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ABSTRACT: Phosphoproteomic methods are commonly employed to
identify and quantify phosphorylation sites on proteins. In recent years,
various tools have been developed, incorporating scores or statistics related
to whether a given phosphosite has been correctly identified or to estimate
the global false localization rate (FLR) within a given data set for all sites
reported. These scores have generally been calibrated using synthetic
datasets, and their statistical reliability on real datasets is largely unknown,
potentially leading to studies reporting incorrectly localized phosphosites,
due to inadequate statistical control. In this work, we develop the concept
of scoring modifications on a decoy amino acid, that is, one that cannot be
modified, to allow for independent estimation of global FLR. We test a
variety of amino acids, on both synthetic and real data sets, demonstrating
that the selection can make a substantial difference to the estimated global
FLR. We conclude that while several different amino acids might be appropriate, the most reliable FLR results were achieved using
alanine and leucine as decoys. We propose the use of a decoy amino acid to control false reporting in the literature and in public
databases that re-distribute the data. Data are available via ProteomeXchange with identifier PXD028840.
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■ INTRODUCTION

There is great research interest in studying post-translational
modifications (PTMs) to proteins, due to their importance in
cell signaling, as a rapid mode of proteins changing their
function, and their implication in almost all known disease
processes. The most widely studied reversible modifications
include phosphorylation (by far the most studied one and our
primary focus here), acetylation, methylation, and attachment
of small proteins, such as ubiquitin and SUMO.
High-throughput tandem mass spectrometry (MS) is

commonly used for detection and localization of phosphor-
ylation sites on proteins, using so-called phosphoproteomic
methods. Typically in these methods, proteins are first
extracted from samples and digested with an enzyme such as
trypsin, and then, phosphorylated peptides are enriched in the
sample, for example, using TiO2 or other metal ion attached to
a column (affinity chromatography), to which phosphate binds
preferentially. The bound peptides are then eluted and
analyzed by liquid chromatography−MS.1 In the common
analysis mode used in phosphoproteomics, data dependent
acquisition is performed to fragment the most abundant
peptides observed. The MS2 fragmentation spectra (plus the
mass/charge of the intact precursor) are then used to identify
peptide sequences, e.g., using sequence database search
software. In this approach, the spectra are searched against a

theoretical digest of the proteome (i.e. peptide sequence
database) for the given species, taking account for the variable
modifications selected. For phosphorylation, most users search
for phosphorylation on the canonical Ser, Thr, and Tyr (STY)
residues, where the vast majority of detectable phosphorylation
resides in eukaryotic systems. The search engine then
considers every STY residue with and without the addition
of the phosphate mass (+79.97 Da), greatly increasing the size
of the search space, with a corresponding reduction in
statistical power for peptide identification. Confident peptide
identification is governed by the quality of the match between
the observed spectrum and the theoretical spectrum expected
for a peptide from the sequence database, from which local
statistics such as p-values or e-values are usually calculated as
well as sometimes a posterior error probability (PEP). If a PEP
value is calculated, 1-PEP gives the probability that a given
peptide-spectrum match (PSM) is correct. There are of course
many different proteomics search engines, including commer-
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cial and free and/or open source; for a review, see Verheggen
et al.2

An important consideration for phosphoproteomics is the
confidence that a given site within a protein has been correctly
identified as being phosphorylated. Ambiguity in this regard
may occur when a confident PSM has more STY residues than
n, where n is the number of phosphorylation modification
instances detected, that is, intact peptidoform mass = peptide
sequence mass + (n * 79.97 Da). In this case, the search engine
itself or a downstream analysis package calculates statistics
related to each of the n phosphosites within a peptide, such as
a PEP that the site has been incorrectly localized (sometimes
also called local false localization rate (FLR); local FLR or
other ad hoc score. As for PSMs, if an accurate PEP can be
estimated, then 1-PEPsite gives the probability that the site has
been correctly localized, in this case, assuming already that the
PSM is definitively correct. Correct site localization can be
critically important for downstream uses of data. As one
example, there are completely different kinases and phospha-
tases involved in Ser/Thr versus Tyr phosphorylation, and
thus, biological conclusions as to the up and downstream
signaling pathways would be completely different. Even where
ambiguity relates to different, say, Ser residues in a peptide,
nearby amino acid motifs allow inference of the kinase
responsible for phosphorylating the site, and thus, incorrect
site determination could lead researchers to making incorrect
assumptions and conclusions.
Many of the published site localization algorithms were

benchmarked by the originating authors, and scores were
calibrated based on synthetic data sets, with a known “ground
truth”, that is, where the sites of phosphorylation were known.3

There have also been some independent efforts to benchmark
different site localization tools, showing that the choice of tool
does alter the global statistics,4,5 that is, sensitivityhow many
sites in a whole data set can be correctly localized at a suitable
overall (global) FLR. While tools continue to improve and
become more widely used for ensuring confident site
localization, there remain several unsolved challenges for the
field, as follows. First, it is unclear whether findings on
synthetic data sets can be extrapolated to genuine biological
data sets that have generally a higher level of complexity, and
synthetic data sets may have amino acid frequencies near to
modification sites, which do not well reflect natural samples.
Second, for analysis of real experimental data sets, there are no
commonly used methods for independent estimation of global
FLR, for example, that allow a researcher to ask the question
how many sites have we confidently identified and how many
are likely false positives in the whole data set. For regular
peptide/protein identification in proteomics, decoy database
search methods are now almost ubiquitously used for
estimating peptide/protein false discovery rate (FDR), since
they give a search engine-independent statistic that is easy to
understand. There is no generally accepted method for
calculating the same type of statistic for PTM site
identification. Third, our groups are interested in very large-
scale re-analysis of public PTM enriched data sets, via a project
called PTMeXchange. We wish to have methods that allow for
accurate calculation of the probability that a given PTM site
has been observed in a meta-analysis of data sets, where there
could be potentially multiple PSMs from different studies
supporting a given site. To our knowledge, there are no
suitable statistical models for combining different evidence
streams.

In this work, we explore the concept of using decoy amino
acid(s) for estimation of site localization statistics (i.e. global
FLR), in this context, defined as one that we know cannot be
modified, to model the distribution of false localizations
detected from a processing pipeline, resulting from both
incorrect peptide identifications and incorrect localization of
sites on correct peptide identifications. We test a range of
different amino acids for their suitability as a decoy in synthetic
and real data sets as well as demonstrate the results obtained
from several common proteome informatics pipelines. The
concept of using a decoy amino acid for localization of PTMs
is not a new one. It has been used before in several previous
publications and approaches.6 However, to our knowledge, no
publication has yet validated the statistics associated with the
use of decoy amino acids, particularly on multiple tools, and
the method of using a decoy amino acid has not gained
widespread use in the field. The majority of PTM-based
studies still relies on using ad hoc score thresholds for
determining whether PTMs have been correctly identified or
not. From the results we present, we make some
recommendations as to how we believe large-scale PTM-
enriched studies should be analyzed to control the local and
global FLR. While we have focused on computational analysis
and pipelines for phosphorylation, general approaches and
conclusions are largely applicable to other types of PTM
readily detected by MS. The code used for the analysis is in
GitHub: https://github.com/PGB-LIV/PhosphoFLR.

■ METHODS
Our overall goal is to demonstrate methods for controlling and
understanding FLR, rather than benchmarking tools per se,
although we wished to demonstrate the reproducibility of
methods in different pipelines. As such, we tested four
commonly used analysis pipelines: trans-proteomic pipeline
(TPP)7 including Comet search8 and PTMProphet site
localization;9 MaxQuant including PTMScore;10 ProteomeDis-
cover, including Mascot search and ptmRS localization;11 and
PEAKS DB search with A-Score.12 We tested the effects on
global FLR of selecting the localization on different amino
acids as “decoy” and profiled the frequency of potential decoy
amino acids relative to assumed correct STY phosphorylation
sites, to see which provides the decoy distribution best
matching the target distribution, that is, other STY sites to
which the site could be wrongly localized. The MS proteomics
data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE13 partner repository with the dataset
identifier PXD028840 and DOI 10.6019/PXD028840.
Four data sets were used for evaluation of methods for

estimating global FLRtwo synthetic data sets, one model
plant phosphoproteomics data set (from Arabidopsis thaliana),
and one human phosphoproteomics data set. The raw files of
the four search data sets were obtained from the
ProteomeXchange Consortium14 via the PRIDE repository.15

These included ten files from the PXD0070585 synthetic data
set (files named “HCDOT” pools 1−5, reps 1 and 2), 10 files
from the PXD000138 synthetic data set,16 twelve files from the
PXD00835517 Arabidopsis data set (rapamycin treated), and
six from the PXD00061218 human data set (files randomly
selected). The PXD007058 and PXD000138 data sets contain
synthetic phosphopeptide libraries. The use of synthetic
phosphopeptides allowed us to define FLR (through one
method) by comparing the results from our search pipelines to
the known phosphopeptide sequences to determine if our
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analyses correctly localize the phosphosites. The PXD008355
A. thaliana data set and the PXD000612 human data set are
both biological data sets with unknown phosphosites.
Databases were created for the searches of each data set. The

PXD007058 search database consisted of the synthetic
peptides;5 the PXD000138 search used IPI human sequences
and phosphopeptide libraries matched to the original study;16

the PXD008355 Arabidopsis search database contained
Araport1119 sequences, and the PXD000612 human search
database was created from the Level 1 PeptideAtlas Tiered
Human Integrated Search Proteome,20 containing core iso-
forms from neXtProt.21 Each search database also contained
the cRAP contaminant sequences (https://www.thegpm.org/
crap/, last accessed October 2021). Decoys across all four
databases were generated for each entry using the Brujin
method (with k = 2).22

Using the TPP,7 the data set files were first searched using
Comet.8 The resulting files were then combined and processed
using PeptideProphet,23 iProphet,24 and PTMProphet.9 For
PXD007058, in addition to searching for phosphorylation, we
also searched for pyrophosphorylation modifications, which
pilot searches had determined that were unintentionally
present on some synthetic peptides. The key Comet search
parameters for each dataset are shown in Table 1; the key
parameters used for the other pipelines are shown in
Supporting Information Table S1.

Downstream Data Analysis

The data from searching with TPP were downstream
processed by custom Python scripts (https://github.com/
PGB-LIV/PhosphoFLR). First, the global FDR was calculated
from the decoy counts, and the PSMs were filtered for 1%
PSM FDR. From these filtered PSMs, a site-based file was
generated giving separate localization scores for each
phosphosite found on each PSM, removing decoy and
contaminant hits. These site-based PSMs were ordered by a
combined probability, calculated by multiplying the PSM
probability by the localization probability. In the processing
pipeline from TPP, iProphet calculates a probability that a
given PSM is correct, and PTMProphet calculates a probability

for the site assignment. We demonstrated that there is almost
no meaningful correlation (r2 = ∼0.01) between these
probabilities (Supporting Information Figure S1), and thus,
we conclude that these probabilities are sufficiently independ-
ent that they can be multiplied to arrive at a final probability
that a given site’s identification is supported by the given
spectrum.
For the PEAKS search, the PSM score and A-scores for

targets and decoys were modeled based on the counts of
targets and decoys per histogram score bin, to generate similar
probability estimates (code provided in the GitHub
repository). For MaxQuant and Mascot searches, the PSM
probability values were calculated as 1-PEP values (reported by
the pipeline natively) with the PTM probabilities being
calculated innately through PTM-score/ptmRS probabilities,
respectively. For the synthetic peptide search, these site-based
results were then filtered further to allow comparison with the
synthetic peptide known localization key. Partial peptides and
PSMs with the incorrect phosphorylation count compared to
what was expected from the answer key, or other additional
modifications, were removed. These remaining PSMs were
then compared against the synthetic peptide answer key to
determine if the phosphosites had been correctly identified.
For analysis of the synthetic data only, results were ordered by
the corresponding site localization probability rather than the
combined probability; since due to the small size of the search
database, not all pipelines could produce accurate estimates of
PSM probability.
The sites reported for each analysis method were ordered by

combined probability, and global FLR was estimated for every
ranked site, from which we can then later apply a threshold at
the lowest scoring site that delivers a desired global FLR (e.g.
1, 5, or 10%), similar to the q-value approach for standard
database searching. The global FLRs for all of the data sets
were estimated using two methodsmodel FLR and decoy
FLR method. For the synthetic data sets, a third method was
also used, called answer key method (comparing against the
known phosphosite answer key)

Table 1. Comet Search Parameters for Each Data Set

PXD007058 (synthetic data set)
PXD000138

(synthetic data set)
PXD008355

(Arabidopsis data set) PXD000612 (human data set)

peptide mass
tolerance

20.0 ppm 5 ppm 7 ppm 7 ppm

fragment bin
tolerance

0.02 Da 0.02 Da 0.02 Da 0.02 Da

digest mode tryptic tryptic tryptic tryptic
max missed
cleavages

4 4 2 2

fixed mods carbamidomethylation (C) carbamidomethylation (C) carbamidomethylation (C) carbamidomethylation (C)
variable mods oxidation (MWP) oxidation (M) oxidation (M) oxidation (M)

phospho (STYXa) phospho (STYXa) phospho (STYXa) phospho (STYXa)
pyrophospho (STY)b, N-terminal
acetylation

N-terminal acetylation N-terminal acetylation N-terminal acetylation

ammonia loss (QC) ammonia loss (QC) ammonia loss (QC) ammonia loss (QC)
pyro-Glu (EQ on the N-terminus) pyro-Glu

(EQ on the N-terminus)
pyro-Glu
(EQ on the N-terminus)

pyro-Glu
(EQ on the N-terminus)

deamination (NQ) deamination (NQ) deamination (NQ) deamination (NQ)
max variable PTMs 5 5 5 5
aX corresponds to the different decoy amino acid searched: Ala, Gly, Leu, Asp, Glu, or Pro. bPreliminary analysis of the data set detected that
several peptides had been manufactured with pyrophosphate modification rather than the intended phosphate, which can cause apparent errors
when comparing the results to the answer key if they are not accounted for.
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Model FLR Method

First, we estimated the global FLR using the combined
probabilities (global model FLR). For TPP, we use the 1
final probability, to give the local FLR (PEP) for each given
site scored in a ranked list. The “Global model FLR” is
calculated as a running sum of the local FLR divided by the
count of rows (eq 1), that is, the estimated frequency of false
localizations at each row in a ranked list, divided by the total
number of reported observations.

P P

n
Global Model FLR

(1 ( ))
n

n
n n1
PSM PTM

_ _ =
∑ −

(1)

Global Model FLR Equation

Where n is the count of observations, PPSM is the local FLR
(PEP) for a given PSM identification and PPTM is the local FLR
for a given site localization.
Decoy FLR Method

We used the identification of phosphorylated decoy amino
acids (e.g. worked example follows for alanine, pA), as these
are known to be false localizations and can therefore be used to
estimate the FLR. The counts of the phosphorylated decoy
amino acids were first normalized to allow comparison with
true hits; by modeling the random frequency, one would
expect incorrect sites to be assigned to target STY residues.
The target/decoy ratio (Tc/Xc) was determined by dividing
the total count of STY residues (Tc) by the total count of the
decoy amino acid residues (Xc), within the set of PSMs with a
scored phosphosite (eq 2).
At each position in the ranked list, we have a count of decoy

amino acids observed ∑1
n(pXc). For every false localization of

the decoy amino acid, it would be expected that there is a
count of “silent” false positives within the target list,
proportional to the ratio of STY amino acids divided by the
total count of decoy amino acids, that is, (Tc/Xc) ∑1

n(pXc), to
model the expected frequency of random wrong hits. The
expected count of false positives within the targets is then
multiplied by 2 (to model the normalized frequency of random
wrong assignments among both the decoy amino acid and the
target amino acid) to arrive at a normalized false localization
count. This is a relatively conservative method to calculate
global FLR, but without the correction to multiply by two, the
use of a less frequent decoy amino acid would be insufficiently
corrected for.
This normalized false localization count is then divided by

the total count of observations (n), at a given row in the
ranked list, to obtain the Model (global) FLR estimate
(pX_FLRn in eq 2).

T X pX

n
pX FLR

2( / ) ( )
n

n
c c 1 c_ =

∑
(2)

Phosphorylated Decoy Amino Acid FLR Equation

Where Tc is the total target (STY) count, Xc is the total decoy
amino acid count, pXc is the count of phosphorylated decoy
amino acid, and n is the count of observations at a given
position in the ranked list.
Answer Key FLR

For the synthetic data sets, we used the synthetic peptide false
localizations in a similar way; the false localization count (i.e.
result not matching the answer key) was divided by the total
count of sites to calculate the FLR (eq 3).

F

n
Synthetic peptide FLR

( )
n

n
1 c_ _ =

∑
(3)

Synthetic Answer Key FLR

Where n is the count of observations, and false localization
count Fc is the count of sites not matching the answer key in a
given position in the ranked list.

Collapsing Observations of a Site across Multiple PSMs

When summarizing study results, it is desirable to “collapse”
results where there are multiple PSMs supporting the same
modification site down to a single row. There is no well-agreed
method for collapsing data, although common practice when
using collapsing multiple PSMs into individual reports for
peptides is to use the maximum peptide score for ordering
results and disregarding the count of PSMs. The rationale for
this simplification is that multiple PSMs reporting for the same
peptide are not independent statistical tests and thus the same
wrong answer can appear in multiple PSMs. As such, a simple
method for ranking final “collapsed” results for sites is simply
to take the maximum final probability. However, our own
profiling of data sets suggests that this method is sub-optimal.
Many of the high scoring decoy hits are supported by only a
single PSM, and so a collapse method that weights sites
supported by a higher number of PSMs is more likely to be
true than the one supported by a single PSM (Supporting
Information Figure S2). For this study, we use a relative ad hoc
method for collapsing multiple observations that attempts to
balance maximum final probability and spectral counts. We
took the maximum probability for a given site, derived from
multiple PSMs and binned into final probability values for 2
decimal places. We ranked via binned final probability and
then ranked within bins via the count of PSMs.

Profiling Distance Distributions from Real Identifications
to Decoy Amino Acids

In order to compare between the decoy amino acids
investigated, the distribution of amino acids around phosphor-
ylation sites were compared. The phosphorylation sites
obtained searching each database for phospho (STY) using
TPP was first filtered for 5% model FLR. The minimum
distance between an assumed correctly localized phosphory-
lated STY and the nearest candidate amino acid was compared,
alongside the minimum distance for the nearest STY.
Histograms were generated with the normalized frequencies
of these distributions in order to compare between the selected
decoy amino acids and STY.

Profiling Site Probabilities for Proximal Amino Acids

When analyzing the results for different decoy amino acids, we
observed particular differences in the global FLR estimates for
certain decoys (particularly pAla vs pGly) that could not be
explained by distributions of amino acids in relation to
confident target sites (above). We further explored these
effects by calculating the average final probabilities for assumed
correct sites with different amino acids in the −1 and +1
position relative to the site. The assumed correct sites were
estimated as sites with combined probability ≥0.68. This
threshold was calculated from the average minimum combined
probability using a 5% FLR cut off for each of the decoy FLR
estimations across all searches. These average probability
distributions were calculated for the Arabidopsis and human
data sets, from results of the TPP search with no decoy amino

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.1c00827
J. Proteome Res. 2022, 21, 1603−1615

1606

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.1c00827/suppl_file/pr1c00827_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.1c00827/suppl_file/pr1c00827_si_001.pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


acid (pSTY), pAla decoy (pASTY), pLeu decoy (pLSTY), and
pGly decoy (pGSTY).

■ RESULTS

Analysis of Synthetic Data Set PXD007058

The analysis setup aimed to determine whether global FLR
within genuinely modifiable residues (target amino acids)
could be estimated reliably by including in the search a “decoy”
amino acid, that is, not modified. We tested localization on six
different amino acids to act as a decoy in parallel searches:
glycine, leucine, alanine, glutamate, aspartate, and proline, to
determine what effect the selection of a particular decoy had
on the results obtained. The set of potential decoy amino acids
was selected based on the following rationale: (i) glycine,
leucine, alanineno evidence that they can be phosphorylated
in any known biological system; all are relatively frequent
amino acids in most biological systems; (ii) glutamate
frequently phosphorylated25 and not typically detectable as
phosphorylated in most standard enrichment MS experiments
and thus could be a plausible choice as a decoy; (iii) aspartate
and proline were chosen as expected to be deliberately poor
choices of decoy amino acids since there are known SP and SD

phosphorylation motifs, which could bias estimates of global
FLR. We expect that a statistically reliable choice of amino acid
should have a similar distance distribution from a phosphor-
ylation site (STY) to another truly possible phosphorylation
site (STY), under the theory that incorrect localizations are
more likely to amino acids nearby in the sequence.
We first searched the PX007058 synthetic dataset, which

allowed us to test the three different methods of FLR
estimation against a known answer. The data set was searched
using TPP and the global FLR of these was calculated using
the decoy phosphorylated amino acid method for six different
choices of decoy amino acid, that is, in six parallel searches
(Figure 1a). As described in the Methods, the global “Decoy”
FLR is estimated based on the counts of hits to the decoy
amino acids in the ranked list of results, adjusted for the ratio
of the counts of the decoy amino acid to the target amino acid
in the modified peptides that have been considered. We also
show the global FLR calculation for all three methods in Figure
1b−g, split by decoy amino acid choice; that is, (i) answer
keyidentifying false localization by comparing to the known
phosphosites (in this synthetic data set, where the truly
modified site is known), (ii) decoy amino acid method, and

Figure 1. (a) Comparison of FLR estimation searching PXD007058 (synthetic data set) using localization on different decoy amino acids: pAla,
pGly, pLeu, pAsy, pGlu, and pPro (TPP, fully tryptic, 1 %FDR); (b−g) comparison of FLR estimation methods searching PXD007058 for each of
the different decoy amino acids (TPP, fully tryptic, 1% FDR). X-axis = count of sites, y-axis is global FLR estimated as q-values.

Table 2. Counts at pX FLR (Calculated by the Decoy Method) for 1, 5, and 10% Using Each FLR Method, Searching
PXD007058 (Synthetic Data Set) (TPP, Fully Tryptic, 1% FDR)

count at 1% FLR count at 5% FLR count at 10% FLR

answer key model decoy answer key model decoy answer key model decoy

pAla 702 226 799 835 700 866 935 836 921
pGly 571 203 515 778 645 749 866 791 787
pLeu 632 229 665 843 710 823 938 844 914
pAsp 535 258 207 834 721 784 929 849 805
pGlu 722 232 841 858 734 952 975 866 n/a
pPro 636 206 621 817 692 768 883 832 823
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(iii) model FLR that is based on summing local FLR calculated
by the analysis software intrinsically (see Methods). The first
observation we make is that the choice of decoy amino acid
can have a substantial effect on the sensitivity (counts of
assumed true sites), for a given estimated global FLR threshold
(Table 2 and Figure 1). At 5% FLR, the lowest sensitivity is
achieved with a Gly decoy (749 sites) versus the highest
sensitivity with a Glu decoy (952 sites).
It can be seen that for pAla and pLeu decoys (Figure 1b,d),

there is a close agreement between the two “empirical”
methods of estimating global FLR, that is, answer key and
decoy, with the model giving more conservative estimates of
FLR. The pGly and pPro methods (Figure 1c,g) have good
agreement between the answer key and decoy methods up to
∼700 counts, and then, the decoy method gives more
conservative estimates (rising steeply), compared to the
answer key method (and model). The pAsp decoy method
agrees well with the model FLR but is more conservative than
the answer key (Figure 1e). The pGlu decoy method is the
least conservative, apparently underestimating global FLR
compared to the answer key (Figure 1f). Overall, the matching
of pAla and pLeu decoy FLR estimation to the answer key FLR
gives some supporting evidence toward pAla and pLeu being
appropriate choices for decoy amino acids. The model FLR
method is shown to be more conservative that the other
“empirical” FLR methods in most cases, especially in the most

important regions of distribution, that is, up to 5% global FLR
for example.
The estimates from Figure 1b−g and Table 2 demonstrate

greater stability in the model FLR and answer key FLR across
different decoy amino acids; that is, there is less variation in
sensitivity at a given estimated FLR. This is to be expected
since comparing the six different searches, many of the errors
in localization are due to incorrect localization to a target
amino acid (which largely behave the same across the six
searches).
On the same synthetic data set, PXD007058, we also

compared the estimation methods across four different
pipelines: TPP, PEAKS, MaxQuant, and Mascot (Supporting
Information Figure S3 and Table S2), searched for pSTY
pASTY and pLSTY (for decoy comparison). The initial set of
results from our analysis pipeline are the redundant
identification of phosphorylation sites; that is, if multiple
PSMs support the same site, these appear as multiple rows
(not collapsed). In general, as noted in the Methods, our
preference is to order these results by the final probability that
a site has been observed (PSM−probability X site localization
probability). This synthetic data set has a small database size
and an overall small count of identifications, which makes it
difficult to model PSM probability accurately. As such, for the
synthetic data set only, we ordered results by site localization
probability, having first accepted only PSMs with FDR <1%.

Figure 2. Comparison of FLR estimation searching PXD008355 (Arabidopsis data set) using different decoy amino acids: pAla, pGly, pLeu, pAsy,
pGlu, and pPro (TPP, fully tryptic, 1 %FDR). (a) all PSMs; (b) zoom 5% FLR all PSMs; (c) collapsed by modified peptide, sorting by combined
probability and count of supporting PSM; (d) collapsed by modified peptide, sorting by combined probability and count of supporting PSMs,
zoom at 5% FLR. X-axis = count of sites; y-axis is global FLR estimated as q-values.
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FLR was calculated using the synthetic answer key and the
decoy amino acid hits. For all four pipelines tested, both the
pAla and pLeu decoy methods agree well with the results from
the answer key FLR method across all three pipelines,
demonstrating that our method with these amino acids gives
reliable FLR estimates in a software-independent manner.
There are differences in the total number of sites identified at a
fixed FLR threshold, depending on the pipeline applied. For
this data set, TPP gives the highest sensitivity, followed by
PEAKS, Mascot/ptmRS, and MaxQuant. However, our
primary goal in this manuscript is not extensively to
benchmark different pipelines, as there are choices of algorithm
parameterization, which need to be optimized and could affect

conclusions, and thus, we do not make any general conclusions
about software performance for PTM analysis here.
The synthetic data set PXD000138 was also used to

compare the FLR calculations using localization on different
decoy amino acids (Supporting Information Figure S5 and
Table S3). These results also showed a close agreement
between the “empirical” methods of global FLR estimation;
that is, the answer key and decoy estimation methods generally
agreed with each other across the different decoy amino acids,
although as observed for PXD007058, the choice of decoy
amino acid affects the sensitivity (count of sites at a fixed
FLR). The model estimation gives more conservative estimates
of FLR across all decoy searches. In order to further compare
between the decoy amino acids investigated, the distribution of

Table 3. Counts at pX FLR for 1, 5, and 10% Using Each Decoy Method, Searching PXD008355 (Arabidopsis Data Set) (TPP,
Fully Tryptic, 1% FDR) Showing all PSMs (Not Collapsed) and Collapsing Multiple PSMs to One Row per Modified Peptide,
Sorting by Combined Probability and Count of the Supporting PSMs

count at 1% FLR count at 5% FLR count at 10% FLR

not collapsed collapsed not collapsed collapsed not collapsed collapsed

pAla 23,104 1570 40,541 4704 44,556 5815
pGly 18,872 1469 35,939 3654 38,885 4990
pLeu 17,943 1017 42,157 4964 45,875 6068
pAsp 13,490 234 32,595 4151 39,262 5130
pGlu 21,923 2766 34,949 4385 40,532 5607
pPro 23,696 2771 35,170 4483 38,226 5221

Figure 3. Comparison of minimum distance between phosphorylated STY and the nearest target amino acid (Ala, Leu, Gly, Asp, Glu, and Pro),
compared to STY distribution, searching PXD008355 (Arabidopsis data set).
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amino acids around phosphorylation sites was compared for
each of the synthetic sets (Supporting Information Figures S4
and S6). It would be assumed that if a phosphosite is wrongly
localized, it would usually be to the nearest other STY residue
than the correct site. We therefore assumed that a statistically
reliable decoy amino acid will follow a similar (normalized)
frequency distribution to the closest STY residue from correct
hits. For the two synthetic data sets, all decoy amino acids had
substantial differences between their distributions in relation to
the assumed correct phosphosites, and none, in particular,
matched well the distribution of the nearest STY residues.
Given the artificial nature of synthetic data sets, we do not
expect these distributions to reflect the reality of biological data
sets, and thus, we next explored the behavior of the method on
real data sets.

Biological Data Set Analysis

Data Set PXD008355. To investigate the effect of using
localization on different decoy amino acids on different data
sets, we compared the FLR estimations across the six different
amino acids using two experimental data sets from A. thaliana
and human. Figure 2 shows the decoy FLR comparisons
searching the PXD008355 Arabidopsis data set with TPP.
Here, we can see a similar trend as previously seen in the
synthetic data set PXD007058. The FLR estimations with pGly
and pPro give the most conservative performance at higher
FLR values; that is, a steep rise in global FLR (Figure 2a)
giving the lowest sensitivity at 10% global FLR, although there
is a more complex picture at 1 and 5% FLR values (Table 4
and Figure 2b). We assume that many studies will aim to
threshold at 5% global FLR; here, we observe lowest counts (of
sites at 5% FLR) for the pAsp decoy and intermediate counts
for pGly, pGlu, and pPro methods, and the highest counts of
sites (sensitivity) for pAla and pLeu decoys. One of the
challenges with accurate FLR estimation is that there can be
some high-scoring incorrect localizations, and their position in
the ranked list can have significant implications on the count of
sites at 1% FLR (Figure 2b and Table 3). We thus would not
recommend general thresholding at 1% global FLR but instead
we recommend applying a 5% FLR where the global FLR
estimates are likely to be robust. There is additional discussion
of these high-scoring false hits in the Supporting Information
(i), Figure S7 and Table S4. We also calculated the model FLR
for each decoy option, demonstrating good agreement at 5%
FLR between the two methods (decoy FLR vs model FLR) for
pAla, pLeu, and pGly decoy options but less good agreement
for other decoys (Supporting Information Figure S8).
We next explored data after collapsing multiple scores from

different PSMs supporting the same site, taking the maximum
probability for a given site for ranking results, along with the
greatest number of supporting PSMs (see Methods). The
results following this collapse step are shown in Figure 2c,d,
demonstrating relatively similar trends, with considerable
differences in sensitivity at 5 and 10% global FLR, with pAla
and pLeu giving highest sensitivity at a 5 and 10% FLR. The
statistical assumptions for the model FLR do not hold after
collapse, so this method was not used.
To further investigate the selection of decoy amino acid

candidates, the minimum distance between an assumed
correctly localized phosphorylated STY (<5% global FLR
filtered) and the nearest candidate amino acid were compared,
alongside the minimum distance for the nearest STY (Figure
3). The rationale for this comparison is that in a regular search,

not employing a decoy, if a phosphosite is wrongly localized, it
will usually be to the nearest other STY residue than the
correct site. We assume that a statistically reliable decoy amino
acid will follow a similar (normalized) frequency distribution
to the closest STY residue from correct hits. When comparing
these distances in the Arabidopsis data set, it can be seen that
Ala, Leu, and Gly follow somewhat similar frequency
distributions to proximal STY, particularly, in the + positions
(i.e. toward the C-terminus of the protein). Asp, Glu, and Pro
are all enriched at the +1 position relative to STY, which likely
partially explains the higher FLR estimates observed for the
same site counts in Table 3 and Figure 2; that is, the pipeline
wrongly assigns sites to Asp, Glu, and Pro more frequently
than it would be other target sites (STY). We also observed in
Table 3 that using a glycine decoy gave relatively low
sensitivity at 5% FLR and steeply increasing FLR at higher
site counts. The results for Gly in Figure 3 are thus an outlier
with respective to Figure 2 as well as for the synthetic data set
PXD007058 in Figure 1, in which we observed the lowest site
count at 5% FLR for estimates using a Gly decoy. Our starting
expectation was that Ala, Leu, and Gly would all make reliable
choices as decoy amino acids, and thus, we also conducted an
analysis of amino acid frequencies to attempt to explain the
differences seen for Gly; results are shown in Supporting
Information (ii) and Table S5. Gly and Ala have similar
frequencies of observations in phosphopeptides, so this also
does not explain the disparity. We further explore this
phenomenon below.
Similar to the PXD007058 synthetic data set, a comparison

between FLR estimates was made across the different
pipelines: TPP, PEAKS, MaxQuant, and Mascot/ptmRS. The
PXD008355 Arabidopsis data set was searched with an Ala
decoy as well as a Leu and Gly decoy, and FLR estimations
were calculated in the same way as before (Supporting
Information Figure S9 and Table S6). In general, highest
sensitivity is achieved by TPP and Mascot/ptmRS, whereas
there are high-scoring decoy (amino acid) hits in the other two
pipelines that lead to much lower sensitivity at a given FLR
cut-off. For TPP and Mascot/ptmRS pipelines, the results from
estimation with the three decoys are largely reproducible; that
is, pAla and pLeu gives highest (and similar) counts of sites at
a given FLR, whereas pGly gives a lower count of sites at the
same FLR threshold.
In this approach, sites are ordered by final probability (PSM

probability * PTM probability). An alternative approach
commonly used in the field is to threshold first at say <1%
FDR for PSMs or peptide, and then order purely by PTM
localization score or probability. We tested a similar approach
to see what effect there is on sensitivity at a given FLR for the
pAla results (Supporting Information Figure S10). While
ordering site localizations by PTM probability only rather than
the combined PSM*PTM probability, we can see that there is
lower sensitivity at 1% FLR for the PTM probability option,
and almost identical sensitivity between the two options at 5
and 10% FLR (Supporting Information Table S7). We
therefore conclude that it is slightly superior to model both
the probability that a given PSM is correct as well as that the
PTM has been correctly localized to give the best ordering of
results, particularly for those highest scoring around 1% global
FLR.

Data Set PXD000612. Given that we see consistent trends
for the synthetic data set and Arabidopsis data set in terms of
comparing decoys across different pipelines, for the final
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validation, we focus only on the use of TPP on one further
validation set from a different species (human). We would
expect some different phosphorylation motifs comparing an
animal species to a plant species, which could affect decoy
amino acid performance. Figure 4 and Table 4 illustrate the
FLR comparison using the different decoy amino acids,
searching the PXD000612 human data set. A similar trend
can be seen here as in the Arabidopsis data set with pAla and
pLeu giving the highest site counts at 5% FLR and pAsp giving
lowest site count. On the zoomed plot (<5% FLR, Figure 4b),
the same issue as for data set PXD008355 can be observed,
with unstable decoy estimation at low counts due to a random
factor from a few high-scoring decoys (FLR < 1%). For this
data set, there is also good agreement between the model FLR
and the decoy FLR for most amino acids except pGlu, where
the model FLR tends to be more conservative than decoy FLR

(Supporting Information Figure S11). We also show the data
after collapsing multiple PSMs reporting on the same site
(Figure 4c,d), giving similar trends in sensitivity at fixed FLR
thresholds as for data without collapse.
The distance between the phosphorylated STY and the

nearest candidate amino acid were again compared (Support-
ing Information Figure S12) to further investigate the effect of
decoy amino acid choice and to examine how the distributions
differ between the different data sets. When comparing these
distances in the human data set, a similar pattern is seen to that
of the Arabidopsis data set. It can be seen that Ala and Leu
again follow a somewhat similar frequency distribution to
proximal STY residues, again particularly in the positive
direction. Asp and Pro are again enriched at the +1 position
relative to STY, which would be expected. Gly is also seen to
follow a similar distribution to STY residues and therefore

Figure 4. Comparison of decoy FLR estimation searching PXD000612 (human data set) using different decoy amino acids: pAla, pGly, pLeu,
pAsy, pGlu, and pPro (TPP, fully tryptic, 1 % FDR). (a) no collapse, all sites shown; (b) zoom on 5% FLR; (c) collapse to unique sites; (d) zoom
on <5 FLR for data collapsed to unique sites. X-axis is count of sites, y-axis is global FLR, estimated as q-values by the decoy method.

Table 4. Counts at pX FLR for 1, 5, and 10% Using Each Decoy Method, Searching PXD000612 (Human Data Set) (TPP,
Fully Tryptic, 1% FDR) Showing all PSMs (Not Collapsed) and Collapsed to Unique Sites

count at 1% FLR count at 5% FLR count at 10% FLR

not collapsed collapsed not collapsed collapsed no collapsed collapsed

pAla 62,050 5246 95,924 9504 103,609 11,491
pGly 58,367 5557 86,752 9267 94,536 11,193
pLeu 3822 6705 98,875 10172 106,453 12,030
pAsp 2650 809 71,968 8458 86,451 10,052
pGlu 22,563 608 78,708 7819 94,337 10,092
pPro 47,942 3256 79,821 7384 90,430 9482
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would be expected to be a reliable decoy amino acid, based on
this measure. However, looking at the FLR comparisons seen
in Figure 4, Gly can be seen to give more conservative FLR
estimation (or lower site counts at 5% FLR e.g. than Ala or
Leu), as was also seen in the Arabidopsis data set.
We next explored whether particular amino acids in

proximity to true phosphorylation sites cause results to change.
We plotted the average final probabilities for the Arabidopsis
data set searched via the TPP pipeline and split according to
the amino acid in the −1 (Figure 5) and +1 (Supporting
Information Figure S13) position relative to the assumed
correct phosphorylation site, for the data set searched with no
decoy pSTY, pAla decoy, pLeu decoy, and pGly decoy. In the
search with no decoy, there is a particular striking trend that
sites have a lower probability when the −1 amino acid is Ser,
Thr, or Tyr. This occurs because the site localization algorithm
(PTMProphet in this case) has fewer ions available to
discriminate the correct from incorrect localization. In the
pAla and pLeu results, we see that Ala and Leu in the −1
position cause sites to have a similar reduction in final
probability as Ser, Thr, and Tyr in the no decoy search, that is,
final probability shifts from around ∼0.96 to ∼0.91 (Ala and
Leu decoy). We interpret this to mean that they behave as
statistically “good decoys”; that is, when they are present in the
−1 position relative to a true site, they behave in a similar
manner to STY residues. In the pGly data, there is a much
larger drop off in final probabilities when G is in the −1
position (∼0.96 to ∼0.87), meaning that (most commonly)
Gly-pSer sites are scored less well that phosphoserines
preceded by other amino acids, and excessive probability
space is being distributed to the pGly-Ser hypotheses. In the
results, we observe that around 47% (Arabidopsis data) and
35% (human data) of the high scoring pGly decoys have the
pGly-Ser motif. We see similar trends in the human data set

(Supporting Information Figures S14 and S15). It is unclear
why this particular amino acid combination causes a problem
for PTM localization, but we hypothesize that the Gly-pSer
bond is perhaps particularly stable during fragmentation and
hence a discriminating y ion terminating with pSer is less
commonly observed. We thus conclude based on what we have
observed that pGly is not an ideal choice for a decoy amino
acid.

■ DISCUSSION

In the proteomics field, prior to the widespread adoption of
decoy database searching, there was a general problem with
false positive results in the literature, as labs vied to report the
largest number of peptides and proteins, without control of
FDR. It is now accepted that all proteomics studies should
control FDR at an appropriately conservative level, for
example, <1% FDR at the protein-level for protein-centric
studies. It has long been recognized that a similar problem
exists with reporting PTM sites. The accurate discovery of a
site can be crucially important for downstream interpretation
since the identity of the residue (STY for canonical
phosphorylation) and the proximal amino acids govern
understanding of the kinase and phosphatase that regulate it.
Given the interest in understanding phosphorylation (and
other PTM) sites in most human diseases, adequate control of
false reporting is crucial. It has been recently reported that
>80% of the reported sites in a popular phosphorylation
database are estimated to be false positives.26 This likely
resulted due to studies using overly weak FLR thresholds in
publications, and results then get deposited in databases.
Correct identifications tend to be reported from multiple
studies, whereas random wrong site identifications tend to be
seen only one or twice, and thus over time, database-level FLR
creeps up.

Figure 5. Comparison of averaged final site probabilities for all peptides (final probability ≥0.68 split by amino acid in the −1 positions for the
PXD008355 (Arabidopsis data set). (a) STY (no decoy); (b) STY with Ala decoy; (c) STY with Leu decoy; and (d) STY Gly decoy.
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This study is, to our knowledge, the most detailed attempt
to understand how best to estimate global FLR using
localization on decoy amino acids. We compare the method
against the use of a statistical model, based on summing local
FLR values, and the results agree reasonably but not perfectly
well. We also demonstrate that the selection of a particular
amino acid, even when correcting for the frequency of that
amino acid in the results, does influence results more than
would be desirable. We believe that our results back up that
either pAla or pLeu make appropriate decoys based on their
similar frequencies proximal to real phosphorylation sites (in a
test case from humans and a model plant), as compared to
target amino acids STY. The results for pAla and pLeu decoys
also agree well with the model FLR (for the large data sets)
and the answer key FLR, for the synthetic data sets. We have a
slight preference to use pAla as a decoy going forward since
there is a slight risk of confusion between Leu and Ile amino
acids, which often cannot be distinguished by MS. In rare
cases, where there are two peptides in the database, differing
only by Ile/Leu, errors or inconsistencies in decoy FLR
estimation could be introduced.
From the TPP pipeline, using iProphet and PTMProphet, it

is possible in theory to use either the model FLR or the decoy
FLR for thresholding final results. As noted above, performing
a 1% global FLR threshold may be unstable (based on the
decoy FLR method), depending on the chance of appearance
of a few decoys high on the ranked list. If control at this level is
required, for example, in cases where the exact sites of all
modifications will be used in future validation studies, the
model FLR would thus be preferred. For a less conservative
threshold, say 5% FLR, for example, used when making more
general biological conclusions from a quantitative study or
pathway analysis following it, we believe that thresholding
using the pAla decoy FLR method can be recommended. The
rationale is that this method can be straightforwardly applied
using any combination of tools and is simple to interpret. Most
other pipelines in current use do not report accurate PEP
values for PSMs and for site localization, allowing model FLR
to be calculated reliably. We also recommend that the scores
per site (final probability in the case of TPP-produced data)
and the pAla “identifications” get carried forward and reported.
This allows for the potential for meta-analyses and database
submissions to estimate the resulting global FLR once multiple
data sets have been combined.
We acknowledge that there is a slight downside to searching

with a decoy amino acid in that the search spaces for PSM
identification and PTM localization are both increased, leading
to a potential loss in sensitivity. In our analyses, Ala residues
are present at less than 1/3 the total frequency of STY
residues, leading to a relatively modest increase in search
spaces, say 30%. We also suggest that the proteomics field has
generally accepted that doubling the PSM search database
(and search time) through the inclusion of decoys is an
acceptable trade-off for gaining the ability to estimate global
FDR straightforwardly and transparently. It is also important to
stress that the method of searching for a decoy amino acid is
intended to perform global correction for different errors that
can be introduced in a modification discovery pipeline (e.g.
incorrect peptide identification and incorrect site localization).
However, the approach does not enable calculation of local
statistics for false discovery since a given decoy amino acid will
not be present in all peptides and has a variable count of decoy
sites in other peptides, compared to target amino acids. For

local statistics, groups should rely on pipelines that can
calculate accurate statistics for peptide identification and site
localization. Nevertheless, our results show that adding an
empirical decoy amino gives confidence that appropriate
thresholds and quality control has been applied throughout
the analytical pipeline, to deliver the final results from a study.
While we have presented results for pAla as a decoy for
phosphorylation studies, we also suggest that modified Ala
could also be an appropriate decoy for other modification
types, such as Lys modifications acetylation, methylation,
ubiquitination SUMOylation, and so forth or for cases where
multiple modifications are scored at the same time, although
we have not yet profiled the amino acid distributions
sufficiently to conclude that Ala is more suitable than other
amino acids in these cases.

■ CONCLUSIONS
We have assessed six different amino acids for their ability to
act as suitable decoy amino acids for the estimation of global
FLR in phosphoproteomics studies. We have analyzed four
data sets, two synthetic with a known answer and two
biological-sample data sets. We conclude that either Ala or Leu
make appropriate decoys and give reliable estimates of FLR
above 1% FLR. Below 1% FLR, estimates can be unstable due
to a few random high-scoring decoys. We demonstrate that the
decoy-based FLR gives similar estimates to a modeled FLR for
Ala and Leu decoys, based on summing local FLR values per
site and based on the answer key for the synthetic data sets.
We recommend that phosphoproteomics investigators should
adopt the “pAla” decoy going forward, that is, the pASTY
method, and report sites with appropriate global FLR control.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00827.

Search parameters for each data set; log10 PTM
probability versus PSM probability; boxplots of PSM
supporting targets and decoys; comparison of pX FLR
estimation searching PXD007058 using different pipe-
lines; comparison of pAla/pLeu decoy FLR estimation
searching PXD007058 using different pipelines; compar-
ison of the minimum distance between phosphorylated
STY and the nearest target amino acid, compared to the
STY distribution, searching PXD007058; comparison of
FLR estimation searching PXD000138 using localization
on different decoy amino acids; comparison of FLR
estimation methods searching PXD007058 for each of
the different decoy amino acids; counts at pX FLR using
the FLR method, searching PXD000138; comparison of
the minimum distance between phosphorylated STY
and the nearest target amino acid, compared to the STY
distribution, searching PXD000138; comparison of FLR
estimation searching PXD008355 using different decoy
amino acids; counts of sites at pX decoy FLR for
different thresholds using each decoy amino acid
searching PXD008355; comparison of pX decoy FLR
and model FLR estimation searching PXD008355 for
different amino acids; comparison of amino acid
frequency ratios between STY and the decoy amino
acid for the identified peptides, identified phosphopep-
tides, and the search database; comparison of decoy FLR

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.1c00827
J. Proteome Res. 2022, 21, 1603−1615

1613

https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00827?goto=supporting-info
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


estimation searching PXD008355 using different pipe-
lines for pAla, pLeu, and pGly; comparison of pAla/
pLeu/pGly decoy FLR site counts searching
PXD008355 using different pipelines; comparison of
pAla decoy FLR estimation searching PXD008355 using
different pipelines; counts of sites at pAla decoy FLR for
different thresholds using each pipeline, searching
PXD008355; comparison of pX decoy FLR and model
FLR estimation searching PXD000612; comparison of
the minimum distance between phosphorylated S, T, or
Y and the nearest target amino acid, compared to the
STY distribution, searching PXD000612; comparison of
averaged final site probabilities for all peptides split by
amino acid in the +1 positions for the PXD008355; and
comparison of averaged final site probabilities for all
peptides split by amino acid in the +1 and −1 positions
for PXD000612 (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Andrew R. Jones − Institute of Systems, Molecular and
Integrative Biology, University of Liverpool, Liverpool L69
3BX, U.K.; orcid.org/0000-0001-6118-9327;
Email: Andrew.Jones@liverpool.ac.uk

Authors

Kerry A. Ramsbottom − Institute of Systems, Molecular and
Integrative Biology, University of Liverpool, Liverpool L69
3BX, U.K.; orcid.org/0000-0002-7432-9293

Ananth Prakash − European Molecular Biology Laboratory,
EMBL-European Bioinformatics Institute (EMBL-EBI),
Hinxton, Cambridge CB10 1SD, U.K.

Yasset Perez Riverol − European Molecular Biology
Laboratory, EMBL-European Bioinformatics Institute
(EMBL-EBI), Hinxton, Cambridge CB10 1SD, U.K.;
orcid.org/0000-0001-6579-6941

Oscar Martin Camacho − Institute of Systems, Molecular and
Integrative Biology, University of Liverpool, Liverpool L69
3BX, U.K.

Maria-Jesus Martin − European Molecular Biology
Laboratory, EMBL-European Bioinformatics Institute
(EMBL-EBI), Hinxton, Cambridge CB10 1SD, U.K.

Juan Antonio Vizcaíno − European Molecular Biology
Laboratory, EMBL-European Bioinformatics Institute
(EMBL-EBI), Hinxton, Cambridge CB10 1SD, U.K.;
orcid.org/0000-0002-3905-4335

Eric W. Deutsch − Institute for Systems Biology, Seattle,
Washington 98109, United States; orcid.org/0000-0001-
8732-0928

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jproteome.1c00827

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are grateful for funding from BBSRC/NSF that supported
this work [BB/S017054/1 and BB/S01781X/1]. J.A.V. and
M.M. would also like to acknowledge EMBL core funding.
E.W.D. acknowledges funding by the NSF grant DBI-1933311
and NIH grants R01GM087221 and R24GM127667.

■ REFERENCES
(1) Rigbolt, K. T. G.; Blagoev, B. Quantitative phosphoproteomics
to characterize signaling networks. Semin. Cell Dev. Biol. 2012, 23,
863−871.
(2) Verheggen, K.; Raeder, H.; Berven, F. S.; Martens, L.; Barsnes,
H.; Vaudel, M. Anatomy and evolution of database search engines-a
central component of mass spectrometry based proteomic workflows.
Mass Spectrom. Rev. 2020, 39, 292−306.
(3) Beausoleil, S. A.; Villén, J.; Gerber, S. A.; Rush, J.; Gygi, S. P. A
probability-based approach for high-throughput protein phosphor-
ylation analysis and site localization. Nat. Biotechnol. 2006, 24, 1285−
1292.
(4) Locard-Paulet, M.; Bouyssié, D.; Froment, C.; Burlet-Schiltz, O.;
Jensen, L. J. Comparing 22 Popular Phosphoproteomics Pipelines for
Peptide Identification and Site Localization. J. Proteome Res. 2020, 19,
1338−1345.
(5) Ferries, S.; Perkins, S.; Brownridge, P. J.; Campbell, A.; Eyers, P.
A.; Jones, A. R.; Eyers, C. E. Evaluation of Parameters for Confident
Phosphorylation Site Localization Using an Orbitrap Fusion Tribrid
Mass Spectrometer. J. Proteome Res. 2017, 16, 3448−3459.
(6) Baker, P. R.; Trinidad, J. C.; Chalkley, R. J. Modification site
localization scoring integrated into a search engine. Mol. Cell.
Proteomics 2011, 10, M111.008078. (a) Fermin, D.; Walmsley, S. J.;
Gingras, A.-C.; Choi, H.; Nesvizhskii, A. I. LuciPHOr: algorithm for
phosphorylation site localization with false localization rate estimation
using modified target-decoy approach. Mol. Cell. Proteomics 2013, 12,
3409−3419.
(7) Deutsch, E. W.; Mendoza, L.; Shteynberg, D.; Slagel, J.; Sun, Z.;
Moritz, R. L. Trans-Proteomic Pipeline, a standardized data
processing pipeline for large-scale reproducible proteomics infor-
matics. Proteonomics Clin. Appl. 2015, 9, 745−754.
(8) Eng, J. K.; Jahan, T. A.; Hoopmann, M. R. Comet: an open-
source MS/MS sequence database search tool. Proteomics 2013, 13,
22−24.
(9) Shteynberg, D. D.; Deutsch, E. W.; Campbell, D. S.; Hoopmann,
M. R.; Kusebauch, U.; Lee, D.; Mendoza, L.; Midha, M. K.; Sun, Z.;
Whetton, A. D.; et al. PTMProphet: Fast and Accurate Mass
Modification Localization for the Trans-Proteomic Pipeline. J.
Proteome Res. 2019, 18, 4262−4272.
(10) Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational
platform for mass spectrometry-based shotgun proteomics. Nat.
Protoc. 2016, 11, 2301−2319.
(11) Taus, T.; Köcher, T.; Pichler, P.; Paschke, C.; Schmidt, A.;
Henrich, C.; Mechtler, K. Universal and confident phosphorylation
site localization using phosphoRS. J. Proteome Res. 2011, 10, 5354−
5362. (a) Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S.
Probability-based protein identification by searching sequence
databases using mass spectrometry data. Electrophoresis 1999, 20,
3551−3567.
(12) Zhang, J.; Xin, L.; Shan, B.; Chen, W.; Xie, M.; Yuen, D.;
Zhang, W.; Zhang, Z.; Lajoie, G. A.; Ma, B. PEAKS DB: de novo
sequencing assisted database search for sensitive and accurate peptide
identification. Mol. Cell. Proteomics 2012, 11, M111.010587.
(13) Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.;
Hewapathirana, S.; Kundu, D. J.; Inuganti, A.; Griss, J.; Mayer, G.;
Eisenacher, M.; et al. The PRIDE database and related tools and
resources in 2019: improving support for quantification data. Nucleic
Acids Res. 2019, 47, D442−D450.
(14) Vizcaíno, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.;
Reisinger, F.; Ríos, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.;
et al. ProteomeXchange provides globally coordinated proteomics
data submission and dissemination. Nat. Biotechnol. 2014, 32, 223−
226.
(15) Martens, L.; Hermjakob, H.; Jones, P.; Adamski, M.; Taylor, C.;
States, D.; Gevaert, K.; Vandekerckhove, J.; Apweiler, R. PRIDE: the
proteomics identifications database. Proteomics 2005, 5, 3537−3545.
(16) Marx, H.; Lemeer, S.; Schliep, J. E.; Matheron, L.; Mohammed,
S.; Cox, J.; Mann, M.; Heck, A. J. R.; Kuster, B. A large synthetic

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.1c00827
J. Proteome Res. 2022, 21, 1603−1615

1614

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.1c00827/suppl_file/pr1c00827_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+R.+Jones"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6118-9327
mailto:Andrew.Jones@liverpool.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kerry+A.+Ramsbottom"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7432-9293
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ananth+Prakash"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yasset+Perez+Riverol"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6579-6941
https://orcid.org/0000-0001-6579-6941
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oscar+Martin+Camacho"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria-Jesus+Martin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Juan+Antonio+Vizcai%CC%81no"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3905-4335
https://orcid.org/0000-0002-3905-4335
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eric+W.+Deutsch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8732-0928
https://orcid.org/0000-0001-8732-0928
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00827?ref=pdf
https://doi.org/10.1016/j.semcdb.2012.05.006
https://doi.org/10.1016/j.semcdb.2012.05.006
https://doi.org/10.1002/mas.21543
https://doi.org/10.1002/mas.21543
https://doi.org/10.1038/nbt1240
https://doi.org/10.1038/nbt1240
https://doi.org/10.1038/nbt1240
https://doi.org/10.1021/acs.jproteome.9b00679?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.9b00679?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.7b00337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.7b00337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.7b00337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/mcp.M111.008078
https://doi.org/10.1074/mcp.M111.008078
https://doi.org/10.1074/mcp.M113.028928
https://doi.org/10.1074/mcp.M113.028928
https://doi.org/10.1074/mcp.M113.028928
https://doi.org/10.1002/prca.201400164
https://doi.org/10.1002/prca.201400164
https://doi.org/10.1002/prca.201400164
https://doi.org/10.1002/pmic.201200439
https://doi.org/10.1002/pmic.201200439
https://doi.org/10.1021/acs.jproteome.9b00205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.9b00205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nprot.2016.136
https://doi.org/10.1038/nprot.2016.136
https://doi.org/10.1021/pr200611n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/pr200611n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
https://doi.org/10.1074/mcp.M111.010587
https://doi.org/10.1074/mcp.M111.010587
https://doi.org/10.1074/mcp.M111.010587
https://doi.org/10.1093/nar/gky1106
https://doi.org/10.1093/nar/gky1106
https://doi.org/10.1038/nbt.2839
https://doi.org/10.1038/nbt.2839
https://doi.org/10.1002/pmic.200401303
https://doi.org/10.1002/pmic.200401303
https://doi.org/10.1038/nbt.2585
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


peptide and phosphopeptide reference library for mass spectrometry-
based proteomics. Nat. Biotechnol. 2013, 31, 557−564.
(17) Van Leene, J.; Han, C.; Gadeyne, A.; Eeckhout, D.; Matthijs,
C.; Cannoot, B.; De Winne, N.; Persiau, G.; Van De Slijke, E.; Van de
Cotte, B.; et al. Capturing the phosphorylation and protein interaction
landscape of the plant TOR kinase. Nat Plants 2019, 5, 316−327.
(18) Sharma, K.; D’Souza, R. C.; Tyanova, S.; Schaab, C.;
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