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Abstract

We elucidate why an interval algorithm that computes the exact bounds on the
amplitude and phase of the discrete Fourier transform can run in polynomial time. We
address this question from a formal perspective to provide the mathematical foundations
underpinning such an algorithm. We show that the procedure set out by the algorithm
fully addresses the dependency problem of interval arithmetic, making it usable in a
variety of applications involving the discrete Fourier transform.

For example when analysing signals with poor precision, signals with missing data,
and for automatic error propagation and verified computations.

Keywords: Interval mathematics, Dependency tracking, Discrete Fourier transform.

1 Introduction

In a recent work, an algorithm that computes the exact bounds on the amplitude of the
discrete Fourier transform (DFT) in polynomial time was presented [1]. In this paper, the
focus is shifted towards the mathematical foundations underpinning the interval algorithm
presented in the above work.

The paper is structured as follows: first, we introduce the mathematical expression of
the Fourier transform under study, see §1.1. In §2 propaedeutic theoretical foundations of
interval analysis are given, in §3 the interval Fourier transform is introduced, in §4 the main
results are presented, followed by a discussion section in §5 .

Notation

The standardized notation of interval analysis is adopted throughout the manuscript [3].
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1.1 The discrete Fourier transform

Let x = (x0, . . . , xN−1) ∈ R
N be a vector, denote xn the (n+1)-th coordinate of the vector

x. We study the discrete Fourier transform of x which is given by the algebraic expression:

fh(x) :=

N−1
∑

n=0

xn whn (1)

where whn := e−i 2π
N

hn is the so-called Fourier coefficient with i =
√
−1, whn ∈ C, and

h = 0, ..., N − 1 a positive integer often called a harmonic or frequency number. Since
n, h = 0, . . . , N − 1, the Fourier coefficients form a matrix of size N × N called W , with
elements whn := W [h, n].

wh

W =

0 1 · · · n · · · N − 1

0 w00 w01 · · · w0n · · · w0(N−1)

1 w10 w11 · · · w1n · · · w1(N−1)

.

.

.

.

.

.

h wh0 wh1 · · · whn · · · wh(N−1)

.

.

.

.

.

.

N − 1 w(N−1)0 w(N−1)1 · · · w(N−1)n · · · w(N−1)(N−1)

Therefore (1) can be seen as the complex inner product:

fh(x) :=

N−1
∑

n=0

xn whn = 〈wh, x〉 = whx
T (2)

where, wh ∈ C
N , is the complex conjugate vector of Fourier coefficients at harmonic h, or

(h+ 1)-th row of W . Since the matrix of Fourier coefficients is symmetric and orthogonal,
the DFT need not be evaluated for all h = 0, ..., N − 1. In particular, when N is a power
of two, it will be sufficient to compute Fh for all 0 ≤ h ≤ N/2. Also, observe that expres-
sions (1) and (2) are equivalent from an interval analysis perspective because of repetitions
invariance.

Remark 1.1. In what follows, the Fourier coefficients whn will be considered as non-interval
floating-point numbers. While this leads to results that are not verified, this assumption
need not affect the generality of the presented method, which is primarily developed to
deal with input uncertainties that are typically orders of magnitude larger in width than
round-off errors. Under this working assumption, the presented interval algorithm can be
considered rigorous but not verified.
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2 Theory of interval computations

In this section we will provide an overview of the fundamental definitions and theorems of
interval computations that will be utilised to obtain the main result.

The theory of interval computations is based on two fundamental pillars: (i) the no-
tion of an interval-valued function, (ii) and the property of inclusion monotonicity. An
interval-valued function is a function (or computer program), whose inputs are intervals.
An interval-valued function is inclusion monotonic if, when evaluated on two nested in-
tervals, its resulting ranges are also nested with preserving order. Notion (i) implies that
intervals represent a particular instance of a number; while property (ii) ensures that in-
terval computations are inclusive thus rigorous. An interval-valued function that satisfies
the property of inclusion monotonicity is called inclusive. There are examples in the litera-
ture of interval-valued function that are not inclusion monotonic. Calculations that are not
inclusion monotonic cannot be regarded as rigorous.

2.1 Intervals and united extension

Definition 2.1. (interval)
Let a, b ∈ R. An interval, denoted by x, is the compact set:

x := {x : a ≤ x ≤ b}.

An interval is said to be an element of an interval vector space IR, such that x ∈ IR.

Definition 2.2. (n-interval or n-box)
Let a, b ∈ R

n. An n-interval or interval vector, denoted by x, is the n-box:

x := {x : ai ≤ xi ≤ bi, for i = 1, ..., n}.

An n-interval is said to be an element of an interval vector space IR
n, such that x ∈ IR

n.

Note that our notation intentionally does not distinguish an n-interval from an interval.
Note that the definition of an n-interval implies non-interactivity, see Definition 4.1.

Definition 2.3. (Interval-valued function)
An interval-valued function F : IRn → IR

m is a function that maps an n-interval to an
m-interval.

Also note that F is not inclusion monotonic in general.

Definition 2.4. (Inclusion monotonicity)
Let x,x′ ∈ IR

n, let F : IRn → IR
m be an interval-valued function that outputs the two

m-intervals: y = F (x), and y
′ = F (x′). Then F is said to be inclusion monotonic for

x
′ ⊂ x, if and only if:

F (x′) ⊂ F (x).
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Definition 2.5. (Rigorous computations)
Interval computations are said to be rigorous if they satisfy the property (ii) of inclusion
monotonicity.

Note that Definition 2.5 is a weak definition of rigorous computing as it suitable only
for (engineering) problems wherein input uncertainty is predominant. Stronger definitions
of rigorous computing may include either/both round-off errors or/and truncation errors.

Definition 2.6. (Verified computations)
Interval computations are said to be verified if they are rigorous and implemented using
outward directed rounding.

Definition 2.7. (United extension)
Let x ∈ IR

n be an n-interval, A ⊂ R
n an arbitrary set, f : A → B an arbitrary function

that maps A to B ⊂ R
m, and let S(A) be the collection of all n-intervals that are subsets

of A. Then, the united extension of f is:

F(A) =
⋃

x∈S(A)

{f(x) : x ∈ x} . (3)

Definition 2.8. (United set)
The image of the united extension of Definition 2.7 is also called a united set, and is denoted
by B := F(A).

Definition 2.9. When A = x is an n-box rather than an arbitrary set the Definition 2.7
specialises to:

F(x) =
⋃

x′∈S(x)

{

f(x) : x ∈ x
′} .

Note that the united set of F denoted by Y := F(x) is not an m-box. The range of Y
is often called a united box and is denoted by:

ŷ := range(Y ).

Observation 2.10. A united extension is inclusion monotonic.

Proof. Let F be a united extension of the function f , and let A,A′ ⊂ R
n be two arbitrary

sets such that A′ ⊂ A. Then, from Definition 2.7 it clearly follows that:

F(A′) ⊂ F(A).

Hence F is inclusion monotonic.

A united extension is abstracted of the notion of interval and interval computations, as
it belongs to the more general class of set-valued function. Moreover, a united extension
and its united set are unique, thus there is only one single united extension of a function f ,
and one single united set of f given an input A or x.
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Note that there is no polynomial-time algorithm that can compute a united extension
in the general case.

The following result provides the fundamental condition for an interval-valued function
to be considered inclusion monotonic. A proof can be found in [4].

Proposition 2.11. Let F : IRn → IR
m be interval-valued function, x ∈ IR

n be a n-interval.
Then, F is said to be inclusion monotonic if:

lim
x→x̂

F (x) = F (x̂) for all x̂ ∈ x.

2.2 Interval arithmetic

With the rules of interval arithmetic we can practically turn an algebraic expression or
computer program in to an interval-value function.

Definition 2.12. (United extension of a binary operation)
Let x,y ∈ IR, S(x,y) the family of subset of the 2-box (x,y), and let ⋄ be one of the four
arithmetic operators +,−, ∗, or /. Then, the united extension of f(x, y) = x ⋄ y is defined
as:

F(x,y) =
⋃

(x′,y′)∈S(x,y)
{x ⋄ y : x ∈ x

′, y ∈ y
′},

provided that 0 /∈ y for ⋄ = /.

Observation 2.13. (United set of a binary operation)
Let Z = F(x,y) be the united set for f(x, y) = x⋄y, and let xy = (x,y) be a 2-box. Then,
it holds that:

range(Z) = {z : inf
x,y∈xy

x ⋄ y ≤ z ≤ sup
x,y∈xy

x ⋄ y} = [ inf
x,y∈xy

x ⋄ y, sup
x,y∈xy

x ⋄ y]. (4)

Proof. The proof follows immediately noticing that Z ⊆ R.

The range of the united set for all four binary arithmetic operations can be obtained in
closed form by means of (4). Let x = {x : x ≤ x ≤ x} = [x, x], y = {y : y ≤ x ≤ y} = [y, y],
then equation (4) specialises to:

x+ y = [x+ y, x+ y]

x− y = [x− y, x− y]

x ∗ y = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}]
x / y = x ∗ [1/y, 1/y], for 0 /∈ y

A more efficient form to evaluate the multiplication rule can be found in [5].
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2.3 Interval extensions

With the notion of interval-valued function, and the rules of interval arithmetic we can give
a more precise definition of interval computations via the definition of an interval extension.

Definition 2.14. (Interval extension)
Let f : Rn → R

m, x ∈ IR
n, x ∈ x, and f be an algebraic expression of f . Then, an interval

extension F of f via the expression f, is an interval-valued function obtained evaluating the
expression f on x using the rules of interval arithmetic.

Recall that the algebra of intervals is not distributive, rather it is sub-distributive, thus
two equivalent algebraic expressions of f may produce different results when evaluated with
interval arithmetic rules [5].

Observation 2.15. An interval extension is inclusion monotonic.

Proof. Let F be the interval extension of f via the expression f, whose evaluation consists
in applying the rules of interval arithmetic. Note that because F is a particular instance of
an interval-valued function, then to prove that F is inclusion monotonic, it will be sufficient
to show that:

lim
x→x̂

F(x) = F(x̂) for all x̂ ∈ x.

Since F and f are identical algebraic expressions, when evaluated on singletons it holds that
F(x̂) ≡ f(x̂), thus the above limit holds for all x̂ ∈ x.

Note that there are as many interval extensions as there are equivalent algebraic expres-
sions of the function.

The following result can be deemed the fundamental theorem of interval computations.
The theorem states the renowned conservatism of interval computations. A complete proof
of this theorem can be found in the seminal work of Moore [4].

Theorem 2.16. (Conservatism of interval computations)
Let f : Rn → R

m be a function, F be its united extension, F be any of its interval extensions,
and x ∈ IR

n. Then, it holds that:

F(x) ⊂ F(x).

Proof. Let Y := F(x) be the united set of F , and y := F(x) be the m-interval of F. Since
F is inclusion monotonic the following must hold:

range(Y ) ⊂ y.

If this were not true, there would be at least a component of y that does not contain the
united set, which would imply that there are images in Y that, while complying with the
interval constraints defined by x, are not contained in y, which in turns would violate the
inclusion property for F.
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Theorem 2.16 in practice states that an interval extension is a so-called outer approxi-
mation of its united extension.

Definition 2.17. (Optimal extension)
Let f : Rn → R

m be a function, F be its united extension, x ∈ IR
n, and Y := F(x) be the

united set of F applied to x. Then, a united extension F is said to be an optimal extension
if and only if:

range(Y ) = F(x).

Note that an optimal extension yields the exact bounds on its corresponding function.

Observation 2.18. (Dependency problem)
Let x,y ∈ IR, z = x ◦ y and w = z ⋄ x be two intervals obtained with the rules of
interval arithmetic, and ‘◦’ and ‘⋄’ be any two of the four arithmetic operations. Now, let
f(x, y) = f(x, y) = (x ◦ y) ⋄ x, w = F(x,y), and W = F(x, y). Then, it holds that:

range(W ) ⊆ w.

Proof. Since there is functional dependence between z and x, the joint set (z,x) is a subset
of their 2-box. Because the rules of interval arithmetic encode no dependence assumption,
the second expression w = z ⋄x is evaluated under the assumption that the joint set (z,x)
is a 2-box, whereas the joint set (z,x) is clearly a subset of their 2-box. Thus any further
operation between z and x results in an interval that is wider than it ought to be.

Because of the dependency problem (Observation 2.18) of interval extensions, some
algebraic expressions evaluate in intervals that are too wide. Observation 2.18 goes also by
the name of wrapping effect.

Observation 2.19. (Repeated variables)
Let f be a function, and f be its algebraic expression with no repeated variables x. Then
its interval extension F is an optimal extension.

Proof. Without repeated variables in an expression, the dependency problem of Observation
2.18 cannot occur, because the joint dependency structure of all variables is an n-box.
Thus, the rules of interval arithmetic encode the correct dependency structure between all
variables.

An example of interval extensions that are not optimal, i.e. carrying repeated vari-
ables, are polynomials. In a typical polynomial expression the number of repeated variables
coincides with its degree minus one. So for instance, a second-degree polynomial has one re-
peated variable. It is generally hard to rearrange polynomial expressions so that no repeated
variables occur.
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2.4 Complex intervals

Definition 2.20. (Rectangular complex interval)
Let u,v ∈ IR be two real intervals. A rectangular complex interval is a 2-box in the complex
plane, and is defined as:

z = u+ iv = {u+ iv | u ∈ u, v ∈ v}.

2.4.1 Amplitude

Let z = u + iv ∈ C be a complex number, with u, v ∈ R; then its amplitude (or absolute
value or modulus) is defined as: |z| =

√
u2 + v2. Thus the amplitude of z can be interpreted

as the 2-norm of a point in the complex plane whose coordinates are (u, v). Now let us
introduce the amplitude of a rectangular complex number.

Definition 2.21. (Amplitude of a complex interval)
Let z = u + iv ∈ IC be a rectangular complex interval, with u,v ∈ IR. The interval
amplitude is defined as:

|z| = {
√

u2 + v2 : u ∈ u, v ∈ v}.
Observation 2.22. (Computing the interval amplitude)
Let |z| be the amplitude of z ∈ IC, and let vert(z) be the set of four vertices of z, such
that: vert(z) := {u + iv, u + iv, u + iv, u + iv}. Now, let A be the set of amplitudes at
each vertex such that:

A := {|u+ iv|, |u+ iv|, |u+ iv|, |u+ iv|}.
Then, the amplitude of the complex interval z is:

|z| =















[minA,maxA], if 0 /∈ z,
[0, maxA], if 0 ∈ z,

[minA1, maxA], if 0 ∈ Re(z),
[minA2, maxA], if 0 ∈ Im(z).

Where, A1 := {|0 + iv|, |0 + iv|}, and A2 := {|u+ i0|, |u+ i0|}.
Proof. In [1] (Appendix B) a proof for the maximum is provided for any convex set. For
the minimum, when 0 /∈ z, the proof is equivalent, whilst when 0 ∈ z, clearly the shortest
distance is zero.

2.4.2 Argument or phase

Let z = u + iv ∈ C be a complex number, with u, v ∈ R; then its argument (or phase), is
the angle with the positive real axis, defined as:

arg z = arg(u+ iv) =











2 arctan
(

v√
u2+v2+u

)

if u > 0, v 6= 0,

π if u < 0, v = 0,
undefined if u = 0, v = 0.

.
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Definition 2.23. (Argument of a complex interval)
Let z = u + iv ∈ IC be a rectangular complex interval, with u,v ∈ IR. The interval
argument is defined as:

arg z = {arg(u+ iv) : u ∈ u, v ∈ v}.

Observation 2.24. (Computing the interval argument)
Let arg z be the argument of z ∈ IC, and let vert(z) be the set of four vertices of z, such
that: vert(z) := {u + iv, u + iv, u + iv, u + iv}. Now, let Φ be the set of arguments of
each such vertex such that:

Φ := {arg(u+ iv), arg(u+ iv), arg(u+ iv), arg(u+ iv)}.

Then the argument of the complex interval z is:

|z| =
{

[minΦ, maxΦ], if 0 /∈ z,
undefined, if 0 ∈ z.

2.4.3 Arithmetic between complex intervals

In order to do interval computations between complex intervals the rules of arithmetic must
be defined. For the purpose of this work we are only going to need the sum and subtraction
between complex intervals, as well as the multiplication of an interval times a complex
number.

Definition 2.25. (Sum and subtraction)
Let z,w ∈ IC be two complex intervals, vert(z) and vert(w) be their set of four vertices, and
⋄ = {+,−} be the sum and subtraction operators. Now let vert(zw) = vert(z) × vert(w)
be the Cartesian product of all pairs of vertices. Then the arithmetic operation specialises
to:

z ⋄w = {z ⋄ w : (z, w) ∈ vert(zw)}.

Note that the cardinality of the product set is #{vert(zw)} = 16, so exactly 16
sums/subtractions need to be computed. More efficient implementations of such operations
can be derived noticing that the sum and subtractions only takes place between diagonally
opposite pairs of vertices.

Definition 2.26. (Multiplication between an interval and a complex number)
Let x ∈ IR be an interval, z := u + iv be a complex number, and {ux, ux} be the set of
possible real multiplications. Then, the multiplication between an interval and a complex
number is given by:

x ∗ z = z ∗ x = [min{ux, ux}+ iv, max{ux, ux}+ iv].

9



3 Extensions of the discrete Fourier transform

3.1 Interval extension

Recall that an interval extension is any algebraic expression, whose entries have been re-
places with intervals, and that an interval extension is always inclusion monotonic. In this
section we define the interval extension considered throughout this manuscript.

Definition 3.1. (DFT interval extension)
Let x ∈ IR

N be a sequence of real intervals, and let fh : RN → C be the expression (1).
Then, the interval extension of the discrete Fourier transform at harmonic h = 0, ..., N − 1,
Fh : IRN → IC is simply given by:

Fh(x) :=
N−1
∑

n=0

xn e−i 2π
N

hn (5)

where, N is the size of the N-interval (usually a power of two). The evaluation of such an
expression results in a rectangular complex interval denoted by: zh := Fh(x).

Note that (5) is an optimal interval extension, under no dependency statement between
the components of x. In other words, the interval extension (5) is optimal because it has
no repeated variables in its expression.

3.2 United extension and united set

Definition 3.2. (United extension and united set)
The united extension of the discrete Fourier transform on the N-interval x ∈ IR

N , is:

Fh(x) :=
⋃

x′∈S(x)

{

N−1
∑

n=0

xn e−i 2π
N

hn : x ∈ x
′
}

. (6)

The image of (6) is named united set, and will be denoted by Zh := Fh(x), with Zh ⊂ C.

Note that the united set Zh is not a box in C; this is why it is not trivial to obtain the
exact bounds on the amplitude and phase of the discrete Fourier transform. Observe that
because of the property of inclusion monotonicity of interval extensions, and because the
extension defined in 3.1 is an optimal extension it holds that:

Zh ⊆ zh ⇒ range(Zh) = zh, (7)

thus the box zh always circumscribes the united set Zh. In other words, taking the range
of the united set Zh is equivalent to evaluating the interval extension Fh.
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4 Reaching the united set

Definition 4.1. (Non-interactive intervals or boxes)
Let x,y ∈ IR. Then, x and y are said to be non-interactive if their joint set is a 2-box, i.e.
if it holds that: (x,y) := {(x, y) : x ∈ x, y ∈ y}.

The marginal projections x and y, retain all the information about the joint structure.
Also, when no statement about the dependence between x and y, the joint structure of
Definition 4.1 is implied. In other terms, when nothing is stated about the dependence
between two intervals, these will be considered non-interactive.

Remark 4.2. (Non-interactive independence)
Two non-interactive intervals are often referred to as independent in the literature. Whilst
non-interactivity is a form of interval independence, we tend to avoid the term independence
because of the probabilistic interpretation of intervals, which can be seen as sets of bounded
probability distributions. Under the probabilistic interpretation saying that two intervals
are independent may imply statistical independence, which is a much stronger statement
than non-interactivity. If no dependency statement is made, the components of an n-interval
are mutually non-interactive.

Definition 4.3. (Linearly dependent intervals)
Let x,y ∈ IR. Then x and y are said to be linearly dependent if their joint set is defined
as:

(x,y)× := {(x, y) : x = midx± τ radx, y = midy ± τ rady, τ ∈ [−1, 1]},

where we recall that midx = (x + x)/2, and radx = (x − x)/2. Note that choosing a pair
of signs ± = {+,−}, determines the orientation of the joint set.

Definition 4.4. (Interval diagonal)
The joint set of two linearly dependent intervals, denoted by (x,y)×, is called an interval
diagonal. An interval diagonal can be regarded as the simplest convex polytope in R

2, with
only two vertices. The vertices of such polytope can be obtained by setting τ = {−1, 1}:

vert(x,y) = {(x,y)× : τ = {−1, 1}}.

Definition 4.5. (Oriented linearly dependent intervals) Let x,y ∈ IR be two linearly de-
pendent intervals, and t ∈ [0, 1]. An orientation can be established within their joint set
(x,y)× simply by ordering each pair (x, y) by increasing t. Four orientations can be estab-
lished for linearly dependent intervals:

Perfect (+) (x,y)ր = {(x, y) : x = x+ t(x− x), y = y + t(y − y), t ∈ [0, 1]},
Perfect (−) (x,y)ւ = {(x, y) : x = x− t(x− x), y = y − t(y − y), t ∈ [0, 1]},
Opposite (+) (x,y)տ = {(x, y) : x = x− t(x− x), y = y + t(y − y), t ∈ [0, 1]},
Opposite (−) (x,y)ց = {(x, y) : x = x+ t(x− x), y = y − t(y − y), t ∈ [0, 1]}.

11



Definition 4.6. (Oriented interval diagonal)
The joint set of two oriented linearly dependent intervals can be given the interpretation of
an oriented interval diagonal, i.e. a convex set with two ordered vertices. Given Definition
4.5 first and second vertex of an oriented diagonal can be obtained setting t = 0 and t = 1
respectively.

Definition 4.7. (Linear interval dependence)
The joint set (x,y)× of Definition 4.3 expresses linear dependence between intervals, a.k.a.
linear interval dependence.

Definition 4.8. (Strong linear interval dependence)
Let x1,x2 ∈ IR, and let u, v ∈ R. The two intervals x1 and x2 are said to have strong linear
interval dependence, if there exists a generator x ∈ IR, such that:

(x1,x2) = (ux, vx) = {(x1, x2) : x1 = ux, x2 = vx, x ∈ x, u, v ∈ R}.

Because the joint set (ux, vx) is determined by its generator x, such joint set can be denoted
by: uvx := (ux, vx). The vertices of the diagonal joint set are given by: vert(uvx) =
{(ux, vx), (ux, vx)}.
Remark 4.9. Note that because strong linear dependence is a more stringent condition
than linear dependence, any two linearly dependent interval may not satisfy Definition 4.8.

Remark 4.10. Observe that the orientation of the interval diagonal induced by strong
linear dependence is fully determined by the sign of u and v. This holds under the classical
interpretation that the interval x ∈ IR is oriented like the real line R. Improper interval
analysis and Kraucher arithmetic have challenged this interpretation [2].

Example 4.11. (Addend of the Fourier series)
The addend of the Fourier series is an example of an oriented interval diagonal in the
complex plane. The Fourier coefficients are whn = uhn + ivhn = un + ivn. Let h = 1,
N = 8, then w1,0 = e0 = 1 + i0 with u0 = 1, v0 = 0; w1,1 = e−i 2π

8 = cos π
4 − i sin π

4 , with

u1 = cos π
4 , v1 = sin π

4 ; w1,2 = e−i 2π
8
2 = cos π

2 − i sin π
2 , with u2 = 0, v2 = 1.

x0 = [−2, 0]

x0 · u0
+

x1 = [1, 3]

x1 · u1
+

x2 = [−4,−2]

x2 · u2
+ ...

i x0 · v0 i x1 · v1 i x2 · v2

−4 −3 −2 −1 1 2

−2

−1

1

2

3

4

Re

Im

+

−4 −3 −2 −1 1 2

−2

−1

1

2

3

4

Re

Im

+

−4 −3 −2 −1 1 2

−2

−1

1

2

3

4

Re

Im

+ ...
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Definition 4.12. (Minkowski addition)
Let A,B ∈ C be any two convex subsets of a real vector space, where C ⊆ R

m is such a
space of convex subsets. Then the Minkowski addition is given by:

A⊕B =
⋃

A,B∈C
{a+ b : a ∈ A, b ∈ B}.

The following is a well-known result in computational geometry, which leads to a prac-
tical implementation of the Minkowski sum.

Proposition 4.13. The sum of two convex polytopes in the plane: A,B ∈ C ⊆ R
2 with

m,n vertices, is a convex polytope with at most m+ n vertices.

Remark 4.14. Note that because of Proposition 4.13 the coordinates of the vertices result-
ing from the Minkowski addition can be computed in linear time O(m+ n). The intuitive
procedure is provided in the form of text in the Wikipedia article [6].

Here is the extract of the Wikipedia article on December 2021:
For two convex polygons P and Q in the plane with m and n vertices, their Minkowski sum
is a convex polygon with at most m + n vertices and may be computed in time O(m + n)
by a very simple procedure, which may be informally described as follows. Assume that
the edges of a polygon are given and the direction, say, counterclockwise, along the polygon
boundary. Then it is easily seen that these edges of the convex polygon are ordered by polar
angle. Let us merge the ordered sequences of the directed edges from P and Q into a single
ordered sequence S. Imagine that these edges are solid arrows which can be moved freely
while keeping them parallel to their original direction. Assemble these arrows in the order
of the sequence S by attaching the tail of the next arrow to the head of the previous arrow.
It turns out that the resulting polygonal chain will in fact be a convex polygon which is the
Minkowski sum of P and Q.

Remark 4.15. Note that as a consequence of Proposition 4.13, the Minkowski addition is
convexity preserving.

Proposition 4.16. (Minkowski addition and united extensions)
Let f : R2 → R be the sum function, such that f(x, y) = x + y, and x,y ∈ IR be two
dependent intervals, whose joint set is convex, such that (x,y) ∈ C. Then, the united
extension of f, F+(x,y) is equivalent to the Minkowski sum, such that:

F+(x,y) ≡ x⊕ y,

thus the united set of F+ can be reached by means of the Minkowski sum.

Proof. Invoking the Definition 2.7, the united extension of the sum function applied to an
arbitrary set (x,y) is given by:

F+(x,y) =
⋃

x′,y′∈S(x,y)
{x+ y : x ∈ x

′, y ∈ y
′},
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which is equivalent to Definition 4.12, when (x,y) is a convex subset of R2. Therefore the
Minkowski sum coincides to evaluating the united extension of the sum function.

Corollary 4.17. The Minkowski sum of two linearly dependent intervals x,y ∈ IR, whose
joint set is: (x,y) = (x,y)×, yields the united set under the sum function.

Proof. The proof is identical to the proof of Proposition 4.16, and it holds because the joint
set of two linearly dependent intervals is convex: (x,y)×∈ C.

Example 4.18. (Minkowski addition between two diagonals)

−5 −4 −3 −2 −1 1

−1

1

2

3

Re

Im

+

−5 −4 −3 −2 −1 1

−1

1

2

3

Re

Im

=

−5 −4 −3 −2 −1 1

−1

1

2

3

Re

Im

Example 4.19. (Minkowski addition between a convex set and a diagonal)

−5 −4 −3 −2 −1 1

1

2

3

4

5

6

Re

Im

+

−5 −4 −3 −2 −1 1

1

2

3

4

5

6

Re

Im

=

−5 −4 −3 −2 −1 1

1

2

3

4

5

6

Re

Im

We are ready to state the main result of this work.

Theorem 4.20. (Main result)
Let x ∈ IR

N be an n-interval, whose components are non-interactive (N-box). Let Fh be
the discrete Fourier transform at a given harmonic h = 0, 1, ..., N − 1, and let Zh be the
united set, obtained applying the united extension Fh on to x. Then, the united set Zh is a
convex polytope in C. Thus, its vertices are computable by a chain of Minkowski additions.

Proof. Let us expand the Fourier transform and consider its algebraically equivalent trigono-
metric expression:

fh(x) =

N−1
∑

n=0

xn

(

cos
2π

N
hn− i sin

2π

N
hn

)

.
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With the change of variables:

uhn = cos
2π

N
hn, vhn = − sin

2π

N
hn,

the transform becomes:

fh(x) =
N−1
∑

n=0

xnuhn + i xnvhn. (8)

Let us now consider the interval extension of (8): Fh(x) =
∑N−1

n=0 xnuhn + i xnvhn. Each
addend of such extension is the interval diagonal uvxhn ∈ C, given by:

uvxhn := xnuhn + i xnvhn.

Each interval diagonal uvxhn, n = 0, 1, ..., N −1 is a convex polytope in C with two vertices.
Substituting the interval diagonals uvxhn back into expression (8), the interval extension of
the discrete Fourier transform becomes:

Fh(x) =

N−1
∑

n=0

uvxhn

= (· · · ((uvxh0 + uvxh1) + uvxh2) + ...+ uvxh(N−1)).

Now, because each interval diagonal is a convex subset of C, we can replace each addition
by its Minkowski equivalent:

Zh = Fh(x) = (· · · ((uvxh0 ⊕ uvxh1) ⊕ uvxh2) ⊕ ...⊕ uvxh(N−1)). (9)

Because the sum between two diagonals is a convex set, and the sum of a convex set and
a diagonal is again a convex set, by invoking Proposition 4.13, it holds that the series of
nested Minkowski sums of (9) yields the united set Zh, which concludes the proof.

Remark 4.21. Note that the proof of Theorem 4.20 implies that the dependence encoded
in the diagonal is fully preserved, and so the dependency problem of interval computations
is fully addressed. The resulting united set Zh is therefore a convex polytope in C, whose
vertices can be computed by repeatedly applying the Minkowski sum in (9).

Corollary 4.22. (Number of vertices)
Let Zh be he united set of (9), then Zh is convex and has at most 2N vertices.

Proof. The proof follows from Proposition 4.13, noticing that each sum in (9) is a Minkowski
addition between convex sets.
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5 Discussion

This paper has set out the mathematical foundations upon which a polynomial-time algo-
rithm can be built, in order to compute exact bounds on the amplitude and phase of the
discrete Fourier transform, when presented with input uncertainty in the form of intervals.

The main result states that the united set Zh ⊂ C of the transform can be reached by
chaining Minkowski additions. This provides a means to address the dependency problem
of interval computations, whilst characterising the geometry of the united set. This result
also establishes the convexity of such sets, which in turns makes it possible to obtain exact
bounds on the amplitude and phase.

Note from Definition 2.24 that when the united set at a particular harmonic contains
the origin of the complex plane, the phase for such a harmonic is undefined.

With a full characterization of the united set it is possible to pinpoint the configuration
of endpoints in the original N-interval that leads to the bounds for each harmonic. There will
be one configuration for the upper bound and one for the lower bound for each harmonic.
This study can help the analysts identify some ‘critical’ signals within the N-interval that
lead to the upper bound of the amplitude, which can be useful when concerned with the
energy content of the process.

It is important to note that an algorithm for the exact bounds on amplitude and phase
can suffer additional dependency problems if used to perform further calculations involving
the interval amplitude and/or the interval phase. Therefore, such an algorithm must be
used with caution, while understanding the limitations of interval computations.

Proposition 4.13 induces an algorithm that can compute the vertices of a Minkowski
addition in linear time. This is a very interesting prospect as it can lead to faster algorithms
than the one presented in [1]. In fact, with a linear-time algorithm for the Minkowski
addition, there is no longer need to compute a convex hull at each addition, bringing
significantly down the cost of the algorithm.

Finally, a short remark about verified computations. In order for the computations
presented in this paper to be verified and exact at the same time, additional theoretical
work is needed. Verified computations will need to deal with interval Fourier coefficients,
whose width is typically orders of magnitude smaller compared to the width of the input
uncertainty. Because of the difference in magnitude, the exactness of the bounds could
be relaxed to make room for rigour, however, to achieve verified computations a slightly
modified implementation of the algorithm is needed.
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