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Abstract

In this paper, an enhanced probability density evolution method (PDEM) framework considering multiple

failure modes and limit states is proposed for reliability analysis of structures. Firstly, the PDEM principle

and the enhanced mechanism are illustrated, and during the process three typical combination types (i.e.,

circle, triangle, square ways) are introduced. Secondly, two case studies are given to verify the effectiveness of

the enhanced PDEM-based framework and the necessity to consider multiple limit states. The first example

is a simply supported beam under two-point concentrated forces with two failure conditions (i.e., shear failure

and flexural failure), and the second example is a 3-span-6-story reinforced concrete frame under seismic

excitation with three failure conditions (i.e., maximum displacement failure, residual displacement failure

and floor acceleration failure). Meanwhile, the Monte Carlo simulation (MCS) is also performed for both

examples as a comparison and validation. Thirdly, parametric studies with related to two important aspects

in the enhanced PDEM-based framework are primarily performed, including a modified equation of the

target variable value via representative points incorporating the influence of individual quantile parameters

(e.g., 16%, 50% and 84% quantile), as well as the other potential combination types in the enhanced

PDEM-based framework (i.e., more than circle, triangle, square ways). In general, the paper provides a

reference to perform the PDEM-based reliability assessment for multiple limit states and multiple failure

patterns in the future. The enhanced framework presents less calculation burden and shows comparative

calculation accuracy with the MCS. Meanwhile, the enhanced results are generally more conservative and

commonly illustrate a lower reliability when compared with the single limit state, which can result in a more

comprehensive decision and more robust strategy under the same condition in the practical engineering.

Keywords: Limit state functions, Structural failure modes, Reliability, Probability, Multiple, Structural

assessment, PDEM framework



1. Introduction1

In the performance assessment framework of engineering structures, how to define the failure mode and2

corresponding threshold is a critical step [1, 2, 3]. An appropriate selection of failure condition and proper3

determination of damage measure can give a more comprehensive conclusion of structural behaviors, which4

simultaneously provides a beneficial effect for further optimal strategy and appropriate decision making5

[4]. The judgement of structural failure boundary is commonly related to the limit state function (LSF)6

[5], and two physical variables are generally involved during the analysis, i.e., structural resistance (R)7

and response (S). In the deterministic theory, when the response is smaller than resistance, i.e., LSF=S-8

R<0, the structural system is regarded to be safe or reliable, while when the response exceeds resistance,9

i.e., LSF=S-R>0, the structural system is regarded to be damaged in failure. At this stage, the LSF has10

been extended to various sub-fields of civil engineering, e.g., in the earthquake engineering, resistance and11

response can be rephrased as capacity and demand, and LSF is further connected to the fragility analysis12

for performance evaluation. Under this background, the investigation of structural LSF or failure modes13

has become a research interest for decades, and the development is continuing with rapid progress [6, 7, 8].14

The traditional performance assessment adopts the single failure condition and damage measure to15

analyze. For instance, in the classic force-based design of concrete components, the single failure relationship16

or LSF between flexural resistance and flexural response is commonly used as a criterion. Another example17

is that in the performance-based design of engineering structures through lateral displacement, the single18

failure relationship or LSF between maximum drift ratio resistance and maximum drift ratio response is19

primarily selected as a criterion. However, according to Cimellaro and Reinhorn [9], the performance level20

of an integrated structure is commonly decided by multiple limit states and controlled by multiple failure21

modes. Take the above examples again, in the force-based design of concrete components, shear failure22

may happen before the flexural failure, thus the shear mode is also an important factor which is required23

consideration simultaneously [10, 11]. In the displacement-based design of engineering structures, residual24

deformation may be too large to repair after seismic events, even though the maximum deformation satisfies25

within the requirement. Thus, residual deformation is also an important factor which deserves consideration26

in the design procedure [12, 13]. In another word, adopting only single limit state or single failure condition27

may underestimate the structural failure potential, and a more radical conclusion may be drawn [14, 15].28

The influence of multiple limit states and various failure modes in structural behavior assessment has aroused29

attention by researchers [16, 17, 18].30

In 2001, Estes and Frangopol [19] performed the reliability assessment of bridge life-cycle system consid-31

ering multiple limit states, and both the ultimate and serviceability limit states were considered to give a32
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more overall performance strategy of bridges in the lifetime. In 2007, Mackie and Stojadinovi [20] provided a33

non-iterative performance-based seismic design approach considering multiple damage and loss limit states,34

and during the analysis, multiple physical design parameters were incorporated to compare the uncertainty35

source and to derive the design equation under different performance objectives. In 2010, Orcesi et al. [21]36

optimized the maintenance strategies of engineering structures based on multiple limit states (i.e., force-level37

states and function-level states), and the corresponding influence in different maintenance decisions resulted38

from multiple limit states were well discussed and analyzed. In 2011, Cimellaro and Reinhorn [9] addressed39

a seismic fragility approach in light of multiple limit states parameters, and a generalized multidimensional40

LSF containing dependencies among limit thresholds was defined, which provided an alternative path to41

describe structural fragile behaviors with multiple parameters sensitivity (e.g., combined accelerations and42

displacements limit states). In 2017, Biondini and Frangopol [22] investigated the multiple failure loads43

and destruction times of concrete structures under the corrosion condition, and two case studies (i.e., re-44

inforced concrete frame and bridge deck) were given to illustrate the effectiveness of proposed approach in45

defining the suitable performance levels of serviceable life-cycle. In 2019, Mojtabaei et al. [23] developed46

the optimisation strategy of cold-formed steels considering multiple ultimate and serviceability limit states,47

and both the maximum flexural strength factor and minimum deflection factor were incorporated during48

the performance evaluation. The results indicated a higher effective stiffness and bending moment capacity49

(varing from 44% to 58%) in comparison with a standard lipped channel beam, under the consideration of50

multiple limit states and optimisation algorithm. In 2021, Valdebenito et al. [24] adopted the multi-domain51

line sampling to calculate the system failure probability, and multiple limit states were considered simulta-52

neously. The failure domain information of single component was exploited, and the influence of interactions53

between failure events was well discussed. In 2022, Sohn et al. [25] proved the inadequacy of existing single54

limit state for typical piloti-type buildings through correlation analysis, and further proposed a combined55

strain-based and drift-ratio-based limit state to reflect the local damage caused by vertical irregularity, which56

was validated with the collected damage data.57

On the other hand, the traditional LSF analysis commonly gives an instantaneous evaluation of structural58

behavior under the deterministic condition, and with the development of uncertainty theory, the LSF is59

further connected to probability in the field of uncertainty, among which the reliability assessment is a60

significant sub-division [26, 27, 28, 29, 30]. At this stage, a great many reliability assessment approaches61

have been well developed (e.g., checking point method [31], central point method [32], boundary estimation62

method [33], probability network estimation [34], Monte Carlo approach [35], etc., and the corresponding63

explanations as well as the typical applications can be found in [36, 37, 38, 39, 40, 41, 42]). As an alternative64

approach, the probability density evolution method (PDEM), which contains verified theoretical basis and65

solid mathematical derivations in the reliability community, has been proposed by Li et al. since 2000s [43,66

44, 45, 46]. Without the predefined types of distribution for the target random variables, the PDEM approach67
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partitions the random space with different assigned probability (e.g., via optimal minimum F-Discrepancy68

method proposed by Li and Chen [47, 48]) and gives the evolutional tendency of the target random variables69

via efficient numerical difference strategy [e.g., Lax-Wendroff (L-W) form or total variation (TV) form [49]].70

Compared with the classic Monte Carlo approach, the PDEM approach reduces the calculation burden71

aggressively and keeps the calculation accuracy effectively [50, 51]. Moreover, the obtained reliability trends72

indicate the non-parametric characteristics, thus can better reflect the real stochastic conditions in the73

practical engineering [52, 53]. The development of PDEM approach has been further propelled by researchers74

in recent ten years.75

In 2016, Xu [54] performed the stochastic dynamic stability analysis of structures with viscoelastic76

dampers via the enhanced PDEM-based approach, and during the period, newly developed criteria were77

included into the PDEM framework to identify the stable/unstable properties of the dynamic system. Nu-78

merical examples were also given to illustrate the efficiency and effectiveness of the approach. In 2017, Fan79

et al. [55] combined the Bayesian updating with the PDEM approach for deteriorating structures, and the80

changes of probabilistic information as well as the numerical solution via PDEM were well derived. Two81

numerical examples were discussed correspondingly, indicating that the modified PDEM framework with82

Bayesian updating was rational and accurate. In 2019, Hu and Huang [56] incorporated the random field83

theory into the traditional framework of PDEM, and the spatially variable soil properties were regarded84

as the target physical objects. The soil uncertainty propagations and sensitivity analyses in the dynamic85

system were well discussed to verify the superiority of the improved approach. In 2020, Feng et al. [57] pro-86

posed a reliability-based framework for the robustness quantification of reinforced concrete (RC) structures87

under progressive collapse, and the PDEM with the equivalent extreme value event was well incorporated to88

capture the reliability indices during the whole collapse process. The reliability results were compared with89

the Monte Carlo simulation, and the data reflected the distinctively improved calculation efficiency and the90

ideal reliability accuracy of the proposed PDEM approach. In 2020, Wan et al. [58] proposed a new lifetime91

reliability assessment approach by combining the PDEM with the probability measure change, and three92

case studies were given to verify the effectiveness of the proposed method. In 2021, Chen et al. [59] con-93

sidered the time-varying factors in the PDEM-based dynamic reliability method, and successfully applied94

them into the seismic assessment of a concrete dam subjected to earthquakes. The proposed framework95

was proved to be efficient for complex structures, and meanwhile showed great potentials for the lifetime96

seismic design in the future. In 2021, Zhou and Peng [60] incorporated the active learning and subspace97

improvement technique into the PDEM for high-dimensional reliability analysis, and the results indicated98

that the proposed approach outperformed other existing reliability approaches.99

Although researchers have progressed the PDEM theory in the reliability field from new influential factors100

to new application scenarios as mentioned above, the study on how to appropriately combine the multiple101

limit states within the PDEM-based framework and how to incorporate the multiple structural failure modes102

4



for PDEM-based reliability assessment is relatively scarce, which deserves further exploration in depth. Thus,103

in this paper, an enhanced PDEM-based framework considering multiple failure modes and limit states is104

proposed for reliability analysis of structures. Firstly, the PDEM principle and the enhanced mechanism105

are illustrated, and during the process three typical combination types (i.e., circle, triangle, square ways)106

are introduced. Secondly, two case studies are given to verify the effectiveness and necessity of the enhanced107

PDEM-based framework considering multiple limit states. The first example is a simply supported beam108

under two-point concentrated forces with two failure conditions (i.e., shear failure and flexural failure), and109

the second example is a 3-span-6-story RC frame under seismic excitation with three failure conditions (i.e.,110

maximum displacement failure, residual displacement failure and floor acceleration failure). Meanwhile,111

the Monte Carlo simulation (MCS) is also performed for both examples as a comparison and validation.112

Thirdly, parametric studies with related to two important aspects in the enhanced PDEM-based framework113

are primarily performed, including a modified equation of the target variable value via representative points114

incorporating the influence of individual quantile parameters (e.g., 16%, 50% and 84% quantile), as well115

as the other potential combination types in the enhanced PDEM-based framework (i.e., more than circle,116

triangle, square ways illustrated in this paper). The detailed contents of the above-mentioned three parts117

are elaborated from Sections 2 to 4, respectively.118

2. Enhanced PDEM framework for reliability analysis119

2.1. Principle of probability density evolution method120

The well-known PDEM is introduced in this section, and an enhanced framework considering multiple121

LSFs and multiple structural failure modes is further proposed for reliability analysis. According to Li122

et al. [43, 44], the PDEM possesses solid theoretical basis and verified mathematical derivations in the123

reliability field. Without the loss of generality, a structural system commonly contains multiple stochastic124

capacity parameters [e.g., materials, dimensions, herein expressed as Θc = (Θ1,Θ2, ...,Θe)
T ] and multiple125

loading parameters [e.g., phase angles, action points, herein expressed as Θl = (Θe+1,Θe+2, ...,Θn)T ]. For126

simplicity, the random vector Θ = (Θc,Θl) is defined, which includes n groups of independent m× 1 sub-127

matrices, where m denotes the samples for each stochastic variable. Meanwhile, for each realizable value of128

random vector Θ, the dynamic-motion balance equation of an arbitrary structural system can be expressed129

as (Eq. 1):130

MḦ(Θ, t) + CḢ(Θ, t) + KH(Θ, t) = −M ḧg(Θ, t) (1)

where M , C and K are the mass, damping and stiffness matrices of the integrated system with the131

dimension of m×n, respectively. Ḧ(Θ, t), Ḣ(Θ, t) and H(Θ, t) are the acceleration, velocity and displace-132
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ment matrices of the integrated system with the dimension of m× 1, respectively. ḧg(Θ, t) is the external133

excitation or dynamic input.134

In Eq. 1, the system randomness is only depicted by Θ, and more generally, H(Θ, t) can be expressed as135

any quantity of interest or concerned physical object of the integrated system, relying on each Θ. Then, in136

light of the probability preservation theorem, the generalized density evolution equation (GDEE) of PDEM137

for a specific demand H(Θ, t) is called for, as shown in Eq. 2:138

∂pHΘ(H, Θ, t)

∂t
+ Ḣ(Θ, t) · ∂pHΘ(H, Θ, t)

∂H
= 0 (2)

where t is the generalized time indicating the direction of probability evolution, and pHΘ(H, Θ, t)139

is the joint probability density function (PDF) of (H, Θ). In the implementation process, the Eq. 2140

is solved by finite difference methods [e.g., Lax-Wendroff (L-W) form or total variation (TV) form [49]],141

considering the complicated dynamic behaviors of target variable H(Θ, t) and un-explicit form via analytical142

approach. Besides, the probability-assigned space of Θ is needed to be partitioned (i.e., ΩΘ), and a series143

of representative point sets are generated through an optimal minimum F-Discrepancy method proposed by144

Li and Chen [47, 48]. During the procedure, the probability preservation theorem is satisfied. Then, the145

initial condition of the integrated system is introduced, as expressed in Eq. 3:146

pHΘ(H, Θ, t)|t=t0 = δ(H −H0)pΘ(Θ) (3)

where δ(·) is the classic Dirac function, and H0 is the deterministic response of the quantity of interest147

at the initial time (t0). pΘ(Θ) denotes the PDF of random vector Θ, and for the discrete variable, it is148

converted into the partitioned space with different assigned probability, namely, PΘ(Θ). Afterwards, the149

PDF of the quantity of interest [pH(H, t)] at the generalized time t can be expressed as (Eq. 4) along the150

probability evolution direction:151

pH(H, t) =

∫
ΩΘ

pHΘ(H, Θ, t)dΘ (4)

With the PDF results of pH(H, t), the cumulative distribution function (CDF) of quantity of interest152

[FH(H, t)] can be acquired as Eq. 5:153

FH(H, t) =

∫
pH(H, t) · dH (5)

Worth mentioning herein is that t represents the generalized time, thus it can also reflect the virtual time154

in analysis. In this condition, an equivalent extreme-value event or virtual stochastic process is established155

in PDEM, and the virtual time t is assumed to increase from 0 to 1. The quantity of interest pH(H, t) in156

Eq. 4 can be characterized as the extreme values of structural system (e.g., maximum interstory drift ratio,157
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maximum shear capacity, peak floor acceleration). Through generating the equivalent extreme-value event158

or virtual stochastic process, the extreme value in each probability space is constructed to appear at the159

virtual time t = 1. After obtaining the PDEM-based PDF and CDF of the extreme value, the corresponding160

reliability or failure probability of the structural system can be handled subsequently.161

To calculate the system reliability when several limit states are considered, say, totally α limit states,162

the system reliability (R) can then be denoted in Eq. 6:163

R = F

{
α⋃
i=1

{Li(Θ, t) > 0, t ∈ [0, ti]}

}
(6)

where F {·} denotes the probability under the considered event, i denotes the ith limit state, Li(·)164

denotes the ith LSF, and [0, ti] denotes the time domain for the ith limit state. Then calling for the virtual165

stochastic process for the equivalent extreme-value analysis, as expressed in Eq. 7:166

Tev = max {min[Li(Θ, t)]} , 1 6 i 6 α, t ∈ [0, ti] (7)

where Tev represents the extreme-value variable of all the LSFs for each probability space in PDEM.167

Subsequently, the reliability of the extreme-value event incorporating the influence of several limit states168

can be obtained as Eq. 8, in which pTev denotes the extreme value distribution at the virtual time t = 1:169

R = FTev (Tev > 0, t = 1) =

∫ ∞
0

pTev (Tev, t = 1) · dTev (8)

2.2. Enhanced framework considering multiple limit states and failure modes170

With the Eq. 5, the system reliability analysis can then be introduced. If a system physical object Z(Θ)171

is defined as ZS(Θ)−ZR(Θ), where ZS(Θ) and ZR(Θ) represent the system response and resistance under172

the stochastic system vector Θ, respectively, then the reliability of the integrated system can be defined by173

the event {Z(Θ) < 0}. Herein Z(Θ) also reflects the limit state function in the reliability field, as shown174

in Eq. 9.175

Z(Θ) = ZS(Θ)−ZR(Θ) < 0 (9)

Eq. 9 can be further converted into Eq. 10, as both the ZS(Θ) and ZR(Θ) are the non-negative numbers.176

Z′(Θ) = Z(Θ)/ZR(Θ) = ZS(Θ)/ZR(Θ)− 1 < 0 (10)

Eq. 10 gives a single limit state function (LSF) characterized by a specific performance index (PI), and177

this is also the most commonly adopted expression in the reliability analysis. For instance, in the bearing178

capacity evaluation of reinforced concrete beams or columns, ZS(Θ) and ZR(Θ) are commonly defined179
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as the single PI of flexural bearing response and flexural bearing resistance (i.e., flexural failure mode);180

in the seismic deformation evaluation of reinforced concrete frames, ZS(Θ) and ZR(Θ) are commonly181

defined as the single PI of maximum interstory drift response and maximum interstory drift resistance182

(i.e., displacement failure mode). However, in the actual enginering analysis, a structural system is macroly183

determined by multiple PIs and multiple failure modes. For the aforementioned beams or columns, the shear184

failure mode is also a critical parameter, thus the shear bearing response / resistance and multiple failure185

modes of components may give a more comprehensive assessment; for the aforementioned frames, the floor186

acceleration failure mode is also a critical parameter, thus the floor acceleration response / resistance and187

multiple failure modes of frames may give a more comprehensive assessment. In light of this requirement,188

the multi-limit states and multi-failure modes are introduced for reliability analysis, and Eq. 10 can be189

converted to Eq. 11:190

Z′(Θ) = g[ZSi(Θ), ZRi(Θ)]− 1 < 0 (11)

where g[·] is the function of ZSi(Θ) and ZRi(Θ), considering multiple limit states and failure modes,191

and herein i denotes the ith PI and ith corresponding failure mode. In this paper, we give two specific forms192

of g(·) with physical meanings, i.e., g1[ZSi(Θ), ZRi(Θ)] and g2[ZSi(Θ), ZRi(Θ)], as presented in Eqs. 12193

and 13.194

Z1′(Θ) = g1[ZSi(Θ), ZRi(Θ)]− 1 =

α∑
i=1

[ZSi(Θ)/ZRi(Θ)]qi − 1 < 0 (12)

Z2′(Θ) = g2[ZSi(Θ), ZRi(Θ)]− 1

= max {ZS1(Θ)/ZR1(Θ), ..., ZSi(Θ)/ZRi(Θ), ..., ZSα(Θ)/ZRα(Θ)} − 1 < 0
(13)

where α represents the number of multi-failure modes considered in the analysis. Figs. 1(a) and 1(b)195

present the physical meanings of Eqs. 12 and 13, when the multiple limit states are adopted as 2 and 3,196

respectively. As for Eq. 12, when the qi is constant as 1 or 2, the corresponding physical meanings of multi-197

LSFs respond to the circle combination (i.e., combination 1) and triangle combination (i.e., combination 2)198

in Fig. 1, respectively. As for Eq. 13, the corresponding physical meanings of multi-LSFs respond to the199

square combination (i.e., combination 3) in Fig. 1.200

As both the Z1′(Θ) and Z2′(Θ) only depend on the Θ, thus Z1′(Θ) and Z2′(Θ) can also be regarded201

as the concerned physical object in PDEM, and during the analysis, the equivalent extreme-value event is202

required for analysis as mentioned before. Thus, replace the H(Θ, t) in Eq. 2 with Z′(Θ, t), and establish the203

virtual stochastic process. For each point set Θi, the deterministic dynamic or static analyses are conducted204

to obtain the derivative of the concerned physical variable, i.e., Ż′(Θi, t), and the value is brought into Eq. 2205
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Figure 1: The physical meanings of multi-LSFs and multi-failure modes considered in the enhanced PDEM

to realize the discretization of GDEE, as denoted in Eq. 14:206

∂pZ′Θ(Z′, Θ, t)

∂t
+ Ż′(Θ, t) · ∂pZ

′Θ(Z′, Θ, t)

∂Z′ = 0 (14)

The GDEE can be solved via finite difference methods to obtain the PDF of the concerned physical207

object, Z′(t), as mentioned in Eq. 15, where m denotes the number of representative point sets with different208

probability-assigned space. As for the equivalent extreme-value event, we chose the evaluation results at the209

virtual time of t=1. Afterwards, the system reliability (R) can then be assessed by Eq. 16, at the boundary210

condition of Z′=0.211

pZ′(Z′, t = 1) =

m∑
i=1

pZ′Θ(Z′, Θi, t = 1) (15)

R = FZ′(Z′ < 0, t = 1) =

∫ 0

−∞
pZ′(Z′, t = 1) · dZ′ (16)

The PDEM avoids the pre-defined distribution of concerned physical object and obviously reduces the212

calculation burden. Meanwhile, the combined PI considering multiple limit states is introduced to enhance213

the PDEM-based framework for reliability analysis, thus a more comprehensive assessment conclusion can be214

drawn. Fig. 2 presents the detailed schematic steps of the enhanced PDEM framework considering multiple215

limit states and failure modes.216

3. Implementation of the enhanced PDEM-based reliability framework217

In this section, two case studies are performed to illustrate the effectiveness of the enhanced PDEM-based218

framework as well as the necessity to consider multiple limit states. The first is a simply supported beam219
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Figure 2: The detailed schematic steps of the enhanced PDEM framework considering multiple limit states and failure modes

10



under two-point concentrated forces with two failure conditions (i.e., shear failure and flexural failure), and220

the second is a 3-span-6-story RC frame under seismic excitation with three failure conditions (i.e., maximum221

displacement failure, residual displacement failure and floor acceleration failure). Meanwhile, the MCS is222

also performed for both examples as a comparison and validation. The detailed analyses are carried out as223

follows.224

3.1. Case study 1: Simply supported beam with two failure conditions225

Fig. 3 presents the dimension information and symbol definition of the adopted simply supported beam in226

case study 1. Totally 11 random variables are selected, and Tab 1 lists the basic parameters and distributions227

in case study 1. The section width (b), section height (h), shear length (a) and concentration force (Q) are228

assumed to conform to normal distributions, and other variables are assumed to conform to lognormal229

distributions. During the analysis, the tensile strength of concrete (ft) is taken as 1/10 of the compressive230

strength (fc). Under the enhanced PDEM framework, the selection of representative points is the first step,231

and in this example 300 points with different assigned probability are primarily generated using the optimal232

minimum F-Discrepancy method [47, 48]. Moreover, two failure modes are adopted into the PDEM-based233

reliability assessment in this study, which are the flexural failure mode and shear failure mode, and three234

multi-LSFs (i.e., circle, triangle and square combinations) are incorporated according to Eqs. 12 and 13 for235

comparison. The theoretical value of the flexural resistance (MR) and flexural response (MS) for the simply236

supported beam can be denoted as Eqs. 17 and 18:237

MR = fy ·As · (h0 −
1

2
· fy ·As
fc · b

) (17)

MS = Q · a (18)

where fy represents the yielding strength of reinforcement steel, and fc represents the compressive238

strength of concrete. As represents the summary of sectional areas for the longitudinal reinforcement. h0239

denotes the effective sectional height and can be calculated as h−as, where as represents the concrete cover240

thickness. Q represents the concentration force and a represents the shear length from the action position241

to the support. As for the theoretical value of the shear resistance (VR) and shear response (VS) for the242

simply supported beam, equations can be denoted as Eqs. 19 and 20:243

VR = 0.7 · ft · b · h0 +
fyv ·Asv · h0

s
(19)

VS = Q (20)
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where fyv denotes the stirrup tensile strength, and s denotes the stirrup spacing. Asv denotes the stirrup244

sectional areas and can be calculated as 2πd2
sv/4, where the coefficient 2 is for double-limb stirrup in this245

analysis and dsv represents the sectional diameter of stirrup.246

L

Q Q
a a 4D20

2D18

D6@200

4D22
b

h

Sec-1

Sec-1

Sec-1

Figure 3: The dimension information and symbol definition of the simply supported beam

Table 1: The stochastic variables and distributions of the simply supported beam

Random variables Symbol Distribution Mean COV

Section width b Normal 200 (mm) 0.01

Section height h Normal 400 (mm) 0.01

Shear length a Normal 750 (mm) 0.01

Concentration force Q Normal 110.7 (kN) 0.4

Concrete compressive strength fc Lognormal 15.2 (MPa) 0.1

Rebar tensile strength fyt Lognormal 378 (MPa) 0.074

Rebar diameter dt Lognormal 25 (mm) 0.04

Rebar elastic modulus Es Lognormal 201000 (MPa) 0.033

Stirrup tensile strength fyv Lognormal 270 (MPa) 0.074

Stirrup diameter dsv Lognormal 6 (mm) 0.04

Stirrup spacing s Lognormal 200 (mm) 0.04

Note: Some distribution parameters and values can be referred from [57, 58, 61].

Figs. 4(a) and 4(b) display the CDF, failure probability and reliability of the target variable via PDEM247

using single LSF and single failure mode (i.e., flexural mode and shear mode, respectively). Worth men-248

tioning is that the result is calculated at the abscissa of 0 according the derivations in Section 2. To be249

specific, the abscissas are presented as MS/MR − 1 and V S/V R − 1 for Figs. 4(a) and 4(b), respectively.250

Through the flexural mode, the acquired failure probability of the simply supported RC beam is 0.0409, and251

the corresponding reliability is given as 0.9591. In another word, the flexural resistance is generally larger252

than the flexural response in most stochastic conditions for this simply supported RC beam when analyzed253

from the aspect of flexure. However, through the shear mode, the acquired failure probability of the simply254
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supported RC beam is 0.544, and the corresponding reliability is given as 0.456. It can be seen that from the255

aspect of shear failure, the reliability of the simply supported RC beam is sharply lowered compared with256

the flexural failure. If only single LSF and single failure mode is considered in the reliability assessment, the257

results obtained are biased and may not be convincing.258

Figs. 4(c), 4(d) and 4(e) display the corresponding results via the enhanced PDEM-based framework con-259

sidering multiple limit states (i.e., circle combination, triangle combination and square combination, respec-260

tively). The corresponding abscissas for the three conditions are presented as (MS/MR)2 + (V S/V R)2− 1,261

MS/MR + V S/V R − 1 and max(MS/MR,V S/V R) − 1 from Figs. 4(c) to 4(e). Generally, two conclu-262

sions can be observed. The first conclusion is that after incorporating multiple limit states into the PDEM,263

the obtained results are more conservative and the calculated reliability is commonly lower than the single264

condition. The failure probability for the circle, triangle and square combination is shown as 0.6254, 0.8144265

and 0.544, respectively, and the acquired reliability for the three combinations is presented as 0.3746, 0.1856266

and 0.456, respectively. Compared with the single flexural mode (Fig. 4(a)), the dropping percentage of267

reliability is 60.9%, 80.6% and 52.5%, and compared with the single shear mode (Fig. 4(b)), the dropping268

percentage ranges from 17.9% to 59.3%. The second conclusion is that with different combination ways of269

multiple failure modes and limit states, the obtained reliability presents variation within a certain range. The270

triangle combination indicates the least reliability compared with the other two combinations, accompanied271

with the gap ratios of 50.4% and 59.3%. The square combination shows the largest reliability (0.456), and272

its result equals to the single shear condition in this example, as illustrated in Figs. 4(b) and 4(e). To verify273

the effectiveness and accuracy of the enhanced PDEM-based framework in reliability assessment considering274

multiple limit states, MCS is also performed as a comparison, which is commonly adopted as a benchmark275

approach for crosscheck. The more samples are stochastically generated, the more accurate results can be276

given. The reliability via MCS (RMCS) can be expressed as Eq. 21:277

RMCS =
ns
Ntol

(21)

where ns denotes the reliable point number within the limitations, and Ntol denotes the total point278

number generated in MCS. In this analysis, 10000 points for all the 11 random variables are sampled with279

the same assigned probability (i.e., 0.0001), and Fig. 5 displays the scattered points of stochastic results in280

MCS. The black dotted lines represent the single LSF, while the blue, red, and pink solid lines represent281

the multi-LSFs for a schematic view. Tab 2 lists the data comparison between PDEM and MCS under282

different LSF types and failure modes in case study 1. It can be found that the calculated results by MCS283

are generally in consistent with the PDEM. For all the five LSFs listed in Tab 2, the corresponding reliability284

via MCS is shown as 0.9575, 0.4496, 0.3665, 0.1793 and 0.4496, respectively, and the deviations from PDEM285

are given as 0.17%, 1.42%, 2.21%, 3.51% and 1.42%, respectively. Meanwhile, the reliability obtained by286
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MCS that incorporates multiple limit states indicates the same tendency as PDEM (i.e., more conservative287

with a lower value in comparison with single LSF). In summary, the analyses validate the effectiveness and288

accuracy of the enhanced PDEM framework for reliability assessment under the consideration of multiple289

limit states and failure modes. Moreover, the calculating efficiency is obviously improved, as only 300 points290

are generated in PDEM while 10000 points are generated in MCS.291
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Figure 4: The CDF, failure probability and reliability of the target variable under different LSFs via PDEM (case study 1)

Table 2: The comparison between PDEM and MCS under different LSF types and failure modes (case study 1)

LSF type and failure mode PDEM MCS Deviation

Failure Reliability Failure Reliability (%)

Single LSF 1 (M) 0.0409 0.9591 0.0425 0.9575 0.17

Single LSF 2 (V) 0.5440 0.4560 0.5504 0.4496 1.42

Multi-LSF 1 (M+V circle) 0.6254 0.3746 0.6335 0.3665 2.21

Multi-LSF 2 (M+V triangle) 0.8144 0.1856 0.8207 0.1793 3.51

Multi-LSF 3 (M+V square) 0.5440 0.4560 0.5504 0.4496 1.42
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Figure 5: The scattered points and the schematic view of different LSFs via Monte Carlo simulation (10000 points in case

study 1)

3.2. Case study 2: Reinforced concrete frame with three failure conditions292

Fig. 6(a) presents the dimension information of the adopted RC frame in case study 2, which is excited293

with the non-stationary stochastic ground motions. Totally 13 random variables are selected, and Tab 3 lists294

the basic parameters and distributions in case study 2. During the analysis, the non-stationary stochastic295

earthquake model via the spectrum representation approach is adopted, aiming to reflect the real stochastic296

scenarios of earthquake input in the practical engineering [62, 63, 64]. The specific generating equations297

of the non-stationary stochastic earthquake model are not elaborated in this paper and can be available in298

Liu et al. [65, 66]. The stochastic motion parameters (Θ1 and Θ2) are assumed to conform to the uniform299

distributions and reflect the uncertainty from the earthquake input. The concrete bulk density (γ), beam300

span (sb), first storey height (hf), standard storey height (ha), rebar diameters (d20 and d25), damping301

ratio (ς) are assumed to conform to normal distributions, while the core concrete compressive strength302

(fcp,core), core concrete ultimate strain (εcu,core), rebar yielding strength (fy), rebar elastic modulus (E)303

are assumed to conform to lognormal distributions. The above-mentioned random variables reflect the304

uncertainty from the structural itself (e.g., material uncertainty and dimension uncertainty). Under the305

enhanced PDEM framework, the selection of representative points is the first step, and in this example306

200 points with different assigned probability are primarily generated using the aforementioned selecting307

method [47, 48]. Moreover, three failure modes are adopted into the PDEM-based reliability assessment308

in this study, which are the maximum inter-story drift ratio (MIDR) failure, residual inter-story drift ratio309

(RIDR) failure, and peak floor acceleration (PFA) failure. Besides, three multi-LSFs (i.e., circle, triangle310

and square combinations) are also incorporated into the enhanced PDEM-based framework according to311

Eqs. 12 and 13 for comparison. Worth mentioning is that the benchmark RC frame is assumed to locate312

at the region with fortification level of 8 degree in China, and the corresponding rare earthquake intensity313
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is adopted as 0.4 g for excitation in this paper (i.e., the exceeding probability of 2% in 50 years). The314

immediate occupancy performance level is chosen for analysis according to FEMA-356 [67] and HAZUS-315

MH [68], and the corresponding resistance thresholds for MIDR failure, RIDR failure and PFA failure are316

determined as 0.01, 0.001, and 0.4 (g), respectively [69].317

To carry out the assessment in this example, the OpenSees software is adopted for model establishment,318

which is a commonly-used tool for simulating the response of structural and geotechnical systems subjected319

to earthquakes and other hazards [70, 71]. In comparison with the three-dimensional solid models, the320

OpenSees software reduces the computational cost and simultaneously keeps the nonlinear characteristics321

[72, 73]. In this modelling, the force-based beam-column elements with fiber cross sections are selected to322

model the frame beams and columns [74, 75], and five integrations points are defined for each beam-column323

element. The joint2D element is selected to capture the behaviors of beam-column connections, which324

contains five springs to characterize the flexural-rotation properties in the core zones. The central spring325

reflects the shear behavior of the connection panel, while other four springs are located at the beam-column326

interfaces to reflect the reinforcement bond-slip behaviors. The central spring is assigned with the Pinching4327

material in this modelling that can reflect the stiffness degradation and hysteresis pinching, and the four328

main points in the skeleton curve of Pinching4 material can be obtained in light of the modified compression329

field theory. The other four springs are assigned with the Hysteretic material in this modelling, and the330

corresponding characteristic points can be calculated after introducing a unit-length fiber section analysis331

and zero-length section element. The EqualDOF constraint is adopted to limit the horizontal displacement332

for each floor, based on the rigid floor assumption. Fig. 6(b) displays the simulation model and element333

assignment of the 3-span-6-story RC frame in this example. A comparison with the experimentally hysteretic334

data in reference [76] is also presented in Fig. 6(b), which verifies the effectiveness and appropriateness of335

the established model for the subsequent reliability assessment in a sense. With related to the details of336

modelling strategy, more references can be found in Feng et al. [77, 78] and Cao et al. [79, 80, 81].337

Figs. 7(a), 7(b) and 7(c) display the CDF, failure probability and reliability of the target variable via338

PDEM using single LSF and single failure mode (i.e., MIDR failure mode, RIDR failure mode and PFA339

failure mode, respectively). Worth mentioning is that the result is calculated at the abscissa of 0 according340

the derivations in Section 2. The abscissas are presented as θS/θR−1, θrS/θrR−1 and FaS/FaR−1 from341

Figs. 7(a) to 7(c), respectively. Through the MIDR failure mode, the acquired failure probability of the342

adopted RC frame is 0.3077, and the corresponding reliability is given as 0.6923. Through the RIDR failure343

mode, the acquired failure probability of the adopted RC frame is 0.1537, and the corresponding reliability is344

given as 0.8463. Through the PFA failure mode, the acquired failure probability of the adopted RC frame is345

0.2407, and the corresponding reliability is given as 0.7593. As for the single LSF, the calculated reliability346

is largely dependent on the selected failure mode, and the gap percentage among the results can be as high347

as 15.4% in this example. In another word, if only single LSF and single failure mode is adopted, say, the348
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Figure 6: The dimension information and simulation model of the RC frame
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Table 3: The stochastic variables and distributions of the RC frame

Random variables Symbol Distribution Mean COV

Stochastic motion parameter Θ1 Uniform 3.142 (1) 0.577

Stochastic motion parameter Θ2 Uniform 3.142 (1) 0.577

Concrete bulk density γ Normal 26.5 (kN/m3) 0.0698

Beam span sb Normal 6300 (mm) 0.003

First storey height hf Normal 4200 (mm) 0.003

Standard storey height ha Normal 3500 (mm) 0.003

Core concrete compressive strength fcp,core Lognormal 33.6 (MPa) 0.21

Core concrete ultimate strain εcu,core Lognormal 0.0113 (1) 0.52

Rebar diameter in columns d25 Normal 25 (mm) 0.04

Rebar diameter in beams d20 Normal 20 (mm) 0.04

Rebar yielding strength fy Lognormal 378 (MPa) 0.074

Rebar elastic modulus E Lognormal 201000 (MPa) 0.033

Damping ratio ς Normal 0.05 (1) 0.1

Note: Some distribution parameters and values can be referred from [57, 82, 83, 84].

commonly-used MIDR with the reliability of 0.6923, the calculating result is much conservative and there349

exists certain controversy especially when compared with the other two failure patterns, i.e., RIDR mode350

(0.8463) and PFA mode (0.7593). The comparison further illustrates the significance of considering multiple351

limit states and failure modes in the structural reliability evaluation.352

Figs. 7(d), 7(e) and 7(f) display the corresponding results via the enhanced PDEM-based framework353

considering multiple limit states (i.e., circle combination, triangle combination and square combination,354

respectively). The corresponding abscissas for the three conditions are presented as (θS/θR)2+(θrS/θrR)2+355

(FaS/FaR)2−1, θS/θR+θrS/θrR+FaS/FaR−1 and max(θS/θR, θrS/θrR, FaS/FaR)−1 from Figs. 7(d)356

to 7(f). It can be found that after incorporating multiple limit states and failure modes into the PDEM,357

the obtained results are more conservative and the calculated reliability is commonly lower than the single358

condition. The failure probability for the circle, triangle and square combination is shown as 0.9159, 0.9672359

and 0.4847, respectively, and the acquired reliability for the three combinations is presented as 0.0841, 0.0328360

and 0.5153, respectively. Compared with the single MIDR failure mode (Fig. 7(a)), the dropping percentage361

of reliability is 87.9%, 95.3% and 25.6%, and compared with the single RIDR failure mode (Fig. 7(b)), the362

dropping percentage ranges from 39.1% to 96.1%. As for the single PFA failure mode in Fig. 7(c), the363

reliability deviations for the three combinations vary from 32.1% to 95.7%, also indicating a large extent.364

The obvious drop in reliability in Figs. 7(d) and 7(e) mainly results from the three failure modes selected365

as a criterion in this example, and multiple limit states significantly raise the threshold for the reliability366
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requirement. Take the square combination in Fig. 7(f) as an example, which is the most intuitive way.367

The square combination uses the maximum value among all the single failure modes as the PDEM sample,368

and the corresponding reliability presents the decreasing extent of 0.177 (25.6%), 0.331 (39.1%), and 0.244369

(32.1%), respectively. In a sense, after incorporating multiple limit states and failure modes, the obtained370

result can be more convincing and comprehensive.371

To verify the effectiveness and accuracy of the enhanced PDEM-based framework in reliability assessment372

considering multiple limit states and failure modes, MCS is also performed as a comparison. In this analysis,373

10000 points for all the 13 random variables are sampled with the same assigned probability (i.e., 0.0001),374

and Fig. 8 presents the scattered points of stochastic results in MCS. Figs. 8(a) and 8(d) display the views375

of circle combination for multi-LSF 1, Figs. 8(b) and 8(e) display the views of triangle combination for376

multi-LSF 2, and Figs. 8(c) and 8(f) display the views of square combination for multi-LSF 3. Tab 4 lists377

the data comparison between PDEM and MCS under different LSF types and failure modes in case study378

2. It can be observed that the calculated results by MCS are generally in consistent with the PDEM. For379

all the six LSFs listed in Tab 4, the failure probability given by MCS is displayed as 0.3206, 0.1427, 0.2791,380

0.9093, 0.9692 and 0.4937. The corresponding reliability via MCS is shown as 0.6794, 0.8573, 0.7209, 0.0907,381

0.0308 and 0.5063, respectively, and the deviations from PDEM are given as 1.90%, 1.28%, 5.33%, 7.28%,382

6.49% and 1.78%, respectively. Confronted with the single LSF and failure pattern, the reliability via MCS383

after considering multiple limit states and different destruction conditions is also more conservative with a384

lower value, as demonstrated in the results from the enhanced PDEM procedure. The analyses between the385

MCS and PDEM also prove the accuracy of the enhanced PDEM framework, and for all the LSFs little386

difference is observed with the maximum deviation of 7.28%. At the same time, in this example, only 200387

points are required for the enhanced PDEM-based reliability assessment while 10000 points are required for388

the MCS-based reliability assessment, signifying the great efficiency improvement in calculation via PDEM.389

Table 4: The comparison between PDEM and MCS under different LSF types and failure modes (case study 2)

LSF type and failure mode PDEM MCS Deviation

Failure Reliability Failure Reliability (%)

Single LSF 1 (MIDR) 0.3077 0.6923 0.3206 0.6794 1.90

Single LSF 2 (RIDR) 0.1537 0.8463 0.1427 0.8573 1.28

Single LSF 3 (PFA) 0.2407 0.7593 0.2791 0.7209 5.33

Multi-LSF 1 (MIDR+RIDR+PFA circle) 0.9159 0.0841 0.9093 0.0907 7.28

Multi-LSF 2 (MIDR+RIDR+PFA triangle) 0.9672 0.0328 0.9692 0.0308 6.49

Multi-LSF 3 (MIDR+RIDR+PFA square) 0.4847 0.5153 0.4937 0.5063 1.78
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Figure 7: The CDF, failure probability and reliability of the target variable under different LSFs via PDEM (case study 2)
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(a) View 1 (circle combination) (b) View 2 (triangle combination) (c) View 3 (square combination)

(d) View 4 (circle combination) (e) View 5 (triangle combination) (f) View 6 (square combination)

Figure 8: The scattered points and the schematic view of different LSFs via Monte Carlo simulation (10000 points in case

study 2)
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4. Parametric studies in the enhanced PDEM-based reliability framework390

In this section, parametric studies pertaining to two significant aspects in the enhanced PDEM-based391

framework are primarily performed for illustration [85, 86, 87], including a modified equation of the target392

variable value via representative points incorporating the influence of individual quantile parameters (e.g.,393

16%, 50% and 84% quantile), as well as the other potential combination types in the enhanced PDEM-based394

framework (i.e., more than circle, triangle, square ways). The detailed illustrations are shown as follows.395

4.1. Modified equation considering individual quantile parameters396

As mentioned above, the first step in the enhanced PDEM framework for reliability assessment is to397

determine the representative points, and the properties of the selected points will directly decide the CDF398

tendency as well as the calculated reliability. In this subsection, we propose a modified equation of the399

target physical variable value of representative points, and during the process the selected benchmark points400

are required for modification, as expressed in Eq. 22:401

Lj−mod = Lj − (Lj − Lben−j) ·
|Lj − Lben−j |∑α
i=1 |Li − Lben−i|

, j = 1, 2, ..., α (22)

where α represents the number of multi-failure modes considered in the analysis. Lj , Lj−ben and Lj−mod402

represent the initial target variable value (before modification), the benchmark variable value, and the403

modified target variable value (after modification), respectively, under the condition of jth failure mode.404

Worth mentioning is that all the Lj , Lj−ben and Lj−mod herein are expressed as the response divided by405

the resistance in calculation for all the failure modes (i.e., S/R), and the modified results of the physical406

variables are further taken into Eqs. 12 and 13 for the enhanced PDEM-based reliability assessment. Worth407

noticing is that the symbol L in Eq. 22 is in vector form, i.e., if the representative point number is 200,408

the above-mentioned modified equation is used for all the 200 samples under each failure pattern. Fig. 9409

displays the schematic view of the modified procedure of the target physical variable value in PDEM, based410

on the multi-LSF 1 (i.e., circle combination). The points A, B and C denote the benchmark point, stochastic411

point before modification and stochastic point after modification. The distances a, b and c are the embodied412

representation of |Lj − Lben−j | in Eq. 22. Figs. 9(a) and 9(b) present the two dimensional conditions and413

three dimensional conditions, respectively.414

According to Eq. 22, the selection of benchmark variable value Lj−ben influences the modified procedure415

as well as the reliability assessment. In this subsection, we adopt the quantile parameters of the individual416

variable in the single LSF and single failure mode as the benchmark for an example. Three quantile levels417

are used, which are 16%, 50% and 84% quantile, respectively. Fig. 10 presents the modified CDF, failure418

probability and reliability of the target variable via PDEM and multi-LSF 3. Figs. 10(a) to 10(c) display419

the modified results in case study 1, and Figs. 10(d) to 10(f) display the modified results in case study 2.420
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Figure 9: The schematic view of the modified procedure of the target physical variable value in PDEM

It can be observed that the reliability via multi-LSF 3 in case study 1 before modification is given as 0.456,421

while the results after modification come to 0.6228, 0.3682 and 0.1326 for the 16%, 50% and 84% quantile,422

respectively. The reliability variation ranges from 0.0878 to 0.3234. As for case study 2, the reliability via423

multi-LSF 3 before modification is given as 0.5153, while the results after modification come to 0.8843, 0.6524424

and 0.4628 for the 16%, 50% and 84% quantile, respectively. The corresponding reliability variations are425

0.369, 0.1371 and 0.0525 for the three quantile levels, respectively. Generally, the smaller quantile level as the426

benchmark will increase the reliability result, and the larger quantile level as the benchmark will decrease427

the reliability result. The detailed comparison of the reliability results before and after modification via428

the enhanced PDEM framework is summarized in Tab. 5. The modification procedure in this subsection429

can provide some reference for the future work in the enhanced PDEM-based reliability framework (e.g.,430

benchmark point optimization, quantile level determination).431

Table 5: The comparison of the reliability results before and after modification via the enhanced PDEM framework

Quantile level Before modification After modification Variation

Failure Reliability Failure Reliability (1)

16% (example 1) 0.544 0.456 0.3772 0.6228 0.1668

50% (example 1) 0.544 0.456 0.6318 0.3682 0.0878

84% (example 1) 0.544 0.456 0.8674 0.1326 0.3234

16% (example 2) 0.4847 0.5153 0.1157 0.8843 0.369

50% (example 2) 0.4847 0.5153 0.3476 0.6524 0.1371

84% (example 2) 0.4847 0.5153 0.5372 0.4628 0.0525

23



0 2 4 6 8
Z=max(MS/MR,VS/VR)-1

0

0.2

0.4

0.6

0.8

1

C
D

F

Simply supported RC beam

Multi-limit state function 3 

CDF curves
Failure=0.3772
Reliability=0.6228

 after modification-16%
 Boundary

 condition

(a) Quantile of 16% in case study 1

0 2 4 6 8
Z=max(MS/MR,VS/VR)-1

0

0.2

0.4

0.6

0.8

1

C
D

F

Boundary condition

Simply supported RC beam

Multi-limit state function 3

CDF curves
Failure=0.6318
Reliability=0.3682

 after modification-50%

(b) Quantile of 50% in case study 1

0 2 4 6 8
Z=max(MS/MR,VS/VR)-1

0

0.2

0.4

0.6

0.8

1

C
D

F

Boundary condition

Simply supported RC beam

Multi-limit state function 3

CDF curves
Failure=0.8674
Reliability=0.1326

 after modification-84%

(c) Quantile of 84% in case study 1

-0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

C
D

F

1 

CDF curves
Failure=0.1157
Reliability=0.8843

3 span × 6 story RC frame 

Multi-limit state function 3 

after modification-16%

Boundary

condition

 Z=max(θS/θR, θrS/θrR, FaS/FaR)-1

(d) Quantile of 16% in case study 2

-0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

1

C
D

F

0.8 3 span × 6 story RC frame 

Multi-limit state function 3 

after modification-50%

CDF curves
Failure=0.3476
Reliability=0.6524

Boundary

condition

 Z=max(θS/θR, θrS/θrR, FaS/FaR)-1

(e) Quantile of 50% in case study 2

-0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.8

1

C
D

F

0.6

CDF curves
Failure=0.5372
Reliability=0.4628

3 span × 6 story RC frame 

Multi-limit state function 3 

after modification-84%

 Z=max(θS/θR, θrS/θrR, FaS/FaR)-1

Boundary

condition

(f) Quantile of 84% in case study 2

Figure 10: The modified CDF, failure probability and reliability of the target variable via PDEM and multi-LSF 3
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4.2. Other combination types considering multiple limit state functions432

In the aforementioned analyses, multi-LSFs and failure modes are detailedly discussed in the enhanced433

PDEM-based reliability framework, and three combination ways (i.e., circle, triangle, and square) are specif-434

ically illustrated in light of the Eqs. 12 and 13. In fact, there can also be other combination ways of multiple435

failure modes in the enhanced PDEM-based reliability framework, and the combination types largely depend436

on the coefficients in Eqs. 12 and 13 (e.g., qi). Herein we give some results of other combination ways for437

illustration. Figs. 11 and 12 present the six other potential combination types incorporating multiple limit438

states in both case study 1 and 2. The coefficients qi in Fig. 11 are selected as {1, 2}, {2, 1}, {1, 3}, {3, 1},439

{2, 3} and {3, 2} for the two adopted failure modes (i.e., flexural mode, shear mode), respectively. For all the440

six conditions in Fig. 11, the obtained reliability is calculated as 0.2847, 0.3085, 0.3636, 0.3773, 0.4275 and441

0.4194. In comparison with the circle combination (qi=2) with the reliability of 0.3746, the variation ratios442

are {23.9%, 17.6%, 2.94%, 0.72%, 14.1%, 11.9%}, while in comparison with the triangle combination (qi=1)443

with the reliability of 0.1856, the variation ratios exceed over 53.4%. The changes of coefficient qi lead to the444

fluctuation of failure boundary and affect the results of reliability assessment. As for Figs. 12(a) to 12(c), all445

the coefficients qi are equally chosen as 1.5, 2.5 and 3. As for Figs. 12(d) to 12(f), the coefficients qi for the446

three adopted failure modes (i.e., MIDR mode, RIDR mode, PFA mode) are given as {1, 2, 3}, {2, 1, 3} and447

{3, 2, 1}, respectively. For all the six conditions in Fig. 12, the obtained reliability is calculated as 0.0194,448

0.1549, 0.2251, 0.0384, 0.0864 and 0.0921. Compared with the reliability via the circle way (0.0841), triangle449

way (0.0328), and square way (0.5153) as mentioned in Section 3, less changes are found in the former two450

ways with the range from 0.0023 to 0.1923, while the variations fluctuate from 0.2902 to 0.4959 in the last451

way. In general, with the increase of the coefficient qi, the boundary limitation of the whole structural452

failure is elevated and the system is prone to be more reliable under the same condition (i.e., with a higher453

reliability).454

Fig. 13 presents the schematic view of different LSFs and combination types in case study 1 with two455

failure modes. The scattered points are the representative points via the enhanced PDEM-based framework,456

and the other lines indicate the other combination types with different q1 and q2. It can be found that with457

the increase of the coefficient qi, the envelope range of the corresponding curve is also promoted, and the458

scattered points that fall within the envelope range enlarge at the same time. Take Fig. 13(a) as an example,459

the black dotted straight line (q1=1, q2=1) represent the triangle combination illustrated in Section 3 and460

the corresponding reliability is obtained as 0.1856. With the increase of q1 to 2 and q2 to 3 (i.e., the solid461

gray line in Fig. 13(c)), the envelope range is obviously enlarged than the black dotted straight line, and the462

reliability is also increased with the result of 0.4275, as presented in Fig. 11(e). The obtained result (q1=2,463

q2=3, reliability of 0.4275) is even larger than the circle combination (q1=2, q2=2, reliability of 0.3746),464

which also agrees with the above conclusion. Similar phenomenon can be observed for other combinations,465

say, the pink dotted line (q1=3, q2=2, reliability of 0.4194) and the black dotted line (q1=3, q2=1, reliability466
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of 0.3773) in Fig. 13(e).467
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Figure 11: Other combination types considering multiple limit states in case study 1

Another finding is that when qi is large enough, the obtained result is close to the form of max(·) via468

Eq. 13 (i.e., square combination). Take Fig. 13(l) for illustration, with the increase of q1 to 50 and q2 to 10469

(red solid line), the envelope range aggressively approximates to the vertical line MS/MR = 1 (i.e., single470

LSF 1) and the horizontal line V S/V R = 1 (i.e., single LSF 2), and the schematic meaning of the square471

combination is the merge of the two single LSFs, as illustrated in Fig. 5. Fig. 14 displays the schematic view472

of different LSFs and combination types in case study 2 with three failure modes, among which Figs. 14(d)473

(q1=1, q2=1, q3=1) and 14(e) (q1=2, q2=2, q3=2) are in consistent with the triangle combination and circle474

combination in Fig. 8. Worth mentioning is the Fig. 14(j) (q1=15, q2=15, q3=15, quite large), where the475

envelope range of failure boundary is quite close to the square combination in Fig. 8(c), which also proves the476

rationality of conclusion as mentioned above. Besides, with the variation of qi from 0 to 1 (e.g., Figs. 14(a)477

to 14(c), 14(v) to 14(ad)), the envelope range shrinks in a sense, and the corresponding points that satisfy478

within the boundary condition are reduced, accompanied with a lower system reliability. In summary, the479

parametric studies of other combination types that incorporate multiple failure conditions in this subsection480

shed some light for the development trend and boundary rule of multi-LSF in PDEM, and meanwhile provide481

some reference for the future work in the enhanced PDEM-based reliability framework (e.g., appropriate482
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Figure 12: Other combination types considering multiple limit states in case study 2
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combination principle, optimal combination coefficient).483

28



0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=1, q2=1
q1=1, q2=2
q1=1, q2=3
q1=1, q2=4
q1=1, q2=5
q1=1, q2=6

(a) q1=1, q2=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=1, q2=1
q1=2, q2=1
q1=3, q2=1
q1=4, q2=1
q1=5, q2=1
q1=6, q2=1

(b) q2=1, q1=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=2, q2=1
q1=2, q2=2
q1=2, q2=3
q1=2, q2=4
q1=2, q2=5
q1=2, q2=6

(c) q1=2, q2=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=1, q2=2
q1=2, q2=2
q1=3, q2=2
q1=4, q2=2
q1=5, q2=2
q1=6, q2=2

(d) q2=2, q1=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=3, q2=1
q1=3, q2=2
q1=3, q2=3
q1=3, q2=4
q1=3, q2=5
q1=3, q2=6

(e) q1=3, q2=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=1, q2=3
q1=2, q2=3
q1=3, q2=3
q1=4, q2=3
q1=5, q2=3
q1=6, q2=3

(f) q2=3, q1=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=4, q2=1
q1=4, q2=2
q1=4, q2=3
q1=4, q2=4
q1=4, q2=5
q1=4, q2=6

(g) q1=4, q2=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=1, q2=4
q1=2, q2=4
q1=3, q2=4
q1=4, q2=4
q1=5, q2=4
q1=6, q2=4

(h) q2=4, q1=1 to 6

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=5, q2=1
q1=5, q2=5
q1=5, q2=10
q1=5, q2=15
q1=5, q2=20
q1=5, q2=25

(i) q1=5, q2=1, 5, 10, 15, 20, 25

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=1, q2=5
q1=5, q2=5
q1=10, q2=5
q1=15, q2=5
q1=20, q2=5
q1=25, q2=5

(j) q2=5, q1=1, 5, 10, 15, 20, 25

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=10, q2=1
q1=10, q2=10
q1=10, q2=20
q1=10, q2=30
q1=10, q2=40
q1=10, q2=50

(k) q1=10, q2=1, 10, 20, 30, 40, 50

0 0.5 1 1.5
MS/MR

0

0.5

1

1.5

2

2.5

3

V
S/

V
R

PDEM-results
q1=1, q2=10
q1=10, q2=10
q1=20, q2=10
q1=30, q2=10
q1=40, q2=10
q1=50, q2=10

(l) q2=10, q1=1, 10, 20, 30, 40, 50

Figure 13: The schematic view of different LSFs and combination types in case study 1 (two failure modes)
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(a) qi=0.1, 0.1, 0.1 (b) qi=0.25, 0.25, 0.25 (c) qi=0.5, 0.5, 0.5 (d) qi=1, 1, 1 (e) qi=2, 2, 2

(f) qi=3, 3, 3 (g) qi=5, 5, 5 (h) qi=7, 7, 7 (i) qi=9, 9, 9 (j) qi=15, 15, 15

(k) qi=1, 2, 3 (l) qi=1, 3, 2 (m) qi=3, 2, 1 (n) qi=3, 1, 2 (o) qi=1, 3, 5
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Figure 14: The schematic view of different LSFs and combination types in case study 2 (three failure modes)
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5. Conclusions484

In this paper, an enhanced PDEM-based framework considering multiple limit states and failure modes is485

proposed for reliability analysis of structures. The enhanced principle of the PDEM procedure is illustrated486

for guidance, two case studies with different failure combinations are given for validation, and parametric487

studies with related to two important aspects (modification and combination) are primarily performed for488

discussion, among which the following conclusions may be drawn:489

1. The enhanced PDEM-based reliability framework commonly results in a more conservative result490

and is beneficial for a more comprehensive conclusion. For the first example, two failure modes are491

considered (i.e, flexural mode and shear mode), and for the seconde example, three failure modes492

are considered (i.e., MIDR mode, RIDE mode, PFA mode). In both examples, three combination493

ways (i.e., circle, triangle, and square ways) are specifically analyzed. After incorporating multiple494

limit states and multiple failure modes into the PDEM, the obtained results are more conservative495

and the calculated reliability is commonly lower than the single condition. The drop in reliability496

mainly results from the different combinations of failure modes as criterion, and multiple limit states497

significantly raise the threshold for the reliability requirement. Besides, with different combination498

ways of failure modes in LSFs, the obtained reliability presents variation within a certain range. In a499

sense, after incorporating the multiple limit states and different failure conditions, the obtained result500

can be more comprehensive and convincing, especially for a more robust decision making under the501

same condition in the practical engineering.502

2. The enhanced PDEM-based reliability framework greatly improves the calculation efficiency and503

simultaneously keeps the calculating accuracy. To verify the effectiveness and accuracy of the en-504

hanced PDEM-based framework in reliability assessment after considering multiple limit states, MCS505

is also performed for both examples as a comparison, which is commonly adopted as a benchmark506

for crosscheck. Compared with the single condition, the reliability via MCS is also more conservative,507

accompanied with a lower value for multiple limit states and failure modes, as demonstrated in the508

results from the enhanced PDEM procedure. Besides, the comparison between the MCS and PDEM509

proves the accuracy of the enhanced PDEM framework, and little difference is observed for all the510

LSFs (maximum of 3.51% in case study 1 and 7.28% in case study 2). In general, the enhanced511

PDEM-based framework indicates the non-parametric characteristics, and can better reflect the real512

stochastic conditions in practical engineering as well as the accurate calculating results for reliability513

assessment. At the same time, only 300 representative points are generated in case study 1 and 200514

representative points are generated in case study 2 for the PDEM, while 10000 points are adopted in515

both examples for the MCS, which signifies the great efficiency improvement in calculation via the516

enhanced PDEM-based framework to some extent.517
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3. The modified strategy in representative points and other multi-LSF combinations in the enhanced518

PDEM deserve in-depth exploration in the further study. Parametric studies with related to two im-519

portant aspects in the enhanced PDEM-based framework are performed, including a modified equation520

of the target variable value via representative points incorporating the influence of individual quantile521

parameters (e.g., 16%, 50% and 84% quantile), as well as the other potential combination types in522

the enhanced PDEM-based framework (i.e., more than circle, triangle, square ways). Generally, the523

smaller quantile level for benchmark will increase the reliability result, and the larger quantile level for524

benchmark will decrease the reliability result. Besides, with the increase of coefficient qi, the boundary525

failure limitation is elevated and the system is prone to be more reliable under the same condition526

(i.e., with a higher reliability). When qi is large enough, the obtained result is close to the form of527

max(·) via the square combination. The parametric studies of the modification procedure and oth-528

er combination types deserve further in-depth research (e.g., benchmark point optimization, quantile529

level determination, appropriate combination principle, optimal combination coefficient). The staged530

progress in this paper sheds some light for the boundary rule of multi-LSF in PDEM, and meanwhile531

provides some reference for the future work in the enhanced PDEM-based reliability framework.532
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