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Abstract

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection can result in severe immune dysfunction, hos-

pitalization, and death. Many patients also develop long-COVID-19, experiencing

symptoms months after infection. Although significant progress has been made in

understanding the immune response to acute SARS-CoV-2 infection, gaps remain in

our knowledge of how innate immunity influences disease kinetics and severity. We

hypothesized that cytometry by time-of-flight analysis of PBMCs from healthy and

infected subjects would identify novel cell surface markers and innate immune cell

subsets associated with COVID-19 severity. In this pursuit, we identified monocyte

and dendritic cell subsets that changed in frequency during acute SARS-CoV-2 infec-

tion and correlatedwith clinical parameters of disease severity. Subsets of nonclassical

monocytes decreased in frequency in hospitalized subjects, yet increased in the most

severe patients and positively correlated with clinical values associated with worse

disease severity. CD9, CD163, PDL1, and PDL2 expression significantly increased

in hospitalized subjects, and CD9 and 6-Sulfo LacNac emerged as the markers that

best distinguishedmonocyte subsets amongst all subjects. CD9+ monocytes remained

elevated, whereas nonclassical monocytes remained decreased, in the blood of hospi-

talized subjects at 3–4 months postinfection. Finally, we found that CD9+ monocytes

functionally releasedmore IL-8 andMCP-1 after LPS stimulation. This study identifies

new monocyte subsets present in the blood of COVID-19 patients that correlate with

disease severity, and links CD9+ monocytes to COVID-19 progression.
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1 INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute res-

piratory syndrome (SARS)-coronavirus-2 (SARS-CoV-2), has claimed

over 6 million lives globally.1 COVID-19 patients present along a spec-

trum of severity, ranging from those with asymptomatic or mild flu-like

disease to those with critical disease and acute respiratory distress

syndrome, which requires hospitalization and mechanically assisted

ventilation.2

An inflammatory immune response marked by lymphopenia,

delayed T cell and antibody responses, increased numbers of

monocytes and neutrophils with defective IFN antiviral responses,

decreased plasmacytoid dendritic cells (pDCs), and increases of proin-

flammatory cytokines like TNF-a and IL-6 have all been correlatedwith

increased COVID-19 severity and worse patient outcomes.3–8 Also,

expansion of CD14+ HLA-DRlo and immunosuppressive immature

monocytes has been observed in BMCs from severely ill COVID-19

patients.6,7,9,10 A general loss of intermediate and/or nonclassical

monocytes has also been observed in patients with acute and severe

cases of COVID-19,6,7,10–12 with an increased proportion of non-

classical monocytes and DCs migrating to the lungs.10,13 We have

recently identified 8 monocyte subsets in healthy humans,14,15 and

we and others have observed that monocyte subsets can have unique

contributions to the progression of disease,14,16 but detailed analyses

of monocyte subsets in COVID-19 are still just emerging.6,11–13,17,18

Herein, we utilized cytometry by time-of-flight (CyTOF) to identify

monocyte (Mo) and DC subsets from healthy subjects and COVID-

19 patients that could regulate the immune response to SARS-CoV-2

infection. We also tracked monocyte frequencies at approximately 3

months postinfection in some of the hospitalized subjects. Together,

these data generate a more detailed picture of how immune cells

change during SARS-CoV-2 infection and identify new subsets of

monocytes that may influence the clinical progression of COVID-19.

2 METHODS

2.1 Patient samples

This studywas approvedby theBerkshireResearchEthics 20/SC/0155

(UK) and the Human Institutional Review board of La Jolla Institute

for Immunology (LJI). Written, informed consent was obtained for all

subjects. Healthy subjects (n = 8) donated blood at the San Diego

Blood Bank or the LJI Clinical Core. Hospitalized subjects (n = 20)

were treated in a teaching hospital in England, either in a general

ward or the intensive treatment unit (ITU). SARS-CoV-2 infection was

confirmed by reverse transcriptase polymerase reaction or detection

of antispike protein antibodies. Single-cell transcriptome analysis of

virus-reactive CD4+ and CD8+ memory T cells was performed by our

colleagues using many of the same COVID-19 patient samples in this

study.19,20

2.2 Sample processing

PBMCs from recovered COVID-19 individuals or healthy subjects

were barcoded with CD45 and stained with an established mono-

cyte/T cell panel.14 Sampleswere assayed in 5CyTOF runs. A technical

control of healthy PBMCs was CD45 barcoded and spiked into each

sample. Data were bead-based normalized using the Matlab-based

NormalizerR2013a_Win64. Only live cells were used for analysis.

2.3 CyTOF analysis

Each CyTOF sample was debarcoded using a deconvolution

algorithm21 implemented in the CATALYST Bioconductor package.

Data were normalized using an arcsinh transformation (cofactor = 5).

Batch correction was done using a quantile normalization method for

the pooled distribution of each batch (a pair of sample and spike-in

control) in the function normalizeBatch from the CYDAR Bioconductor

package (Figure S1).22 We used the FlowSOM clustering method23

with default parameters to identify major cell types from CD45+ live

cells. Cell types were identified using lineage markers. Consensus

clustering was used to justify the optimal number of clusters from

k = 2–30 to based on the relative decrease in area under the cumu-

lative distribution function curve. Clusters were merged based on

the similarity of their representative protein markers. Heatmaps of

median protein expression and Uniform Manifold Approximation and

Projection plot (UMAP) deduction were generated using CATALYST.

2.4 Monocyte isolation

Healthy donor blood was obtained from the LJI Clinical Core. Whole

blood was centrifuged at 500×g for 10 min. Plasma was discarded and

remaining blood was mixed 1:1 with PBS (Corning Inc, Corning, NY)

with 2% FBS (Omega Scientific, Tarzana, CA), layered on lymphoprep

(Stemcell Technologies, Vancouver, BC) and centrifuged at 1200×g for

10 min. The buffy coat was isolated and enriched for monocytes using

the MACS Pan Human Monocyte Isolation Kit (Miltenyi Biotec, Ber-

gisch Gladbach, North Rhine-Westphalia). 5 × 106 monocytes were

sorted by flow cytometry using CD14-FITC (Biolegend, San Diego, CA

clone M5E2), CD16-BV421 (Biolegend clone B73.1), CD9-PE (Biole-

gend cloneHI9a), Dump-PerCP-Cy5.5 (CD19 (Biolegend cloneHIB19),

CD3 (BD Pharmingen clone UCHT1), CD56 (Biolegend clone MEM-

188) and CD66b (Biolegend clone G10F5)), and Live/Dead-Yellow

(Invitrogen).

2.5 Cytokine assays

0.5 × 106 CD9+ and CD9– sorted monocytes were plated onto a

24-well plate in DMEM (Gibco, Waltham, MA) with 10% FBS. Cells
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F IGURE 1 Experimental layout. Flowchart of experimental design (A). Chart of every subject included in our analysis, with their condition
(healthy, nonhospitalized, and hospitalized), age, sex, date of symptom onset, date of positive SARS-CoV-2 test, ITU status, span of hospital
admission, and date of blood draw (B). List of markers used in immunoprofiling CyTOF panel grouped by their biologic roles (C)

were stimulated for 16 h with 100 ng/ml of LPS (Enzo Biochem,

Farmingdale, NY) or equal volume of vehicle control (DMSO). Super-

natantswere collectedandmeasured for cytokineproductionusing the

LEGENDplex human essential immune response kit (Biolegend) and

analyzed using LEGENDplex software.

2.6 Statistical analysis

Linearmodeling, using the LinearModels forMicroarrayData (LIMMA)

package, was performed to detect statistically significant differentially

expressed markers,24 and a Generalized Linear MixedModel (GLMM),

used through a lme4 package, was used to determine statistically sig-

nificantdifferential cell populationabundances.25 CorrelationsofT cell

and monocyte/DC subset frequencies with clinical parameters were

performed using Spearman rank correlation tests. Cytokine data were

analyzed using GraphPad-PRISM software.

3 RESULTS AND DISCUSSION

3.1 Immunoprofiling of PBMCs from COVID-19
patients

In order to examine the immune compartment after SARS-CoV-2

infection, PBMCs and clinical data were obtained from 7 nonhospi-

talized and 20 hospitalized subjects with COVID-19 and 8 healthy

subjects who were age- and sex-matched with the hospitalized sub-

jects (Figures 1(A) and 1(B)). Comorbidities in hospitalized COVID-19
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F IGURE 2 CyTOF-mediated identification of changes in immune cell cluster frequencies and surfacemarker expression in convalescent
COVID-19 subjects. CD45+ Dump– leukocytes from healthy and COVID-19 subjects clustered and projected onto a UMAP (A). Expression of cell
surfacemarkers projected onto the UMAP of (A) as feature plots (B). Heatmap displaying each cluster’s scaledmedian expression for 34markers
(C). Box andwhisker plots showingmedian expression of CD9 and CD45RAwithin the CD45+ Dump– cells for healthy, nonhospitalized, and
hospitalized subjects (D). Box andwhisker plots of individual cell clusters as a proportion of CD45+ Dump– cells between healthy, nonhospitalized,
and hospitalized subjects (E). Statistically significant (p≤ 0.05) changes were calculated using adjusted p values generated after a
multiple-comparisons correction. Changes in cluster frequencies were calculated using GLMMwhile changes in marker expression were
calculated with LIMMA

patients were primarily cardiovascular in scope, including prior his-

tories of myocardial infarction and hypertension (Table S1). PBMCs

were analyzed using a 38-marker CyTOF panel focused on identifying

monocyte andDC subsets (Figure 1(C)).
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F IGURE 3 Changes in monocyte and dendritic cell surfacemarker expression, subset frequencies andmonocyte subset cytokine release in
COVID-19 subjects. Monocyte and dendritic cell clusters from Figure 2(A) were subclustered and displayed in their ownUMAP (A). Heatmap
displaying each subcluster’s scaledmedian expression of 34markers (B). Box andwhisker plots showingmedian expression of cell surfacemarkers
within all monocytes and dendritic cells used in this subclustering analysis for healthy, nonhospitalized, and hospitalized subjects (C). Box and
whisker plots of individual cell clusters as a proportion of all cells in this subclustering analysis between healthy, nonhospitalized, and hospitalized
subjects (D). CD9+ and CD9– humanmonocytes were sorted from healthy human blood and 0.5× 106 monocytes were incubatedwith 100 ng/ml
of LPS or vehicle control for 16 h. Cell supernatants were collected and used in Luminex analysis for cytokine release quantification (E). Stacked
violin plots displayingmedian expression of CD9, Slan, PDL1, and PDL2 in healthy, nonhospitalized, and hospitalized subjects in each subcluster of
monocytes and dendritic cells. The dots represent each individual’s median expression levels and the black horizontal bars represent themedian
expression levels of each condition (F). Statistically significant (p≤ 0.05) changes were calculated using adjusted p values generated after a
multiple-comparisons correction. Changes in cluster frequencies were calculated using GLMM, changes inmarker expression were calculatedwith
LIMMA and changes in cytokine release were calculated with one-way ANOVAwith a post hoc Tukey’s test
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F IGURE 3 Continued

3.2 Changes in protein expression and immune
cell frequencies during COVID-19

Using the CyTOF data after batch correction (Figure S1), we first

assessed changes in global cell surface marker expression and immune

cell frequencies in individuals stratified by their hospitalization and

infection status (healthy, nonhospitalized, hospitalized). Clusters were

identified by referencing their median expression of 35 cell surface

markers (Figures 2(A)–(2C)).

Of the 35 surface markers, 16 were primarily markers of cell iden-

tity and lineage, so we chose to examine changes in expression of

the remaining 19 markers (Table S2). Within these 19 markers, the

expression of CD9 and CD45RA significantly increased in the hospital-

ized subjects (Figure 2(D)). Out of the 13 major immune cell clusters

identified within the CD45+ cells for all subjects, the hospitalized sub-

jects displayed a significant increase in the frequency of cMo, CD3+

cMo, iMo, CD56+ T cell, andCD14+ immaturemonocyte clusters com-

pared with nonhospitalized subjects, and a decrease in the frequency

of the nMo cluster compared with the healthy subjects (Figure 2(E)).

Notably, none of the changes in cell cluster frequencies in this or sub-

sequent analyses could be attributed to sex or age amongst the donors

(Figure S2).

3.3 Subclustering of monocytes and DCs and
characterization of CD9+ monocytes

All monocytes and DCs identified in Figure 2(A) were subclustered to

obtain a more detailed characterization of the heterogeneity within

these populations (Figure 3(A)). Identical subclustering and analysis

was also performed for the T cell clusters (Figure S3).When comparing

the median expression of the Table S2 markers, we found that expres-

sion of CD64, CD163, CD36, CD9, PDL1, and PDL2 all significantly

increased, whereas CD95 and 6-Sulfo LacNAc (Slan) expression signif-

icantly decreased and HLA-DR trended lower in hospitalized subjects

(Figures 3(B) and 3(C)). The increases in PDL1 and PDL2 expression
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F IGURE 4 Monocyte and dendritic cell subsets in hospitalized subjects correlate with clinical parameters associated with COVID-19 severity.
Spearman correlation heatmaps and plots showing correlations between classical, intermediate and nonclassical monocyte clusters from Figure 2
and the clinical parameters (D-Dimer, INR, LDH, and Ferritin values) obtained from 18 of the hospitalized subjects (A). Spearman Correlation
heatmap and plots for correlations betweenmonocyte and dendritic cell subclusters from Figure 3(A) and COVID-19 clinical values as in
Figure 4(A) and 4(B). R values are presented at the center of each heatmap block

suggest that these monocytes and DCs may be more immunosuppres-

sive and capable of inhibiting T cell activity than their counterparts

in healthy individuals.26,27 Our finding that expression of HLA-DR

trended lower while CD163 increased has been seen by others6,7 and

has been suggested to causemonocytes to be less effective at present-

ing antigen. CD9 is a tetraspanin that serves as a scaffolding protein

for a wide variety of cell surface receptors.28 For example, CD9 is an

important mediator of cell adhesion to the endothelium, MHCII pre-

sentation, T cell activation, and LPS-induced TLR4 signaling in myeloid

cells.29–32 CD9mRNAexpression increaseswithin classicalmonocytes

of subjects with COVID-19 compared with healthy controls,18 but this

is the first time that CD9 has also been observed to be affected at a

protein level.

Our prior work on human cardiovascular disease demonstrates that

monocytes can be classified into easily defined subsets with unique

phenotypes.14 After subclustering the monocytes and DCs in our

COVID-19 cohort, cMos grouped into 5 separate clusters.While exam-

iningmarkers defining the cMo subsets, we found that CD9divided the

majority of cMos into CD9hi and CD9lo or CD9– clusters (Figures 3(B)

and 3(D)). CD9 has not previously been shown to differentiate
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F IGURE 5 Changes in monocyte and dendritic cell subsets and surfacemarker expression inmoderate and severe hospitalized COVID-19
subjects. Box andwhisker plots of individual cell clusters as a proportion of all cells in the Figure 3 subclustering analysis for moderate and severe
hospitalized COVID-19 subjects (A). Box andwhisker plots showingmedian expression of cell surfacemarkers within all monocytes and dendritic
cells used in the Figure 3 subclustering analysis for moderate and severe hospitalized COVID-19 subjects (B). Statistically significant (p≤ 0.05)
changes were calculated using adjusted p-values generated after amultiple-comparisons correction. Changes in marker expression were
calculated with LIMMA

between cMo subclusters. The CD33hi CD9hi, CD33lo CD9–, and

CXCR3+ PD-L1+ cMo clusterswere significantly enriched in the hospi-

talized subjects comparedwith the healthy or nonhospitalized subjects

(Figure 3(D)). Furthermore, CD9+ monocytes sorted from healthy

PBMCs released similar levels of IL-1β and TNFα, but significantly
more IL-8 and MCP-1 than CD9– monocytes after LPS stimulation

(Figure3(E)). This increase in ability to release IL-8andMCP-1 suggests

that CD9+monocytesmay be some of the primary cells responsible for

monocyte and neutrophil recruitment during SARS-CoV-2 infection.

nMos grouped into 6 separate clusters (Figure 3(A)), and as we have

previously reported,14 the marker that best differentiated between

nonclassical monocyte subclusters was Slan, a glycosylated form of

Selectin P ligand-1 (Figure 3(B)). Slan expression was significantly

lower in the hospitalized subjects compared with each other condi-

tion (Figure 3(C)), likely because a Slanhi nMo cluster was significantly

decreased in the hospitalized COVID-19 subjects compared with

healthy and nonhospitalized subjects (Figure 3(D)). In addition, a nMo

CD9+ cluster and a nMo CD33int HLA-DRlo cluster in the hospitalized

subjects both decreased in frequency compared to the nonhospital-

ized subjects (Figure 3(D)). The effect on CD9 expression caused by

the decrease in the nMo CD9+ cluster was likely outweighed by the

increase in themuch larger cMoCD33hi CD9hi cluster, and therewas a

general increase of CD9, PDL1, and PDL2 expression and decrease of

Slan expression within all monocytes and DCs of hospitalized subjects

(Figure 3(F)).

Within the cDC subclusters, CD123+ PDL2– and CD123– PD-L2+

cDC1s were significantly enriched in the nonhospitalized subjects.

Also, pDCs were significantly decreased in frequency within the

hospitalized condition compared with the nonhospitalized condition,

matching what others have described.7,33

3.4 Correlations between cell cluster frequencies
and clinical parameters of clotting and inflammatory
cell death in hospitalized COVID-19 subject blood

After identifying clusters that significantly changed in frequency

between subjects, we asked which of these clusters may influence dis-

ease progression by correlating their frequencies with known clinical

parameters related to COVID-19 severity in the hospitalized subjects

(Figures 4(A) and 4(B)). While classical monocytes did not significantly

correlate with any clinical measurement, nonclassical monocyte fre-

quencies significantly correlated with higher D-Dimer, INR, and LDH

levels within COVID-19 hospitalized patients (Figure 4(A)). The Slanhi

nMo and CD33int HLA-DRlo nMo subclusters that decreased in fre-

quency within the hospitalized condition (Figure 3(D)) were positively

correlated with INR, LDH, and D-Dimer levels in hospitalized COVID-

19 subjects (Figure 4(B)). In opposition to the nonclassical monocytes,

the CXCR3+ PDL1+ cMo subcluster that increased in the hospitalized

subjects (Figure 3(D)) was negatively correlatedwith INR, LDH, andD-

Dimer values (Figure 4(B)). Considering their heightened expression of

PDL1 and CXCR3, it is possible that these cMos could both respond

to IFN-inducible chemokines and travel to sites of infection while also

suppressing T cell activity. Interestingly, each of the nonclassicalmono-

cyte clusters that positively correlated with clinical values of more

severe disease were also clusters that significantly decreased in the

hospitalized subjects compared with the healthy or nonhospitalized

subjects (Figures 3(C) and 3(D)). Likewise, the classical monocyte clus-

ters that negatively correlatedwith the clinical valueswas significantly

increased in the hospitalized subjects (Figures 3(C) and 3(D)).

We next looked more closely at hospitalized subjects by separat-

ing them int moderate disease or severe disease groups (Table S1).
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F IGURE 6 Comparison of immune cell cluster frequencies in hospitalized COVID-19 patient blood through time and characterization of
CD9+monocyte cytokine release. PBMCs from healthy (n= 8) and SARS-CoV-2-infected hospitalized (n= 11) individuals collected at the initial
blood draw plotted in Figure 1(A) (Day 0) or approximately 3months after initial blood collection (∼Day 90). CyTOF files were gated in Flowjo as
shown in Figures S4 and S5. Relative changes in immune cell frequencies between healthy, hospitalized at Day 0 and hospitalized at ∼Day 90
PBMCswere calculated using GLMMand displayed in box andwhisker plots (A–H). Statistically significant (p≤ 0.05) changes calculated using
one-way ANOVAwith Tukey’s post hoc test for the comparisons between healthy, Day 0 or ∼Day 90 hospitalized subjects orWelch’s T-test for the
comparison between only Day 0 or∼Day 90 hospitalized subjects

When we compared changes in overall marker expression and mono-

cyte and DC subcluster frequencies between themoderate and severe

disease subjects, each nMo cluster except for the CD3+ nMos, signif-

icantly increased in the severe disease subjects (Figure 5(A)). These

increases in cluster frequencies could explain the positive correlations

between nMo subset frequencies and the clinical values associated

with more severe COVID-19 and thus strengthen the argument that

these cellsmay be pathogenic duringCOVID-19. Similarly, the increase

of CD163 and decrease of CD95 expression in the severe patients

matches data in Figure 3(C), giving more credence to changes in these

markers as strong indicators of severe disease (Figure 5(B)). However,

the decrease in CD64 expression contradicts the increase in CD64

expression in Figure 3(C), suggesting that CD64 is not an ideal marker

for severe COVID-19. The decrease in CXCR3 expression in severe
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hospitalized subjects, coupled with decreased CXCR3 expression in

the T cells of hospitalized subjects (Figure S3(B)), matches well with

other data showing decreased CXCR3 expression in lung-infiltrating T

cells in severe COVID-19.34 CXCR3 is a receptor for CXCL9, CXCL10,

and CXCL11, which are all IFN-inducible genes and contribute to T

cell migration and homing,35,36 and the IFN response is one of the

most vital antiviral responses and critical for control of COVID-19.18,37

Taken together, these findings help identify immune cell clusters that

may influence COVID-19 disease severity and suggest that nonclassi-

cal monocytes likely contribute to inflammatory cell death and clotting

during COVID-19.

3.5 Longitudinal changes of immune cell
frequencies in COVID-19

While it is important to understand the acute pathogenesis of

COVID-19 and its effects on immune cell populations, there can also

be long-lasting and debilitating symptoms of infection in what has

been termed long-COVID-19.38–40 Given the timeframe needed to

study long-COVID-19, there are still relatively few studies that have

examined long-term effects of COVID-19 on immune cell populations.

Fortunately, wewere able to study longitudinal changes in the immune

compartment after obtaining blood samples from hospitalized sub-

jects approximately 90 days (Day 90) after their initial blood draw

(Day 0). We applied a gating scheme to identify major cell types in

our CyTOF data at both timepoints. These data showed that the fre-

quency of pDCs in the hospitalized individuals increased at 90 days

postinfection (Figure6(A)).However, therewereno significant changes

in T cell, total monocyte, cMo, or iMo frequencies between time-

points in the hospitalized individuals (Figures 6(B)–6(E)). nMos, which

decreased in frequency after acute infection, remained decreased dur-

ing the 3-month timeframe (Figure 6(F)). Further, the CD9+monocytes

remained elevated over time in hospitalized COVID-19 subjects com-

pared with healthy individuals (Figure 6(G)). While the Slan+ nMos did

not significantly increase at Day 90 compared with Day 0, they were

no longer significantly decreased in frequency compared to healthy

controls (Figure 6(H)). These results suggest that SARS-CoV-2 infec-

tion results in long-term changes in the immune cell compartment,

and it is important to determine whether or not these changes impact

symptoms experienced by patients with long-COVID-19.

Herein, we have generated a detailed picture of how monocytes

and DCs are altered after SARS-CoV-2 infection of varying severity.

Our study could be improved by adding more subjects. However, even

with the current number of subjects we had enough statistical power

to find significant novel changes in immune cell frequencies and make

correlations betweendisease severity and immune cell subsets. In sum-

mary, we identified new cell clusters and markers that we predict

contribute to immune response to SARS-CoV-2 and could be predic-

tive of disease severity. We also classified CD9 as a marker that can

both differentiate between subsets of monocytes and perhaps influ-

ence the response to viral infection for the first time. While decreases

in nonclassical monocytes have previously been correlated with more

severe disease and worse patient outcome, our data identify subsets

of nonclassical monocytes that correlate with inflammatory cell death

and clotting in hospitalized subjects and are enriched in the hospi-

talized subjects with the most severe disease. These data reinforce

the need for further investigation into the functions of the mono-

cyte subsets detailed here during SARS-CoV-2 infection. Finally, these

data suggest that changes in nonclassical monocyte and CD9+ mono-

cyte frequencies after SARS-CoV-2 infection can be long-lasting and

potentially contribute to long-COVID-19 symptoms. We believe these

findings can direct future research in the SARS-CoV-2 field and lead

to better diagnostics and treatment options for both acute and long-

COVID-19.
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