
Mechanical Systems and Signal Processing 186 (2023) 109771

0
(

B
A
a

b

c

A

C

D
e

K
U
I
R
D
A

1

c
d
f
p

S

h
R

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

ivariate dependency tracking in interval arithmetic
nder Gray a,b,∗, Marco de Angelis b,c,∗, Edoardo Patelli b,c, Scott Ferson b

United Kingdom Atomic Energy Authority, United Kingdom
Institute for Risk and Uncertainty, University of Liverpool, United Kingdom
Civil and Environmental Engineering, University of Strathclyde, United Kingdom

R T I C L E I N F O

ommunicated by J.E. Mottershead

ataset link: https://github.com/AnderGray/R
lationArithmetic.jl

eywords:
ncertainty propagation

nterval arithmetic
epeated variables
ependency tracking
utomatically verified

A B S T R A C T

We propose a correlated bivariate interval arithmetic which allows for an initial dependence
to be propagated, as well as the tracking of complicated non-linear dependencies arising
from a computer program’s execution. For this task, we extend several familiar concepts from
probability theory to intervals, including bivariate copulas, conditioning, inference, and vine
copulas. The interval copulas, which we call interval relations, may take any shape, and are
represented by Boolean matrices defining where two intervals jointly exist or not. We use
set conditioning to define an efficient correlated interval arithmetic, which may be used to
find the input–output relations of operations. A key component of the presented arithmetic
are interval relation networks, interval analogues to vine copulas, which store the interval
relations throughout a program’s execution, and use set inference to determine any unknown
relations. The presented network inference can give a robust outer approximation to the exact
multivariate interval dependency, which is found by projecting each pairwise bivariate relation
into higher dimensions. Although some higher dimensional information is lost in this process,
the bivariate projections are often sufficient to stop interval bounds becoming excessively wide.
This extension allows for intervals to be rigorously and tightly propagated in deterministic
engineering codes in an automatic fashion, and we apply the arithmetic on several engineering
dynamics problems, including a non-linear ordinary differential equation.

. Introduction

Uncertain computer arithmetic is an intrusive alternative to sampling based methods for uncertainty propagation and quantifi-
ation. They rely on access to a computational model’s source code, and much like how automatic differentiation calculates the
erivative after every line of code, an uncertainty arithmetic calculates the uncertainty. These intrusive methods work by replacing
loating point operations with operations defined for uncertain numbers, such as intervals [1–3], probability distributions [4],
robability boxes [5,6] or possibility distributions [7]. This allows for uncertainty to be propagated with the following features:

• A bounded solution to the output uncertainty is achieved. That is, an outer approximation which contracts to the exact result
with more computational effort. Interval calculations also allow for automatically verified computation.

• Functions of sets of probability distributions can be computed as cheaply as functions of singular distributions. For example
in p-box arithmetic [6], computing with p-boxes has the same computational cost as precise distributions.

∗ Corresponding authors.
E-mail addresses: Ander.Gray@ukaea.uk (A. Gray), mda@liverpool.ac.uk (M. de Angelis), Edoardo.Patelli@strath.ac.uk (E. Patelli),

cott.Ferson@liverpool.ac.uk (S. Ferson).
888-3270/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.ymssp.2022.109771
eceived 21 January 2022; Received in revised form 8 August 2022; Accepted 4 September 2022

http://www.elsevier.com/locate/ymssp
http://www.elsevier.com/locate/ymssp
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
https://github.com/AnderGray/RelationArithmetic.jl
mailto:Ander.Gray@ukaea.uk
mailto:mda@liverpool.ac.uk
mailto:Edoardo.Patelli@strath.ac.uk
mailto:Scott.Ferson@liverpool.ac.uk
https://doi.org/10.1016/j.ymssp.2022.109771
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2022.109771&domain=pdf
https://doi.org/10.1016/j.ymssp.2022.109771
http://creativecommons.org/licenses/by/4.0/

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.

c
t
s
o
l
n
v
A
p
t

v
u
c
b

T
a
H
t
q
w

I
a
m
a
p
a
c

i
d
r
f
m

s
o
o
i
g

a
s
i
i
𝑓
k
t

• Dependency information between variables may be partially defined. A Monte Carlo simulation requires the full input joint
distribution to be specified. Any missing information about the input distribution, for example if any of the marginals or
dependencies are missing, would require multiple Monte Carlo loops.

One of the reasons sampling methods are more widely used is they require no changes to source code. Preparing one’s source
ode to be used with an uncertainty arithmetic presents its own challenges. There are two avenues for this: source-to-source
ransformation, and multiple dispatch. Source-to-source transformation entails some sort of a pre-compiler, where a program replaces
pecific data structures and functions in the source code. This would require an uncertainty precompiler like one described by [8],
r perhaps using metaprogramming techniques. If a programming language allows it, using multiple dispatch requires by far the
east effort. Multiple dispatch is a feature of a programming language which allows for multiple functions to defined with the same
ame. The correct function is dynamically called based on its input data type and/or other arguments. In this case only the initial
ariables are changed to the required uncertain types (interval, p-box, . . .) and the language handles the appropriate function calls.
language like Julia [9] is very well suited for this, which has multiple dispatch as its core programming paradigm. This allows

rogramming packages with very different functionality to work together seamlessly with very little extra work. Also in Julia custom
ypes can be used with minimal overhead over its basic types.

The main issue with this type of uncertainty propagation is known as the dependency problem, or sometimes called repeated
ariables or the wrapping effect in interval arithmetic. When a variable appears multiple times in a sequence of operations, the same
ncertainty is inserted multiple times and results are artificially inflated. By the rigorous nature of the uncertainty arithmetic, the
orrect solution is still bounded, however the bounds can be excessively wide. For example consider the following sequence of
inary operations:

𝑋 + 𝑌 = 𝑍

𝑍 −𝑋 = 𝑌

|

|

|

|

|

[−1, 1] + [−1, 1] = [−2, 2]

[−2, 2] − [−1, 1] = [−3, 3]
(1)

he left shows a sequence of operations and the right shows it evaluated with interval arithmetic. 𝑋 and 𝑌 are the intervals [−1, 1],
nd are summed to create 𝑍. 𝑋 is then subtracted from 𝑍 to create 𝑌 . Because the same 𝑋 was added and then subtracted 𝑌 = 𝑌 .
owever the calculation gave us 𝑌 ⊂ 𝑌 (i.e. [−1, 1] ⊂ [−3, 3]). This extra uncertainty came from the fact that 𝑋 was repeated in

he sequence of operations. Operations between uncertain quantities are generally a function of their dependence as well as the
uantities themselves. Since 𝑍 was created in a binary operation involving 𝑋, they are somehow dependent on one another and it
as the disregard of this dependence that lead to an inflated answer.

Note that what is criticised here is naïve or straightforward interval arithmetic, and not what is often called interval computations.
n his original 1966 book, Moore [10] never proposed naïvely replacing each elementary operation with their interval equivalents
s a way to estimate uncertainty. He instead suggests that, for each algorithm, we perform monotonicity checks, then use the
ean value form of interval arithmetic, and perform bisection if required. For the above example, the mean value form of interval

rithmetic would yield the exact interval 𝑌 = 𝑌 . Other than the mean value form of interval arithmetic, there have been several
roposed solutions for reducing artificial inflation, including significance arithmetic [11], affine arithmetic [12], zonotopes [13]
nd Taylor models [14]. There has also been a method proposed for probability distributions [15]. In certain cases, the expression
an be rearranged such that the variable only appears once. For example realising that 𝑎2 +𝑎 = (𝑎+ 1

2)
2 − 1

4 or 𝑎
𝑎+𝑏 = 1

1+𝑏∕𝑎 . However
this is not always applicable, for example in expressions like 𝑥 sin(𝑥), or (𝑥2 + 𝑦)𝑥.

The fact that we can produce a rigorous enclosure of the exact range of the uncertainty is a benefit of, and perhaps unique to,
nterval computations. The computed range is guaranteed to include the true range of the uncertainty, so long as the input interval
oes. But the fact that the exact range is not always retrieved is not a fault of the method. It is known that computing the exact
ange of a polynomial is NP-hard [16], meaning that unless P = NP (which most computer scientists believe not to be true) no
easible algorithm can always produce the exact range. Therefore many of the set-based methods highlighted above, and indeed the
ethod suggested in this work, aim to produce a tight enclosure of the exact range with a reasonable amount of computation.

One of the simplest-to-implement solutions is subintervalisation, where the interval is split into 𝑛 (usually linearly spaced)
ubintervals, and the expression is evaluated 𝑛 times with each subinterval. The resulting range is then taken to be the union
f the propagated subintervals. An advantage of subintervalisation is that it can be used to bound the complete multivariate set
f model responses, including the relationship between model inputs and outputs. For example consider a real function 𝑓 with 𝑋𝑘
nputs and 𝑌𝑚 outputs, and which has been extended for intervals using interval arithmetic 𝑓 ∶ 𝑘 → 𝑚. Subintervalisation will
ive an outer bound to the multivariate set of input–outputs 𝐽𝑋𝑘𝑌𝑚 . As an example, consider the function 𝑓 (𝑥1, 𝑥2) = (𝑦1, 𝑦2) where

𝑓 (𝑥1, 𝑥2) =
(

(𝑥1∕(𝑥22 + 1) − 1)2 sin(𝑥2)
−𝑥21 + 𝑥32 − 𝑥2

)

, (2)

nd with 𝐽𝑋1𝑋2
= 𝑋1×𝑋2 = [−1.4, 1.4]×[−1.4, 1.4]. Subintervalisation of 𝐽𝑋1𝑋2

gives an outer bound on 𝐽𝑋1𝑋2𝑌1𝑌2 , the four dimensional
et of input–outputs of 𝑓 . Three dimensional plots of this set are shown on Fig. 1. The central red shapes are three dimensional
nterval boxes of two of 𝑓 ’s outputs 𝑌1 and 𝑌2, and one of the inputs 𝑋1 (left) or 𝑋2 (right). The input set 𝐽𝑋1𝑋2

is not shown since it
s a square. The union of the red boxes forms a rigorous bound on the set of multivariate input–outputs of 𝑓 . If the input domain of

could be subdivided to an infinite resolution, then this approach would produce the exact multivariate set of inputs and responses,
nown as the united extension [17]. The blue shapes in Fig. 1 show the two dimensional projections of the set onto the axis planes,
2

he bivariate sets of pairwise parameters.

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 1. A trivariate set of a function’s input–outputs using subintervalisation.

Fig. 2. A trivariate set of a function’s input–outputs using subintervalisation, but with an initial ring shaped dependence.

An initial dependence may also be placed on the input set 𝐽𝑋1𝑋2
, such as constraining the initial set to a ring 𝑋2

1 +𝑋2
2 ⊆ [1, 2].

This may be done by first subintervalising the domain, and rejecting the boxes which do not meet the constraint. If this is performed,
the set shown in Fig. 2 is obtained, which is a subset of the set shown in Fig. 1.

The drawback of subintervalisation is that it greatly suffers from the curse of dimensionality. If a function has 𝑚 inputs, then 𝑛𝑚

interval calculations are required for 𝑛 subintervals. For example a model with 9 inputs and a low subinterval number of 10 gives
over 3 billion interval calculations, which may be feasible with modern high performance computing standards, but too prohibitive
for standard application. Some variants of subintervalisation exist, for example interval global optimisation [18] and interval root
finding [3] are based on subdividing input intervals in particular ways. Interval contractors [19] have also been used to rigorously
solve inverse problems, and have been recently applied to ordinary differential equations and differential–algebraic systems of
equations [20].

The approach studied in this paper considers solely the two dimensional projections of these higher dimensional sets, the blue
projections shown in Figs. 1 and 2. Some of the higher dimensional information is lost when only considering projections, however
the resulting dependent arithmetic is more efficient than using subintervals. We propose a model for bivariate dependencies amongst
intervals, which is akin to a copula from probability theory, and show how dependent interval arithmetic may be performed,
tracking dependencies in binary and unary operations. We show that complex non-convex dependencies can be tracked through
linked operations using this method.
3

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.

d
c
w

w
s

2

d
j
p

T

r
h
i
o

2

[
s

s
o
m
w

S
e

𝑣
t
i
t
s

i
d
p
g

In functions involving multiple variables, we propose an interval relation network model to store the known or calculated binary
ependencies, and to infer the binary dependencies required in the course of a calculation. This network model is similar to a vine
opula from probability theory, and may be used to bound higher dimensional sets from the known binary projections in a rigorous
ay.

The presented method preserves the rigour of interval arithmetic, and a varying granularity or resolution may be defined,
ith a higher resolution providing tighter answers but a higher computational cost. Parallelisation of this method is however

traightforward, with some discussions provided.

. Dependence amongst intervals

There have been a number of proposed models for dependencies amongst intervals. Ferson and Kreinovich [21] describe a
ependence between two intervals as regions where the two sets are pairwise allowed and disallowed (values where the two sets
ointly exist). They describe a number of parametric families for interval dependencies, and show how arithmetic operations can be
erformed with these families. They include non-interactive (the standard interval arithmetic case), perfect and opposite dependencies

as special cases. Ceberio et al. [22] similarly describe a joint interval as a set of possible allowed pairs, but allow the set to take any
shape. They define a dependence between two intervals 𝑋1 and 𝑋2 to be any proper subset of their Cartesian product 𝐽𝑋1𝑋2

⊆ 𝑋1×𝑋2.
hey describe how any arbitrary subset of 𝑋1 ×𝑋2 can be represented on a computer by a discrete outer approximation. They first

divide the box 𝑋1 × 𝑋2 into 𝑛 × 𝑛 subboxes; and then describe the set 𝐽𝑋1𝑋2
as the union of subboxes which contain a possible

pair. This representation of a set is the well known upper approximation used in rough set theory [23]. They perform dependent
interval operations with interval arithmetic on each individual subbox, much in the style of subintervalisation. As opposed to storing
each subinterval, which would require 𝑛2 × 2 (one for each interval bound) floating point numbers, they propose that the sets are
epresented by Boolean matrices, requiring only 𝑛2 bits. In this section we expand on the ideas of Ceberio et al. [22], describing
ow bivariate intervals may be defined and manipulated. We also describe a method for performing an arithmetic with dependent
ntervals, which is computationally cheaper than subintervalisation and may be used to determine dependencies of inputs and
utputs of binary and unary operations, a task required for dependency tracking.

.1. Interval relations

In probability theory, a bivariate copula returns the value of the cumulative distribution for a (𝑢, 𝑣) pair in the unit square
0, 1]2, 𝐶 ∶ [0, 1]2 → [0, 1], and can be used to define any probabilistic dependency independently from marginals. Following a
imilar idea, we define any generic interval dependency as an indicator function (𝑢, 𝑣) on [0, 1]2 which returns a Boolean value,
∶ [0, 1]2 → {0, 1}, stating whether the pair (𝑢, 𝑣) is contained in the bivariate set. Much like how univariate intervals make no

tatement of how the probability is distributed within them, these bivariate sets only state whether possible pairs are contained
r not. Generally the set may be any arbitrarily complicated two dimensional shape, which may be difficult to represent and
anipulate on the computer. We therefore construct a discrete outer representation 𝑅 using a uniform grid of subboxes on [0, 1]2,
hich like Ceberio et al. [22] we store with a 𝑛 × 𝑛 bit matrix. may also be extended to allow for interval inputs, in which case
returns a 1 if any real values in the interval are included in

𝑅(𝑢, 𝑣) =

{

1 if (𝑢 × 𝑣) ∩ ≠ ∅
0 otherwise.

(3)

tated another way, 𝑅 returns a 0 only if all the values in the interval are not in the original set, and in that sense 𝑅 guarantees
xclusion. The function 𝑅 can be represented by a 𝑛2 bit-matrix by subintervalising [0, 1]2 and evaluating Eq. (3) on each sub box,

forming a discrete outer approximation of the original dependence . Note the functions and 𝑅 are strongly related to binary
relations from set theory, which associate elements of one set to elements of another. For this reason we label functions like 𝑅 as
relations or interval relations, as they relate a particular subinterval in one dimension to a collection of subintervals of another
dimension. Fig. 3 shows a hypothetical interval relation represented by a bit-matrix, with some examples of intervals which would
be included and excluded. The set is the union of two rings, and is just an example of a generic bivariate set picked to show the
flexibility of this discrete set representation. Note that the relation does not need to extend to the entire [0, 1]2 range, which is a
modelling choice. Information about the bounds of one variable may inform the bounds of the other, and may not extend to its
entire range. Also for practical reasons, any values outside [0, 1]2 will be returned as 0.

Similar to how a bivariate distribution may be defined in terms of two marginals and a copula, a joint interval may be defined
by two marginal (or univariate) intervals 𝑋1, 𝑋2 and a relation 𝑅(𝑢, 𝑣), by 𝐽𝑋1 ,𝑋2

(𝑥, 𝑦) = supp𝑅(𝑢, 𝑣) with 𝑢 = (𝑥−𝑋1)∕(𝑋1 −𝑋1) and
= (𝑦−𝑋2)∕(𝑋2−𝑋2). This defines a grid of subboxes following 𝑅 by a uniform scaling by the intervals 𝑋1 and 𝑋2, and then taking

he support of resulting indicator function. This allows dependencies to be stored and manipulated independently from marginal
ntervals. Similar to how univariate intervals bound a sets of probability distributions, i.e. an interval is a special case of a p-box,
hese joint intervals may be considered to bound a set of joint distributions: the set of bivariate distributions whose ranges are a
ubset of the bivariate set.

Some useful special cases of interval relations are shown on Fig. 4. Shown is non-interactivity or Fréchet, which is the standard
nterval case which make no dependence assumptions. In perfect, opposite and functional associations one variable is completely
etermined by the other, and are useful in arithmetic since intervals resulting from simple scalar transformations and scaling will
roduce perfect or opposite dependence. Univariate transformations will give functional dependencies. This, and arithmetic with
eneric binary and unary operations, is discussed in the next section.
4

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 3. Shows an outer approximation of a relation represented by a bit-matrix. Also shown are several intervals which would be included and excluded by the
relation.

Fig. 4. Some special cases of interval relations.

3. Relation arithmetic

Ceberio et al. [22] suggest that binary operations are performed with 𝐽 using interval arithmetic on each individual subbox,
which requires of the order ∼ 𝑛2 interval operations. We proposed an alternative method which requires ∼ 𝑛 operations. For this we
borrow another concept for probability theory: conditioning. Much like how a univariate distribution can be created from a bivariate
distribution by conditioning on a value, we produce a conditional (univariate) set from a bivariate set by constraining it to particular
values. A conditional set 𝐽 (𝑥| 𝑦 = 𝑌) may be created from the bivariate interval 𝐽 (𝑥, 𝑦) by intersecting the it with an interval, or
real value, 𝑌

𝐽 (𝑥| 𝑦 = 𝑌) = 𝐽 (𝑥, 𝑦) ∩ ([−∞,∞] × 𝑌). (4)

𝐽 (𝑥| 𝑦 = 𝑌) is the conditional sets indicator function, which may be the union of several disjoint intervals (an interval union [24]).
For example, if we condition the relation in Fig. 3 with 𝑣 = [0.48, 52], we would get a set made up of 4 disjoint intervals:
[0.195, 0.255]∪[0.395, 0.455]∪[0.545, 0.605]∪[0.745, 0.8]. Fig. 5 shows an illustration of this. Calculations of this sort can be performed
quite efficiently with a bit-matrix representation, since it is a simple subselection of arrays of 𝑅.

We perform dependent interval operations using this conditioning. Instead of 𝑛2 interval operations, we perform 𝑛 (for each row
or column) set operations on the conditionals. Since a conditional may contain more than one interval, multiple interval operations
are performed per set operation, however the overall number of interval operations remains lower than 𝑛2. The minimum number
of interval operations is 𝑛, corresponding to the non-interactive case (everywhere true). The maximum number of required interval
operations is 𝑛2∕2, which is the very extreme case where every other element of the bit matrix is empty.

Using this conditional arithmetic, the relations between inputs and outputs of operations may be computed. Take for example
the simple sequence of operations shown earlier: 𝑥 + 𝑦 = 𝑧, and then 𝑧 − 𝑥, where initially the joint interval 𝐽𝑋𝑌 is known. For
𝑧 − 𝑥 to be evaluated tightly, the joint 𝐽𝑍𝑋 , or similarly the relation 𝑅𝑍𝑋 , must be calculated. For this we condition 𝐽𝑋𝑌 on some
subinterval 𝑥 = 𝑋, and evaluate the 𝑥+ 𝑦 with the conditional set, giving 𝐽𝑍𝑋 (𝑧|𝑥 = 𝑋). This is repeated for 𝑛 subintervals of 𝑥, and
the joint 𝐽𝑍𝑋 is constructed as the union of all conditionals of 𝑧

𝐽𝑍𝑋 (𝑧|𝑥 = 𝑋) = 𝐽𝑌 𝑋 (𝑦|𝑥 = 𝑋) +𝑋, (5)

𝐽𝑍𝑋 (𝑧, 𝑥) =
𝑛
⋃

𝑖=1
𝐽𝑍𝑋 (𝑧|𝑥 = 𝑋𝑖), (6)

where the + operator is an interval sum, and where 𝑋𝑖 is a subinterval. Fig. 6 shows an example of this, where 𝑥 + 𝑦 = 𝑧 is
evaluated for 𝑥, 𝑦 = [−1, 1] and with 𝐽 having the complement of a ring shaped dependence shown on the left. The calculated
5

𝑋𝑌

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 5. Illustration of conditioning a relation on the interval 𝑣 = [0.48, 52]. The resulting set is the union of the disjoint intervals [0.195, 0.255] ∪ [0.395, 0.455] ∪
[0.545, 0.605] ∪ [0.745, 0.8].

Fig. 6. An example of using conditional arithmetic to propagate an interval relation though a binary operator. Shown is 𝑥+ 𝑦 = 𝑧, with 𝑥, 𝑦 = [−1, 1] having the
dependency shown on the left figure. Centre shows the calculated bivariate set 𝐽𝑍𝑋 . When the inverse operation of 𝑦 = 𝑧 − 𝑥 is performed, the original 𝐽𝑋𝑌 is
retrieved. Shown in red is a conditional set, conditioned on a particular subinterval of 𝑋.

interval 𝑧 = [−2, 2] as expected, however the dependence has also been propagated. If 𝑦 = 𝑧 − 𝑥 is evaluated, then 𝑦 = [−1.08, 1.08],
which tightly encloses the exact solution of 𝑦 = 𝑦 = [−1, 1], and a vast improvement of the standard interval arithmetic answer
of 𝑦 = [−3, 3]. Moreover, when the inverse operation is performed, and outer approximation of the initial dependence is retrieved
𝐽𝑋𝑌 ⊆ 𝐽𝑋𝑌 The tightness of the result depends on the discretisation used, and for this example a discretisation 200 × 200 was used.
Using fewer subboxes will compute the result quicker, but giving a wider result. The method however is still guaranteed to bound
the exact relation and marginals. An identical calculation can be performed for 𝐽𝑍𝑌 , conditioning on subintervals of 𝑌 . The above
shows sum as an example, any binary operation ◦ that has an interval extension (e.g. ◦ ∈ {+,−,×,÷,min,max}) can be used:

𝐽𝑋◦𝑌 ,𝑋 (𝑧, 𝑥) =
𝑛
⋃

𝑖=1
𝐽𝑌 𝑋 (𝑦|𝑥 = 𝑋𝑖)◦𝑋𝑖 , (7)

𝐽𝑋◦𝑌 ,𝑌 (𝑧, 𝑦) =
𝑛
⋃

𝑖=1
𝐽𝑋𝑌 (𝑥|𝑦 = 𝑌𝑖)◦𝑌𝑖 . (8)

3.1. Unary operations

Dependency can be tracked in a similar way through a unary operation with an interval extension 𝑓 ∶ → . To determine the
joint interval between an input and its transformation 𝑓 (𝑋), we again condition 𝑋 on various subintervals, and take the union of
6

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 7. Examples of dependency tracking through unary operations.

the images:

𝐽𝑓 (𝑋),𝑋 (𝑧, 𝑥) =
𝑛
⋃

𝑖=1
𝑓 (𝐽𝑋 (𝑥 = 𝑋𝑖)) . (9)

This is identical to the calculation that is performed for standard subintervalisation, where 𝑋 is split into linearly spaced subintervals
𝑋𝑖, and 𝑓 is evaluated for each subinterval. The bit-matrix representing the relation 𝑅𝑓 (𝑋),𝑋 is then filled with 1s where there is an
overlap between the calculated boxes 𝑓 (𝑋𝑖) × 𝑋𝑖 and a uniform grid of boxes in the domain 𝑓 (𝑋) × 𝑋. Fig. 7 shows examples of
bivariate intervals constructed using various unary transformations.

3.2. Chained operations

The above arithmetic gives the dependencies for intervals linked by binary operations 𝐽𝑋◦𝑌 ,𝑋 , or unary transformations 𝐽𝑓 (𝑋),𝑋 .
We can therefore use these dependencies to further propagate intervals in expressions composed of chained operations, such as
𝑊 = 𝑋 sin(𝑋) or 𝑊 = (𝑋+𝑌)𝑋. The propagation problem for 𝑋 sin(𝑋) can be solved by first performing 𝑊 = sin(𝑋), and calculating
𝐽sin(𝑋),𝑋 , followed by a multiplication 𝑊 = 𝑊 ∗ 𝑋 using 𝐽sin(𝑋),𝑋 . The dependency between 𝐽𝑊 ,𝑋 may also calculated.

Similarly 𝑊 = (𝑋+𝑌)𝑋 may be chained as 𝑊 = 𝑋+𝑌 (finding 𝐽𝑋+𝑌 ,𝑋), followed by a binary 𝑊 = 𝑊 ∗ 𝑋. An initial dependency
for 𝐽𝑋𝑌 may be specified and propagated. Fig. 8 shows an example of propagating an elliptical relation through repeated evaluations
of 𝑤𝑖+1 = 𝑤𝑖 ∗ 𝑥. It can be seen that the set does not remain an ellipse. A similar calculation is shown in Fig. 9 but with an initial
ring shaped dependence with two different resolutions. The top row in shows a fine resolution of 𝑛 = 200, and a coarser 𝑛 = 20
shown on the bottom row. The lower fidelity calculation is guaranteed to enclose the higher fidelity one, and any calculation which
is performed with an 𝑛 > 20. The whitespace of these calculations is guaranteed to be excluded from the propagated bivariate set
at any resolution.

4. Interval relation networks

The previous section describes a method to propagate dependencies in variables linked by operations. However, generally not
all variables in a program will be linked by an operation. Even for simple expressions such as 𝐾 = (𝑋 + 𝑌)𝑍, the first operation
𝑊 = 𝑋 + 𝑌 may be performed exactly, giving 𝐽𝑊𝑋 and 𝐽𝑊 𝑌 , however for the following 𝐾 = 𝑊 ∗ 𝑍, 𝐽𝑊𝑍 is required. Certainly
𝑊 ∗ 𝑍 may be performed with an unknown dependence (the standard interval case), but it is possible to do better. Given that 𝐽𝑊𝑋
(or 𝐽𝑊 𝑌) and 𝐽𝑋𝑍 (or 𝐽𝑌 𝑍) is known, what can be said about 𝐽𝑊𝑍? We show that a surprising amount of information about 𝐽𝑊𝑍
can be found from known dependencies such as 𝐽𝑊𝑋 and 𝐽𝑋𝑍 .

The goal of this work is also to produce a method which is automatic. At the beginning of one’s program, uncertain variables
should be specified as intervals with any proceeding code tightly evaluated with arithmetic, with little or no consideration from
the user about the underlying complexities of the method. We therefore require a storage model for the known dependencies at a
particular point in a programs execution, such that when a binary operation is called, the correct dependence may be retrieved and
used. As operations are performed, and new dependencies calculated, they should also be stored appropriately for future use. If a
particular dependence is required but is not available, it must be automatically inferred from the known dependencies.

For this task, we borrow a final model from probability: a vine copula [25]. A vine copula is a method for constructing higher
dimensional copulas solely from pairwise bivariate marginal information. An undirected network is constructed, with nodes as
random variables and edges as pairwise copulas. Under certain assumptions, such as conditional independence and with only specific
network topologies being allowed, a high dimensional dependence structure can be constructed. We construct a similar network
model, but with intervals as nodes and bivariate relations as edges. The proposed interval relation networks have no constraints on
the topology and requires no additional assumptions.

As an illustrative example, consider the expression 𝐾 = sin(𝑋𝑌)(𝑋𝑍). Say that all three input intervals are known 𝑋 = [1, 3],
𝑌 = [−1, 2], and 𝑍 = [−2, 1], as well as the pairwise dependencies 𝐽𝑋𝑌 and 𝐽𝑌 𝑍 . In a program, this expression would be evaluated
by the following sequence of operations:

𝑊 = 𝑋 ∗ 𝑌 (requires 𝐽 , gives 𝐽 &𝐽)
7

1 𝑋𝑌 𝑊1𝑋 𝑊1𝑌

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 8. Shown is the evolution of an ellipse through the repeated evaluation of 𝑤𝑖+1 = 𝑤𝑖 ∗ 𝑥.

Fig. 9. Shown is the evolution of an interval relation with two different resolutions through the repeated evaluation of 𝑤𝑖+1 = 𝑤𝑖 ∗ 𝑥, starting from the
complement of a ring shaped relation in the left. The top row shows a fine resolution of 𝑛 = 200, and the lower row shows a coarse 𝑛 = 20.

𝑊2 = sin(𝑊1) (gives 𝐽𝑊2𝑊1
)

𝑊3 = 𝑋 ∗ 𝑍 (requires 𝐽𝑋𝑍 , gives 𝐽𝑊3𝑋&𝐽𝑊3𝑍)
𝐾 = 𝑊3 ∗ 𝑊2 (requires 𝐽𝑊3𝑊2

).
8

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 10. Shows the evolution of an interval relation network through a sequence of calculations. The network stores interval variables (nodes) and known
relations (edges) at a particular point in the program. New intervals and relations are added as the calculation executes.

The initial state of the program, where 𝑋, 𝑌 , 𝑍, 𝐽𝑋𝑌 , and 𝐽𝑌 𝑍 are known, is shown on the top left of Fig. 10. The nodes of this
network store the intervals 𝑋 = [1, 3], 𝑌 = [−1, 2], and 𝑍 = [−2, 1], and the links store the known two dependencies 𝐽𝑋𝑌 and 𝐽𝑌 𝑍 .
For the sake of this example, we begin with 𝐽𝑋𝑌 being a complement of a circle and 𝐽𝑌 𝑍 being a circle. Fig. 10 shows the evolution
of the interval relation network corresponding to the first two steps the evaluation of the expression. The first step 𝑊1 = 𝑋 ∗ 𝑌 ,
requiring 𝐽𝑋𝑌 which is known by the network and can be evaluated, results in 𝑊1 = [−3, 6]. This is the same result as standard
interval arithmetic, however additionally 𝐽𝑊1𝑋 and 𝐽𝑊1𝑌 are calculated. After this binary operation, 𝑊1 is added as a new node and
is linked to 𝑋 and 𝑌 using 𝐽𝑊1𝑋 and 𝐽𝑊1𝑌 . The network’s state after this operation is shown on the top right of Fig. 10, showing
the newly calculated relations.

The next unary operation 𝑊2 = sin(𝑊1) only requires the marginal 𝑊1 known from the previous step. The calculated 𝑊2 = [−1, 1]
is added and linked to 𝑊1 using 𝐽𝑊2𝑊1

which encodes the evaluated sin function. The proceeding 𝑊3 = 𝑋 ∗ 𝑍 requires 𝐽𝑋𝑍 , which
is not currently available in the network. However 𝐽𝑋𝑌 and 𝐽𝑌 𝑍 are known, and may be used to bound 𝐽𝑋𝑍 . How such inferences
can be performed is discussed in the next section.

4.1. Relation inference

Much like how in a vine copula, where the two dimensional marginals are defined and used to construct a higher dimensional
copula, the two dimensional sets of the interval network are the two dimensional marginals (projections or shadows) of a higher
dimensional set. Indeed the network shown at the bottom left in Fig. 10 with five intervals has a five dimensional set associated
with it, but all that is known about this shape are five of its shadows 𝐽𝑋𝑌 , 𝐽𝑌 𝑍 , 𝐽𝑊1𝑋 , 𝐽𝑊1𝑌 , and 𝐽𝑊2𝑊1

. In most cases there will not
exists a unique higher dimensional set which has these 2D shadows. However, it is possible to construct a outer bound on all 5D
shapes with these marginals, and use this higher dimensional shape to determine the required dependencies by projecting it onto the
axis planes. In the case where there is no high dimensional shape with these projections exits, this should also be determinable and
returned to the user as an error. However this will only occur at the beginning of the calculation with the user defined dependencies,
and will not occur as a result of a sequence of operations.

Unlike vine copulas, there are no additional assumptions required to construct these higher dimensional sets. For copulas, the
problem of finding an n-copula from two dimensional marginals is well studied. Only in very limited situations is it possible to find
a unique n-copula from the marginals, with solutions often being vacuous (no better than the Fréchet bounds). In vines, certain
assumptions are made to return a single n-copula with the desired margins, but it will not necessarily be the only solution. In the
presented interval relation networks, no such assumptions are needed. The returned result will be a rigorous bound on the n-d
set and projections, and in most cases will not be vacuous. Some higher dimensional information is lost by only considering the
projections, for example a cube containing an empty sphere cannot be represented this way. But crucially the presented framework
is sufficient to determine the required dependencies well enough to reduce repeated variable problems.

Constructing such higher dimensional sets every time a dependence inference is required would be very computationally complex.
Therefore we only ever perform this calculation in three dimensions, i.e. in the determination of 𝐽 from 𝐽 and 𝐽 , we only
9

𝑋𝑍 𝑋𝑌 𝑌𝑍

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 11. Visualisation of dependence inference using two known bivariate projections (red) to determine a third (green).

project in three dimensions 𝐽𝑋𝑌𝑍 . It is easy to visualise this projection inference process with sampling, shown in Fig. 11. The
volume defined by the marginals 𝑋 × 𝑌 × 𝑍 has been uniformly sampled, and the samples which fall outside the sets 𝐽𝑋𝑌 and
𝐽𝑌 𝑍 are rejected, giving the blue 3D scatter in the centre and the red 𝑋𝑌 and 𝑍𝑌 projections. The accepted samples can then be
projected onto the required 𝑋𝑍 axis giving the missing dependence, shown in green. Certainly, using sampling is not rigorous and
will lead to some missing features of the inferred dependence (in low volume regions), but Fig. 11 serves as a useful visualisation
of this process.

Interval relation inference can be performed rigorously and quite efficiently in terms of bit-matrices. Like for relation arithmetic,
this step can be performed with conditioning. The sets 𝐽𝑋𝑌 and 𝐽𝑌 𝑍 have the common variable 𝑌 , which will be conditioned on in
both sets. Conditioning both sets on the same subinterval of 𝑌𝑖 gives two univariate sets 𝐽𝑋𝑌 (𝑥|𝑦 = 𝑌𝑖) in 𝑋, and 𝐽𝑌 𝑍 (𝑧|𝑦 = 𝑌𝑖) in
𝑍. The Cartesian product of these sets 𝐽𝑋𝑌 (𝑥|𝑦 = 𝑌𝑖) × 𝐽𝑌 𝑍 (𝑧|𝑦 = 𝑌𝑖) exists in the 𝑋𝑍 plane, and defines a part of 𝐽𝑋𝑍 . Taking the
union for all subintervals of 𝑌 , the dependence 𝐽𝑋𝑍 is found

𝐽𝑋𝑍 = 𝐽𝑋𝑌 ⊛ 𝐽𝑌 𝑍 =
𝑛
⋃

𝑖=1
𝐽𝑋𝑌 (𝑥|𝑦 = 𝑌𝑖) × 𝐽𝑌 𝑍 (𝑧|𝑦 = 𝑌𝑖) . (10)

In a sense, the common variable 𝑌 is marginalised out. The operator ⊛ denotes this set based inference using relations with a
common variable. The operator ⊛ cancels out the common variable, the right variable in the first operand, and the left variable
in the second, i.e. 𝐽𝑋1𝑋2

⊛ 𝐽𝑋2𝑋3
marginalises out 𝑋2 and combines 𝑋1, 𝑋3 to give 𝐽𝑋1𝑋3

. The right of Fig. 12 shows the result of
𝐽𝑋𝑌 ⊛ 𝐽𝑌 𝑍 , and is the same as the green projection that was found by sampling in Fig. 11. It is simple to check that all trails by
sampling fall in the set produced by 𝐽𝑋𝑌 ⊛𝐽𝑌 𝑍 . In red are the sets found from conditioning on a particular subinterval of 𝑌 , which
is used as a part of the construction of 𝐽𝑋𝑍 . This process may quite efficiently be performed with bit-matrices, where the same array
of 𝑅𝑋𝑌 and 𝑅𝑌 𝑍 is subselected. The Cartesian product of the indices of those arrays which have value 1 are then filled in 𝑅𝑋𝑍 . A
Julia function for performing this projection step is available in Appendix.

This relation inference allows us to continue the calculation of 𝐾 = sin(𝑋𝑌)(𝑋𝑍). The continuation of the associated network is
shown in Fig. 13, with the network containing newly calculated 𝐽𝑋𝑍 shown on the top right. The following 𝑊3 = 𝑋 ∗ 𝑍 may then
be evaluated, with the new variable and relations added to the network, shown on the bottom left of Fig. 13. The final operation
in the calculation is 𝑊3 ∗ 𝑊2, requiring 𝐽𝑊3𝑊2

. The variables 𝑊3 and 𝑊2 do not share a common neighbour in the network, and so
the inference cannot be performed directly. However there are paths in the network which link the two nodes, and so it is possible
to perform several chained inference steps to determine 𝐽𝑊3𝑊2

.

4.2. Chained inference

The inference operator ⊛ may be chained through several relations which have common variables, i.e. any path in the interval
network which links two nodes. For example, one of the paths linking 𝑊2 and 𝑊3 is 𝑊2 → 𝑊1 → 𝑌 → 𝑍 → 𝑊3, which gives the
following chained inference

𝐽𝑊2𝑊3
= 𝐽𝑊2𝑊1

⊛ 𝐽𝑊1𝑌 ⊛ 𝐽𝑌 𝑍 ⊛ 𝐽𝑍𝑊3
. (11)

There is not a unique way to solve the above expression. For example, always solving from the left gives

𝐽 = (𝐽 ⊛ 𝐽)⊛ 𝐽 ⊛ 𝐽
10

𝑊2𝑊3 𝑊2𝑊1 𝑊1𝑌 𝑌 𝑍 𝑍𝑊3

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 12. Shows the interval relation inference of 𝐽𝑋𝑍 from 𝐽𝑋𝑌 and 𝐽𝑌 𝑍 . In red is a particular conditional set, conditioned on a subinterval of 𝑌 , which is used
to determine part of 𝐽𝑋𝑍 .

= (𝐽𝑊2𝑌 ⊛ 𝐽𝑌 𝑍)⊛ 𝐽𝑍𝑊3

= (𝐽𝑊2𝑍 ⊛ 𝐽𝑍𝑊3
) = 𝐽𝑊2𝑊3

,

which gives the new dependencies 𝐽𝑊2𝑌 , 𝐽𝑊2𝑍 , and 𝐽𝑊2𝑊3
. This leads to the final network configuration shown on the bottom right

of Fig. 13. This is however not the only way Expression (11) can be solved. Solving always from the right

𝐽𝑊2𝑊3
= 𝐽𝑊2𝑊1

⊛ 𝐽𝑊1𝑌 ⊛ (𝐽𝑌 𝑍 ⊛ 𝐽𝑍𝑊3
)

= 𝐽𝑊2𝑊1
⊛ (𝐽𝑊1𝑌 ⊛ 𝐽𝑌𝑊3

)

= (𝐽𝑊2𝑊1
⊛ 𝐽𝑊1𝑊3

),

which still gives 𝐽𝑊2𝑊3
, but also gives the different dependencies 𝐽𝑌𝑊3

and 𝐽𝑊1𝑊3
. Indeed one could solve from the centre, or any

combination of these. It is difficult to determine a priori which one of the ways will be most efficient (gives the tightest 𝐽𝑊2𝑊3
),

so as a heuristic we always solve from the left. Irregardless of the path taken, the calculation will give a rigorous bound on the
dependence. Some discussion of making use of these various calculation paths is discussed in Section 6. However, an interesting
feature of this is that this chained inference step can be parallelised. Consider the following chained calculation, with this time the
various brackets solved concurrently

𝐽𝑋1𝑋9
= (𝐽𝑋1𝑋2

⊛ 𝐽𝑋2𝑋3
)⊛ (𝐽𝑋3𝑋4

⊛ 𝐽𝑋4𝑋5
)⊛ (𝐽𝑋5𝑋6

⊛ 𝐽𝑋6𝑋7
)⊛ (𝐽𝑋7𝑋8

⊛ 𝐽𝑋8𝑋9
)

= (𝐽𝑋1𝑋3
⊛ 𝐽𝑋3𝑋5

)⊛ (𝐽𝑋5𝑋7
⊛ 𝐽𝑋7𝑋9

)

= (𝐽𝑋1𝑋5
⊛ 𝐽𝑋5𝑋9

).

The serial calculation would have taken seven steps, where the parallel one only takes three.
The path 𝑊2 → 𝑊1 → 𝑌 → 𝑍 → 𝑊3 is also not the only path linking 𝑊1 and 𝑊3. Looking at the network in the bottom left of

Fig. 13, one can see that the following are also possible paths:

𝑊2 → 𝑊1 → 𝑋 → 𝑌 → 𝑍 → 𝑊3,

𝑊2 → 𝑊1 → 𝑌 → 𝑋 → 𝑊3,

𝑊2 → 𝑊1 → 𝑋 → 𝑊3.

Indeed, the last of these appears to be the shortest, however the path 𝑊2 → 𝑊1 → 𝑌 → 𝑍 → 𝑊3 is actually preferred since it
gives the tightest inference. We therefore require a method to automatically find and select the best path for chained inference.
In principle any standard network path finding algorithm could be used, for example Dijkstra’s algorithm or the 𝐴∗ algorithm. In
this work the 𝐴∗ algorithm was used, but with no particular preference over Dijkstra’s algorithm. We do however add weights or
distances between nodes in the graph search as a heuristic to get tighter inferences. Consider for example the network shown at
the top of Fig. 14, with five variables 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, and with 𝐽𝑋1𝑋2

, 𝐽𝑋2𝑋3
, 𝐽𝑋3𝑋5

as perfect dependencies, and with 𝐽𝑋1𝑋4
and

𝐽𝑋4𝑋5
as non-interactive. Fig. 14 shows two inferences of 𝐽𝑋1𝑋5

, the centre one using the path 𝑋1 → 𝑋2 → 𝑋3 → 𝑋5, and the bottom
using a shorter 𝑋1 → 𝑋4 → 𝑋5. Although it is a longer path, the first inference gives a much more precise dependence, perfect
dependence as opposed to non-interaction from the short path. This is clearly preferred since it gives tighter arithmetic. We can
encode this preference by giving weights or distances to the links in the network, which the path finding algorithm will use in its
determination of the shortest path. A simple distance metric is the area in the set compared to the bounding box’s area, i.e. blue
area divided by the total area. In terms of a bit-matrix representation of 𝑅𝑋1𝑋2

, this is a simple sum of all elements with value 1
over the total number of elements in the bit-matrix

dist(𝑋 ,𝑋) =

∑𝑛
𝑖,𝑗 𝑅𝑋1𝑋2

[𝑖, 𝑗]
. (12)
11

1 2 𝑛2

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 13. Shows the evolution of an interval relation network including several relation inference steps. The first step infers 𝐽𝑋𝑍 , from 𝐽𝑋𝑌 and 𝐽𝑌 𝑍 , which is
added to the network as a link. The next steps is a multiplication involving the new 𝐽𝑋𝑍 , which adds a new node 𝑊3 and two newly calculated relations. The
final steps shows a chained inference of 𝐽𝑊2𝑊3

through a path linking the nodes, which adds several new relations.

Very precise dependencies (such as perfect or opposite) will give distances close to 0, and non-interactivity will be assigned the
maximum distance of 1. This gives the path 𝑋1 → 𝑋4 → 𝑋5 a total distance of dist(𝑋1, 𝑋4) + dist(𝑋4, 𝑋5) = 1 + 1 = 2, and gives
𝑋1 → 𝑋2 → 𝑋3 → 𝑋5 a total distance of 0.02 + 0.02 + 0.02 = 0.06 (for an 𝑛 = 50). When these distances are incorporated, the path
finding algorithm correctly identifies 𝐽𝑋1𝑋2

⊛ 𝐽𝑋2𝑋3
⊛ 𝐽𝑋3𝑋5

as the best inference.
A question can arise about which path is optimum in a network consisting solely of perfect and opposite dependencies. In a

network configuration comprised entirely of perfect dependencies, the algorithm would identify the shortest (in terms of number
of nodes) as the tightest path. In fact, in this situation it does not matter which path is chosen, any inferred dependencies would
correctly be identified as perfect. The situation is slightly more complex in a configuration of a mix of perfect and opposite. The
algorithm cannot distinguish paths of equal area, but often these configurations are not mathematically possible. Considering a
network with three variables 𝑋, 𝑌 , and 𝑍, a configuration of 𝐽𝑋𝑌 = perfect, 𝐽𝑌 𝑍 = opposite, and 𝐽𝑋𝑍 = opposite is not valid [26].
For correlations, this gives a correlation matrix which is not semi-positive definite. In copulas, there is no higher dimensional copula
with these 2-copula marginals. For relations, there is no 3D set that has these exact projections. This is a well-studied problem in
12

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 14. Shows two different inferences of 𝐽𝑋1𝑋5
. The network in the centre uses 𝐽𝑋1𝑋2

⊛𝐽𝑋2𝑋3
⊛𝐽𝑋3𝑋5

, giving a perfect dependence between 𝐽𝑋1𝑋5
. The bottom

shows 𝐽𝑋1𝑋4
⊛ 𝐽𝑋4𝑋5

giving non-interaction. Although the second inference is from a shorter path, the first gives a tighter relation and is preferred.

copulas called compatibility, and these sorts of non-compatibility bivariate dependencies cannot arise as a result of elementary
arithmetic operations.

Returning to the calculation of 𝐾 = sin(𝑋𝑌)(𝑋𝑍), the resulting 𝐽𝑊2𝑊3
is surprisingly precise, a near straight line resembling

perfect dependence. Evaluating the final 𝐾 = 𝑊2 ∗ 𝑊3 gives a 𝐾 = [−0.24, 6] (using a resolution of 𝑛 = 200 throughout) and a clear
improvement over standard arithmetic of [−6, 6]. Importantly the method can also obtain any dependencies between variables, for
example the output and the inputs, if further propagation is required. The calculation was serial and took 0.9s, including the initial
dependency assignment, network creation and inference, on a mid-range 2019 laptop computer (2.3 GHz Quad-Core Intel Core i5
and 8 GB RAM), implemented in the Julia programming language.

5. Applications

The method presented in this paper has been implemented in a open source Julia package RelationArithmetic.jl1. The
software uses IntervalArithmetic.jl [27] for the base arithmetic, and Graphs.jl [28] and MetaGraphs.jl [29] for the

1 https://github.com/AnderGray/RelationArithmetic.jl
13

https://github.com/AnderGray/RelationArithmetic.jl

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 15. Mass-spring-damper system with base acceleration.

network model. All of the presented applications have been performed by writing a deterministic function in Julia, specifying some
intervals at the beginning of a script, and using RelationArithmetic.jl to automatically track dependencies. As an example,
the following script produces the final plot of the elliptical relation example in Fig. 8.

1 using RelationArithmetic
2

3 x = intervalR(-1, 1) # R for relation
4 w = intervalR(-1, 1)
5

6 R = ellipse(e = 0.5, n = 200) # eccentricity and resolution
7 define_relation(x, w, R) # gives intervals specified dependence
8

9 function iterate5(w, x) # define a function
10 for i = 1:5
11 w = w * x
12 end
13 return w
14 end
15

16 w_5 = iterate5(w, x) # pass intervals to function
17 plot(w_5, x) # plot bivariate set

5.1. Forced harmonic oscillator

This example performs interval arithmetic in a dynamical system shown in Fig. 15, a damped oscillator subject to harmonic
ground motion. The quantity of interest is the displacement amplitude |𝑦|, with the mass 𝑀 , stiffness 𝐾, and damping coefficient
𝐶 as intervals. The absolute displacement is

𝑦(𝑡) = 𝑥(𝑡) + 𝑢(𝑡). (13)

It is assumed that (i) the inertial forces are proportional to the acceleration of the mass 𝑚; (ii) the damping force and the elastic
force are proportional to the relative velocity �̇� and the relative displacement 𝑥, respectively. The equation of motion is

𝑀�̈� + 𝐶�̇� +𝐾𝑥 = 0. (14)

The equation of motion in terms of absolute displacement is

𝑀�̈� + 𝐶�̇� +𝐾𝑦 = 𝐾𝑢 + 𝐶�̇�. (15)

If 𝑢(𝑡) is harmonic, the solution to Eq. (15) can be obtained substituting the two exponentials

𝑢(𝑡) = 𝑢0 𝑒𝑗𝜔𝑡, 𝑦(𝑡) = 𝑦 𝑒𝑗𝜔𝑡 ,

which when placed into Eq. (15) give

(−𝑀𝜔2 + 𝑗𝜔𝐶 +𝐾) 𝑦 𝑒𝑗𝜔𝑡 = (𝐾 + 𝑗𝜔𝐶) 𝑢 𝑒𝑗𝜔𝑡 ,
14

0

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 16. Amplitude spectrum bounds of an oscillator subject to harmonic ground motion, with frequency 𝑤 and with interval parameters. In purple shows
IntervalArithmetic.jl, and RelationArithmetic.jl is in orange. The right figure shows the bounds with the assist of variable reuse.

from which we obtain the displacement as

𝑦 = 𝑢0
𝐾 + 𝑗𝜔𝐶

−𝑀𝜔2 + 𝑗𝜔𝐶 +𝐾
. (16)

The displacement of Eq. (16) is complex (harmonic wave), so it carries information about the amplitude and phase. The absolute
value |𝑦| is the amplitude of the harmonic wave, which will be the quantity of interest in this example. Setting the amplitude of the
ground force motion to one 𝑢0 = 1, and taking the absolute value of (16) gives

|𝑦| =

√

(

−𝜔2 𝑀 𝐾 +𝐾2 + (𝜔 𝐶)2
)2 +

(

−𝜔3 𝐶 𝑀
)2

(

−𝜔2 𝑀 +𝐾
)2 + (𝜔 𝐶)2

. (17)

We may now perform interval arithmetic through the above expression. For the intervals

𝑀 = [9900, 10100] (kg) ,
𝐾 = [99000000, 10100000] (N/m) , and
𝐶 = [9900, 10100] (N s/m)

we obtain the results in left of Fig. 16. Purple shows the bounds obtained with IntervalArithmetic.jl, and orange
shows the results using RelationArithmetic.jl. The improvement in the bounds is significant, the interval widths are
about halved. For this calculation Expression (17) was essentially copied into Julia, intervals specified and propagated using
RelationArithmetic.jl. We can however do better by reusing certain variables in the implementation. For example, setting
𝐴 = −𝜔2 𝑀 +𝐾, and realising that −𝜔2 𝑀 𝐾 +𝐾2 = 𝐴 ∗ 𝐾. This gives the following expression:

|𝑦| =

√

(

𝐴 ∗ 𝐾 + (𝜔 𝐶)2
)2 +

(

−𝜔3 𝐶 𝑀
)2

𝐴2 + (𝜔 𝐶)2
, (18)

with 𝐴 = −𝜔2 𝑀 + 𝐾. The result of evaluating the expression like this is seen on the right of Fig. 16, with the bounds from
RelationArithmetic.jl being much tighter. The reason reusing variables is tighter is we have directly specified that the same
𝐴 appears twice, and helps the method identify dependencies. When Expression (17) was evaluated, two instances of 𝐴 were made,
𝐴1 = −𝜔2 𝑀 + 𝐾 and 𝐴2 = −𝜔2 𝑀 + 𝐾, two different nodes in the dependence network. These two variables are actually the
same interval (have the same bounds and are perfectly dependent), however this can be difficult to determine. The method instead
constructs an outer approximation to this precise perfect dependence, which is why the left of Fig. 16 is wider. With Expression
(18) this is implicitly stated, and allows for the perfect dependence to be precisely specified, resulting in tighter intervals. In the
current implementation of RelationArithmetic.jl this unfortunately has to be done manually, but is often simple to do. This
process could also be automated using an uncertainty precompiler [8].

5.2. Euler integration

In this example we propagate an interval through dynamic system governed by a non-linear ordinary differential equation (ODE).
For this we implement a standard deterministic ODE solver (the Euler method) and perform interval dependence tracking through
15

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 17. Interval propagation through a non-linear ODE for different initial interval widths. Left shows standard interval arithmetic, and right shows relation
arithmetic. Plotted on the right is also the ODE’s flow-field, which the interval bounds follow and converge when dependencies are tracked.

the algorithm. We stress that if one wants to rigorously propagate sets in ODEs there are specialised methods and software for doing
so, namely Taylor Models [14], Reachability Analysis [13], and Interval Contractors [20]. However this example is interesting
because we take fairly complicated deterministic algorithm, which is completely unaware about intervals, and propagate intervals
tightly through it.

We will compute the sets of trajectories of the ODE �̇�(𝑡) = 𝑓 (𝑡, 𝑦) = 𝑡 cos(𝑦) for different interval initial value problems 𝑌0 =
𝜋
2 ±𝜖 𝜋

2 ,
with 𝜖 ∈ [0, 1] (i.e. 𝜖 = 1 is 𝑌0 = [0, 𝜋], and 𝜖 = 0 is 𝑌0 = 𝜋∕2), and 𝑡0 = 0, 𝑡final = 3. For a specified time step ℎ, the Euler method
computes the trajectory 𝑦(𝑡) by starting from the initial condition 𝑌0 and time stepping the trajectory’s value 𝑌𝑖 ≈ 𝑌𝑖−1+ℎ𝑓 (𝑡𝑖−1, 𝑌𝑖−1)
and time 𝑡𝑖 = 𝑡𝑖−1 + ℎ, until 𝑡final is reached. If ℎ is small enough, the computed trajectory is accurate. Since 𝑌𝑖−1 is an interval, the
function evaluation 𝑌step = ℎ𝑓 (𝑡𝑖−1, 𝑌𝑖−1) also produces an interval. Therefore for the time step 𝑌𝑖−1+𝑌step to be tightly evaluated with
interval arithmetic, the dependence of 𝑌𝑖−1 and 𝑌step must be computed, which the method presented here will do automatically.

Fig. 17 show the results of using interval arithmetic (left) and relation arithmetic (right) directly in the Euler method for the
different initial value problems 𝜖 = {0.25, 0.75, 1}. The bounds from interval arithmetic diverge, whilst the bounds from relation
arithmetic converge. Plotted on the right is also the flow-field of the ODE, which actually converges towards the point 𝜋∕2. The
interval bounds from relation arithmetic correctly follow the flow-field and converge to this point.

We stress again that this example is not intended as rigorous calculation of the ODEs trajectories, but as showcase of automatically
inserting uncertainty into a deterministic algorithm. The Euler method only approximates the correct solution, and so the calculated
bounds will not be a rigorous enclosure of the trajectories. The intervals will however bound all the Monte Carlo trajectories of the
same Euler method. The method also can retrieve the dependencies between the different time values, i.e. 𝐽𝑌𝑖 ,𝑌𝑖+1 .

6. Extensions

In this section we discuss some optimisations and generalisations that can be made to the method.

6.1. Making the method more efficient

For large computer programs, one can see that a large amount of memory would be required to store all the dependencies. Even
a simple expression such as sin(𝑋𝑌)(𝑋𝑍) resulted in quite a complex network, as seen in Fig. 13. In the worst case, for 𝑁 overall
variables used in a program, not only inputs but including variables that are initialised during the execution, 𝑁2 × 𝑛 × 𝑛 bits are
required to store the entire relation network. However, this is an extreme case where all variables require an interaction with each
other. To make the storage more efficient one could use a sparse bit matrix, whereby only the indices containing 1 are stored, as
opposed to the entire bit matrix. This would be particularly effective in storing dependencies with low uncertainty (are mostly 0).
For the non-interactive case, where all elements are 1, one could use a single bit to indicate so, i.e. a 1 × 1 bit matrix containing a
single 1.
16

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
Fig. 18. Use of different relation network paths in the evaluation of 𝑌 = 𝑋2 sin(𝑋) cos(𝑋) to get a tighter dependence. 𝐽1 and 𝐽2 are intersected to get the right
plot.

A further optimisation would be to not store every new relation after operations. Each binary operation creates two new
dependencies (𝐽𝑋◦𝑌 ,𝑋 and 𝐽𝑋◦𝑌 ,𝑌) and each unary operation one new dependency (𝐽𝑓 (𝑋),𝑋). These dependencies may not be required
in the calculation, for example 𝐽𝑊1𝑋 is unused in Fig. 13. As opposed to adding these dependencies each time, the mathematical
operator relating the variables could be stored, and used in the calculation of the appropriate dependency when, and if, it is required
by the program. Note that this would not lead to a dramatic saving in computational time, but would reduce the overall memory
required by the method.

The method is also readily parallelisable. The conditioning steps used in arithmetic and inference are independent of each other,
and could be calculated concurrently. The process of using different paths in the network to get the same dependence could also be
parallelised fairly easily, leading to tighter dependencies and marginals.

6.2. Intersecting different paths

There are often not singular solutions to the chained dependence inferences from Section 4.2. We have seen that often multiple
paths link variables, and that the order in which chained inference is performed can be selected. All solutions are however rigorous,
and we can therefore combine these different rigorous calculations to get a tighter result. Take for example the calculation of
𝑌 = 𝑋2 sin(𝑋) cos(𝑋) for 𝑋 = [−6, 6]. Fig. 18 shows two different calculations of the set 𝐽𝑌 𝑋 , 𝐽1 in blue and 𝐽2 in red. Since these
are two different rigorous calculations of the same quantity, they can be combined with a simple set intersection, which is shown
on as the orange dependence on the right of Fig. 18. Set intersections can be easily performed with bit-matrices as element-wise
Boolean and operations (or multiplication). The resulting intersection is a much tighter bound on the exact solution. Although this
is likely too intensive for serial calculation, these different calculations could be designated to different parallel processes.

The order in which the operations are executed will also influence results. For example, solving the propagation problem for
(𝑋2 sin(𝑋)) cos(𝑋) and 𝑋2(sin(𝑋) cos(𝑋)) will give two different outer approximations to 𝐽𝑌 𝑋 . In this work, no suggestion is given
about the most efficient (tightest) order to execute. However like the above example, both approximations are rigorous and can be
intersected to give a tighter result.

6.3. Tracking in higher dimensions

The presented method incorporates bivariate dependence into interval arithmetic, and as such gives outer approximations to exact
multivariate dependencies. The method therefore may never contract to the exact interval bounds, even as higher discretisations
are used. A generalisation would be to track trivariate or higher dependencies, which would lead to further tighter dependencies
and marginals, and eventually the exact multivariate set of interest. Although this would introduce additional computational cost,
likely to be similar or exactly the same as subintervalisation for large systems.

6.4. Copulas and p-boxes

Rigorous p-box calculations can be performed with p-box arithmetic or probability bounds analysis [6]. P-box arithmetic is based
on convolutions involving copulas, i.e. to perform binary operations exactly a copula between the inputs is required, and as such
also suffers from the repeated variable problem. A p-box generalisation of the presented method would be to calculate the copulas
between inputs and outputs of operations, and use them for variables which are repeated in a program. This has been suggested by
the authors [30], and they show that this is feasible to some extent, with some initial results. However, the generalisation of the
proposed dependency network is not straightforward. Indeed it could be used to store copulas, however it is unlikely that inferences
can be performed the same way as was proposed here. Unlike for intervals, two bivariate copulas 𝐶 ,𝐶 give little information
17

𝑋𝑌 𝑌𝑍

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.

o
o
z

7

r
m
r
t

I
c
r
a
s
c
w

a
t
R
u
t
p

D

t

D

A

r
w

a
Q
C
w
a
d

A

about the third 𝐶𝑋𝑍 , and so likely a slightly different strategy is required for dependency inferences. The work of Durante et al. [31]
n ⋆-products for copulas may be useful here. However, perhaps the method proposed here could be used to constrain the ranges
f repeated bivariate p-boxes, and this in turn could be used to gain some information about the copula, for example where it has
ero probability measure.

. Conclusions

A novel method to incorporate dependence into interval arithmetic has been introduced. The presented method preserves the
igour for interval arithmetic, but additionally allows for dependencies between intervals to be track through a computational
odel’s execution. It has been shown that when dependence is tracked this way, artificial uncertainty from repeated variables can be

educed. We represent bivariate interval relations as 𝑛×𝑛 bit-matrices, which serve as interval equivalents to copulas from probability
heory. We show how dependencies can be tracked through binary and unary operations efficiently using this representation.

A central component and novelty of the presented method are interval relation networks, an interval analogue to vine copulas.
n these networks, bivariate dependencies between variables are stored and used to infer any unknown dependence required in the
alculation sequence, or indeed may be used to bound a higher dimensional interval dependence. It has been shown how to evolve a
elation network as a calculation sequence is executed, and we present the theoretical and computation details about how inferences
re performed. Unlike vine copulas, interval relation networks require no additional assumptions to compute inferences, such as
pecific network topologies or conditional independence. The interval relation network may be interesting in and of itself. Vine
opulas have become a popular tool for modelling complex high dimensional probabilistic dependencies, and analysts presented
ith imprecise probabilistic information may find them useful.

The presented method is automatic, in the sense that intervals and relations can be specified at the beginning of one’s scripts
nd any proceeding code will be tightly evaluated with arithmetic, including any inferences, allowing for the complexities of
he method to be hidden away from the computational scientist. This has been demonstrated in an open source Julia package
elationArithmetic.jl, which we have applied to several engineering dynamics problems. The presented method may be
sed stand-alone, or may be incorporated into a larger uncertainty compiler or language framework [8], whereby additional syntactic
ricks may be used to further reduce the effect of repeated variables. However, how the presented method can interact with p-box [6],
ossibilistic [7] and moment arithmetic [32] is an interesting theoretical question that would have to be addressed.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The code will be made available on GitHub: https://github.com/AnderGray/RelationArithmetic.jl

cknowledgements

We thank Enrique Miralles-Dolz and Dominic Calleja (both Risk Institute, University of Liverpool) for their useful comments after
eading this paper. We also thank Vladik Kreinovich (University of Texas at El Paso) and the anonymous reviewers of this paper,
ho through comments, questions, and suggestions improved its quality.

The authors would like to thank the support from the EPSRC, United Kingdom iCase studentship award 15220067. We
lso gratefully acknowledge funding from UKRI via the EPSRC and ESRC Centre for Doctoral Training in Risk and Uncertainty
uantification and Management in Complex Systems. This research is funded by the Engineering & Physical Sciences Research
ouncil (EPSRC), United Kingdom with grant no. EP/R006768/1, which is greatly acknowledged for its funding and support. This
ork has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research
nd training programme 2014–2018 and 2019–2020 under grant agreement No. 633053. The views and opinions expressed herein
o not necessarily reflect those of the European Commission.

ppendix. Code for relation inference
18

The following is a Julia function for performing interval relation inference using bit-matrices, as described in Section 4.1.

https://github.com/AnderGray/RelationArithmetic.jl

Mechanical Systems and Signal Processing 186 (2023) 109771A. Gray et al.
1 function project(Rxy :: BitMatrix, Ryz :: BitMatrix)
2 ###
3 # Returns projection Rxz from projections Rxy & Ryz
4 # Assumes size(Rxy, 2) == size(Ryz, 1)
5 ###
6 nx = size(Rxy, 1); nz = size(Ryz, 2);
7 ny = size(Rxy, 2);
8

9 Rxz = falses(nx, nz); # BitMatrix of falses
10

11 for k = 1:ny
12 is = findall(Rxy[:,k] .== 1) # find conditionals
13 js = findall(Ryz[k,:] .== 1) # indices of trues
14

15 [Rxz[i,j] = 1 for i in is, j in js] # Cartesian product
16 end
17

18 return Rxz
19 end

References

[1] Ramon E. Moore, R. Baker Kearfott, Michael J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
[2] Siegfried M. Rump, INTLAB—interval laboratory, in: Developments in Reliable Computing, Springer, 1999, pp. 77–104.
[3] Warwick Tucker, Validated Numerics, Princeton University Press, 2011.
[4] Robert Charles Williamson, et al., Probabilistic arithmetic (Ph.D. thesis), University of Queensland Australia, 1989.
[5] Scott Ferson, Janos G. Hajagos, Arithmetic with uncertain numbers: rigorous and (often) best possible answers, Reliab. Eng. Syst. Saf. 85 (1–3) (2004)

135–152.
[6] Ander Gray, Scott Ferson, Edoardo Patelli, Probabilityboundsanalysis.jl: Arithmetic with sets of distributions, Submitt. Proc. JuliaCon (2021).
[7] Ander Gray, Dominik Hose, Marco De Angelis, Michael Hanss, Scott Ferson, Dependent possibilistic arithmetic using copulas, in: International Symposium

on Imprecise Probability: Theories and Applications, PMLR, 2021, pp. 169–179.
[8] Nicholas Gray, Marco De Angelis, Scott Ferson, The creation of puffin, the automatic uncertainty compiler, 2021, ArXiv E-Prints, arXiv–2110.
[9] Jeff Bezanson, Stefan Karpinski, Viral B Shah, Alan Edelman, Julia: A fast dynamic language for technical computing, 2012, arXiv preprint arXiv:1209.5145.

[10] Ramon E. Moore, Interval Analysis, Vol. 4, Prentice-Hall Englewood Cliffs, 1966.
[11] James M. Hyman, Forsig: an extension of fortran with significance arithmetic, Technical report, Los Alamos National Lab., NM (USA), 1982.
[12] Siegfried M. Rump, Masahide Kashiwagi, Implementation and improvements of affine arithmetic, Nonlinear Theory Appl. IEICE 6 (3) (2015) 341–359.
[13] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, Christian Schilling, JuliaReach: a toolbox for set-based reachability, in: HSCC

’19: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, Apr 2019, Montreal, Canada, 2019, URL
https://hal.archives-ouvertes.fr/hal-02446216.

[14] Kyoko Makino, Rigorous Analysis of Nonlinear Motion in Particle Accelerators, Michigan State University, 1998.
[15] Weiye Li, James Mac Hyman, Computer arithmetic for probability distribution variables, Reliab. Eng. Syst. Saf. 85 (1–3) (2004) 191–209.
[16] Vladik Kreinovich, Anatoly V Lakeyev, Jiří Rohn, Patrick Kahl, Computational complexity and feasibility of data processing and interval computations,

Vol. 10, Springer Science & Business Media, 2013.
[17] Marco de Angelis, Exact bounds on the amplitude and phase of the interval discrete Fourier transform in polynomial time, arXiv (2022) http:

//dx.doi.org/10.48550/ARXIV.2205.13978.
[18] Eldon Hansen, G. William Walster, Global Optimization using Interval Analysis: Revised and Expanded, Vol. 264, CRC Press, 2003.
[19] Luc Jaulin, Michel Kieffer, Olivier Didrit, Eric Walter, Interval analysis, in: Applied Interval Analysis, Springer, 2001, pp. 11–43.
[20] Simon Rohou, Abderahmane Bedouhene, Gilles Chabert, Alexandre Goldsztejn, Luc Jaulin, Bertrand Neveu, Victor Reyes, Gilles Trombettoni, Towards a

generic interval solver for differential-algebraic CSP, in: International Conference on Principles and Practice of Constraint Programming, Springer, 2020,
pp. 548–565.

[21] Scott Ferson, Vladik Kreinovich, Modeling correlation and dependence among intervals, in: Proceedings of the Second International Workshop on Reliable
Engineering Computing, REC2006, 2006.

[22] Martine Ceberio, Scott Ferson, Vladik Kreinovich, Sanjeev Chopra, Gang Xiang, Adrian Murguia, Jorge Santillan, How to take into account dependence
between the inputs: from interval computations to constraint-related set computations, with potential applications to nuclear safety, bio-and geosciences,
in: Proceedings of the Second International Workshop on Reliable Engineering Computing, REC2006, 2006.

[23] Lech Polkowski, Rough Sets, Springer, 2002.
[24] Hermann Schichl, Ferenc Domes, Tiago Montanher, Kevin Kofler, Interval unions, BIT Numer. Math. 57 (2) (2017) 531–556.
[25] Harry Joe, Dorota Kurowicka, Dependence Modeling: Vine Copula Handbook, World Scientific, 2011.
[26] Scott Ferson, Janos Hajagos, Daniel Berleant, Jianzhong Zhang, W Troy Tucker, Lev Ginzburg, William Oberkampf, Dependence in Dempster-Shafer theory

and probability bounds analysis, Sandia Natl. Lab. (2004).
[27] David P. Sanders, Luis Benet, et al., JuliaIntervals/IntervalArithmetic.jl: v0.19.2, Zenodo, 2021, http://dx.doi.org/10.5281/zenodo.5519761.
[28] James Fairbanks, Mathieu Besançon, Simon Schölly, Júlio Hoffiman, Nick Eubank, Stefan Karpinski, JuliaGraphs/Graphs.jl: an optimized graphs package

for the Julia programming language, 2021, URL https://github.com/JuliaGraphs/Graphs.jl/.
[29] Seth Bromberger, Kevin Bonham, Mathieu Besançon, Simon Schölly, Stephan Kleinbölting, JuliaGraphs/MetaGraphs.jl: graph data structures with multiple

heterogeneous metadata for graphs.jl., 2021, URL https://github.com/JuliaGraphs/MetaGraphs.jl.
[30] Ander Gray, Marco De Angelis, Scott Ferson, Edoardo Patelli, What’s 𝑍 −𝑋, when 𝑍 = 𝑋 + 𝑌 ? Dependency tracking in interval arithmetic with bivariate

sets, in: Proceedings of the 9th International Workshop on Reliable Engineering Computing, REC2021, 2021.
[31] Fabrizio Durante, Erich Peter Klement, José Quesada-Molina, Peter Sarkoci, Remarks on two product-like constructions for copulas, Kybernetika 43 (2)

(2007) 235–244.
[32] Ander Gray, Scott Ferson, Vladik Kreinovich, Edoardo Patelli, Distribution-free risk analysis, Internat. J. Approx. Reason. (2022).
19

http://refhub.elsevier.com/S0888-3270(22)00839-1/sb1
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb2
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb3
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb4
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb5
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb5
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb5
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb6
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb7
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb7
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb7
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb8
http://arxiv.org/abs/1209.5145
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb10
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb11
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb12
https://hal.archives-ouvertes.fr/hal-02446216
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb14
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb15
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb16
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb16
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb16
http://dx.doi.org/10.48550/ARXIV.2205.13978
http://dx.doi.org/10.48550/ARXIV.2205.13978
http://dx.doi.org/10.48550/ARXIV.2205.13978
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb18
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb19
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb20
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb20
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb20
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb20
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb20
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb21
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb21
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb21
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb22
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb22
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb22
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb22
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb22
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb23
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb24
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb25
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb26
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb26
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb26
http://dx.doi.org/10.5281/zenodo.5519761
https://github.com/JuliaGraphs/Graphs.jl/
https://github.com/JuliaGraphs/MetaGraphs.jl
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb30
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb30
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb30
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb31
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb31
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb31
http://refhub.elsevier.com/S0888-3270(22)00839-1/sb32

	Bivariate dependency tracking in interval arithmetic
	Introduction
	Dependence amongst intervals
	Interval relations

	Relation arithmetic
	Unary operations
	Chained operations

	Interval relation networks
	Relation inference
	Chained inference

	Applications
	Forced harmonic oscillator
	Euler integration

	Extensions
	Making the method more efficient
	Intersecting different paths
	Tracking in higher dimensions
	Copulas and p-boxes

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix. Code for relation inference
	References

