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Simple Summary: The early treatment of oral cancer is a high priority, as improvements in this area
could lead to greater cure rates and reduced disability due to extensive surgery. Oral cancer is very
difficult to detect in over 70% of cases as it develops unseen until quite advanced, sometimes rapidly.
It has become apparent that there are at least two types of epithelial cells (keratinocytes) found in
oral tissue on the road to cancer (premalignant). One type secretes molecules called prostaglandins
but the other does not and the former may stimulate the latter to progress to malignancy, either by
stimulating their proliferation or encouraging the influx of blood vessels to feed them. Additionally,
we have identified regulators of prostaglandin secretion in premalignant oral cells that could be
targeted in future therapies, such as inducers of cellular senescence, drugs which kill senescent cells
(senolytics), steroid metabolism, cyclo-oxygenase 2 (COX2) and p38 mitogen-activated protein kinase.

Abstract: Potentially pre-malignant oral lesions (PPOLs) are composed of keratinocytes that are
either mortal (MPPOL) or immortal (IPPOL) in vitro. We report here that MPPOL, but not generally
IPPOL, keratinocytes upregulate various extracellular tumor-promoting cytokines (interleukins 6
and 8) and prostaglandins E1 (ePGE1) and E2 (ePGE2) relative to normal oral keratinocytes (NOKs).
ePGE upregulation in MPPOL was independent of PGE receptor status and was associated with
some but not all markers of cellular senescence. Nevertheless, ePGE upregulation was dependent
on the senescence program, cyclo-oxygenase 2 (COX2) and p38 mitogen-activated protein kinase
and was partially regulated by hydrocortisone. Following senescence in the absence of p16INK4A,
ePGEs accumulated in parallel with a subset of tumor promoting cytokine and metalloproteinase
(MMP) transcripts, all of which were ablated by ectopic telomerase. Surprisingly, ataxia telangiectasia
mutated (ATM) function was not required for ePGE upregulation and was increased in expression in
IPPOL keratinocytes in line with its recently reported role in telomerase function. Only ePGE1 was de-
pendent on p53 function, suggesting that ePGEs 1 and 2 are regulated differently in oral keratinocytes.
We show here that ePGE2 stimulates IPPOL keratinocyte proliferation in vitro. Therefore, we propose
that MPPOL keratinocytes promote the progression of IPPOL to oral SCC in a pre-cancerous field
by supplying PGEs, interleukins and MMPs in a paracrine manner. Our results suggest that the
therapeutic targeting of COX-2 might be enhanced by strategies that target keratinocyte senescence.
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1. Introduction

Oral cancer, predominantly oral squamous cell carcinoma (OSCC), is the sixth most
common cancer worldwide and the management of this cancer has barely improved in
decades [1]. One of the problems in treating OSCC is that they frequently develop from
a field of genetically and phenotypically diverse cells that are clinically and sometimes
histologically undetectable [2]. Advanced cancers, and even some high-risk potentially pre-
malignant lesions (PPOLs), have extensive gene copy number variations [3] and develop
genetic heterogeneity and consequently a platform for drug resistance [4]. Recent evidence
suggests that this genetic heterogeneity [5] and the induction of cellular senescence [6] de-
velops prior to most OSCCs becoming clinically identifiable [5] and immortal keratinocytes
with extensive gene copy number variations have been demonstrated in PPOLs of a low
histological grade [7].

It has long been known that even advanced OSCCs contain both mortal and immortal
keratinocytes [8,9] and the same is true for PPOLs [7,10]. Moreover, despite the fact that both
mortal (MPPOL) and immortal (IPPOL) keratinocytes have neoplastic-like phenotypes [8],
altered transcriptional [10] and metabolic [11] profiles, MPPOLs have no gene copy number
variations, gene methylation and few classical ‘driver’ mutations [12]. Similar keratinocytes
have been detected in OSCC [7,8,10,12]. MPPOLs and IPPOLs may often be completely
distinct lesions as their transcriptional profiles appear to diverge upon progression to mortal
and immortal OSCC keratinocytes, although in some instances MPPOLs may be precursor
lesions of IPPOLs [13–15]. In addition, MPPOL and MOSCC are associated with a different
class of cancer-associated fibroblasts [16]. Whilst a considerable amount is known about
cancer-associated fibroblasts and their role in modulating carcinoma behaviour, including
OSCC [17], far less is known about the different types of keratinocytes that exist within
cancerous and pre-cancerous fields and how they may influence each other’s behaviour.

Senescence can be induced by a variety of cellular stresses but is bypassed in normal
keratinocytes by the dual reduction of p53 and p16INK4A function and telomerase deregula-
tion [18]. Genetic alterations in all of these pathways are common in OSCCs in vivo [19]
and in immortal cell lines derived from PPOL [7] and OSCC [20]. In addition, under the
conditions we have used here, keratinocyte senescence and differentiation can be reversibly
bypassed by treating cells with the Rho-activated kinase (ROCK) inhibitor Y27632 (ROCKi)
without changing karyotype or the DNA damage response [21].

Senescence is induced by certain oncogenes [22], yet not others [23], and this is
sometimes referred to as oncogene-induced senescence (OIS). There is evidence suggesting
that to overcome OIS in vitro, an intracrine function involving interleukin 6 (IL-6) and
interleukin 8 (IL-8) must be inactivated [24]. The cytokine network is orchestrated in both
normal and OIS by interleukin-1 alpha (IL-1α) [25] and is responsible for the clearance of
pre-malignant cells in vivo in concert with the innate and adaptive immune systems [26].

We recently conducted an unbiased metabolomic screen of the extracellular metabolites
of normal, MPPOL and IPPOL keratinocytes and identified extracellular elevation of a
number of metabolites in MPPOL, including extracellular prostaglandins E1 and E2 (ePGEs1
and 2 respectively) and their related metabolites [11]. PGEs 1 and 2 are generated from
arachidonic acid and gamma dihomo-linolenate by the enzymes cyclooxygenases 1 (COX1)
and 2 (COX2), which are the established drug targets of the selective non-steroidal anti-
inflammatory drug (NSAID), celecoxib [27,28]. However, the source of PGE1 and PGE2 in
what is a complex mixture of cells is difficult to ascertain.

We have confirmed the results of the metabolic screen in that ePGEs 1 and 2 are
strikingly upregulated in most MPPOL keratinocytes but in very few of the IPPOL ker-
atinocytes. The aim of the present study was to investigate the regulatory mechanisms
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underpinning the earlier observations and in particular to identify new approaches to
oral cancer prevention and/or therapy. We provide evidence that ePGE upregulation is
dependent on the keratinocyte senescence program and pathways known to regulate the
senescence associated secretory phenotype (SASP). We also show that exogenous ePGE2
increases IPPOL keratinocyte proliferation at physiologically relevant doses. We conclude
that ePGEs 1 and 2, in conjunction with SASP cytokines [10,29], may contribute to IPPOL
progression in a paracrine manner and suggest that targeting of these keratinocytes by
anti-senescence therapies might be a novel approach to the management of PPOL, field
cancerisation and OSCC.

2. Materials and Methods
2.1. Cell Culture

The normal, ATM−/− and PPOL human keratinocytes were cultivated using lethally
irradiated 3T3 feeders as described previously [7,8]. Briefly, keratinocytes were cultured in
Dulbecco’s Modified Eagles Medium (DMEM) containing 10% vol/vol fetal bovine serum
(FBS–Hyclone foetal clone II) supplemented with 0.4 µg/mL hydrocortisone (HC), 2 mM
glutamine ((GE Healthcare, PAA Laboratories GmbH, Pasching, Austria) and antibiotics
(streptomycin 50 U/mL Penicillin and 50 µg/mL Streptomycin, Sigma, Poole, Dorset, UK)
in an atmosphere of 10% CO2/90% air. Keratinocytes were sub-cultured once weekly at a
density of 1 × 105 cells per 9 cm plate to prohibit confluence. Human oral fibroblasts were
cultured similarly in DMEM without HC.

2.2. Cell Lines Used in the Study

The characteristics and clinical details of the M- and IPPOL lines and patient donors
used in the study have been published previously [7,10,11,15]. Immortal normal oral ker-
atinocytes from the floor of the mouth, OKF6/TERT-1 (OKF6) [14], OKF4/CDK4R/P53DD/
TERT (OKF4) [18] were a generous were gift of James Rheinwald (Brigham and Women’s
Hospital Boston U.S.A.) and have been described previously. The normal gingival ker-
atinocytes (NHOK810) were a generous gift of Angela Hague (University of Bristol, Bris-
tol, UK) and have been described previously [11]. The Ataxia Telangiectasia Mutated
(ATM−/−) epidermal keratinocytes were obtained from a foreskin of patient AT5BI [30].
The H157 keratinocytes [31] were a generous gift of Professor Stephen Prime (University
of Bristol, UK), HeLa cells were a generous gift Professor Margaret Stanley (University of
Cambridge, Cambridge, UK) and have been characterized [32,33], the HEK293 Phoenix
A cells were obtained from Nolan Laboratory, Stanford, CA and the HCA/C29 (HCA-7
colony 29) cells were obtained from Sigma-Aldrich cat# 02091238. Normal human epi-
dermal keratinocytes NHEK92 and NHEK131 were obtained from Gibco Thermo-Fisher
scientific UK and consisted of two batches (batch #92 and batch #131, respectively) each
of which was derived from 3–6 donors. Normal human fibroblast line NHOF-1 [34] was
obtained from a biopsy of buccal mucosa.

The details of the number of lines analyzed (n) are given in the figure legends, but
ranged from between two and four in the case of MPPOL and between two and eight in
the case of IPPOL. The different classes of cell lines were color-coded as indicated.

2.3. Collection of the Conditioned Medium and Cell Pellets for Analysis of the Extracellular
Metabolites and Proteins

The collection of the conditioned medium and cell pellets was carried out as described
previously [35,36] except that the keratinocytes were allowed to reach confluence before the
collection began to more accurately represent the state of the epithelium in vivo. 3T3 feeders
were removed as described previously [7,8]. The keratinocytes were plated in such a way as
to reach confluence within 72 h in T25 flasks before adding 3 mL fresh medium to each flask
for 24 h and snap freezing the fresh medium at zero time to elucidate the background [35,36].
To achieve confluence in 72 h, the cells were disaggregated, trypsin/EDTA neutralized,
cells were counted on a at hhaemocytometer, pelleted by centrifugation at 300 g and the
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amount of protein in each cell pellet was measured and the results expressed in pg or
ng/mL medium/mg cell protein. The cell densities plated to achieve confluence have been
reported [11] (see also supplementary methods).

Total cell protein concentration was measured using the DC Protein Assay kit (Bio-
Rad Laboratories, Hertfordshire, UK) and the results were expressed as amount/mL/mg
cell protein. In some experiments, the 3T3s were removed and the keratinocytes were
allowed to reach confluence on the 3T3-deposited matrix and the data were expressed as
pg/mL/105 cells or pg or ng/mL medium/mg cell protein. This method yielded more
reproducible data but did not affect the pattern of the results.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Two types of ELISA were used to measure the SASP cytokines released from the
cells. To measure PGE1 and PGE2, a competitive ELISA technique was utilized (Abcam,
Cambridge, UK) and for the cytokines (IL-1α, IL-1β, IL-6 and IL-8), a sandwich ELISA
method (Quantikine® ELISA Immunoassay, R&D Systems, Abingdon, UK) was employed
to measure these proteins. The manufacturer’s protocol was followed in both ELISA
types. The detection limits for PGE1 and PGE2 are 4.88–5000 pg/mL and 39.1–2500 pg/mL
respectively. The detection limits of the Quantikine® ELISA Immunoassay kits were
3.9–250 pg/mL IL-1α/β; 3.13–300 pg/mL IL-6 and 3.13–2000 pg/mL IL-8.

2.5. Knockdown of p53, COX-1 and COX-2 in OKF6

To deliver the p53/COX-1/COX-2 siRNA into OKF6 cells, Dharmacon DharmaFECT
1 transfection reagent (GE Healthcare, Manchester, UK) was used following the manu-
facturer’s siRNA transfection protocol with slight modification. Each experiment was
performed in triplicate with the following samples: untreated cells (mock), test siRNA
(p53/COX-1/COX-2) and negative control siRNA (non-targeting/scramble).

When siRNA is processed by the RNA-Induced Silencing Complex (RISC), off-target
effects may occur and the downregulation of unintended targets occurs. Off-target activity
changes in gene expression which complicates the interpretation of phenotypic effects in
gene-silencing experiments and can potentially lead to unwanted toxicities [37]. To avoid
off-target effect activity, pooling of multiple siRNAs is essential as previously described [37].
In this study, ON-TARGETplus Human TP53/PTGS1/PTGS2 siRNA SMARTpool by Dhar-
macon (GE Healthcare, Manchester, UK) was used. The target sequences of the siRNAs
were detailed as below in Supplementary Table S1.

2.6. Western Blotting

Cell pellets were thawed on ice before adding 50–100 µL radio immunoprecipitation
assay (RIPA) buffer (Sigma, Dorset, UK) with protease and phosphatase inhibitors (Roche,
Hertfordshire, UK) and were lysed for 30 min at 4 ◦C. In some experiments, lysis buffer was
added directly to the plate. Following removal of cell debris by centrifugation at 12,000 rpm
for 20 min at 4 ◦C, the protein quantitated by the DC Protein Assay and total cellular protein
was separated based on molecular weight on 4–12% gradient SDS sodium dodecyl sulphate
polyacrylamide gels under denaturing and reducing conditions. Following protein transfer,
the nitrocellulose membrane was blocked with 5% weight/vol milk protein prepared in
Tris Buffer Saline and Tween 20 (TBS-T) for 1 h at room temperature (RT). The primary
antibodies were diluted in 5% wt/vol milk protein in TBS-T and the membrane/blot
was incubated/probed overnight with primary antibody at 4 ◦C, washed 3 times in TBS-
T for 5 min at RT under agitation. The membranes were incubated with appropriate
immunoglobulin G horseradish peroxidase (IgG HRP)—conjugated secondary antibody,
and diluted as above for 1 h at RT. Antigen-antibody complexes were detected by incubating
with ECL Western Blotting Substrate for 1 min or for sensitive detection, ECL Prime
Western Blotting Detection Reagent or SuperSignal® West Femto Maximum Sensitivity
Substrate for 5 min according to manufacturer’s protocols. Membranes were exposed to
the Amersham Hyperfilm ECL and were developed in the dark using a standard film
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developer machine. Densitometry analysis was performed on scanned films using Image J.
The relative intensities of the bands of interest were normalized against the values obtained
from the corresponding loading controls. The primary antibodies, secondary antibodies,
the suppliers, and the positive and negative controls are given in the supplementary
methods (Supplementary Tables S2 and S3). The whole western blots were shown in
Supplementary Figure S5.

2.7. Metabolomic Analysis, Normalisation and Data Presentation as Scaled Intensity

The details of the metabolomics analysis have been published previously [35,36]. See
supplementary methods for details.

2.8. Drug Treatment of the Keratinocyte Cultures

Salicylic acid (Sigma-Aldrich, Dorset, UK) and Y-27632 (ROCKi; Enzo Life Sciences,
Exeter, UK) were dissolved in growth medium or double distilled water, filter sterilized
and used at the stated dose. SB203580 (Tocris Chemical Co., Bristol, UK) and KU55933
(R&D systems, Abingdon, UK), NS398 (Santa Cruz Biotechnology, Dallas, TX, USA) and
celecoxib (Sigma-Aldrich, Dorset, UK) were dissolved in DMSO and used at the stated
doses. The final concentration of DMSO was 0.1% vol/vol and DMSO alone was used as
the vehicle control. PGE1 and PGE2 were purchased from Cayman Chemical (Michigan,
USA). PGE1 and PGE2 were dissolved in 100% ethanol (Sigma-Aldrich, Dorset, UK) as
a stock solution of 50 mg/mL and 100 mg/mL respectively and further diluted in 100%
ethanol to the desired concentration. 0.1% Ethanol was used as the vehicle control. The
function of Y-27632 was confirmed by Western blotting of the following antigens: NOTCH1
(ab87982) and Integrin α6 (ab181551) (Abcam, Cambridge, UK).

2.9. Statistical Analysis

A Student’s unpaired two-sided t-test was used to test the statistical difference between
two data sets of even numbers, a Welch’s t test to test the difference between two data sets
of uneven numbers and one-way ANOVA was used to test the difference between multiple
data sets. A p value of <0.05 was considered significant.

3. Results
3.1. Extracellular PGEs 1 and 2 (ePGEs 1 and 2) Are Upregulated in MPPOLs

We confirmed and extended our observations obtained from the unbiased metabolomic
screen to a larger panel of cell lines using ELISA assays for ePGEs 1 and 2. Three out of
four MPPOL lines (D6, D30 and D25) had elevated levels of both ePGEs relative to the
NOKs, which reached significance for ePGE1. However, six out of seven of the IPPOL
lines (Figure 1a) and D17 (Figure 1b) did not over-express ePGEs, with the exception of
line D4, which expresses one wild type p53 allele. D17 is interesting because although it
has lost p16INK4A expression [15] and possesses a NOTCH1 mutation [11], it retains a wild
type and functional p53 protein and regulates telomerase normally [38]. This pattern was
independent of oral site (Figure 1b) as all these lines were from non-tongue sites. These
data suggest that the breakdown of senescence leads to a loss of expression of the ePGEs.

3.2. ePGEs 1 and 2 Are Regulated by Senescence and Its Breakdown
3.2.1. Ablation of Senescence with the Rho-Activated Kinase Inhibitor Y 27632 (ROCKi)
Abolishes ePGE Expression in MPPOL Keratinocytes

We tested the levels of the senescence marker, senescence-associated beta galactosi-
dase (SA-βGal), in the cell line panel (Supplementary Figure S1). The MPPOL lines and
senescent NOKs had higher levels of SA-βGal-positive cells than early passage NHOK810
keratinocytes, especially in the centers of keratinocyte colonies where the cornified and
late terminally differentiated cells are located. However, the mid lifespan MPPOL line D17,
which does not express p16INK4A [7], and the immortal lines D19, DOK and OKF6/TERT-1
(OKF6) did not show elevated levels of SA-βGal-positive cells. We used three independent
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strategies to assess the role of the senescence program in the regulation of the ePGEs. Firstly,
to address the role of senescence in the upregulation of the ePGEs in D6 and D30 MPPOLs
we immortalized the cells by treating them with ROCK inhibitor Y-27632 (ROCKi), which
has been reported to immortalize keratinocytes without changing their genotype [21] and
then measuring the levels of the PGEs and SA-βGal. Figure 2a,b show that culturing
the keratinocytes for 2 weeks with ROCKi eliminated the SA-βGal in the center of D30
colonies but had no effect on IPPOL line D19. Ablating the senescence program in D6
and D30 reduced the level of both ePGE1 (Figure 2c,d) and ePGE2 (Figure 2e,f) to the
level of normal keratinocytes and the IPPOLs did not show any changes in the last two
groups. In a separate series of experiments where the cultures were allowed to grow to
confluence on 3T3 extracellular matrix, ROCKi dramatically reduced both ePGEs in D30,
NOKs and D17, which were all capable of senescence but had little effect on the PGE levels
of the immortal lines D19 and DOK. ROCKi also had a much reduced effect on OKF6
which, despite being immortal and expressing telomerase, did express considerable levels
of both ePGEs, indicating that ROCKi generally only affected ePGE levels if the senescence
program was intact (Figure 2g–j).

3.2.2. Ablation of Replicative Senescence with ROCKi Abolishes ePGE Expression in
p16INK4A-deficient Line D17

Next, we cultured the p16INK4A-deficient line D17 to the point where it approached
senescence and compared its extracellular PGE levels with the same line cultured with
ROCKi or the ectopic expression of the catalytic subunit of telomerase, TERT. Senescence
was monitored by SA-βGal staining as before. The results showed that although the
extracellular levels of the ePGEs (Figure 2g,i) and levels of SA-βGal rose as D17 approached
senescence in the absence of p16INK4A they failed to do so in the cultures treated with
ROCKi.

3.2.3. Ectopic TERT Expression in the Absence of p16INK4A Bypasses Replicative
Senescence and Suppresses the Production of ePGEs

The cell line D17 has been extensively characterized. It lacks p16INK4A expression but
possesses functional wild type p53 and normal telomerase regulation [15] plus NOTCH1
mutation [11]. The ectopic expression of TERT restores telomerase activity and bypasses
senescence [15]. We therefore compared the levels of ePGEs in senescent D17 with those
of D17 TERT cells and showed that ectopic TERT expression ablated ePGE1 (Figure 2k)
expression and drastically reduced that of ePGE2 (Figure 2l). TERT expression also ablated
SA-βGal levels although they were not high in the controls (Figure 2m). These data suggest
that telomerase can suppress ePGE expression in the absence of p16INK4A.

3.2.4. Ectopic TERT Expression in the Absence of p16INK4A Is Insufficient to Completely
Suppress the Production of ePGEs

Finally, to address the role of senescence effectors in the regulation of the PGEs we
compared two cell lines that both originated from the floor of the mouth [14] and had been
immortalized by ectopic expression of TERT and CDKN2A/p16INK4A dysfunction either
with (OKF4), or without (OKF6), the inactivation of p53 [14,18]. Figure 1b shows that whilst
both ePGE1 and ePGE2 are elevated in OKF6 relative to normal keratinocytes, OKF4 shows
normal expression (Figure 1b). The conclusion from these three sets of data is that ePGEs
are regulated by telomerase and the senescence program but may also be independently
regulated by TP53 and NOTCH1.
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(pale blue bars) compared with the p16INK4A−/− MPPOL line D17 (orange bar) at early passage and 
the normal keratinocyte lines were immortalized with defined genetic elements OKF4 and OKF6 
(purple bars) assayed with NHOK810 separately. The data are expressed as the level of ePGE in 
ng/mL/mg cell protein and was derived from 3 independent experiments (n = 3) ± standard devia-
tion assayed in duplicate except for NHOK810 (n = 5); D6 (n = 5); D30 (n = 2); D17 (n =1). * p < 0.05; 
** p < 0.01; *** p < 0.001; **** p < 0.0001 when compared to the normal keratinocyte line NHOK810. 
Line over the graphs is an analysis of the data sets by one-way ANOVA. MPPOL = mortal PPOL 
lines; IPPOL = immortal PPOL lines; INormal normal oral keratinocytes immortalized by defined 
genetic elements and/or TERT. 
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Figure 1. (a) The levels of ePGE1 (left panel) and ePGE2 (right panel) in normal (NHOK810 pale blue
bars), a subset of the MPPOL (green bars) and IPPOL (red bars) keratinocytes. (b) NHOK810 (pale
blue bars) compared with the p16INK4A−/− MPPOL line D17 (orange bar) at early passage and the
normal keratinocyte lines were immortalized with defined genetic elements OKF4 and OKF6 (purple
bars) assayed with NHOK810 separately. The data are expressed as the level of ePGE in ng/mL/mg
cell protein and was derived from 3 independent experiments (n = 3) ± standard deviation assayed
in duplicate except for NHOK810 (n = 5); D6 (n = 5); D30 (n = 2); D17 (n = 1). * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001 when compared to the normal keratinocyte line NHOK810. Line
over the graphs is an analysis of the data sets by one-way ANOVA. MPPOL = mortal PPOL lines;
IPPOL = immortal PPOL lines; INormal normal oral keratinocytes immortalized by defined genetic
elements and/or TERT.
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Figure 2. Ablation of the senescence program by ROCKi or ectopic TERT expression inhibits the 
expression of ePGEs. (a) SA-β staining of MPPOL line D30 +/− ROCKi that showed reduced staining 
by ROCKi. Scale bar = 100 μm. (b) SA-β staining of IPPOL line D19 as in (a) at the same magnifica-
tion showing essentially no staining of the cells and unaffected by ROCKi. (c–j) The effect of ROCKi 

Figure 2. Ablation of the senescence program by ROCKi or ectopic TERT expression inhibits the
expression of ePGEs. (a) SA-β staining of MPPOL line D30 +/− ROCKi that showed reduced staining
by ROCKi. Scale bar = 100 µm. (b) SA-β staining of IPPOL line D19 as in (a) at the same magnification
showing essentially no staining of the cells and unaffected by ROCKi. (c–j) The effect of ROCKi on normal



Cancers 2022, 14, 2636 9 of 25

(NHOK810), normal immortal OKF6, MPPOL (D6, D30 and E4), D17 MPPOL p16INK4A−/− (at 28
(mid) and 36 (late) mean population doublings). IPPOL lines showing a striking reduction in ePGE1
(c,d,g,h) and PGE2 (e,f,i,j) in mortal, but not in immortal, keratinocyte lines. ePGE1 (k) and ePGE2 (l)
was strongly suppressed by the ectopic expression of TERT in D17 along with SA-β staining scale
bar = 100 µm (m). The data are means +/− standard deviation; n = 3 except for D30 where n = 2.
The color codes are the same as in Figure 1. The unpaired Student’s t test was used to compare two
groups (ROCKi versus control) and one-way ANOVA (upper bar in (c,e,g,i)) to compare multiple
groups * = p < 0.05; ** = p < 0.01; **** = p < 0.0001; ns = not significant.

3.3. MPPOLs Do Not Display Increased Levels of All Senescence Markers but Do Show Reduced
Levels of the Licensing Factor MCM2/7 and Increased Levels of Some but Not All SASP Factors

To test whether the MPPOLs were more senescent than the NOKs at the time of
ePGE analysis, we performed Western blotting for early and late senescence markers [38].
The results confirmed previously published work on the status of these markers in these
cells [7,8,14,18,39]. However, although the MPPOL lines generally showed a reduction in
the proliferation markers they did not show any evidence of elevated p16INK4A or reduced
levels of sirtuin1, which are the markers of late senescence in fibroblasts [11]. MPPOLs
D6, D30 and E4 and OKF6 all displayed several SASP markers such as the increased
extracellular IL-6 and IL-8 protein (Supplementary Figure S2a). Levels of IL-8/CXCL8,
TGFB2, CXCL5, CXCL6, CCL20 and MMP2 transcript were also higher in MPPOL cultures,
especially in D30 (Supplementary Figure S2b). However, notably, a few others were not
higher, such as IL1A and IL1B transcript or increased extracellular IL-1α and IL-1β protein
and transcript (Supplementary Figure S2a). In conclusion, MPPOL keratinocytes were
not fully classically senescent at the time of analysis but did display several markers of
the SASP, such as increased extracellular IL-6 and IL-8 protein, together with increased
transcripts of other cytokines and MMPs, suggesting that MPPOL keratinocytes were more
senescent than their normal counterparts. However, MPPOL can still proliferate and do
not have elevated levels of p16INK4A [11].

3.4. The Upregulation of the ePGEs Is Dependent on Cyclo-Oxygenase 2 (COX2) but Not
Cyclo-Oxygenase 1 (COX-1)

Western blotting showed that COX1 was, if anything, reduced in all MPPOL and
IPPOL keratinocytes relative to the normal controls (Figure 3a). However, the levels of
COX2 were consistently elevated in the MPPOL and the non-neoplastic immortal line OKF6
keratinocytes compared to normal in parallel with the levels of ePGEs (Figures 1 and 2b).
In contrast, COX2 was often normal or down-regulated in the immortal IPPOL lines and
the non-neoplastic immortal oral keratinocytes line OKF4 in parallel with low ePGE levels
(Figure 2b). Both the COX1 and COX2 antibodies were validated by siRNA knockdown
in OKF6 cells (Figure 3c). To investigate further the differential regulation of ePGEs and
ILs in MPPOL and IPPOL keratinocytes by COX-2 and other pathways, we used OKF6
cells, as they expressed significant levels of both PGEs and the ILs 1, 6 and 8, despite being
immortal. MPPOLs grew slowly and were hard to generate in sufficient numbers. We
treated OKF6 keratinocytes with salicylic acid (Figure 3d), NS-398 (Figure 3d) and the
COX-2 selective inhibitor celecoxib (Figure 3e) and showed that all treatments reduced
both PGE1 and PGE2 to baseline levels and these results were highly significant. We also
knocked down (KD) COX-1 and COX-2 with siRNA by 44% and 53% relative to the mock
transfected controls, respectively (Figure 3c). Notably, only the COX-2 KD gave a consistent
25–35% reduction in ePGE1 and ePGE2 levels in the conditioned media of the OKF6 cells
relative to both the mock-transfected and scrambled siRNA controls (Figure 3f). These
data are consistent with the celecoxib data, but did not reach statistical significance for
ePGE1. In conclusion, these results suggest that COX-2 is the major mediator of ePGE
upregulation in OKF6 cells and is responsible for the upregulation of both ePGEs in the
MPPOL keratinocytes.
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Figure 3. ePGE expression in MPPOL keratinocytes is mediated by COX-2. (a) Shows a Western blot
(upper panel) and quantitation of the band intensity (lower panel) of COX-1 expression in the cell
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line panel analyzed in Figure 1 for ePGEs and shows no over-expression of COX-1 in the MPPOL
lines. HeLa extract served as a positive control. (b) Shows a Western blot and quantitation of COX-2
in the same extracts as in (a), showing clear over-expression of COX-2 in MPPOL lines D6, D25 and
D30 and OKF6 but not in the IPPOL lines. HCA/C29 extract served as a positive control. (c) Shows a
representative Western blot of 3 independent siRNA knockdown experiments in OKF6 (left panel)
and quantitation of the band intensity normalized to the mock-transfected control in all 3 blots +/−
standard deviation * p < 0.05; ** p < 0.01 by Student’s unpaired t test. The data show significant
knockdown of COX-2 (striped bar) relative to both the mock-transfected and scrambled controls
and COX-1 (dotted bar) relative to the mock transfected control, respectively, thus validating the
antibodies used in (a,b). (d) ePGE1 (left panel) and ePGE2 (right panel) levels in OKF6 cells treated
with the COX non-selective inhibitors NS-398 and aspirin showing ablation of ePGE expression
** p < 0.01 by one-way ANOVA. (e) ePGE1 (left panel) and ePGE2 (right panel) levels in OKF6 cells
treated with the COX-2 selective inhibitor celecoxib showing ablation of ePGE expression * p < 0.05
by Student’s unpaired t test. (f) ePGE1 (left panel) and ePGE2 (right panel) levels in OKF6 cells
following siRNA knockdown of the cultures characterized in (c) normalized to the mock-transfected
controls * p < 0.05 by Welch’s t test; mock-transfected and scramble controls (n = 6), Cox-1 hatched
bar; n = 3) and COX-2 (striped bar; n = 3).

3.5. The Upregulation of the ePGEs Is Dependent on p38 Mitogen-Activated Kinase (p38MAPK) a
Known Regulator of COX2

It has been reported that p38MAPK can upregulate COX-2 [40,41] and induce senes-
cence [42] and SASP cytokines [43] independently of telomere function. Therefore, we
treated OKF6 cells with the p38MAPK inhibitor SB203580 and measured ePGE levels to test
the hypothesis that this pathway was responsible for the higher levels of these metabolites
in some immortal lines and also to test the requirement for p53. The results showed that
SB203580-treated cells expressed much lower levels of ePGEs than the controls (Figure 4a,b)
and that COX-2 levels were reduced (Figure 4c). The reduced level of heat shock protein 27
(HSP-27) phosphorylation in the SB203580-treated keratinocytes confirmed that the drug
had worked (Figure 4c). These results indicate that the effect of p38MAPK on ePGEs and
COX-2 was independent of p16INK4A, which is absent from OKF6 and was not completely
suppressed by telomerase in this line. ePGEs were largely undetectable in D17 TERT cells,
as was COX-2, but senescent D17 did express detectable ePGEs and SB203580 reduced
the expression of both ePGE1 (Figure 4d) and ePGE2 (Figure 4e). Interestingly, SB203580
had no effect on D17 TERT cells (Figure 4d,e), indicating that the p38MAPK pathway was
compromised in D17 and was over-ridden by ectopic TERT expression.

3.6. The DNA Damage Response (DDR) Is Not Specifically Elevated in MPPOL Relative to
IPPOL Keratinocytes

As cellular senescence and the SASP have been linked to irreparable DNA double
strand breaks [43] located at the telomeres [44,45], we tested the role of the DNA damage
response (DDR) proteins in PPOL ePGE regulation. p53 phosphorylation relative to total
p53 was consistently elevated (two- to three-fold) in the MPPOL keratinocytes compared to
normal (Figure 5a) and was highest in line D30 with the highest levels of ePGEs. However,
relative p53 phosphorylation was below normal levels in all the IPPOLs except D4, D17
and the immortal non-neoplastic lines, OKF4 and OKF6, all of which express wild type p53.
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lowing treatment of OKF6 cells with SB203580 (SB 1-3). GAPDH was used as a loading control and 
H157 as a positive control for COX-2. (d,e) Show similar data from senescent D17 cells (D17SEN) 
and the same cells immortalized by ectopic expression of the catalytic subunit of telomerase TERT 
(D17 TERT) for ePGE1 (d) and ePGE2 (e). SB203580 (striped bars) inhibited both ePGEs in D17 SEN, 
* p < 0.05 by Student’s unpaired t test but had no effect in D17 TERT. 

Figure 4. ePGE expression in OKF6 keratinocytes is mediated by p38MAPK. (a,b) show ePGE1 and
ePGE2 levels in OKF6 cells treated with the p38MAPK inhibitor SB203580 (striped bar) along with
the DMSO control (plain bar). The figure shows a dramatic reduction in ePGE1 (a) and ePGE2 (b)
following treatment in 3 independent OKF6 cultures (+/− standard deviation, ** p < 0.01 by Student’s
unpaired t test. (c) shows representative Western blots of all three independent cultures indicating a
dramatic reduction of COX-2 and heat shock protein (HSP-27) phosphorylation (p-pHSP-27) following
treatment of OKF6 cells with SB203580 (SB 1-3). GAPDH was used as a loading control and H157 as a
positive control for COX-2. (d,e) Show similar data from senescent D17 cells (D17SEN) and the same
cells immortalized by ectopic expression of the catalytic subunit of telomerase TERT (D17 TERT) for
ePGE1 (d) and ePGE2 (e). SB203580 (striped bars) inhibited both ePGEs in D17 SEN, * p < 0.05 by
Student’s unpaired t test but had no effect in D17 TERT.
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Figure 5. Elevated DDR signalling is not essential for the elevation of ePGEs in MPPOL. (a) Shows
representative Western blots of serine 15 phosphorylated p53 levels (pp-53) (top two panels). Normal
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(NHOK810 both panels), MPPOL (D6, D25, D30 and E4 top panel), normal immortalized (OKF4
and OKF6 (second panel), IPPOL lines D19 (both panels) D4, D9, D20, D34, D35 and DOK second
panel), MPPOL line D17 lacking p16INK4A (second panel) and p53-characterized OSCC lines BICR3,
BICR6, BICR10 and BICR31 (top panel). NHOF-1 oral fibroblasts irradiated with 10 Gy gamma rays
served as a positive control. The same extracts run on a separate gel were re-probed for total p53
(panels 3 and 4 respectively) and HEK293 extract served as a positive control. All the p53 blots were
re-probed with GAPDH antibody as a loading control. (b) Representative Western blots of ATM
phosphorylated at serine 1981 (ATM-P) and total ATM (ATM) (NHOK810 both panels), MPPOL
(D6, D25, D30 and E4 top panel), normal immortalized (OKF4 and OKF6 second panel), IPPOL
lines D19 both panels D4, D9, D20, D34, D35 and DOK (second panel), MPPOL line D17 lacking
p16INK4A+/− (second panel). NHOF-1 oral fibroblasts irradiated with 10 Gy gamma rays served as
a positive control and normal human keratinocytes deficient in ATM served as a negative control.
(c) ePGE levels in OKF6 cells treated with the ATM kinase inhibitor KU55933 (striped bars) for 72 h
+/−standard deviation. (d) ePGE levels in senescent (SEN) and TERT-immortalized D17 cells treated
with the ATM kinase inhibitor KU55933 (striped bars) for 72 h +/− standard deviation. The results
(c,d) were not significant by Student’s unpaired t test.

The upstream DDR checkpoint kinases ATM and CHK2 have been reported to be
increased in certain human pre-malignancies in vivo [46]. ATM showed a consistent
upregulation in total protein (Figure 5b) in all PPOLs and OSCCs and has been reported
following DNA damage before [47]. However, only one MPPOL line, D25, showed an
increase in phosphorylation at serine 1981 (ATM-P) relative to NOKs. Therefore, although
the increased p53 phosphorylation in the MPPOL keratinocytes was not mediated through
ATM-P, the consistent increase in total ATM in MPPOL keratinocytes could be indicative of
increased DNA double strand breaks. Furthermore, ATM-P remained very high in D17 and
all IPPOL and immortal OSCC (IOSCC), suggesting that ATM-P was not enough to induce
ePGEs. ATM-P has recently been reported to be essential for the addition of telomere
repeats in telomerase expressing cells [48] and as all IPPOL [7] and OSCC [20] lines have
deregulated telomerase, ATM may not just serve a DDR function in these cells. In support
of this hypothesis, the ATM inhibitor KU55933 had no detectable inhibitory effect, even in
OKF6 (Figure 5c) or senescent D17 cells (Figure 5d), and if anything showed a slight trend
towards the stimulation of ePGEs in senescent D17 cells (Figure 5d).

We also examined the status of CHK2, but there was no striking variation of either total
or phosphorylated CHK2 in the cell line panel (Supplementary Figure S3A), suggesting
that this kinase was not responsible for ePGE upregulation in MPPOL keratinocytes. In
conclusion, whilst there was evidence for an increase in p53 phosphorylation in MPPOL
relative to NOKs this is not explained by phosphorylation of the DDR checkpoint kinases.

Finally, we tested whether the induction of senescence by the introduction of irrepara-
ble DNA damage using ionizing radiation in human epidermal keratinocytes was enough
to induce the secretion of ePGEs, but this was found not to be the case either (Supplemen-
tary Figure S3B). These results suggest that activation of the DDR and senescence in the
MPPOL keratinocytes is insufficient to cause the secretion of ePGEs and that the MPPOL
are not merely senescent normal keratinocytes. These data and that presented elsewhere
suggest that other signalling pathways, such as p38MAPK, are required in concert.

3.7. Regulation of the PGEs by p53

Figure 6 shows that whilst both ePGEs (Figure 6a) are elevated in OKF6 relative to
normal keratinocytes, OKF4 shows normal expression, indicating that the PGEs might be
regulated by p53. OKF6 also showed abnormally high levels of IL-1α and IL-1β, IL-6 and
IL-8 that were absent from OKF4 (Figure 6b). The unusual IPPOL line D4 also had high
levels of both the ePGEs and IL-1s, as well as one allele of wild type p53 [7], so a role for
p53, independent of telomerase and p16INK4A, was suggested by these data.
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Figure 6. ePGE and cytokine regulation in OKF6 keratinocytes by p53. (a) Shows ePGE1 levels
and ePGE2 levels in normal (NHOK810), OKF6 (p53 wild type) and OKF4 (p53 dysfunctional) oral
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keratinocytes and (b) shows cytokine IL-1α, IL-1β, IL-6 and IL-8 levels in the same lines as (a).
(c) Shows a representative Western blot of p53 levels in 3 independent siRNA experiments and the
quantitation and reduction of band intensity relative to the β actin control +/− standard deviation
**** p < 0.001 by Student’s t test. (d) The effect of TP53 knockdown on ePGE1, ePGE2, IL-1α, IL-1β,
IL-6 and IL-8 levels in the experiment are validated in (c). The data show that only ePGE1 levels were
positively regulated by p53 in OKF6, whilst IL-6 and IL-8 levels were restrained by p53 as reported
previously in senescent fibroblasts [43]. * p < 0.05; ** p < 0.01 by Student’s t test. Scrambled control
RNA (striped bars); p53siRNA (dotted bars).

p53 Is Necessary for the Upregulation of ePGE1 but Not ePGE2 in OKF6 Cells

To test the role of p53 in PGE regulation, we knocked down p53 in OKF6 cells using
siRNA and confirmed the level of knockdown as between 60 and 80% by Western blotting
(Figure 6c). Conditioned medium was collected from the p53 knock-down (p53KD) cells
and the levels of ePGE1, ePGE2, IL-6 and IL-8 (Figure 6d) were measured. The results
showed that ePGE1 but not ePGE2 required p53 for its upregulation in OKF6 cells and IL-6
and IL-8 were both increased slightly by p53 knock-down, consistent with previous reports
that p53 restrains IL-6 and IL-8 expression in IrrDSB-induced senescence in fibroblasts [43].

3.8. PPOL Keratinocyte Senescence in the Absence of p16INK4A Induces ePGE and a Distinct Set of
SASP Factor Transcripts That Are Reversed by Telomerase

To further investigate the role of senescence in the control of the SASP cytokines
we mined transcript data [10] from the pseudodiploid CDKN2A/p16INK4A-deficient D17
cells [7] that had been transduced with the catalytic component of telomerase TERT or the
empty vector, and were allowed to reach or bypass the senescence checkpoint [15].

Figure 7 shows that transcripts of several of the above cytokines (CXCL1, CCL20 and
IL8/CXCL8) together with IL1A and IL1B and transforming growth factor α (TGFA) were
upregulated in senescent D17 and were reversed upon senescence bypass by the ectopic
expression of telomerase, thus linking the expression of these cytokines with telomere
dysfunction in the absence of CDKN2A/p16INK4A. In the same cells, transcripts encoding
matrix metalloproteinase (MMPs) and their TIMPs were also similarly regulated with
MMP1, 9 and 10 being upregulated in senescence and TIMP1 downregulated (Figure 7).
However, TGFB2, CXCL5, and CXCL6 levels did not become elevated following D17
senescence and IL-8/CXCL8 protein levels were not reversed by telomerase in OKF6
cells following extensive passaging, suggesting that extra-telomere signals such as those
mediated by p38MAPK/MAPK14 also regulate SASP cytokines in PPOL keratinocytes,
similar to the regulation of ePGEs.

3.9. ePGEs Are Not Inversely Related to the Levels of PGE Receptors

One possible explanation for the increased levels of ePGEs in the MPPOL keratinocyte
media might be a reduced level of PGE receptors on the keratinocyte surface, thus resulting
in less surface binding and increased ePGE in the media. We therefore examined the
expression of all four PGE receptors (Eph1-4) in our cell line panel by Western blotting and
there was no relationship between PGE receptor level and ePGE expression (Figure 8). D4
and D9 had slightly higher levels of Eph2-4 than D6 but D19 and DOK did not. Linear
regression analysis of ePGE levels and EP receptor levels across the cell line panel in the
same experiments as the depicted Western blot in Figure 8 showed no correlation between
ePGE1 and EP2 (p = 0.29; R2 = 0.15), EP3 (p = 0.32; R2 = 0.14) or EP4 (p = 0.78; R2 = 0.01) or
ePGE2 and EP2 (p = 0.31; R2 = 0.15), EP3 (p = 0.27; R2 = 0.17) or EP4 (p = 0.88; R2 = 0.003).
Therefore, we consider it unlikely that the high levels of ePGEs in the MPPOL media was
due to a reduction of PGE receptors.
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same experiment as (a). Data mined from the microarray study in reference [10].
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(d) Quantitation of the EP4 levels in (a). 
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crease in ePGE1 (Figure 9a), but there was a 10-fold increase in ePGE2 in D19, which was 
also non-significant in both D19 and DOK and was not sufficient to stimulate D19 or DOK 
proliferation (see below). Therefore, although increased sensitivity to HC did not com-
pletely account for the large difference in ePGE levels or cytokines between MPPOL and 
IPPOL keratinocytes [10,11] (see below), it does suggest that MPPOL keratinocytes may 
regulate ePGEs in a similar manner to the SASP. The results also suggest that MPPOLs 
have a difference in steroid metabolism from NOKs that may account for some of the 
results, as even in the presence of HC, MPPOLs express higher levels of ePGEs than IPPOL 
or normal keratinocytes. However, the effect of HC needs examining in more IPPOL lines. 

Figure 8. (a) Western blot showing the levels prostaglandin receptors (Eph 2-4; EP2, EP3 and EP4 in a
selection of MPPOL, IPPOL and NOKs (Eph1 was not detected). GAPDH and beta actin were used
as loading controls. (b) Quantitation of the EP2 levels in (a). (c) Quantitation of the EP3 levels in (a).
(d) Quantitation of the EP4 levels in (a).
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3.10. The Effect of Hydrocortisone (HC) on the Regulation of Extracellular PGEs

As it has been reported that the doses of steroids routinely used in our keratinocyte
cultures suppress the interleukins of the SASP [49] and ePGE2 [50], we tested whether
the difference in ePGE levels between MPPOL and IPPOL keratinocytes might be due to
differences in their sensitivity to hydrocortisone (HC). We cultured two of the immortal
lines, DOK and D19, for 3 weeks in the absence of hydrocortisone. The results (Figure 9)
showed that whilst the growth rate slowed and the saturation density decreased in the
steroid-deprived keratinocytes, there was only a very modest (two fold) and non-significant
increase in ePGE1 (Figure 9a), but there was a 10-fold increase in ePGE2 in D19, which
was also non-significant in both D19 and DOK and was not sufficient to stimulate D19 or
DOK proliferation (see below). Therefore, although increased sensitivity to HC did not
completely account for the large difference in ePGE levels or cytokines between MPPOL
and IPPOL keratinocytes [10,11] (see below), it does suggest that MPPOL keratinocytes
may regulate ePGEs in a similar manner to the SASP. The results also suggest that MPPOLs
have a difference in steroid metabolism from NOKs that may account for some of the
results, as even in the presence of HC, MPPOLs express higher levels of ePGEs than IPPOL
or normal keratinocytes. However, the effect of HC needs examining in more IPPOL lines.
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2). We found no effect of PGE1 on either line. To test whether there was an autocrine effect 
of the PGEs on IPPOL cells we treated both D19 and DOK cells with celecoxib. Celecoxib 
completely eliminated the production of both PGEs in OKF6 cells at a dose of 3 μM and 
there was no effect on D19 but it actually stimulated DOK slightly at 10 μM (Figure 10b), 
arguing against an autocrine effect of ePGE2 in IPPOL cells in agreement with the low 
levels of ePGE in D19 and DOK (Figure 1). 

Figure 9. ePGE expression in IPPOL keratinocytes is repressed by hydrocortisone. (a) ePGE1 levels
and (b) ePGE2 levels in DOK and D19 cells where hydrocortisone (HC) was removed from the culture
medium for 3 weeks (−HC striped bars). ns = not significant by Welch’s t test. CON = control (n = 6
independent cultures); −HC = derived of hydrocortisone for 3 weeks (n = 3 independent cultures).

3.11. PGE2 but Not PGE1 Stimulates Proliferation in Some IPPOL Lines Lacking Autocrine
Secretion of the PGEs

It has been reported that PGE2 and Eph2 and Eph3 receptor agonists can stimulate
the proliferation of some OSCC cell lines [50] and we have extended these experiments to
the IPPOL line D19 but not DOK (Figure 9a), suggesting that PGE2 derived from the pre-
cancerous environment might stimulate IPPOL cell multiplication as well as OSCC in some
cases. The doses used (3–10 ng/mL or 8.5–30.7 nM) are physiological, as D6, D25 and D30
and late passage D17 produce between 5 and 60 ng/mL ePGE2/105 cells (Figures 1 and 2).
We found no effect of PGE1 on either line. To test whether there was an autocrine effect
of the PGEs on IPPOL cells we treated both D19 and DOK cells with celecoxib. Celecoxib
completely eliminated the production of both PGEs in OKF6 cells at a dose of 3 µM and
there was no effect on D19 but it actually stimulated DOK slightly at 10 µM (Figure 10b),
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arguing against an autocrine effect of ePGE2 in IPPOL cells in agreement with the low
levels of ePGE in D19 and DOK (Figure 1).
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bars). * p < 0.05; ** p < 0.01; *** p < 0.001 by Student’s t test. The data show that only exogenous PGE2 
stimulates D19 proliferation. 

3.12. Exogenous PGE2 Does Not Induce Oral Fibroblast Senescence 
Senescent oral fibroblasts do not secrete ePGEs [36] but PGE2 has been reported to 

induce lung fibroblast senescence [51] and therefore keratinocyte-derived ePGE2 could 
induce the fibroblast SASP. However, doses of 0.85 to 85 nM of both PGE1 and PGE2 had 
no effect on the frequency of senescent oral fibroblasts as assessed by SA-βGal (Supple-
mentary Figure S4). These data did not support the hypothesis that the MPPOL keratino-
cytes could indirectly promote IPPOL progression by inducing fibroblast senescence in 
the cancer-associated mesenchyme. 

4. Discussion 
Recent and historical data have shown that PPOL and OSCCs are composed of mix-

tures of mortal and immortal cells [7–9] that have strikingly distinct properties and appear 
to diverge further throughout tumor progression [10]. Paradoxically, the mortal diploid 
cells express more classical OSCC markers than the immortal ones [10], the latter of which 
form experimental tumors and contain established cancer driver mutations [12,13]. The 
nature of the mortal cells in these tumors is not clear; whilst they could be a distinct form 
of cancer underpinned by microRNA or non-coding RNA changes, it is also possible that 
they are normal keratinocytes recruited into the tumor to provide a specific role, i.e., ‘can-
cer-associated keratinocytes’. Some MPPOL lines have also been shown to be resistant to 
suspension-induced terminal differentiation [8] and to over-express keratin 7 [10], which 
is associated with glandular epithelium, and so some MPPOL may have stem cell proper-
ties. 

We show here that ePGE1 and ePGE2 and several cytokines are strikingly upregu-
lated in MPPOL relative to NOKs and this upregulation was not explained by differential 
regulation of the PGE receptors. ePGE upregulation was associated with COX-2 expres-
sion and a subset of SASP factors, but not with the DDR pathways. Upregulation of the 
ePGEs was not completely reversed by telomerase or inhibitors of the DDR, even in the 
absence of p16INK4A and inhibition of COX-2 and p38MAPK was also required. In addition, 

Figure 10. Exogenous PGE2 (3 ng/mL striped bars; 10 ng/mL dotted bars) stimulates the proliferation
of some IPPOL lines. (a) Shows the effect of a 10-day treatment of IPPOL lines D19 and DOK relative
to the ethanol vehicle control +/− standard deviation. (b) Shows the effect of the COX-2 selective
inhibitor celecoxib (CCXB) on the same lines at 3 µM (striped bars) and 10 µM (dotted bars). * p < 0.05;
** p < 0.01; *** p < 0.001 by Student’s t test. The data show that only exogenous PGE2 stimulates
D19 proliferation.

3.12. Exogenous PGE2 Does Not Induce Oral Fibroblast Senescence

Senescent oral fibroblasts do not secrete ePGEs [36] but PGE2 has been reported to
induce lung fibroblast senescence [51] and therefore keratinocyte-derived ePGE2 could
induce the fibroblast SASP. However, doses of 0.85 to 85 nM of both PGE1 and PGE2
had no effect on the frequency of senescent oral fibroblasts as assessed by SA-βGal
(Supplementary Figure S4). These data did not support the hypothesis that the MPPOL ker-
atinocytes could indirectly promote IPPOL progression by inducing fibroblast senescence
in the cancer-associated mesenchyme.

4. Discussion

Recent and historical data have shown that PPOL and OSCCs are composed of mix-
tures of mortal and immortal cells [7–9] that have strikingly distinct properties and appear
to diverge further throughout tumor progression [10]. Paradoxically, the mortal diploid
cells express more classical OSCC markers than the immortal ones [10], the latter of which
form experimental tumors and contain established cancer driver mutations [12,13]. The
nature of the mortal cells in these tumors is not clear; whilst they could be a distinct form of
cancer underpinned by microRNA or non-coding RNA changes, it is also possible that they
are normal keratinocytes recruited into the tumor to provide a specific role, i.e., ‘cancer-
associated keratinocytes’. Some MPPOL lines have also been shown to be resistant to
suspension-induced terminal differentiation [8] and to over-express keratin 7 [10], which is
associated with glandular epithelium, and so some MPPOL may have stem cell properties.

We show here that ePGE1 and ePGE2 and several cytokines are strikingly upregulated
in MPPOL relative to NOKs and this upregulation was not explained by differential
regulation of the PGE receptors. ePGE upregulation was associated with COX-2 expression
and a subset of SASP factors, but not with the DDR pathways. Upregulation of the ePGEs
was not completely reversed by telomerase or inhibitors of the DDR, even in the absence of
p16INK4A and inhibition of COX-2 and p38MAPK was also required. In addition, inducing
the DDR and senescence in normal keratinocytes was not enough to upregulate ePGEs.
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All of these pathways are known to regulate the cytokines, which are part of the
fibroblast SASP [38,43,52] and mining data from our previous microarray study [10] showed
that some SASP-like proteins, but certainly not all, are similarly upregulated in MPPOL
keratinocytes. Furthermore, SASP factor transcripts elevated in MPPOL keratinocytes
approaching senescence were different from those following the replicative senescence
of a p16INK4A-defcient MPPOL line D17, with the exception of IL-8. This suggests that
the nature and role that the SASP plays in the development and progression of OSCC is
context- and mechanism-dependent.

In addition, ePGE1, but not ePGE2, did show dependence on p53, even in the
telomerase-positive OKF6 line, suggesting alternative pathways of ePGE1 regulation
but the mechanism underpinning the differential regulation of the ePGEs by p53 is not
presently clear.

With few exceptions, IPPOL do not upregulate ePGEs and SASP-related cytokine
transcripts and often downregulate them, which may enable them to evade clearance
by the innate and adaptive immune systems as published previously in mouse cancer
models [26,53]. Some of this resistance may be related to their increased sensitivity to
hydrocortisone, as withdrawal of the latter partially restored ePGE production, but this
restoration was only partial and not significant.

IPPOL generally show less differentiation in conventional 2D cultures than MPPOL
and do not display many important markers of OSCC such as αvβ6 integrin and this
protein is absent from undifferentiated OSCC in vivo [54]. These data give rise to the
hypothesis that in complex pre-cancerous fields of mortal and immortal keratinocytes the
MPPOL keratinocytes produce numerous molecules that have the potential to induce tumor
progression of the more advanced IPPOL and OSCC keratinocytes. It is well documented
that PGE2 can stimulate the proliferation of a variety of neoplastic cell lines, including
head and neck SCCs [50] and we have extended this observation to some IPPOL lines with
minimal autocrine ePGE2 secretion. However, there was no evidence that ePGE2 could
induce senescence in oral fibroblasts. These results support a paracrine effect of MPPOL
keratinocytes on IPPOL multiplication via PGE2.

PGE1 is known to stimulate angiogenesis, another essential process for continued
tumor growth in vivo [55,56], and cytokines such as IL-6 and IL-8 have been shown to
promote cancer cell invasion [57]. This hypothesis is further supported by recent data
showing that in the mouse two-stage carcinogenesis model, the source of PGE2 is dependent
on epidermal COX2 [58] and progression to SCC is dependent on both epidermal COX2 [58]
and senescent keratinocytes [59].

Although it is accepted that the phenotypes displayed by MPPOL keratinocytes
may have occurred or have been enhanced in vitro, there is support for our hypothesis
from histological studies in vivo. Notably, although COX-2 expression is upregulated in
PPOL and OSCC in vivo, it is mainly expressed in the upper layers of the mucosa [60]
and is highly heterogeneous [60], which is consistent with our results. Although there
is no reported evidence for senescence in human PPOL lesions in vivo, there is in other
human pre-malignancies [46] and p16INK4A is upregulated in high-grade PPOL lesions [61].
Interestingly, mice ectopically expressing p16INK4A in epidermal keratinocytes have recently
been reported to express features of senescence and exert paracrine tumor-promoting effects
on neighbouring keratinocytes [62]. Therefore, there is evidence that senescence and ePGEs
can promote the progression of pre-malignant keratinocytes to OSCC in vivo. However,
to test our hypothesis definitively it will be necessary to explore the expression patterns
of individual PPOL keratinocytes in vivo in different states of differentiation to test these
hypotheses further.

Significantly, regulators of MPPOL ePGEs, cytokines and MMPs such as p38MAPK and
COX-2 are established anti-cancer targets and the elimination of senescent cells by senolytic
drugs has been shown to inhibit epidermal SCC progression [59], suggesting that the
targeting of MPPOL keratinocytes in a pre-cancerous field could be an effective therapeutic
and/or chemotherapeutic strategy. Senolytics targeting MPPOL may be required, as
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cell type specificity of this class of drug has already been observed [63]. Of additional
significance is the observation that IPPOL and IOSCC keratinocytes do not generally express
significant levels of ePGEs unless hydrocortisone is withdrawn from the culture medium,
suggesting that therapies based on such targets could be complemented by strategies that
inhibit the steroid receptor. In addition, the induction of IPPOL keratinocyte senescence
or differentiation, as previously suggested by others based on a p53-deficient mouse liver
cancer model [53], may aid therapeutic effectiveness of the targets mentioned above.

The limitations of our study as it stands is that the differences between NOK, MPPOL
and IPPOL keratinocytes are observed in a partially differentiated keratinocyte system,
albeit with physiological levels of plasma hydrocortisone. COX-2 [60] and many markers of
PPOL and OSCC in vivo [10] are expressed by the MPPOL and not the IPPOL keratinocytes.
This is curious given that the latter are generally held to be the precursors of tumorigenic
OSCC. Future work should include testing the hypotheses that an IPPOL gene signature
exists in PPOL and OSCC tissue samples by single cell RNA sequencing [64] and, in
addition, that IPPOL keratinocytes can re-express COX-2, the ePGEs and SASP proteins
when placed in 3-dimensional organotypic cultures.

5. Conclusions

Our results (summarized in Figure 11), together with recent data from mouse models
of epidermal carcinogenesis, support the hypothesis that ePGEs and cytokines can originate
from oral keratinocytes approaching senescence in the pre-cancerous field but that the
breakdown of senescence ablates their expression. As these molecules are known to
promote tumor proliferation, invasion and angiogenesis, our results support the hypothesis
that the paracrine delivery of these molecules may be necessary to drive PPOL progression.
We also identify p38MAPK, COX2 and steroids as potential anti-cancer target pathways.
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Figure 11. Summary of ePGE and SASP regulation in PPOL keratinocytes, their potential functions
in a pre-cancerous oral field and therapeutic targets. The figure summarises the potential impact
of the new findings in the context of the different keratinocyte types in a pre-cancerous oral field
of largely normal oral keratinocytes (red nuclei; beige cytoplasm). It hypothesises that genetically
normal MPPOL keratinocytes (blue nuclei; beige cytoplasm) and senescent keratinocytes en route
to immortality lacking p16INK4A such as D17 (black nuclei; beige cytoplasm) collectively create a
tumor-promoting environment for IPPOL (black nuclei; green cytoplasm).
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