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Abstract

We elucidate why the 1-Wasserstein distance W1 coincides with the area between the
two marginal cumulative distribution functions (CDFs). We first describe the Wasserstein
distance in terms of copulas, and then show that W1 with the Euclidean distance is attained
with the M copula. Two random variables whose dependence is given by the M copula
manifest perfect (positive) dependence. If we express the random variables in terms of their
CDFs, it is intuitive to see that the distance between two such random variables coincides
with the area between the two CDFs.
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1 The 1-Wasserstein distance in terms of copulas

The Wasserstein distance is a popular metric often used to calculate the distance between
two probability measures. It is a metric because it obeys the four axioms: (1) identity of
indiscernibles, (2) symmetry, and (3) triangle inequality (4) non-negativity. The general formal
definition of the metric is attributed to Kantorovich and Wasserstein, among many more
authors 1:

Definition 1.1 (Kantorovich-Wasserstein metric). Let (X , d) be a Polish metric space, and
let p ∈ [1,∞). For any two marginal measures µ and ν on X , the Kantorovich-Wasserstein
distance of order p between µ and ν is given by

Wp(µ, ν) =

(

inf
π∈Π(µ,ν)

∫

X

d(x, y)p dπ(x, y)

)1/p

= inf
{

E [d(X,Y )p]1/p , µ = Fµ(X), ν = Fν(Y )
}

,

where, Π(µ, ν) denotes the collection of all measures on X with marginals µ and ν. The set
Π(µ, ν) is also called the set of all couplings of µ and ν.

1See bibliographical extract at Section 5 at the end of this document.
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The above definition comes from optimal transport theory [1], where couplings Π denote a
transport plan for moving, from x to y, the (probability) mass of a pile of soil distributed as
µ to a pile distributed as ν, and given that the distance d is the cost of moving a unit of mass
from x to y. Optimal transport theory entails finding the optimal coupling that minimises the
overall work.

Definition 1.1 is very general, so we specialise this definition to the case of two random
variables on the real line R, for the Euclidean distance d(x, y) ≡ |x− y|, and the case of degree
one, p = 1. We also change the notation to a more standard notation of probability theory:

Definition 1.2 (Wasserstein distance). Let X = R × R. For any two random variables X

and Y , with distribution functions FX and FY , the Wasserstein distance between X and Y is
given by

W1(X,Y ) = inf
FXY ∈F

∫

X

|x− y| dFXY (x, y)

= inf
FXY ∈F

{EFXY
|X − Y |} ,

where F denotes the collection of all joint distributions on X with marginal distributions FX

and FY , and EFXY
is the expectation given that the joint distribution of X and Y is FXY .

Since the above metric involves searching through a collection of joint distributions with
fixed marginals, it is possible to express the joint distribution FXY in terms of the marginals
FX , FY and copula C using Sklar’s theorem [2]: FXY (x, y) = C(FX(x), FY (y)). Let C be the
set of all bivariate copulas (2-copulas). Then this definition follows:

Definition 1.3 (Wasserstein distance with copulas). Let X = R×R. Let FX and FY be two
marginal distributions on X , and C(FX(x), FY (y)) be their joint cumulative distribution in
terms of copula. Then the Wasserstein distance between FX and FY is given by

W1(X,Y ) = inf
C∈C

∫

X

|x− y| dC(FX(x), FY (y))

= inf
C∈C

{EC |X − Y |} ,

where C denotes the collection of all 2-copulas, and EC is the expectation given that the copula
between X and Y is C.

Using Definition 1.3, W1 can be re-written in terms of the generalised inverses 2. Given
that u = FX(x), and v = FY (y), and so x = F−1

X (u) and y = F−1
Y (v), the integration may be

performed on the unit square [0, 1]2

W1(X,Y ) = inf
C∈C

∫

X

|x− y| dC(FX(x), FY (y))

= inf
C∈C

∫

[0,1]2
|F−1

X (u)− F−1
Y (v)| dC(u, v). (1)

2https://en.wikipedia.org/wiki/Cumulative_distribution_function#Inverse_distribution_function_(quantile_function)
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2 The optimal distance W1 holds for the case of perfect depen-
dence between X and Y , i.e. for C = M

With Definition 1.3 in terms of copulas, an exact solution to the infimum in (1) can be obtained
by substituting C with the M copula. We are ready to state the main result in the following
theorem.

Theorem 2.1. The infimum in (1) over all 2-copulas C is attained at the M copula, that is

C(u, v) = M(u, v) = min{u, v}, which is equivalent to demand that u = v, leading to

W1(X,Y ) =

∫

[0,1]
|F−1

X (u)− F−1
Y (u)| du. (2)

Proof. Let X,Y ∈ R, we want to show that (1) has exact solution for C = M . From Definition
1.3 the following holds:

EC |X − Y | =

∫

[0,1]2
|F−1

X (u)− F−1
Y (v)| dC(u, v). (3)

So we study the expectation (3). In Vallender [3], a formula is provided to express (3) in
terms of the joint probability distribution as follows:

E|X − Y | =

∫

∞

−∞

(P (X < t, Y ≥ t) + P (X ≥ t, Y < t)) dt

=

∫

∞

−∞

(P (X < t) + P (Y < t)− 2P (X < t, Y < t)) dt.

Because P (X < t, Y < t) is the joint cumulative distribution, using Sklar’s theorem we
have P (X < t, Y < t) = C (FX(t), FY (t)). Then we can re-write the expectation in terms of
the distribution functions as follows:

EC |X − Y | =

∫

∞

−∞

(FX(t) + FY (t)− 2C (FX(t), FY (t))) dt. (4)

All 2-copulas are bounded above and below by two copulas W (u, v) = max{u + v − 1, 0} and
M(u, v) = min{u, v}:

W (u, v) ≤ C (u, v) ≤ M(u, v),

thus the integrand in (4) has the following lower bound for C ∈ C:

FX(t) + FY (t)− 2M (FX(t), FY (t)) ≤ FX(t) + FY (t)− 2C (FX(t), FY (t)) . (5)

In Figure 2 we show with an example involving two random variables, that (5) holds for some
Gaussian copulas. Substituting the integrand of (4) with the left hand side of (5) we have
that:

∫

∞

−∞

(FX(t) + FY (t)− 2M (FX(t), FY (t))) dt ≤ EC |X − Y |.
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FX(t) + FY (t)− 2C(FX(t), FY (t))
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Figure 1: Integrand of (4) for X ∼ N(15, 1) and Y ∼ U(12, 16), with different copulas. Gaus-
sian copulas with parameters ρ = {−1,−0.8,−0.64,−0.4,−0.12, 0.64, 0.4, 0.12, 0.8, 1} were
used. Note that ρ = −1 corresponds to the W copula, and ρ = 1 is M copula. The area
underneath these curves is the integral in (4). The smallest area corresponds to the case of
the M copula, whilst the largest area corresponds to the case of the W copula.

The expectation over an arbitrary copula EC |X − Y | has a minimum for C = M , thus the
following holds for all copulas C ∈ C:

∫

[0,1]2
|F−1

X (u)− F−1
Y (v)| dM(u, v) ≤

∫

[0,1]2
|F−1

X (u)− F−1
Y (v)| dC(u, v).

Finally, because M(u, v) = min{u, v} is equivalent to demand perfect positive dependence
u = v, we have that:

∫

[0,1]2
|F−1

X (u)− F−1
Y (v)| dM(u, v) =

∫

[0,1]
|F−1

X (u)− F−1
Y (u)| du,

which concludes the proof.

Remark: In the above proof, two ways of solving for EC [|X − Y |] were given: the first in
terms of the distribution functions:

EC |X − Y | =

∫

∞

−∞

(FX(t) + FY (t)− 2C (FX(t), FY (t))) dt,

and the second in terms of the inverses using a Lebesgue integral and the copula C:

EC |X − Y | =

∫

[0,1]2
|F−1

X (u)− F−1
Y (v)| dC(u, v).

4



3 W1 for the case of stochastic dominance

Definition 3.1 (Stochastic dominance). Let X,Y ∈ R be two random variables with distri-
bution functions FX and FY , and corresponding inverses F−1

X and F−1
Y . Then we say that X

dominates Y if and only if

F−1
X (u) > F−1

Y (u), for u ∈ [0, 1].

This will be denoted by X ≻ Y .

Proposition 3.2 (W1 under dominance). Let X,Y ∈ R be two random variables, with X ≻ Y .

Then we have that

W1(X,Y ) = EX − EY.

Proof. From Theorem 2.1, we know that (2) holds, and by hypothesis X ≻ Y , then

W1(X,Y ) =

∫

[0,1]
|F−1

X (u)− F−1
Y (u)| du

=

∫

[0,1]
F−1
X (u)− F−1

Y (u) du

=

∫

[0,1]
F−1
X (u) du−

∫

[0,1]
F−1
Y (u) du

=

∫

∞

−∞

x dFX(x)−

∫

∞

−∞

y dFY (y)

= EX − EY.

4 Non-overlapping ranges

Definition 4.1 (Finite support). Let X be a random variable. We say that X has finite

support if X ∈ [x, x], such that −∞ < x ≤ x < ∞,

x = sup
R

{x : FX(x) = 0}, x = inf
R

{x : FY (x) = 1}.

Proposition 4.2 (Non-overlapping ranges). Let X,Y ∈ R be two random variables with finite

support, whose ranges do not overlap: x < y or y < x. Then the expectation EC |X − Y | is a

singleton, whose only element is

{

EX − EY, if y < x

EY − EX, if x < y.
(6)
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Proof. Without loss of generality, assume y < x. Thus there is no value of X smaller than any
value of Y . Then the absolute value is |X − Y | = X − Y, X ∈ [x, x], Y ∈ [y, y]. Therefore

E|X − Y | = E [X − Y ] = EX − EY.

The counter-argument applies to the case x < y, where E|X − Y | = EY − EX.

Note that Propositions 3.2 and 4.2 are very useful for both theoretical and computational
reasons. From Proposition 3.2 follows that the W1 distance between two random variables
under dominance is given by the difference of their expected values; whilst from Proposition 4.2
follows that the distance between two bounded random variables, whose ranges do not overlap
is simply the difference of their expected values, regardless of their dependence. Moreover, the
computation of such distance need not evaluate the integral (2), thus can be computed very
quickly.

5 Extract of bibliographical note from Villani [1]

“The terminology of Wasserstein distance (apparently introduced by Dobrushin) is very ques-
tionable, since (a) these distances were discovered and rediscovered by several authors through-
out the twentieth century, including (in chronological order) Gini [417, 418], Kantorovich
[501], Wasserstein [803], Mallows [589] and Tanaka [776] (other contributors being Salvemini,
Dall’Aglio, Hoeffding, Fréchet, Rubinstein, Ornstein, so in particular and maybe others); (b)
the explicit definition of this distance is not so easy to find in Wasserstein’s work; and (c)
Wasserstein was only interested in the case p = 1. By the way, also the spelling of Wasserstein
is doubtful: the original spelling was Vasershtein. (Similarly, Rubinstein was spelled Rubin-
shtein.) These issues are discussed in a historical note by Rus̈chendorf [720], who advocates the
denomination of minimal Lp-metric instead of Wasserstein distance. Also Vershik [808] tells
about the discovery of the metric by Kantorovich and stands up in favor of the terminology
Kantorovich distance”. For the references whose number is displayed in the above extract the
reader is referred to Villani [1].

References

[1] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[2] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. Dover Books on Mathematics.
Dover Publications, 2011.

[3] SS Vallender. Calculation of the wasserstein distance between probability distributions on
the line. Theory of Probability & Its Applications, 18(4):784–786, 1974.

6


	1 The 1-Wasserstein distance in terms of copulas
	2 The optimal distance W1 holds for the case of perfect dependence between X and Y, i.e. for C=M
	3 W1 for the case of stochastic dominance
	4 Non-overlapping ranges
	5 Extract of bibliographical note from Villani villani2009optimal

