46)
that, on Ωr,∫ 1

0
b(t, x+Ws,t)dt−

4εr√
s
≤
∫ 1

0
br(t, x+Ws,t)dt−

2εr√
s
≤ lim inf
n→+∞

∫ 1

0
b(t, xn +Wsn,t)dt

and∫ 1

0
b(t, x+Ws,t)dt+

4εr√
s
≥
∫ 1

0
br(t, x+Ws,t)dt+

2εr√
s
≥ lim sup
n→+∞

∫ 1

0
b(t, xn +Wsn,t)dt.

Define

Ω∞ := lim inf
r→∞

Ωr =

∞⋃
q=1

∞⋂
r=q

Ωr.

Then since P(Ωr)≥ 1− εr and
∞∑
r=1

εr = 1, it follows from the Borel-Cantelli lemma that P(Ω∞) = 1.

Moreover, on Ω∞, one has

lim sup
n→+∞

∫ 1

0
b(t, xn +Wsn,t)dt≤

∫ 1

0
b(t, x+Ws,t)dt≤ lim inf

n→+∞

∫ 1

0
b(t, xn +Wsn,t)dt.

This completes the proof.

Proof of Theorem 3.4. We deduce from Lemma 3.8 that for every r ∈ N, there exist a positive deter-
ministic constant Cr such that for any Borel measurable function b satisfying conditions of Corollary
3.3, one can find Nr ⊂Ω with P(Nr)< 2−r−1 and

ρnk(s,x;s′, x′)(ω)≤ Cr2
−n/2
√
s

[
n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
,
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for every ω ∈Ω \Nr, every (n,k) ∈N2, 0≤ k ≤ 2n − 1 and every (s, s′, x, x′) ∈Q. We define

N∞ = lim sup
r→∞

Nr =

∞⋂
r=1

∞⋃
`=r

N`.

Since
∞∑
r=0

P(Nr) < 1, then P(N∞) = 0 and for any ω ∈ Ω2 = Ω \ N∞, there exist rω ∈ N such that

ω ∈ Ω \ N`, for all `≥ rω . In particular for a given Borel measurable function b satisfying conditions
of Corollary 3.3,

ρnk(s,x;s′, x′)(ω)≤ Crω2−n/2√
s

[
n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
(47)

for every ω ∈Ω2, every (s, s′, x, x′) ∈Q and every (n,k) ∈N2, 0≤ k ≤ 2n− 1. Now, fix ω ∈Ω2, n ∈
N, k ∈ {0,1, · · · ,2n−1}, (s, s′, x, x′) ∈]0,1]2× [−1,1]d with s≤ s′, (s,x) 6= (s′, x′). Let (sq, xq)q∈N
(respectively (s′q, x

′
q, q ∈ N)) be a sequence of dyadic numbers in [0,1] × [−1,1]d that converges to

(s,x) (respectively (s′, x′)). Suppose without loss of generality that for every q ∈ N, 0 < sq < sq+1

and s′q+1 < s′q . Using (47), we have

ρnk(sq, xq;s
′
q, x
′
q)(ω)≤ Crω2−n/2

√
sq

[
n+ log+ 1

|x′q − xq|+
√
s′q − sq

](
|x′q − xq|+

√
s′q − sq

)

for any q ∈ N, any ω ∈ Ω2, any b and any (n,k). We deduce from Lemma 3.10 that there also exists
Ω∞ ⊂Ω with P(Ω∞) = 1 such that for any ω ∈Ω∞,

lim
q→∞

ρnk(sq, xq;s
′
q, x
′
q)(ω) = ρnk(s,x;s′, x′)(ω).

Hence for any ω ∈Ω0 = Ω2 ∩Ω∞,

ρnk(s,x;s′, x′)(ω) = lim
q→∞

ρnk(sq, xq;s
′
q, x
′
q)(ω)

≤ lim
q→∞

Crω2−n/2
√
sq

[
n+ log+ 1

|x′q − xq|+
√
s′q − sq

](
|x′q − xq|+

√
s′q − sq

)

=
Crω2−n/2√

s

[
n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
.

The proof is then completed by taking C0(ω) =Crω since P(Ω0) = 1.

Proof of Corollary 3.6. Let I = (a,a′), with 0 ≤ a < a′ ≤ 1. For every γ ∈ [0,1], set TWγ = TW[0,γ].
Suppose first that (a,a′) is a couple of dyadic numbers. Let n be the smallest non-negative integer such
that 2−n−1 ≤ |a′ − a|. For every `≥ n, choose a` (respectively a′`) to minimise |a− a`| (respectively
|a′ − a′`|) under the constraint 2`a` ∈ Z (respectively 2`a′` ∈ Z). Then (an, a

′
n) is a couple of real

numbers that are either equal or dyadic neighbours. A similar assertion is valid for (a`, a`+1) and
(a′`, a

′
`+1). Since (a`, ` ≥ n) (respectively (a′`, ` ≥ n)) converges to a (respectively a′) as ` goes to
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infinity, we have∣∣∣TWI [b](s′, x′)− TWI [b](s,x)
∣∣∣= ∣∣∣TWa′ [b](s′, x′)− TWa′ [b](s,x)− TWa [b](s′, x′) + TWa [b](s,x)

∣∣∣
≤
∣∣∣TWa′n [b](s′, x′)− TWa′n [b](s,x)− TWan [b](s′, x′) + TWan [b](s,x)

∣∣∣
+

∞∑
`=n

∣∣∣TWa` [b](s′, x′)− TWa` [b](s,x)− TWa`+1
[b](s′, x′) + TWa`+1

[b](s,x)
∣∣∣

+

∞∑
`=n

∣∣∣TWa′` [b](s′, x′)− TWa′` [b](s,x)− TWa′`+1
[b](s′, x′) + TWa′`+1

[b](s,x)
∣∣∣ .

We deduce from Theorem 3.4 that∣∣∣TWa′n [b](s′, x′)− TWa′n [b](s,x)− TWan [b](s′, x′) + TWan [b](s,x)
∣∣∣

≤ C02−n/2√
s

[
n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
and, for every `≥ n,∣∣∣TWa` [b](s′, x′)− TWa` [b](s,x)− TWa`+1

[b](s′, x′) + TWa`+1
[b](s,x)

∣∣∣
≤ C02−(`+1)/2

√
s

[
`+ 1 + log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
and ∣∣∣TWa′` [b](s′, x′)− TWa′` [b](s,x)− TWa′`+1

[b](s′, x′) + TWa′`+1
[b](s,x)

∣∣∣
≤ C02−(`+1)/2

√
s

[
`+ 1 + log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
.

Thus, as
∞∑

`=n+1
2−`/2 = (

√
2 + 1)2−n/2 and

∞∑
`=n+1

(`+ 1)2−`/2 = (
√

2 + 1)(3 +
√

2 + n)2−n/2

∣∣∣TWI [b](s′, x′)− TWI [b](s,x)
∣∣∣

≤ C02−n/2√
s

[
n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
+

2C0√
s

(
|x′ − x|+

√
s′ − s

) ∞∑
`=n

2−(`+1)/2
[
`+ 1 + log+ 1

|x′ − x|+
√
s′ − s

]

≤ 31C02−n/2√
s

[
1 + n+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
≤

64C0

√
|a′ − a|√
s

[
1 + log+ 1

a′ − a
+ log+ 1

|x′ − x|+
√
s′ − s

](
|x′ − x|+

√
s′ − s

)
.
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The desired inequality follows by taking C1 = 64C0. The result in the general case follows from the
continuity of the map γ 7−→ TWγ [b].
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