
Short-term Load Forecasting with Distributed
Long Short-Term Memory

Yi Dong
Department of Computer Science

University of Liverpool
Liverpool, the UK

yi.dong@liverpool.ac.uk

Yang Chen
Department of R & D

Suzhou SeeEx Technology Co., Ltd
Jiangsu, China

yang.chen@seeextech.com

Xingyu Zhao, Xiaowei Huang
Department of Computer Science

University of Liverpool
Liverpool, the UK

{xingyu.zhao, xiaowei.huang}@liverpool.ac.uk

Abstract—With the employment of smart meters, massive
data on consumer behaviour can be collected by retailers.
From the collected data, the retailers may obtain the house-
hold profile information and implement demand response.
While retailers prefer to acquire a model as accurate as
possible among different customers, there are two major
challenges. First, different retailers in the retail market do
not share their consumer’s electricity consumption data as
these data are regarded as their assets, which has led to
the problem of data island. Second, the electricity load data
are highly heterogeneous since different retailers may serve
various consumers. To this end, a fully distributed short-term
load forecasting framework based on a consensus algorithm
and Long Short-Term Memory (LSTM) is proposed, which
may protect the customer’s privacy and satisfy the accurate
load forecasting requirement. Specifically, a fully distributed
learning framework is exploited for distributed training,
and a consensus technique is applied to meet confidential
privacy. Case studies show that the proposed method has
comparable performance with centralised methods regarding
the accuracy, but the proposed method shows advantages in
training speed and data privacy.

Index Terms—short-term load forecasting, long short term
memory, distributed learning, consensus, multi-agent system

I. INTRODUCTION

Electricity load forecasting is an essential basis for
not only industrial production but also social life. The
analysis of these load data could help in revealing
household profile information and enabling other uses
[1]–[3]. Specifically, retailers could obtain the electricity
consumption behaviour of consumers and provide social
and behavioural incentive signals to optimise customers’
electricity usage. However, customers’ data are not able
to be shared among different power supply companies.
Therefore, an appropriate algorithm that can generate
accurate short-term load forecasting (STLF) while pro-
tecting custom privacy is essential for power system
operation.

Load forecasting has been an essential part of the field
of power system research since the 1970s, starting with
some of the earliest methods, such as linear regression
(LR) [4], stochastic time series (STS) [5] and general
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exponential smoothing (GES) [6]. The mean accuracy
of these methods is about 90%∼96%. With the intro-
duction of machine learning and artificial intelligence
methods, scholars started applying artificial intelligence
algorithms to STLF and achieved great success, which
increased the accuracy to more than 97% [2], [7], [8].

Due to the vigorous development of hardware equip-
ment and the superb performance of deep learning in
terms of the characteristics of nonlinear functions, deep
learning algorithms have become particularly popular in
load prediction research in recent years. [9] proposed a
novel model multi-scale convolutional neural network
with time-cognition (TCMS-CNN), which combines suf-
ficient and discriminative features to extract potential
law in the dataset providing an excellent result. [10]
proposed a deep learning framework based on a com-
bination of a convolutional neural network (CNN) and
long short-term memory (LSTM), which could provide
a significant improvement in the accuracy of individual
household load forecasting. [11] improved deep belief
networks (DBN) with Gauss-Bernoulli restricted Boltz-
mann machine (GB-RBM) and gray relational analysis
(GRA). The developed method has a better performance
than DBN and other traditional methods. However, the
dataset required by the aforementioned methods in-
cludes all customers’ data together without considering
individual customers’ privacy.

With the rapid development of big data, customer
data privacy has gradually received attention. Over the
last few years, several governments also have com-
mitted to data privacy protection, e.g., the European
Commission’s General Data Protection Regulation [12]
and the Consumer Privacy Bill of Rights in the US
[13]. As a result, decentralised learning methods, such
as federal learning, have been proposed to solve these
problems. [14] proposed a federated learning method for
load forecasting with smart meter data that is capable
of training a machine learning model in a distributed
manner without requiring the participant to share their
local data. [15] proposed a fully distributed STLF method
based on Distributed Deep Belief Networks (DDBN),
which can solve the STLF model by local computing
agents (CA) and update the model parameters by com-
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municating with connected neighbours. However, these
distributed learning algorithms still require a data cen-
tre to communicate with individual nodes to update
global parameters. In the case of huge data volumes,
the central-based distributed method could cause traffic
jams and scalability issues.

To this end, a novel fully distributed LSTM-based
STLF method is proposed in this paper. It can be trained
with a local dataset and converge to global optima by
communicating with its connected neighbours, which
does not need to transfer any customers’ data. Different
from the federated learning framework, the proposed
consensus-based framework does not have a single com-
puting centre to deal with an integrated global model
among all local agents, and therefore the proposed algo-
rithm will not meet computing burdens. Apart from data
privacy and communication congestion, the distributed
training framework can also avoid the local over-fitting
problem since its parameters will be amended based on
its neighbouring information.

The major contributions of this paper include:
1) A novel distributed LSTM algorithm is proposed

for STLF, which can train the model at local and
only communicate with its connected neighbours,
preserving data privacy.

2) Due to the parallel computational framework, the
proposed distributed method can significantly re-
duce the training time.

3) The over-fitting problem of the local model can be
mitigated by mutual correction during the commu-
nication and training process.

The rest of the paper is organised as follows. Math-
ematical preliminaries applied in this paper are sum-
marised in Sec. II. The proposed distributed LSTM
method is described in Sec. III. Simulation results with
discussion are presented in Sec. IV. Finally, we conclude
the work in Sec. V.

II. APPLIED METHODOLOGIES

In this section, we recall methods regarding graph
theory, consensus control and LSTM. Let Rn×m be the set
of n×m real matrices and the superscript T means the
transpose of real matrices. IN denotes the identity matrix
of dimension N and 1N represents a column vector
with all entries being 1. R++ denotes the positive real
numbers. ‖ · ‖2 represents the 2-norm of the argument.

A. Graph Theory
Following [16], an undirected graph G = (V, E) can be

used to describe the communication topology among the
local computing centres, where V = {ν1, · · · , νN} is the
vertex set and E ∈ V × V is the edge set. The adjacency
matrix A = [aij ] ∈ RN×N of G(V, E) is an N ×N matrix,
such that aij = 1 if (νj , νi) ∈ E and aij = 0 otherwise.
Define the degree matrix D = diag{

∑N
j=1 a1j ,

∑N
j=1 a2j ,

· · · ,
∑N

j=1 aNj}. A graph is connected if and only if every
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Fig. 1: Structure of LSTM.

pair of vertices can be connected by a path, namely, a
sequence of edges. In this paper, we assume that the
graph is connected and undirected. The Laplacian matrix
related to G(V, E ,A) is defined as L = D −A, i.e.,

L =

{
lij = −aij , i 6= j
lii =

∑
i6=j aij .

(1)

When G(V, E) is a connected undirected graph, 0 is an
eigenvalue of Laplacian L with the eigenvector 1N and
all the other eigenvalues are positive. Then,

L1N = 0N , 1T
NL = 0T

N . (2)

In this paper, we assume that the connection between
computing centres are undirected since the communica-
tion line has no direction.

B. Long Short-Term Memory

The LSTM is a refined model of Recurrent Neural
Network (RNN), and it has the advantage of avoiding
exploding and vanishing gradient problem [17]. The
basic structure of an LSTM network is shown in Fig. 1.

The propagate steps of LSTM can be separated into
four sub-steps: forget gate step, input gate step, update
step and output step. The forget gate step is made by a
sigmoid layer which is to decide what information we
are going to forget. The inputs of this step are historical
output ht−1 and current state xt, and it outputs a number
within a range (0, 1).

ft = σ(Wf · [ht−1, xt] + bf ) (3)

where Wf , bf are the weights and bias of the LSTM forget
gate layer, and σ denotes the sigmoid activation function.

The second step is composed of a sigmoid layer and a
tanh layer. This sigmoid layer is to decide what new
information we are going to memorise, and the tanh
layer is to estimate the current cell state Ĉt:

jt =σ(Wj · [ht−1, xt] + bj) (4)

Ĉt = tanh(WC · [ht−1, xt] + bC) (5)

The third step is to combine the outputs of second step
and update the cell state:

Ct = ft × Ct−1 + jt × Ĉt (6)

Finally, the LSTM yields the output controlled by the
output step, which is based on the current cell state Ct,
history output ht−1 and current input xt. It uses a tanh
activate function as a filter to push the cell state between



−1 and 1, so that the output step can only output the
parts we choose.

ot =σ(Wo · [ht−1, xt] + bo) (7)
ht =ot × tanh(Ct) (8)

There is the final output y if end of the hidden layers:

y = softmax(Wv · ht + bv) (9)

III. DISTRIBUTED LONG SHORT-TERM MEMORY

In this section, we formulate a Distributed Long Short-
Term Memory (DLSTM) method for STLF by consensus-
based approaches. It consists of a group of N local LSTM
models distributed over a connected graph, where each
local computing centre has its own local dataset and can-
not be revealed to other computing centres. The objective
of the LSTM models is to minimise the empirical loss
over the entire data set, which is formulated as

min
Θ∈Rn

E(D,Θ) =

N∑
i=1

Ei(Di,Θi) (10)

where Di and Θi ∈ Rn are the sub-dataset and weight
parameters of the ith local LSTM model agent, re-
spectively. n is the dimension of the weight matrix. It
is noticed that the weight parameters Θi includes all
the parameters in LSTM models, include forget gate,
input gate, update and output steps:

Θi = [Wf , bf ,Wj , bj ,WC , bC ,Wo, bo]T (11)

In the traditional LSTM algorithm, the training process
is to calculate the gradient and update all the weights Θ:

Θt = Θt−1 − ηi∇ΘE(D,Θt−1) (12)

For the DLSTM algorithm, the gradient descent
method is applied to optimise the parameters of local
LSTM models, and the distributed consensus algorithm
is applied to optimise the parameters between connected
LSTM models. All the communication and training pro-
cesses only transfer the weights of different models,
which does not require any customer data, and therefore
the privacy can be protected. The procedure code of
DLSTM is shown in Algorithm 1.

During each training step of the local computing
agent, we add an communication update step for each
local LSTM model. Thus, the gradient-based training of
DLSTM can be formulated as the following sub-steps:

Φt
i = Θt−1

i − ηi∇ΘEi(Di,Θ
t−1
i ) (13)

Θt
i =

∑
j∈N

aijΦ
t
i (14)

where Φt
i is the intermediate variable and ηi ∈ [0, 1] is

the learning rate of the local model. aij is the element
of Laplace matrix L in (1). The updates of weights Θi
include two procedures, which make up the learning
before consensus (LBC) algorithm. In the first stage,
the neural networks are trained independently with
local sub-dataset through the gradient descent algorithm
(13). This stage only uses local information, such as
the weights of latest step Θt−1

i and the gradient of
the empirical loss ∇ΘEi(Di,Θ

t−1
i ). In the second stage,

the weights of the neural networks are updated via

Algorithm 1 Distributed Long Short Term Memory.
1: procedure DLSTM(LSTM, Agents)
2: LSTM← Initial weights Θi for local LSTM models
3: Sites← Array of Network pipes to local CAi

4: while Sites contains unused data do
5: //Start local training for each local site
6: for each CAi∈ Sites do
7: CAi← Forward Propagation
8: CAi← Gradient Descent Calculation
9: CAi← Back Propagation with (14)

10: end for
11: //Consensus the weight of local LSTM models
12: while weights are different do
13: for each CAi ∈ Sites do
14: Consensus weight with (14)
15: end for
16: end while
17: DLSTM← Consensus weight
18: end while
19: end procedure

consensus algorithm, where neighbouring information
Φt

i are applied. With this learning process, all the agents
are able to obtain the single and optimal neural network
model when t tends to ∞ [18]. Similarly, the equations
(14) and (13) can be swapped to yield the consensus
before learning (CBL) algorithm as

Φt
i =

∑
j∈N

aijΘ
t−1
i (15)

Θt
i = Φt

i − ηi∇ΘEi(Di,Φ
t
i) (16)

Note that the CBL algorithm is to consensus the gradi-
ents first, then update the local model. In contrast, the
LBC algorithm is to update the local model first, then
consensus the models. Theoretically, the gradients will
converge to 0, and the model will become the optimal
model with the training time goes infinity. Therefore,
there is not much difference between CBL and LBC
algorithms.

Based on the proposed distributed manner, each lo-
cal LSTM model only needs to communicate with its
neighbours. Thus, the STLF model can be trained lo-
cally and the multi-agent framework can reduce the
computational and communication cost, which can be
further extended to large networks [19]. Moreover, the
distributed framework is more robust to single-point
failures as long as the communication network remains
connected [15].

IV. CASE STUDY

A. Experiment and Model Setup

The case study is based on the historical load data,
daily average temperature data and holiday type data
for the period 2016-2019 which are provided by the
GEFCom 2017 competition [20] and ISO New England
[21]. The system topology under consideration is the
connection of four agents (data centres) as shown in
Fig. 2, each of them has a quarter of dataset. In addition,



the iteration times of consensus between each informa-
tion connection is set as 20, which makes the algorithm
converge faster.

Agent 
2

Agent 
4

Agent 
1

Agent 
3

Fig. 2: Communication Topology.

For STLF, the main influencing factors are historical
load, temperature, date type and other variables. These
three types of data are selected as input variables for the
forecasting model. The load has a characteristic of a 24-
hour periodic change, so that the power load value at
the same time before the forecasting day and two days
before can be used as the input variable of the model. In
addition, considering the effects of temperature on the
electrical load, daily mean temperature after preprocess-
ing can be used as input variables for the LSTM. The
input and output information designed in this paper are
summarised in Table I.

input input variables
1-7 the electricity consumption of last week

8-14 the average temperature of last week
15-21 the day type of last week

22 the electricity consumption at 2 days ago
23 the average temperature at 2 days ago
24 the day type at 2 days ago
25 the actual load at 24 hours before
26 the average temperature at 24 hours before
27 the day type at 24 hours before
28 the temperature of the forecast day
29 the day type of the forecast day

output the predicted load value at time t of the forecast day

TABLE I: Input and output information.

Further, all raw data are pre-normalised to improve
the accuracy of the forecasting model:

xi(k) =
xi(k)− xmin

i

xmax
i − xmin

i

(17)

where xmin
i and xmax

i are the minimum and maximum
value of the i-th original input data.

B. Evaluation Criteria and Error Analysis
The mean square error (MSE) and mean absolute per-

centage error (MAPE) are adopted as the final evaluating
indicators, which are shown as follow:

εMAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100%, (18)

εMSE =

∑N
i=1(yi − ŷi)2∑N

i=1(yi)2
, (19)

where yi is the actual load at period i; N is the total
length of forecasting periods; and ŷi is the forecast load
at time i.

C. Results and Analysis
1) Case 1: This case verified the validity of the pro-

posed DLSTM model. We use whole year customer
electricity consumption data as the training dataset, and
the test data is a dataset of a random week in next year.
The results are shown in Fig. 3.
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Fig. 3: Short-term Load Forecasting Results.

The green line is the forecasting results of the proposed
DLSTM method, and it is evident that the proposed
DLSTM has less prediction errors at most of the data
points than centralised LSTM method.

2) Case 2: In this case, we investigate the training per-
formance of the proposed DLSTM model. Fig. 4 depicts
the validation errors during the training process among
4 distributed local DLSTM agents and centralised LSTM
agent. Although each DLSTM agent only has a quarter
of the dataset, it shows comparable training performance
as the centralised LSTM method.
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Fig. 4: Distributed Training Performance.

In Fig. 4, we may clearly see that the converge speed
of local computing LSTM models are slower than cen-
tralised LSTM model, but they can achieve similar ac-
curacy after sufficient training epochs. Apart from the
accuracy, the training speed of the proposed DLSTM is
only 412 seconds, which is much faster than centralised
LSTM (583 second). This is because that the dataset size
of local training agent is only a quarter of centralised
LSTM agent. Therefore, the proposed DLSTM algorithm
can reduce the training time with an increasing number
of computing agents, and the aim of fast training can be



achieved by adding more computing agents if the load
dataset continues to increase in the future.

3) Case 3: In this case, we summarise different
STLF models to illustrate the advantage of the pro-
posed model, and four typical state-of-the-art algorithms
are chosen for comparison: Support Vector Regression
(SVR), Artificial Neural Network (ANN), Deep Belief
Network (DBN) and Distributed Artificial Neural Net-
work (DANN). The compared models are simulated
based on the same dataset in this paper. All the models
are trained with the same training dataset, validation
dataset and test dataset. The results of different models
are summarised in Table II.

MAPE MAE MSE
LSTM 0.0150 201.746 70021.160

DLSTM 0.0138 183.352 62095.324
SVR 0.0152 202.246 73495.060

ANN 0.0280 324.650 131273.362
DBN 0.0206 144.326 44299.052

DANN 0.0275 284.240 123363.703

TABLE II: Comparison of STLF Models in Case 3.

From the results provided in Table. II, the DLSTM
algorithm meets the requirements of STLF and has better
accuracy than other models. Comparing with the distinct
machine learning algorithms, the LSTM and DLSTM
reveals better performance and less prediction errors due
to the time-sequence characteristic of STLF problems. For
distributed algorithms, we can see that the DANN and
DLSTM show the similar accuracy as ANN and LSTM,
respectively. It can be seen from the Table. II and Fig. 4,
the proposed DLSTM method demonstrates similar and
even better accuracy than traditional single centralise
LSTM algorithm after around 50 training epochs.

V. CONCLUSION AND FUTURE WORK

This paper ascertains the effectiveness of using the
distributed long short-term memory models in short-
term load forecasting. The multiple and time-variable
variations can be predicted by the proposed approach.
The decentralised protocol makes it possible to separate
data sets and pre-train models at an individual data
centre, which simplifies the forecasting problem and
leads to more privacy results. In the application ex-
amples, the proposed distributed long short-term mem-
ory model provided accurate forecast results and faster
training speed than other machine learning models. The
distributed model is simpler to train and tune than
the centralised models, does not over-fit and reduces
variance due to the consensus weight of many subsets.
In future, we plan to apply trustworthy AI techniques,
e.g. [22]–[24], to assure the reliability and security of our
method, as well as its explainability.
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