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PARTIAL COMPACTIFICATION OF STABILITY MANIFOLDS

BY MASSLESS SEMISTABLE OBJECTS

NATHAN BROOMHEAD, DAVID PAUKSZTELLO, DAVID PLOOG, JON WOOLF

Dedicated to Mike Prest on the occasion of his seventieth birthday.

Abstract. We introduce two partial compactifications of the space of Bridgeland stability con-
ditions of a triangulated category. First we consider lax stability conditions where semistable
objects are allowed to have mass zero but still have a phase. The subcategory of massless objects
is thick and there is an induced classical stability on the quotient category. We study deforma-
tions of lax stability conditions. Second we consider the space arising by identifying lax stability
conditions which are deformation-equivalent with fixed charge. This second space is stratified
by stability spaces of Verdier quotients of the triangulated category by thick subcategories of
massless objects. We illustrate our results through examples in which the Grothendieck group
has rank 2. For these, our partial compactification can be explicitly described and related to
the wall-and-chamber structure of the stability space.
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Glossary

Slicings.

Slice(C), the set of locally finite slicings on C; page 7
P ∈ Slice(C) is adapted to thick N ⊂ C if P restricts to N and if P (I) ∩ N ⊂ P (I) are Serre

subcategories for all I = [ϕ,ϕ + 1) and I = (ϕ,ϕ + 1]; page 10
P ∈ Slice(C) is well-adapted to thick N ⊂ C if it is adapted and the quotient slicing PC/N is

locally finite; page 11

Charges.

v : K(C)→ Λ, a surjective homomorphism onto a lattice with fixed inner product; page 8
Hom(Λ/ΛN,C) ⊂ Hom(Λ,C), the set of charge maps Λ→ C vanishing on ΛN

Hom(ΛN,C) ⊂ Hom(Λ,C), charges on ΛN, subset via the inner product; page 8

The spaces.

Stab(C) ⊆ Slice(C) × Hom(Λ,C), the set of stability conditions (i.e. supported pre-stability

conditions) on C whose charge map factors as Z : K(C)
v
−→ Λ→ C; page 15

Z : Stab(C)→ Hom(Λ,C), the charge map (also for larger spaces); pages 16 and 21

Stabl(C) ⊆ Slice(C)×Hom(Λ,C), the set of lax stability conditions (semistable objects can have
mass 0, with the support condition); page 21

StabL(C) = Stabl(C) ∩ Stab(C), adding the closure condition; page 21
StabQ(C) = StabL(C) /∼, the space of quotient stability conditions, where two lax stability

conditions are equivalent if they have the same charge and lie in the same connected
component of the corresponding fibre of StabL(C)→ Hom(Λ,C); page 39

Stab(C) StabL(C) Stabl(C) Slice(C)×Hom(Λ,C)

StabQ(C) Hom(Λ,C)

Z

StabL(C,N) = {σ ∈ StabL(C) | Nσ = N}, the subset with massless subcategory N; page 21

StabLS(C,N) = {σ ∈ Stab(C) | Nσ = N, µN(σ) ∈ Stab(C/N)}; page 21

Open subsets.

Bε(σ) = {(Q,W ) : d(P,Q) < ε and ||W − Z||σ < sin(πε)}; page 22
Vε(σ) = {(Q,W ) ∈ Bε(σ) : ||WN||σ < sin(πε)} for σ ∈ StabL(N)C; page 36

Open neighbourhoods: StabL(C,N) ⊆ ULε (C,N) ⊆ VL
ε (C,N) ⊆ BLε (C,N) ⊆ StabL(C):

BLε (C,N) =
⋃
σ∈StabL(C,N)Bε(σ) ∩ StabL(C); page 27

VL
ε (C,N) =

⋃
σ∈StabL(C,N) Vε(σ) ∩ StabL(C); page 36

ULε (C,N) = {τ ∈ VL
ε (C,N) : τ ∈ Bε(ΦN(τ))}; page 37

The maps.

µN : Stab
L(C,N) → Stab(C/N), the map sending a lax stability condition (P,Z) with massless
subcategory N to the massive stability condition µN(P,Z) = (PC/N, Z) on the quotient.

It extends to a continuous map µN : Stab
L(C,N)→ StabL(C/N); page 24

ρN : B
L
ε (C,N)→ StabL(N), the restriction map ρN(P,Z) = (PN, ZN) = (P ∩ N, Z|ΛN

); page 23

ΦN : V
L
ε (C,N)→ StabL(C,N), a deformation retraction; page 36

Support propagation. Support propagates from a component Σ ⊂ StabL(C,N) (page 32) if

∃
ε>0
∀
σ∈Σ

{
τ = (Q,W ) ∈ Bε(σ)

∣∣∣∣
ρN(τ) ∈ StabL(N)} and
||Z − (W −WN)||σ < sin(πε)

}
⊂ StabL(C,N) .
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1. Introduction

The space of stability conditions on a non-zero triangulated category is always non-compact
when non-empty: the mass of an object may tend to zero or infinity, and the phases of objects
may tend to infinity. We construct a partial compactification in which we add boundary strata
where the masses of objects in certain thick subcategories vanish. The points of these boundary
strata can be interpreted as stability conditions on quotient categories.

We have in mind applications to the study of the topology of stability spaces and of their
wall-and-chamber structure, and also to the construction of new stability conditions. Firstly, the
partial compactification is always contractible, and so maybe a useful stepping stone in estab-
lishing the conjectured contractibility of stability spaces. Secondly, under a suitable technical
condition, a neighbourhood of each boundary stratum has a simple product structure. This
provides new information about the boundary of the stability space. Thirdly, there is a close
connection between boundary strata and walls which we hope will prove useful in understanding
the wall-and-chamber structure. Roughly, the stratum where a stable object’s mass vanishes
is the end point of the walls where that object is a destabilising subobject or quotient. And
fourthly, the key technical ingredient in the local model is a deformation result for stability con-
ditions with massless objects. Under suitable conditions, this allows one to construct stability
conditions from ones on a thick subcategory and on the quotient by it. This is reminiscent of
the tilting process by which stability conditions are constructed on complex algebraic surfaces
and 3-folds by perturbing the charge of a ‘very-weak stability condition’. The key extra data
required to perform this tilting is a Bogomolov–Gieseker type inequality. We require a stronger
condition because we impose the extra requirement that the deformation is continuous in the
slicing metric.

Description of results. Let C be a triangulated category and v : K(C) → Λ a surjective ho-
momorphism from its Grothendieck group onto a finite rank lattice. Write Slice(C) for the
space of locally finite slicings of C. The space of stability conditions Stab(C) is the subspace of
Slice(C)×Hom(Λ,C) consisting of pairs (P,Z) with Z(c) ∈ R>0e

iπϕ whenever 0 6= c ∈ P (ϕ) is
semistable of phase ϕ, and satisfying the support property infM(P,Z) > 0 where

M(P,Z) =

{
|Z(c)|

||v(c)||
: 0 6= c ∈ C stable

}

is the (normalised) mass distribution. The support property is usually stated in terms of
semistable objects, but it is equivalent to consider only stable objects and this turns out to
be crucial when one allows semistable objects with zero mass. For simplicity in the introduc-
tion we assume that all stability spaces are connected.

A pair (P,Z) in the boundary of Stab(C) in Slice(C)×Hom(Λ,C) satisfies the conditions

(1) Z(c) ∈ R≥0e
iπϕ whenever 0 6= c ∈ P (ϕ) and

(2) infM(P,Z) = 0.

We call such a pair (P,Z) a lax pre-stability condition and refer to c ∈ P (ϕ) with Z(c) = 0
as a massless semistable object. We say the pair is a lax stability condition if it satisfies the
modified support property inf(M(P,Z)−{0}) > 0, i.e. if zero is an isolated point of the normalised
mass distribution. Intuitively, this forces a separation between massive and massless objects
which leads to a ‘de-coupling’ of the massive and massless parts of the theory. This manifests
geometrically in local product descriptions near such points in the boundary. The space of lax
stability conditions StabL(C) is the subset of points in the closure of Stab(C) satisfying this
modified support property.

An example may help to understand the restrictions we impose on boundary points — see
also §12.5. The stability space Stab(X) of a strictly positive genus smooth complex projective
curve X is isomorphic to H × C, where H is the strict upper half-plane in C. The boundary
points Q × C where the masses of line bundles vanish do not appear in StabL(X) because the
slicings do not converge as we approach them. Nor do the points (R−Q)×C appear because no

3



objects become massless at these points, and therefore since infM(P,Z) = 0 we must also have
inf(M(P,Z) − {0}) = 0. This example shows that any partial compactification of the stability
space including points where our support property fails is likely to have rather complicated
local geometry. It would be pleasant to have a partial compactification including the points
Q×C, but the topology on it would have to allow for the slicings to vary discontinuously. The
techniques we use rely on the convergence of slicings so prohibit consideration of such boundary
points. In contrast, in the genus zero case X = P1 there is one boundary stratum in StabL(X)
corresponding to the vanishing mass of each line bundle O(n) for n ∈ Z.

Returning to the general situation, the full subcategory N of massless objects in a lax stability
condition (P,Z) is thick, and there is an induced stability condition on the quotient C/N with
the same charge Z and for which the semistable objects of phase ϕ are those in the isomorphism
closure of P (ϕ) in C/N. More precisely, the induced stability condition has charge Z consid-
ered as an element of the subspace Hom(Λ/ΛN,C) ⊂ Hom(Λ,C) where ΛN is the saturation
of the subgroup {v(c) : c ∈ N} of Λ. It satisfies the support property with respect to the
homomorphism K(C/N)→ Λ/ΛN induced from v.

When ΛN has rank one, StabL(C) contains a real-codimension one boundary stratum home-
omorphic to Stab(C/N) × R. Up to shift, the massless objects in N are all semistable with
common phase, and this phase is recorded by the factor R. There is a local product description
at each point of this boundary stratum. The normal factor is homeomorphic to

StabL(N) ∼= Stab(N) ∪ StabL(N,N) ∼= C ∪ (−∞+ iR)

where StabL(N,N) is the unique boundary stratum in StabL(N) at which all objects in N are
massless. In summary, Stab(C) is the interior of a manifold with boundary each of whose
boundary components is homeomorphic to Stab(C/N)×R for a some thick subcategory N of C.

Under additional assumptions this picture generalises to higher rank ΛN, allowing us to
describe higher codimension strata in the boundary of Stab(C). Namely if ‘support propagates’
along a boundary stratum where objects in N are massless then a neighbourhood of that stratum
is homeomorphic to a neighbourhood of

Stab(C/N)× StabL(N,N) ⊂ Stab(C/N) × StabL(N) .

This ‘support propagation’ condition is satisfied by points in the boundary of any ‘finite type’
component, but we do not know whether it holds more generally.

The fibres of the charge map StabL(C) → Hom(Λ,C) : (P,Z) 7→ Z are not discrete, because
the phases of massless objects may vary whilst the charge remains constant. The massless
subcategory N and the induced stability condition on Stab(C/N) are locally constant on the
fibres. We define the space of quotient stability conditions StabQ(C) to be the topological
quotient space of StabL(C) by the equivalence relation identifying points in the same component
of a fibre. Each point of StabQ(C) can be interpreted as a stability condition on the quotient C/N
by the massless subcategory N. The space of quotient stability conditions contains Stab(C) as a
subspace, and has a complex codimension one boundary stratum Stab(C/N) for each boundary

component Stab(C/N)× R in StabL(C) arising from a rank one massless subcategory N.
When support propagates from all boundary strata in StabL(C) we can say more. The space

of quotient stability conditions decomposes as a union

StabQ(C) =
⋃

i∈I

Stab(C/Ni)

of stability spaces of quotients of C. The mass of each object c ∈ C extends to a continuous
function m•(c) : Stab

Q(C)→ R≥0 and Stab(C/N) is the subset where this mass vanishes if and
only if c ∈ N. It follows that each stratum is locally closed with closure

Stab(C/Ni) =
⋃

i≤j

Stab(C/Nj)

where the indexing set I is partially-ordered by the inclusion of thick subcategories. (We
do not have a general characterisation of which thick subcategories Ni appear.) Moreover,
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under the strong propagation assumption, the space of quotient stability conditions has a local
product structure: an open neighbourhood of Stab(C/N) in StabQ(C) is homeomorphic to a
neighbourhood of the ‘central’ fibre of the second projection

Stab(C/N) × StabQ(N)→ StabQ(N) ,

that is the fibre over the point stratum of StabQ(N) where all objects of N are massless. Intu-
itively, the massive and massless parts of the theory ‘de-couple’ and can be treated independently
of each other.

The charge extends to a continuous map StabQ(C)→ Hom(Λ,C) given on a stratum by

Stab(C/N)→ Hom(Λ/ΛN,C) →֒ Hom(Λ,C),

i.e. the composite of the charge map for the stability space of the quotient and the natural
inclusion. The fibres are discrete and the restriction to each stratum is a local homeomorphism.
This allows us to view StabQ(C) as a ‘stratified branched cover’ of Hom(Λ,C). However, care is
required since some fibres may be empty, corresponding to the existence of ‘forbidden’ massless
subcategories. Moreover, some points may be infinitely ramified. For example, when ΛN has
rank one StabQ(N) ∼= C ∪ {−∞} with charge map the extension of the exponential C→ C∗ by
exp(−∞) = 0 to create a branched cover infinitely ramified over the origin. Indeed, the local
product description shows that this is the typical situation along a codimension one stratum.

There are several other recent constructions of (partial) compactifications of stability spaces.
Bolognese [5] constructs a metric completion, at least when the charge map is a covering map,
which seems to be closely related to StabQ(C). Its points can also be interpreted as stability
conditions on quotients of C by thick subcategories of massless objects. The difference is that
she uses a notion of ‘limiting support’ for Cauchy sequences of stability conditions, and it is
not immediately obvious how this relates to the notion of support we use to define lax stability
conditions — see §13.1.

Bapat, Deopurkar and Licata [1] take a very different approach. They consider, by analogy
with the Thurston compactification of Teichmüller space, the closure of the image of

Stab(C)/C→ RPC : σ 7→ [mσ(c) : c ∈ C]

and conjecture that under ‘mild conditions’ on C this is a (real) manifold with boundary whose
interior is Stab(C) /C. The above map extends continuously to StabQ(C)∗/C allowing us to
compare the two spaces, which we do in two simple examples in §13.2. Under appropriate
conditions it seems reasonable to hope that this extension is a homeomorphism between the
interiors, and has dense image in the boundary.

Discrepancies between classical and lax stability conditions. In many ways lax stability condi-
tions behave much as classical stability conditions do. However, in some respects lax stability
conditions have weaker categorical and analytical properties than classical stability conditions.
We highlight the differences. Let σ = (P,Z) be a pair consisting of a slicing P on C and a
charge Z ∈ Hom(Λ,C).

(1) The definitional distinction is that the mass of a non-zero semistable object c ∈ P (ϕ) is
classically required to be positive but can be zero if σ is lax.

(2) The support property for a stability condition σ implies that the slicing P is locally
finite. By contrast, the support condition for a lax stability condition σ does not imply
local finiteness of the slicing (which we therefore impose as a separate condition).

(3) The slices P (ϕ) are always abelian length categories if σ is a classical stability condition.
If σ is a lax stability condition then we only know that P (ϕ) is a quasi-abelian length
category; in particular, we don’t know whether the Jordan–Hölder property holds.

(4) A classical stability condition σ induces a norm || − ||σ on Hom(Λ,C) whereas a lax
stability condition induces a semi-norm.

(5) If σ is a classical stability condition then any sufficiently close element of Slice(C) ×
Hom(Λ,C) is again a stability condition. By contrast, we do not know if elements near
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Stability conditions lax stability conditions

(1) Masses are positive; non-negative.
(2) Slicings are locally-finite automatically; by additional condition.
(3) Slices P (ϕ) are abelian categories; quasi-abelian categories.
(4) || − ||σ is a norm; semi-norm.
(5) Small deformations are stability conditions; lax pre-stability conditions.
(6) Geometric structure: complex manifold; stratified space.

Table 1. Summary of discrepancies between ordinary and lax stability conditions

a lax stability condition have the support property; in general they may only be lax
pre-stability conditions.

(6) Finally, the space of classical stability conditions Stab(C) forms a complex manifold
modelled on Hom(Λ,C). The space of lax stability conditions StabL(C) is a stratified
space under good conditions.

Structure of the article. Section 2 fixes notation. Section 3 discusses the relationship between
slicings on C and on a thick subcategory N and the quotient C/N. This is a key ingredient of
the deformation results in Section 6. In Section 4 we define lax stability conditions and prove
that the massless subcategory of a lax stability condition is thick and that there is a naturally
induced classical stability condition on the quotient.

Section 5 contains the first results on the space of lax stability conditions, including the
continuity of masses and phases and the ‘semi-continuity’ of massless subcategories. Section 6
is the technical heart of the paper. In Section 6.1 we extend Bridgeland’s result on lifting charge
deformations to the context of classical stability conditions. In Section 6.2 we discuss the extent
to which the support property ‘propagates’ when we deform a lax stability condition.

In Section 7 the deformation results are applied to describe the local topology of the space of
lax stability conditions. In Section 8 we finally define the space StabQ(C) of quotient stability
conditions. The results about the local structure of StabL(C) descend to corresponding results

about the local structure of StabQ(C).
Section 9 examines support propagation in the simplest case in which the saturation ΛN of

the image of K(N)→ K(C) has rank one. In this case the massless subcategory N is generated
by a set of stable objects with common phase. Support propagates from the corresponding
boundary stratum in StabL(C) and the stratum is homeomorphic to Stab(C/N) × R and has
real codimension one. The corresponding stratum in StabQ(C) has complex codimension one.

In Section 10 we consider the partial compactification of a ‘finite type component’ Stab(C).

This case is much simpler than the general one because StabL(C) = Stab(C). We show that
the massless subcategories occurring in a finite type component of Stab(C) are precisely those
generated by subsets of simple objects in the heart of a stability condition in the component.
We also show that support propagates from each boundary stratum so that the strong forms of
our local structure results apply, in particular each stratum in StabL(C) and in StabQ(C) has a
product neighbourhood.

The universal cover G of GL+
2 (R) acts on Stab(C). In Section 11 we describe the closure of

the G-orbit of a stability condition σ in StabQ(C) in terms of the phase diagram of σ, i.e. the set
of ‘occupied’ phases for which there is a non-zero semistable object. This is a key ingredient of
Section 12 in which we illustrate our results in some simple two-dimensional examples. In each
case we are able to identify Stab(C)/C holomorphically as either C or the the Poincaré disk,
and also identify its wall-and-chamber structure. The walls are given by smooth analytic curves
with endpoints on the boundary where the destabilising subobject and quotient respectively
become massless.
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Finally, in Section 13 we compare our approach to those of Bolognese [5] and Bapat, Deop-
urkar and Licata [1].
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two-dimensional stability spaces — any errors are of course entirely ours. We are grateful to
the London Mathematical Society and the Mathematisches Forschungsinstitut Oberwolfach for
financial support through their ‘Research in Pairs’ schemes, grants no. 41434 and 1815p. The
second named author was supported by EPRSC grant no. EP/V050524/1.

2. Notation and preliminaries

2.1. Quasi-abelian categories. It has been known since Bridgeland’s original article [7] that
quasi-abelian categories are important in the theory of stability conditions. In this text they
appear even more prominently because slices of lax stability conditions are in general not abelian
categories (as with stability conditions) but only quasi-abelian; see slicing Pt in Example 3.14.

Recall, e.g. from [31], that a quasi-abelian category is an additive category with kernels and
cokernels and such that the pullback of a strict epimorphism is a strict epimorphism, and the
pushout of a strict monomorphism is a strict monomorphism. Here a strict morphism is one
for which the canonical morphism from its coimage to its image is an isomorphism. A length
quasi-abelian category is one which is both artinian and noetherian.

Example 2.1 ([10, Examples 3.5 and 6.9]). Let E be the full additive subcategory of finite-
dimensional k-vector spaces generated by k2 and k3. In this example, any non-zero map k2 → k3

has kernel and cokernel 0. Therefore the coimage k2 and image k3 are not isomorphic and the
morphism is not strict. In particular, k2 and k3 are simple objects of E , and E is a length
quasi-abelian category. However, the Jordan–Hölder property fails: k6 = k2⊕k2⊕k2 = k3⊕k3

has two Jordan–Hölder filtrations with non-isomorphic factors and of different lengths.

2.2. Slicings. Let C be a triangulated category with shift functor c 7→ c[1]. A slicing P on C

is a collection of full additive subcategories P (ϕ) for each ϕ ∈ R such that

(1) P (ϕ+ 1) = P (ϕ)[1] for all ϕ ∈ R;
(2) HomC(c, c

′) = 0 whenever c ∈ P (ϕ) and c′ ∈ P (ϕ′) with ϕ > ϕ′;
(3) each 0 6= c ∈ C admits a finite filtration i.e. a finite sequence of morphisms

0 = c0 c1 c2 · · · cn−1 cn = c

a1 a2 an

with cones ai ∈ P (ϕi) where ϕ1 > ϕ2 > · · · > ϕn.

The objects in P (ϕ) are called semistable of phase ϕ, the filtration is the Harder–Narasimhan
filtration (henceforth abbreviated to HN filtration) of c, and the objects ai are called the
semistable factors of c. The filtration, in particular the semistable factors, are determined
uniquely up to isomorphism when they exist. The maximal and minimal phases of 0 6= c ∈ C

are ϕ+(c) = ϕ1 and ϕ−(c) = ϕn, respectively.
For any slicing P and interval I ⊂ R let P (I) denote the full subcategory of C on those objects

whose semistable factors with respect to the slicing have phases in I. When I = (a, b] we omit
the outer brackets and simply write write P (a, b] and so on. The category P (I) is quasi-abelian
when I has length strictly less than one. A stable object is a simple semistable object, that
is a semistable object of some phase ϕ with no proper strict subobjects in the quasi-abelian
category P (ϕ).

The slicing P is locally finite if there is some ε > 0 such that P (ϕ − ε, ϕ + ε) is a length
quasi-abelian category for each ϕ ∈ R. In particular, for a locally finite slicing each slice P (ϕ) is
a quasi-abelian length category. It follows that each semistable object has a finite composition
series whose factors are stable objects. However, we do not know in general that the set of these
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stable factors, nor the multiplicity with which each occurs, are well-defined — see [14] for a
discussion of when a quasi-abelian category satisfies the Jordan–Hölder Theorem. Let Slice(C)
denote the space of locally finite slicings on C. This has a metric

d(P,Q) = sup
06=c∈C

max
{
|ϕ−
P (c)− ϕ

−
Q(c)|, |ϕ

+
P (c) − ϕ

+
Q(c)|

}
.

For any slicing P and ϕ ∈ R the inclusions of P (−∞, ϕ) and P (−∞, ϕ] into C have respec-

tive left adjoints H<ϕ
P and H≤ϕ

P . Dually, the inclusions of P (ϕ,∞) and P [ϕ,∞) into C have

respective right adjoints H>ϕ
P and H≥ϕ

P . We use the notation

H
(ϕ,ψ)
P = H>ϕ

P ◦H<ψ
P = H<ψ

P ◦H>ϕ
P ,

and similarly for semi-closed and closed intervals. We also use the shorthand Hϕ
P = H

[ϕ,ϕ]
P .

When I is an interval of strict length one, that is I is either (ϕ,ϕ + 1] or [ϕ,ϕ + 1) for some
ϕ ∈ R, the subcategory P (I) is the heart of a bounded t-structure on C and HI

P : C→ P (I) is
the associated cohomological functor taking triangles in C to long exact sequences in P (I).

Remark 2.2. The right adjoint to the inclusion P (0,∞) →֒ C is the truncation below associated
to the bounded t-structure on C with heart P (0, 1], i.e. it is the functor classically denoted τ≤0.
This unfortunate clash of notation arises because the factors in a HNfiltration are ordered by
decreasing phase. To avoid confusion we use the notation H>0

P instead.

For c ∈ C the P -semistable factors of H
(ϕ,ψ)
P (c) are precisely the P -semistable factors of c

with phases in the interval (ϕ,ψ), and Hϕ
P (c) is the P -semistable factor with phase ϕ, or zero

if no such factor exists. If Q is another slicing with Q(−∞, ϕ) ⊂ P (−∞, ψ) then

H<ϕ
Q = H<ϕ

Q H<ψ
P

and similarly for closed intervals, and the dual cases. We omit the subscript P from the notation
when the slicing is understood from the context.

2.3. Charges. Fix a finite rank lattice Λ and a surjective homomorphism v : K(C) → Λ. For
Z ∈ Hom(Λ,C) and c ∈ C we abuse notation by writing Z(c) for Z(v([c])).

Suppose N is a thick subcategory of C. The Verdier quotient C/N is a triangulated category
with the same objects as C and a morphism c′ → c in C/N given by a roof c′ ← c′′ → c where
the cone of the first morphism c′ ← c′′ is in N; see, for example, [17, 20].

The homomorphism K(N)→ K(C) induced from the inclusion N→ C need not be injective,
but its cokernel is K(C/N). Let ΛN ⊂ Λ be the minimal primitive sublattice containing the
image of K(N) → K(C) → Λ, so that Λ/ΛN is again a lattice. Let vN : K(N) → ΛN and
vC/N : K(C/N)→ Λ/ΛN denote the induced homomorphisms. The map vN may not be surjective
but it always has finite index.

We also fix an inner product 〈·, ·〉 on Λ ⊗ R and denote the associated norm by || · ||. This
norm restricts to a norm on ΛN ⊗ R and also induces a norm on the quotient

Λ/ΛN ⊗ R ∼= (Λ⊗R)/(ΛN ⊗R)

defined by ||λ+ΛN⊗R|| = inf{||λ+α|| : α ∈ ΛN⊗R}. Alternatively, this is given by identifying
Λ/ΛN ⊗ R with the orthogonal complement of ΛN ⊗ R and taking the restriction of || · ||.

The orthogonal projection Λ ⊗ R → ΛN ⊗ R induces a splitting Hom(ΛN,C) →֒ Hom(Λ,C)
and we use this to identify Hom(ΛN,C) with its image in Hom(Λ,C).

2.4. Spaces of stability conditions. We work with stability conditions on C whose charges
factor through v : K(C) → Λ and satisfy the support condition. (See §4.1 for the definition.)
We denote the space of these by Stab(C), leaving the lattice Λ implicit.

Stability conditions on thick subcategories N of C, and on the quotients C/N by these play
a prominent role. The charges of these are always understood to factor through vN and vC/N
respectively. We denote the respective spaces of stability conditions by Stab(N) and Stab(C/N),
again omitting the lattices from the notation.
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3. Restriction, descent and glueing of slicings

Let N ⊂ C be a thick subcategory, and C/N the quotient triangulated category. We investigate
the relationship between slicings of C and slicings of N and C/N. In this section we do not
assume that slicings are locally finite unless stated otherwise.

Definition 3.1. A slicing P of C is compatible with a pair (PN, PC/N) of slicings of N and C/N
if there are inclusions of objects PN(ϕ) ⊂ P (ϕ) ⊂ PC/N(ϕ) for each ϕ ∈ R.

Proposition 3.2. There is at most one pair (PN, PC/N) compatible with each slicing P . When
it exists, PN(ϕ) = P (ϕ) ∩ N and PC/N(ϕ) is the isomorphism closure of P (ϕ) in C/N.

Conversely, there is at most one slicing P compatible with each pair (PN, PC/N). When it
exists c ∈ P (ϕ) if and only if c ∈ PC/N(ϕ) and

(1) HomC(b, c) = 0 = HomC(c, d)

for all b ∈ PN(ψ) with ψ > ϕ and all d ∈ PN(ψ
′) with ψ′ < ϕ.

Proof. Suppose the pair (PN, PC/N) is compatible with P . Then PN(ϕ) ⊂ P (ϕ) so that the
HNfiltration of any c ∈ N with PN-semistable factors is also the HNfiltration with P -semistable
factors. The uniqueness of HNfiltrations implies that P (ϕ) ∩ N ⊂ PN(ϕ), hence that PN(ϕ) =
P (ϕ) ∩ N for each ϕ ∈ R.

Denote by P (ϕ)C/N the closure of P (ϕ) in C/N under isomorphisms. We claim PC/N(ϕ) =
P (ϕ)C/N. Since P (ϕ) ⊂ PC/N(ϕ) it is clear that P (ϕ)C/N ⊂ PC/N(ϕ). Moreover, again by
uniqueness, the HNfiltration of any c ∈ C with P -semistable factors descends to the HNfiltration
of c with PC/N-semistable factors if we simply ignore any factors in N. Thus if c ∈ PC/N(ϕ) it

has a HNfiltration in C with all factors in N except for one factor, say c′, in P (ϕ). Thus c ∼= c′

in C/N and PC/N(ϕ) ⊂ P (ϕ)C/N establishing the claim.
In the other direction, if P is compatible with (PN, PC/N) then by definition P (ϕ) ⊂ PC/N(ϕ).

We saw above that any c ∈ PC/N(ϕ) has a HNfiltration in C with all factors in N apart from

a single factor in P (ϕ). Therefore H>ϕ
P (c) and H<ϕ

P (c) are in N and so vanish precisely when
(1) holds. Thus c ∈ P (ϕ) if and only if c ∈ PC/N(ϕ) and (1) holds. This shows that P , when it
exists, is uniquely determined by the pair (PN, PC/N). �

Lemma 3.3. If P is compatible with a pair (PN, PC/N) of locally finite slicings then P is also
locally finite.

Proof. Let I ⊂ R be an interval such that both PN(I) and PC/N(I) are quasi-abelian length
categories. Let a0 →֒ a1 →֒ · · · →֒ a be an increasing sequence of strict subobjects of a in P (I).
This can be considered as an increasing sequence of strict subobjects in PC/N(I) via the quotient
functor C → C/N since the strict exact structures on PN(I) and PC/N(I) are induced by the
triangulated structures on C and C/N, respectively, and the quotient functor is exact. Since
PC/N(I) is length this chain stabilises, i.e. there is some n ∈ N such that an ∼= an+1

∼= · · · ∼= a in
PC/N(I). Pushing the sequence of strict monomorphisms out along an+1 → an+1/an we obtain
a diagram

an+1 an+2 · · · a

an+1/an an+2/an · · · a/an

whose bottom row is an increasing sequence of strict subobjects of a/an in PN(I). Since the
latter is length this bottom row also stabilises. It follows that the original sequence stabilises
so that P (I) is noetherian. The proof that it is artinian is dual. �

In the next sections we discuss the more subtle question of when compatible slicings exist.
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3.1. Restriction and descent. Let N ⊂ C be a thick subcategory. We say that a slicing P
of C restricts to N if the HNfactors of each c ∈ N lie in N. In that case the full subcategories
P (ϕ) ∩N define a slicing PN(ϕ) of N. The question of when P descends to a compatible slicing
of C/N is more involved.

Definition 3.4. A slicing P of C is adapted to a thick subcategory N if it restricts to N and
P (I) ∩ N is a Serre subcategory of P (I) for each strict length one interval I ⊂ R.

Lemma 3.5. Let P be a slicing of C adapted to the thick subcategory N. Fix c ∈ P (ϕ) and
b ∈ C. Then the following two conditions are equivalent:

(1) b ∼= c in C/N
(2) the only semistable factor of b not in N is a factor b0 ∈ P (ϕ) with b0 ∼= c in C/N.

Proof. Clearly if b has a unique semistable factor b0 ∈ P (ϕ) not in N then b ∼= b0 in C/N, and
thus if b0 ∼= c in C/N then also b ∼= c in C/N.

For the other direction, it is enough to show that, given c ∈ C with H<ϕ(c) and H>ϕ(c) in N

and a morphism in HomC(c, b) or HomC(b, c) with cone in N, then H<ϕ(b) and H>ϕ(b) are also
in N. The cases are similar, and we only consider the first in which there is an exact triangle
d[−1] → c → b → d with d ∈ N. Applying the cohomological functor H(ϕ,ϕ+1] yields a long
exact sequence

· · · → H(ϕ,ϕ+1](c)→ H(ϕ,ϕ+1](b)→ H(ϕ,ϕ+1](d)→ · · · .

The assumptions on c and d imply that the first and third terms are in P (ϕ,ϕ + 1] ∩ N. Since
this is a Serre subcategory of P (ϕ,ϕ + 1] so too is the middle term. For the same reason

H(ϕ+n,ϕ+n+1](b) ∈ N for all n ∈ N, which implies H>ϕ(b) ∈ N. To show that H<ϕ(b) ∈ N one
proceeds similarly using the cohomological functor H [ϕ−1,ϕ). �

Proposition 3.6. Let P be a slicing of C. Then the following conditions are equivalent:

(1) P is adapted to N.
(2) There is a pair (PN, PC/N) of slicings of N and C/N compatible with P .

Proof. If there is a compatible pair (PN, PC/N) then we saw above that PN(ϕ) = P (ϕ) ∩ N so
that P restricts to N. Moreover, the quotient functor C → C/N restricts to an exact functor
P (ϕ,ϕ+ 1]→ PC/N(ϕ,ϕ+ 1] between abelian categories with P (ϕ,ϕ+ 1] ∩N as kernel. Hence
the latter is a Serre subcategory for each ϕ ∈ R. The argument showing P [ϕ,ϕ + 1) ∩ N is a
Serre subcategory is similar. Thus P is adapted to N.

Now suppose that P is adapted to N. The subcategories PN(ϕ) := P (ϕ)∩N define a slicing of
N. We must show that P also descends to a slicing of C/N. Proposition 3.2 shows that we must
define PC/N(ϕ) to be the closure of P (ϕ) under isomorphisms in C/N. By construction PC/N(ϕ)
is a full additive subcategory of C/N for each ϕ ∈ R, satisfying PC/N(ϕ + 1) = PC/N(ϕ)[1].
Moreover, ignoring any factors in N, the image in C/N of the HNfiltration of 0 6= c ∈ C with
respect to the slicing P provides a finite filtration with factors in these subcategories and with
strictly decreasing phases. Therefore to show that PC/N is a slicing we must show that there
are no non-zero morphisms in C/N from c ∈ PC/N(ϕ) to c

′ ∈ PC/N(ϕ
′) when ϕ > ϕ′.

It is enough to show that HomC/N(c, c
′) = 0 for c ∈ P (ϕ) and c′ ∈ P (ϕ′). A mor-

phism in HomC/N(c, c
′) is represented by a ‘roof’ c ← b → c′ in C where the cone on the

left hand morphism is in N. By Lemma 3.5, H>ϕ(b) and H<ϕ(b) are in N and moreover,
HomC(H

>ϕ(b), c) = 0 = HomC(H
>ϕ(b), c′) because c ∈ P (ϕ) and c′ ∈ P (ϕ′) for ϕ′ < ϕ. Thus

we can construct dashed arrows to form a commutative diagram

b

c H≤ϕ(b) c′

Hϕ(b)
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in which the morphisms b → H≤ϕ(b) and Hϕ(b) → H≤ϕ(b) are the canonical ones. These
are isomorphisms in C/N. Therefore the bottom ‘roof’ c ← Hϕ(b) → c′ represents the same
morphism on C/N. Since HomC(H

ϕ(b), c′) = 0 we deduce HomC/N(c, c
′) = 0 as required. �

Corollary 3.7. Let P and Q be slicings on C that are adapted to N, and let PN, QN ∈ Slice(N),
PC/N, QC/N ∈ Slice(C/N) be the induced slicings. Then

d(PN, QN) ≤ d(P,Q) and d(PC/N, QC/N) ≤ d(P,Q).

Proof. The HNfiltrations of c ∈ N with respect to P and to PN coincide. The first statement
follows since the supremum defining d(PN, QN) is taken over a subset of that defining d(P,Q).
The second statement follows because

d(P,Q) < ε ⇐⇒ P (ϕ) ⊂ Q(ϕ− ε, ϕ+ ε) ∀ϕ ∈ R

=⇒ P (ϕ) ⊂ QC/N(ϕ− ε, ϕ + ε) ∀ϕ ∈ R

⇐⇒ PC/N(ϕ) ⊂ QC/N(ϕ− ε, ϕ + ε) ∀ϕ ∈ R

⇐⇒ d(PC/N, QC/N) < ε

where we have used the fact that PC/N(ϕ) is the isomorphism closure of P (ϕ) in C/N, and
similarly for QC/N(ϕ). �

If P is a locally finite slicing adapted to a thick subcategory N then the restriction PN is
clearly locally finite. However, we do not know whether the slicing on the quotient PC/N is
locally finite when P is so. Therefore we introduce the following enhancement of Definition 3.4.

Definition 3.8. A locally finite slicing P of C is well-adapted to a thick subcategory N if it is
adapted to it and the quotient slicing PC/N is locally finite.

Corollary 3.9. Let P be a slicing of C. Then the following conditions are equivalent:

(1) P is locally finite and well-adapted to N.
(2) There is a pair (PN, PC/N) of locally finite slicings of N and C/N compatible with P .

Proof. If P is locally finite and well-adapted to N then the restricted slicing PN and quotient
slicing PC/N exist and are locally finite. The slicing P is compatible with them.

Conversely, if P is compatible with the pair (PN, PC/N) of locally finite slicings then P is
locally finite by Lemma 3.3, it is adapted to N by Proposition 3.6 and indeed is well-adapted
since PC/N is locally finite by assumption. �

3.2. Glueing. Let N ⊂ C be a thick subcategory. In this subsection we establish a criterion
for when slicings of N and C/N can be glued to a compatible slicing on C. An important
consequence is that the set of pairs of slicings which glue to a locally finite slicing is open.

Proposition 3.10. Let (QN, QC/N) be a pair of slicings of N and C/N. Then the following
conditions are equivalent:

(1) There is a compatible locally finite slicing Q of C.
(2) There is a locally finite slicing P of C compatible with a pair (PN, PC/N) such that

d(PN, QN) < ε and d(PC/N, QC/N) < ε where ε > 0 is sufficiently small that the categories
P (ϕ− 2ε, ϕ + 2ε) are length for each ϕ ∈ R.

One direction is trivial, if there is a compatible locally finite slicing Q then we set P = Q and
are done. The proof of the other direction is rather long, so we break it down into a number of
results. We retain the notation and assumptions of the statement throughout this section. By
Proposition 3.2 there is at most one choice for the slicing: for ϕ ∈ R the full subcategory Q(ϕ)
must be defined by c ∈ Q(ϕ) ⇐⇒ c ∈ QC/N(ϕ) and, for any b ∈ QN(ψ),

(i) ψ > ϕ implies HomC(b, c) = 0 and
(ii) ψ < ϕ implies HomC(c, b) = 0.
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That is, Q(ϕ) = QC/N(ϕ) ∩QN(>ϕ)
⊥ ∩ ⊥QN(<ϕ). Clearly Q(ϕ + 1) = Q(ϕ)[1] for all ϕ ∈ R.

Moreover, Q(ϕ) ∩ N = QN(ϕ) and Q(ϕ) ⊂ QC/N(ϕ). As usual, we extend the notation to
intervals I ⊂ R by defining Q(I) to be the extension-closure of the Q(ϕ) for ϕ ∈ I. By
definition Q(I) ⊂ QC/N(I) for any interval I.

Lemma 3.11. For each ϕ ∈ R we have Q(ϕ) ⊂ P (ϕ− ε, ϕ+ ε).

Proof. Suppose c ∈ Q(ϕ). Then as Q(ϕ) ⊂ QC/N(ϕ) ⊂ PC/N(ϕ − ε, ϕ + ε) we know that

H≥ϕ+ε
P (c),H≤ϕ−ε

P (c) ∈ N. Thus H≥ϕ+ε
P (c) ∈ QN(>ϕ) and H

≤ϕ−ε
P (c) ∈ QN(<ϕ) and so by the

definition of Q(ϕ) we have

HomC(H
≥ϕ+ε
P (c), c) = 0 = HomC(c,H

≤ϕ−ε
P (c)).

It follows that H≥ϕ+ε
P (c) = 0 = H≤ϕ−ε

P (c) so that c ∈ P (ϕ− ε, ϕ + ε) as claimed. �

Lemma 3.12. If c ∈ Q(ϕ) and c′ ∈ Q(ϕ′) with ϕ > ϕ′ then HomC(c, c
′) = 0.

Proof. Suppose γ ∈ HomC(c, c
′). Since c ∈ QC/N(ϕ) and c

′ ∈ QC/N(ϕ
′) the morphism γ vanishes

in C/N. Hence it must factor through some b ∈ N. We therefore have a diagram

c c′

b

H≥ϕ
QN

(b) H<ϕ
QN

(b)

γ

[1]

in which the upper triangle commutes and the lower triangle is exact. Condition (ii) implies
that HomC(c,H

<ϕ(b)) = 0, and hence that there is a dashed morphism making the left hand
triangle commute. Condition (i) and the condition ϕ′ < ϕ imply that HomC(H

≥ϕ(b), c′) = 0.
Hence γ = 0 as claimed. �

It remains to check that each c ∈ C has a HNfiltration with respect to Q. We do so by
induction on the length of the HNfiltration of c in C/N with respect to QC/N. The next result
provides the base case.

Lemma 3.13. Suppose c ∈ QC/N(ϕ). Then c, considered as an object of C, has a HNfiltration
with respect to Q with all factors in N except for a single factor in Q(ϕ).

Proof. Let 0 < ε < 1
2 and A = P (ϕ− ε, ϕ + ε) and to begin with, assume c ∈ A.

We first show that c ∈ Q(ϕ) if and only if HomC(b, c) = 0 = HomC(c, d) for all b ∈ A∩QN(>ϕ)
and d ∈ A ∩ QN(<ϕ). One direction is clear: when c ∈ Q(ϕ) the vanishing conditions follow
immediately from the definition of Q. For the other direction suppose b ∈ QN(>ϕ). There is
an exact triangle

H≥ϕ+ε
P (b)→ b→ H<ϕ+ε

P (b)→ H≥ϕ+ε
P (b)[1].

Note that HomC(H
≥ϕ+ε(b), c) = 0 because c ∈ A ⊂ P (<ϕ + ε). Therefore any morphism from

b to c factors through h := H<ϕ+ε
P (b). Since d(PN, QN) < ε we have

H≥ϕ+ε
P (b)[1] ∈ PN(≥ ϕ+ ε+ 1) ⊂ QN(≥ ϕ+ 1) ⊂ QN(> ϕ).

Since QN(>ϕ) is extension-closed the above triangle shows that h ∈ QN(>ϕ). Moreover, h ∈ A

because b ∈ QN(>ϕ) ⊂ PN(>ϕ − ε). Therefore HomC(h, c) = 0 by assumption, and hence
HomC(b, c) = 0 too. A dual argument shows that HomC(c, d) = 0 for all d ∈ QN(<ϕ). Hence
c ∈ Q(ϕ) as claimed.

We now use this criterion to construct a HNfiltration for c ∈ A with all factors in N except
for a single factor in Q(ϕ) isomorphic to c in C/N. Let b be a maximal strict subobject of c in
the subcategory A ∩QN(>ϕ) of A. We can always find such a b (possibly zero) because A is a
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quasi-abelian length category. Then c′ = c/b has no non-zero strict subobjects in A ∩QN(>ϕ)
because if b′ →֒ c′ is such a strict subobject we can pullback to obtain a commutative diagram

b b′′ b′

b c c′

whose rows are strict short exact sequences and whose vertical morphisms are strict monomor-
phisms. In particular b′′ is a strict subobject of c in A ∩ QN(>ϕ) and by maximality of b we
deduce that b ∼= b′′ and therefore that b′ = 0. By assumption b has a HNfiltration with respect
to QN. Using this we can construct a finite filtration of c in A whose quotients are a sequence of
QN-semistable objects of strictly decreasing phase in A∩QN(>ϕ), except for the final quotient
c′ which has no non-zero strict subobjects in A ∩QN(>ϕ).

A dual argument constructs a finite filtration of this final quotient c′ whose first term c′′

has no non-zero strict quotients in A ∩QN(<ϕ) and whose other quotients form a sequence of
QN-semistable objects of strictly decreasing phase in A ∩ QN(<ϕ). It follows that c′′ cannot
have any non-zero strict subobjects in A∩QN(>ϕ) either, for any such would lift to a subobject
of c′. To summarise we have constructed a strict subquotient c′′ of c in A such that

(1) c′′ ∼= c in C/N, in particular c′′ ∈ QC/N(ϕ);
(2) c′′ has no non-zero strict subobjects in A ∩QN(>ϕ);
(3) c′′ has no non-zero strict quotients in A ∩QN(<ϕ).

Recalling that the image of any morphism in the quasi-abelian category A is a strict subobject
of the target, and dually that the coimage is a strict quotient of the source, we conclude that
HomC(b, c

′′) = 0 = HomC(c
′′, d) for all b ∈ A ∩QN(>ϕ) and d ∈ A ∩QN(<ϕ). Hence c

′′ ∈ Q(ϕ)
and concatenating the filtrations of b and of c′ using iterated applications of the octahedral
axiom yields the desired HNfiltration.

Now consider the general case, i.e. remove the assumption that c ∈ A. By the first part

c0 = H
(ϕ−ε,ϕ+ε)
P (c) has a HNfiltration with respect to Q. Noting H≥ϕ+ε

P H>ϕ−ε
P (c) = H≥ϕ+ε

P (c)
and applying the octahedral axiom, there is a commutative diagram

H≥ϕ+ε
P (c) c1 H>ϕ

Q (c0)

H≥ϕ+ε
P (c) H>ϕ−ε

P (c) c0

0 H≤ϕ
Q (c0) H≤ϕ

Q (c0)

whose rows and columns extend to exact triangles. Moreover H≥ϕ+ε
P (c) ∈ N because

c ∈ QC/N(ϕ) ⊂ PC/N(ϕ− ε, ϕ + ε).

Indeed H≥ϕ+ε
P (c) ∈ QN(>ϕ) because d(PN, QN) < ε. Considering the top row, and recalling

that H>ϕ
Q (c0) ∈ N too, shows that c1 ∈ QN(>ϕ). Therefore, by considering the middle column,

we can construct a HNfiltration for c with Q-semistable factors by concatenating the filtrations

of c1 and of H≤ϕ
Q (c0). �

Proof of Proposition 3.10. Suppose c ∈ C has a HNfiltration of length k ∈ N in C/N with QC/N-
semistable factors. We show that c has a HNfiltration in C with Q-semistable factors. If k = 0
then c ∈ N and we simply take the HNfiltration with respect to QN. If k = 1 then the result
holds by Lemma 3.13. Therefore we assume that k > 1 and that the result holds for any object
with a strictly shorter HNfiltration in C/N. Choose a representative b ∈ QC/N(ψ) for the highest
phase factor of c so that there is an exact triangle b → c → d → b[1] in C. By induction we
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may assume both b and d have HNfiltrations with Q-semistable factors. In particular there is
an exact triangle

H≥ψ
Q (b)→ b→ H<ψ

Q (b)→ H≥ψ
Q (b)[1]

in C. Since H≥ψ
Q (b) ∈ Q(≥ψ) ⊂ QC/N(≥ψ) and H<ψ

Q (b) ∈ Q(<ψ) ⊂ QC/N(<ψ) we deduce

that H<ψ
Q (b) ∈ N and that H≥ψ

Q (b) → b is an isomorphism in C/N. Therefore we may assume

b ∈ Q(≥ψ). Having done so we argue similarly with d. There is an exact triangle

H≥ψ
Q (d)→ d→ H<ψ

Q (d)→ H≥ψ
Q (d)[1]

where now H≥ψ
Q (d) ∈ N and d→ H<ψ

Q (d) is an isomorphism in C/N. Hence there is a commu-
tative diagram

b b′ H≥ψ
Q (d)

b c d

0 H<ψ
Q (d) H<ψ

Q (d)

whose rows and columns extend to exact triangles. By considering the top row we see that
b′ ∈ Q(≥ψ). Thus the middle column shows that we may assume, by judicious choice of
representatives, that b ∈ Q(≥ψ) and d ∈ Q(<ψ). Having done so, we obtain a Q HNfiltration
for c by concatenating those of b and d.

Clearly d(P,Q) < ε because Q(ϕ) ⊂ P (ϕ− ε, ϕ+ ε) for all ϕ ∈ R by Lemma 3.11. Finally Q
is locally finite because Q(ϕ− ε, ϕ+ ε) ⊂ P (ϕ− 2ε, ϕ + 2ε) and the latter is length. �

Example 3.14. Let C = Db(P1) be the bounded derived category of coherent sheaves on the
projective line P1. All complexes in C decompose into direct sums of their cohomologies (this
holds for any smooth curve) and, moreover, all coherent sheaves decompose into direct sums of
line bundles O(n) and torsion sheaves; the latter have the skyscraper sheaves Ox for x ∈ P1 as
their minimal non-zero subsheaves.

For a slicing in C, up to shift and direct sums, various O(n) and Ox occur as cones of
HNfiltrations and, conversely, the decomposition properties of C imply that HNfiltrations exist
trivially for any family of subcategories P (ϕ) with P (ϕ + 1) = P (ϕ)[1] and Hom-vanishing
Hom(P (>ϕ), P (ϕ)) = 0 and such that all Ox and O(n) are in the heart P (0, 1], again up to
shift. Thus the following assignments for ϕ ∈ (0, 1] give slicings on C:

Pt(ϕ) =





〈O(n) : n ∈ Z 〉 ϕ = 1
2

〈Ox : x ∈ P1 〉 ϕ = 1

0 else;

, Pg(ϕ) =





〈O(n) : n ∈ Z 〉 ϕ = 1
π arg(−n+ i) ∈ (0, 1)

〈Ox : x ∈ P1 〉 ϕ = 1

0 else;

Pb(ϕ) =





〈O 〉 ϕ = 1
2

〈Ox,O(n),O(−n)[1] : x ∈ P1, n ∈ N>0 〉 ϕ = 1

0 else;

, Pc(ϕ) =

{
coh(P1) ϕ = 1

0 else.

Pt separates torsion sheaves and line bundles into two slices. Pg is the geometric slicing induced
by the classical slope of coherent sheaves µ(A) = deg(A)/rk (A); see Example 5.4. The slicing
Pb occurs in the boundary of the stability space; see Example 6.3 and Subsection 12.9.

These three slicings are locally finite. Note that the slice Pt(
1
2 ) contains the infinite chain

· · · → O(−1) → O → O(1) → · · · . Nonetheless Pt is locally finite because any non-zero
morphism O(n)→ O(m) for n < m is not strict in Pt(

1
2 ) since it has image O(n) and coimage

O(m). In particular, each O(n) is simple in the quasi-abelian (but not abelian) category Pt(
1
2 ).

In Pc, a single slice contains the whole heart; it is not locally finite and used in Example 4.9.
See [18] for the classification of stability conditions and bounded t-structures on C.
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Example 3.15. We continue the above example by considering some thick subcategories of C =
Db(P1): first the subcategory N = NO = thick(O) generated by the trivial line bundle. Because
every line bundle is an exceptional object, N ∼= Db(k) and N is an admissible subcategory,
i.e. the inclusion N →֒ C has both adjoints. In particular, there is a canonical equivalence
C/N ∼= N⊥ ∼= thick(O(−1)).

Next, for any point x ∈ P1, let Nx be the subcategory generated by the skyscraper sheaf Ox.
Moreover, let T be the subcategory of all torsion objects in C. Both subcategories are thick and
neither is admissible. We have Nx ( T and C/T ∼= NO. The quotient C/Nx is not Hom-finite:
the objects O and O(−1) are isomorphic in the quotient but the morphisms y : O(−1)→ O for
y 6= x induce non-zero elements of EndC/Nx

(O).

4. Lax stability conditions and quotient categories

4.1. Stability conditions. Let C be a triangulated category and v : K(C) → Λ a surjective
homomorphism from the Grothendieck group to a finite rank lattice. Let Slice(C) be the space
of locally finite slicings. A pre-stability condition on C is a pair (P,Z) ∈ Slice(C) ×Hom(Λ,C)
such that 0 6= c ∈ P (ϕ) implies Z(c) = m(c) exp(iπϕ) for some m(c) ∈ R>0. An object c ∈ P (ϕ)
is said to be semistable of phase ϕ and m(c) is its mass. The mass of any c ∈ C is defined to be

m(c) :=
k∑

i=1

m(ci)

where ci ∈ P (ϕi) for i = 1, . . . , k are the semistable factors of c with respect to the slicing P .
The maximal and minimal phases of 0 6= c ∈ C are ϕ+(c) = ϕ1 and ϕ−(c) = ϕk respectively. A
stability condition is a pre-stability condition σ = (P,Z) for which there exists K > 0 such that

m(c) = |Z(v(c))| ≥
1

K
||v(c)||

for all semistable c ∈ C. This latter condition is referred to as the support property [27, §2.1]; it
is independent of the choice of norm because dim(Λ⊗R) <∞. The support property has three
important consequences. First, and most obviously, it implies that the infimal mass

µσ = inf{m(c) : 0 6= c ∈ C} ≥
1

K
inf{||λ|| : 0 6= λ ∈ Λ}

is strictly positive. Second, it implies that the slicing P is locally finite, in fact that P (I) is
a length category for any interval I ⊂ R of length |I| < 1. This is because if c ∈ P (I) has a
composition series in P (I) with n non-zero factors then elementary trigonometry shows that

|Z(c)| ≥ nµσ cos
(π
2
|I|

)

so that the length n of any composition series of c in P (I) is bounded above. Third, it implies
that the generalised norm

U 7→ ||U ||σ = sup

{
|U(c)|

|Z(c)|
: 0 6= c ∈ P (ϕ), ϕ ∈ R

}

defined in [6] is actually a norm on Hom(Λ,C) because ||U ||σ ≤ K||U || where

||U || = sup{|U(λ)| : λ ∈ Λ⊗R, ||λ|| = 1}

denotes the operator norm. In fact the support property is equivalent to || · ||σ being a norm,
see [2, Appendix B].

The central result in the theory of stability conditions is the following deformation theorem.

Theorem 4.1 ([6, Theorem 7.1 and Lemma 6.2]). Let σ = (P,Z) be a pre-stability condition.
Then for any 0 < ε < 1/8 and W ∈ Hom(Λ,C) with ||W − Z||σ < sin(πε) there is a unique
pre-stability condition τ = (Q,W ) with d(P,Q) < ε. Moreover, if σ is a stability condition then
so is τ .
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Let Stab(C) be the set of stability conditions and Z : Stab(C) → Hom(Λ,C) the second pro-
jection. We refer to this as the charge map. The above deformation theorem shows that the
charge map is a local homeomorphism, and therefore that Stab(C) can be given the structure
of a, possibly empty, complex manifold of dimension rk (Λ).

4.2. Lax stability conditions. We start with a modified version of Bridgeland’s notion of
stability condition without the condition that the masses of non-zero objects have to be positive,
and with a concomitantly modified support condition.

Definition 4.2 (Lax pre-stability condition). A lax pre-stability condition on C is a pair (P,Z) ∈
Slice(C) × Hom(Λ,C) such that 0 6= c ∈ P (ϕ) implies Z(c) = m(c) exp(iπϕ) for some m(c) ∈
R≥0.

As in the classical case we refer to m(c) as the mass of a semistable object c ∈ P (ϕ). The mass
of any c ∈ C is again defined as m(c) := m(c1) + · · · +m(ck) where c1 ∈ P (ϕ1), . . . , ck ∈ P (ϕk)
are the semistable factors of c with respect to the slicing P . We define the maximal and minimal
phases of 0 6= c ∈ C to be ϕ+(c) = ϕ1 and ϕ−(c) = ϕk as before.

Definition 4.3. An object c ∈ C is called massive if m(c) > 0, and massless if m(c) = 0. Note
that 0 ∈ C has no semistable factors, so that m(0) = 0, i.e. 0 is always a massless object.

The massless subcategory N of a lax pre-stability condition σ is the full subcategory on the
massless objects. When N = 0, i.e. the mass of every non-zero semistable object is strictly
positive, σ is a pre-stability condition; sometimes for emphasis we say it is classical.

Proposition 4.4. The massless subcategory N of a lax pre-stability condition σ = (P,Z) is a
thick subcategory of C to which the slicing P is adapted.

Proof. We start with the second claim. Clearly every semistable factor of a massless object is
massless since the mass of an object is the sum of the masses of its semistable factors. Moreover,
for any interval I of the form (ϕ,ϕ + 1] or [ϕ,ϕ + 1) the full subcategory P (I) is the heart of
a t-structure, and hence abelian. The intersection P (I) ∩ N is a Serre subcategory because
m(c) = 0 ⇐⇒ Z(c) = 0 for c ∈ P (I). Therefore P is adapted to N.

It is clear that N is closed under shifts, so we need only show it is closed under extensions and
direct summands. Suppose that b ∈ C sits in a triangle a→ b→ c→ a[1] with a, c ∈ N. Taking
cohomology with respect to the t-structure with heart P (0, 1] we obtain a long exact sequence
· · · → H ia → H ib → H ic → · · · of objects of P (0, 1]. By assumption m(a) = 0 = m(c),
so that m(H ia) = 0 = m(H ic) for each i ∈ Z since the HNfiltration of an object x of C is
a refinement of the decomposition of x into its cohomology with respect to the heart P (0, 1].
It follows from the fact that N ∩ P (0, 1] is a Serre subcategory that m(H ib) = 0 too. Hence
m(b) =

∑
i∈Zm(H ib) = 0, and N is extension-closed.

Since the set of semistable factors of a⊕ b is the union of the sets of semistable factors of a
and b, we obtain that N is thick from the following chain of equivalences:

a⊕ b ∈ N ⇐⇒ m(a⊕ b) = 0 ⇐⇒ m(a)+m(b) = 0 ⇐⇒ m(a) = 0 = m(b) ⇐⇒ a, b ∈ N. �

Lemma 4.5. Suppose σ = (P,Z) is a lax pre-stability condition. Then N = triang(S) is the
triangulated closure of the set S of stable massless objects in the heart P (0, 1].

Proof. Evidently triang(S) ⊂ N. To see the other inclusion consider the HNfiltration of a
massless object c ∈ N. There are finitely many semistable factors. Each factor is massless, and
has a finite composition series with stable massless objects. Up to shift each of these stable
objects has phase in (0, 1]. Therefore c ∈ triang(S) and N ⊂ triang(S). �

Remark 4.6. When σ = (P,Z) is a classical pre-stability condition the slices P (ϕ) are abelian
categories [6, Lemma 5.2]. However, this is not necessarily the case when σ is lax since the
argument relies on the charge of each semistable object being non-zero — see Example 4.17.
Nevertheless, each slice P (ϕ) is a quasi-abelian length category, and so each semistable object
c has at least one finite composition series with stable factors. Indeed, every composition series

16



of c must have finite length, but the lengths need not be the same, and the multi-sets of stable
factors need not be unique up to isomorphism.

Definition 4.7 (Lax stability condition). A lax stability condition is a lax pre-stablity condition
σ = (P,Z) for which there exists K > 0 such that

m(s) = |Z(v(s))| ≥
1

K
||v(s)||

for all massive stable objects s ∈ C. We refer to this as the support condition for a lax pre-
stability condition.

When all non-zero objects are massive this support condition coincides with the usual one
in §4.1. Since every massive stable object is semistable it is clear that the usual support
condition implies the above one. In the other direction, for a semistable object c the inequality
m(c) ≥ ||v(c)||/K follows by applying the above condition to the stable factors of c, each of
which is massive.

It is clear that massless objects must be excluded from any analogue of the support property
for lax pre-stability conditions. The reason it is important to consider only stable massive
objects is to avoid support failing simply because there is a massive semistable object b and a
non-zero massless semistable object c of the same phase. In that situation the sums b⊕ cn for
n ∈ N are semistable with fixed mass m(b⊕ cn) = m(b) but with ||v(b⊕ cn)|| → ∞ as n→∞.

The support condition guarantees a ‘mass gap’ between the massive and massless objects of
a lax stability condition.

Lemma 4.8. There is a uniform lower bound on the mass of massive objects of a lax stability
condition.

Proof. Suppose c ∈ C is massive. Then

m(c) ≥ inf{m(s) : massive stable s ∈ P (ϕ), ϕ ∈ R}

≥ inf

{
||v(s)||

K
: massive stable s ∈ P (ϕ), ϕ ∈ R

}

≥
inf{||λ|| : 0 6= λ ∈ Λ}

K
.

where the last term is strictly positive because Λ has finite rank. �

However, the presence of massless objects means that, unlike in the classical setting, the
support condition does not imply that the slicing is locally finite.

Example 4.9. Let C = Db(P1) and σ = (P,Z) with charge Z = 0 and the slicing P = Pc of
Example 3.14, i.e. P (1) = coh(P1). Then σ satisfies the support property since every non-zero
object is massless. However, it is not locally finite since P (1− ε, 1 + ε) = P (1) is not length for
any 0 < ε < 1/2.

4.3. Semi-norms and support. A lax pre-stability condition σ = (P,Z) defines a (gener-
alised) semi-norm

W 7→ ||W ||σ = sup

{
|W (s)|

|Z(s)|
: massive stable s ∈ P (ϕ), ϕ ∈ R

}

on Hom(Λ,C). By convention we set sup(∅) = 0 so that ||W ||σ = 0 for all W ∈ Hom(Λ,C)
when σ has no massive objects. The adjective ‘generalised’ refers to the fact that we allow
||W ||σ = ∞ if the supremum does not exist, see Example 6.4 below. This is only a semi-norm
because it is possible for a non-zero charge W to vanish on all massive stable objects, so that
||W ||σ = 0. When σ is classical this is the usual (generalised) norm because if c is semistable
then

|W (c)| ≤
∑

s∈S

|W (s)| ≤ ||W ||σ
∑

s∈S

|Z(s)| = ||W ||σ |Z(c)|
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where S is the multi-set of stable factors of c, all of which are necessarily massive since σ is
classical.

Definition 4.10 (Full stability condition). A lax pre-stability condition σ is full if the semi-
norm || · ||σ is bounded on the unit ball in Hom(Λ,C), i.e. if there exists K > 0 such that

||W ||σ ≤ K||W ||

for all W ∈ Hom(Λ,C), where ||W || = sup{|W (λ)| : λ ∈ Λ ⊗ R, ||λ|| = 1} is the operator
norm. This is independent of the norm on Λ ⊗ R, and reduces to the usual notion [7] when σ
is classical.

The next result is a simple extension of [2, Proposition B.4] and [3, Lemma 11.4], following
[27, §2.1], to the case of lax stability conditions.

Proposition 4.11. For a lax pre-stability condition σ = (P,Z) with charge factoring through
v : K(C)→ Λ the following are equivalent:

(1) σ is a lax stability condition;
(2) σ is full;
(3) there exists a quadratic form ∆ on Λ⊗R such that

(a) ∆(v(s)) ≥ 0 for each massive stable s ∈ C;
(b) ∆ is negative definite on kerZ ⊂ Λ⊗ R.

Proof. (1) =⇒ (2), (3). Suppose σ satisfies the support property. Then for W ∈ Hom(Λ,C)
we have

||W ||σ = sup

{
|W (s)|

|Z(s)|
: massive stable s ∈ P (ϕ), ϕ ∈ R

}

≤ K sup

{
|W (s)|

||v(s)||
: massive stable s ∈ P (ϕ), ϕ ∈ R

}

≤ K sup

{
|W (λ)|

||λ||
: 0 6= λ ∈ Λ

}
= K||W ||

so that σ is full. Moreover, the quadratic form ∆(λ) = K2|Z(λ)|2 − ||λ||2 on Λ⊗R satisfies the
properties of the third condition in the statement.

(2) =⇒ (1). Now suppose σ is full. Assume, for a contradiction, that σ does not satisfy the
support property. Then there is a sequence (sn) of massive stable objects for which

mσ(sn) = |Z(sn)| <
||v(sn)||

n
.

One can choose Wn ∈ Hom(Λ,C) with ||Wn|| = 1 and |Wn(sn)| = ||v(sn)||. But then

||Wn||σ ≥
|Wn(sn)|

|Z(sn)|
> n
|Wn(sn)|

||v(sn)||
= n

so that || · ||σ is not bounded on the (compact) unit ball. This contradicts the fact that σ is full,
so σ does not satisfy support after all.

(3) =⇒ (1). Finally, suppose that ∆ is a quadratic form with ∆(v(s)) ≥ 0 for every massive
stable object s ∈ C and whose restriction to kerZ is negative definite. In particular if ∆(λ) > 0
then λ 6∈ kerZ so |Z(λ)|2 > 0. Therefore, because the unit ball is compact, there exists K > 0
with

λ 7→ K2|Z(λ)|2 −∆(λ)

a positive definite form on Λ⊗ R. If || · || is the induced norm then

K2|Z(s)|2 = ||v(s)||2 +∆(v(s)) ≥ ||v(s)||2

for each massive stable object s ∈ C. Therefore σ satisfies support. �
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Example 4.12. Let C = Db(P1). Its Grothendieck group is Λ = K(C) = K(P1) ∼= Z2 using
the basis [O] (structure sheaf) and [Ox] (skyscraper sheaves). The inner product is chosen so
that this basis is orthonormal. Let σ = (P,Z) be the lax pre-stability condition defined by
the charge Z = 0 and the slicing P = Pt from Example 3.14, i.e. P (1) = 〈Ox : x ∈ P1 〉 and
P (1/2) = 〈O(n) : n ∈ Z 〉. Every object is massless so σ trivially satisfies the support property
and so is a lax stability condition.

Let τ = (P,W ) be the lax pre-stability condition with the same slicing as σ but charge
W (Ox) = 0, W (O) = i. Since there are no massive σ-stable objects, ||W ||σ = 0. The massless
subcategory of τ is thick(Ox : x ∈ P1) and the massive stable objects are, up to shifts, the line
bundles O(n) for n ∈ Z. Therefore

||U ||τ = sup

{
|U(b)|

|W (b)|
: b massive τ -stable

}
= sup {|U(O(n))| : n ∈ Z} ,

which is infinite for example when U(Ox) = 1 and U(O) = 0. Thus τ does not satisfy support
and is not a lax stability condition.

4.4. Stability conditions on quotients. A lax pre-stability condition σ on C with massless
subcategory N induces a pre-stability condition µN(σ) on the quotient C/N. We think of this as
the ‘massive part’ of σ, and refer to it as the associated pre-stability condition on the quotient.
We say ‘stability condition on the quotient’ to distinguish these from the ‘quotient stability
conditions’ of Section 8.

Proposition 4.13. Let σ = (P,Z) be a lax pre-stability condition with massless subcategory N.
Put µN(σ) = (PC/N, Z) ∈ Slice(C/N) ×Hom(Λ/ΛN,C).

(1) If the slicing P is well-adapted to N then µN(σ) is a pre-stability condition on C/N.
(2) If σ is a lax stability condition then µN(σ) is a stability condition on C/N.

Proof. (1) By Proposition 4.4 and Proposition 3.6, P is adapted to N and so is compatible
with a pair of slicings (PN, PC/N) on the massless subcategory N and the quotient C/N. If it
is well-adapted then PC/N is locally finite. The charge Z lies in the subspace Hom(Λ/ΛN,C)
and is compatible with the slicing PC/N. There are no massless objects in C/N. Therefore,
µN(σ) = (PC/N, Z) is a pre-stability condition on C/N.

(2) Let σ be a lax stability condition. The support property implies that the slicing PC/N

is locally finite because there are no massless objects in C/N. Hence P is well-adapted to N

and µN(σ) is a lax pre-stability condition by (1). We claim that µN(σ) satisfies the support
property. By Lemma 3.5, the HNfiltration of a µN(σ)-semistable object b has a unique massive
σ-semistable factor c. Let S be a multi-set of massive stable factors of c. Then there is some
constant K > 0 with

mµN(σ)(b) = mσ(c) =
∑

s∈S

mσ(s) ≥
1

K

∑

s∈S

||v(s)|| ≥
1

K
||
∑

s∈S

v(s)|| =
1

K
||vC/N(b)||

using the restricted norm on (Λ/ΛN) ⊗ R for last term. Hence µN(σ) satisfies the support
property. �

Remark 4.14. We can generalise Proposition 4.13 slightly. The same argument shows that if
M ⊂ N is a thick subcategory of the massless subcategory of σ = (P,Z) to which the slicing is
well-adapted, then

(1) there is a lax pre-stability condition µM(σ) = (PC/M, Z) on C/M;
(2) µM(σ) is a lax stability condition when σ is a lax stability condition.

The last point follows from the same calculation as before (or the lemma below), but note that
we now need the extra local-finiteness assumption as this no longer follows from the support
property when there are massless objects.

Given a lax pre-stability condition σ with massless subcategory N then by the proposition
there is an induced pre-stability condition µN(σ) on the quotient. Moreover, σ restricts to a
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fully lax pre-stability condition ρN(σ) on N by restricting the slicing of σ to N and assigning
the zero charge map. This latter construction is taken up again in Corollary 5.8.

Lemma 4.15. Suppose σ = (P,Z) is a lax pre-stability condition with massless subcategory N

and that the slicing is well-adapted to a thick subcategory M ⊂ N. Then ||W ||µM(σ) ≤ ||W ||σ for
all W ∈ Hom(Λ/ΛM,C) with equality when M = N.

Proof. Suppose c is a massive µM(σ)-stable object of phase ϕ. Then by Lemma 3.13 its HNfil-
tration with respect to σ has a single massive semistable factor b also of phase ϕ, with all other
factors in M. Furthermore, any composition series of b in P (ϕ) must have exactly one massive
stable factor, a say, with all other factors in M since otherwise c would fail to be µM(σ)-stable.
Therefore a ∼= c in C/M so that W (a) =W (c). It follows that

||W ||µM(σ) = sup

{
|W (c)|

|Z(c)|
: c massive µM(σ)-stable

}

≤ sup

{
|W (a)|

|Z(a)|
: a massive σ-stable

}
= ||W ||σ .

Now suppose that M = N and b ∈ P (ϕ) is a massive stable object. Let S be a multi-set of
µN(σ)-stable factors of b considered as an object of PC/N(ϕ). Then

|W (b)| ≤
∑

s∈S

|W (s)| ≤ ||W ||µN(σ)
∑

s∈S

|Z(s)| = ||W ||µN(σ)|Z(b)|

by the triangle inequality, the definition of the semi-norm || · ||µN(σ), the fact that W (s) = 0
when s ∈ N, and the fact that all s ∈ S have phase ϕ. Rearranging, ||W ||σ ≤ ||W ||µN(σ). �

The support property satisfied by a lax stability condition is stronger than that for the
induced stability condition on the quotient. The following technical lemma will be useful later
in Lemma 9.5. The case M = N provides a criterion for distinguishing a lax pre-stability
condition which satisfies support on the quotient C/N from a genuine lax stability condition.

Lemma 4.16. Suppose σ is a lax pre-stability condition with massless subcategory N. Let M
be a thick subcategory of N such that each object of M has HNfiltration in M, and assume that
µM(σ) is a lax stability condition. Then any sequence (bn) of massive σ-stable objects with
mσ(bn)/||v(bn)|| → 0 as n→∞ contains a subsequence (cn) with

lim
n→∞

(
v(cn)

||v(cn)||

)
= λ ∈ ΛM ⊗ R.

Moreover, σ is a lax stability condition if and only if there is no such sequence (cn).

Proof. Suppose there is such a sequence (cn). Then

mσ(cn)

||v(cn)||
=

∣∣∣∣Z
(

v(cn)

||v(cn)||

)∣∣∣∣→ |Z(λ)| = 0

since ΛM ⊗ R ⊂ ΛN ⊗ R ⊂ ker(Z). Therefore σ does not satisfy the support property.
Conversely, suppose that σ does not satisfy the support property. Then there is a sequence

(bn) of massive stable objects with mσ(bn)/||v(bn)|| → 0. Let vC/M : K(C) → Λ/ΛM be the
composite of v and the quotient by the primitive sublattice ΛM. Note that Z(vC/M(bn)) 6= 0
because bn is massive and that mσ(bn)/||vC/M(bn)|| is bounded below because µM(σ) satisfies
the support property by assumption. Therefore writing

mσ(bn)

||v(bn)||
=

mσ(bn)

||vC/M(bn)||
·
||vC/M(bn)||

||v(bn)||

we deduce that vC/M(bn)/||v(bn)|| → 0. Passing to a subsequence (cn) such that the unit vectors
v(cn)/||v(cn)|| converge we have

lim
n→∞

(
v(cn)

||v(cn)||

)
= lim

n→∞

(
v(cn)− vC/M(cn)

||v(cn)||

)
∈ ΛM ⊗ R
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where we consider vC/M(cn) ∈ Λ⊗ R via the orthogonal splitting. �

Example 4.17. Let τ be the lax pre-stability condition on C = Db(P1) with massless subcat-
egory N = thick(Ox : x ∈ P1) defined in Example 4.12. The quotient C/N ≃ thickC/N(O) is
generated by a single object with charge i and phase 1/2 in the stability condition on the quo-
tient µN(τ). It follows that µN(τ) satisfies the support property so that τ is a lax pre-stability
condition which satisfies support on the quotient C/N. However, the sequence O(n) of massive
stable objects shows that τ does not satisfy the support property so that τ is not a lax stability
condition.

Recall that pre-stability conditions σ = (P,Z) and τ = (Q,Z) with the same charge and with
d(P,Q) < 1 are equal [6, Lemma 6.4]. There is an analogue for lax pre-stability conditions; the
only difference is that the slicing on the massless objects is not determined by the charge so we
must fix this too.

Corollary 4.18. If σ = (P,Z) and τ = (Q,Z) are lax pre-stability conditions with the same
charge Z, the same massless subcategory N, the same massless slicing PN = QN and d(P,Q) < 1,
then σ = τ .

Proof. The induced pre-stability conditions µN(σ) and µN(τ) have the same charge and the
distance between their slicings is d(PC/N, QC/N) ≤ d(P,Q) < 1. Hence PC/N = QC/N by [6,
Lemma 6.4]. Since PN = QN, and the glued slicing is unique, we deduce that P = Q. �

5. The space of lax stability conditions

Fix a finite rank lattice Λ with a surjective homomorphism v : K(C) → Λ and a norm || · || on
Λ⊗R. Let Stab(C) be the space of stability conditions whose charges factor through v. Recall
[6, §6] that this has the subspace topology from the inclusion Stab(C) ⊂ Slice(C) ×Hom(Λ,C)
where the right hand side has the topology from the metric

d((Q,W ), (P,Z)) = max{d(P,Q), ||W − Z||}

arising from the metric on Slice(C) and the operator norm on Hom(Λ,C).

Definition 5.1. Let Stabl(C) be the subset of lax stability conditions in Slice(C)×Hom(Λ,C)
equipped with the subspace topology. Let

StabL(C) = Stabl(C) ∩ Stab(C)

be the subspace of lax stability conditions in the boundary of Stab(C). Since this will be the
principal object we study we refer to it as the space of lax stability conditions. We also introduce
the larger space StabLS(C) of lax pre-stability conditions which satisfy support on the quotient
of C by the massless subcategory and which lie in the closure of Stab(C).

For a thick subcategory N of C, let StabL(C,N) ⊂ StabL(C) and StabLS(C,N) ⊂ StabLS(C)
denote the subsets where the massless subcategory is N, respectively. For a thick subcategory N

of C, the subset StabL(C,N) ⊂ StabL(C) will be called a stratum of StabL(C). For each space,
the charge map Z is the second projection, e.g. Z : StabL(C)→ Hom(Λ,C).

The subspace StabL(C,N) for N = 0 is just the space of (classical) stability conditions:
StabL(C, 0) = Stab(C). In the other extreme case N = C of lax stability conditions with zero
charge map, the subspace StabL(C,C) is homeomorphic to the closure in Slice(C) of the set of
slicings of stability conditions in Stab(C).

By Proposition 4.13 (2), there is a map µN : Stab
L(C,N)→ Stab(C/N). Note that StabL(C) ⊂

StabLS(C) and StabL(C,N) ⊂ StabLS(C,N) because the support property for σ implies the
support property for µN(σ), but not vice versa in general.

Remark 5.2. For a lax pre-stability condition σ = (P,Z) to be in StabL(C), it needs to have

two properties: the support condition and the closure condition, i.e. σ ∈ Stab(C). Of these two,
the support condition is the main issue. Indeed, Corollary 6.5 and Lemma 6.6 imply that if
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σ has the support property and the restricted slicing on the massless subcategory N is in the
closure of the set of slicings occuring in Stab(N) then σ ∈ Stab(C). Theorem 6.17 refines this
result by showing that under the above assumptions all sufficiently small deformations of σ are
also in Stab(C).

One way to find an example of a lax stability condition not in Stab(C) would be to find one
whose massless subcategory N had empty stability space. However, since the thick subcategory
N always comes with the slicing restricted from P , so in particular carries bounded t-structures,
the obstruction to Stab(N) 6= ∅ could only be the absence of compatible stability functions on
the heart. We do not know if such examples exist.

Lemma 5.3. Suppose σ = (P,Z) is a lax pre-stability condition in Stab(C). Then P (ϕ−ε, ϕ+ε)
is length for any 0 < ε < 1/2.

Proof. Fix 0 < ε < 1/2 and n > 0 with ε+1/n < 1/2. Since σ ∈ Stab(C) there is τ = (Q,W ) ∈
Stab(C) with d(P,Q) < 1/n. Then, for all ϕ ∈ R,

P (ϕ− ε, ϕ+ ε) ⊂ Q(ϕ− ε− 1
n , ϕ+ ε+ 1

n).

Since the latter is length, so is the former because the strict exact structure is inherited from
the triangulated structure on C. �

5.1. Semi-norm neighbourhoods. For ε > 0 and a lax pre-stability condition σ = (P,Z)
define a subset of Slice(C)×Hom(Λ,C) by

Bε(σ) = {(Q,W ) : d(P,Q) < ε and ||W − Z||σ < sin(πε)}.

Proposition 4.11 implies that Bε(σ) is open precisely when σ is a lax stability condition. In
this case it contains all sufficiently small metric balls about σ, but it need not be contained
within any such metric ball because || · ||σ is only a semi -norm. If σ does not satisfy the support
property then Bε(σ) need not even contain any metric ball about σ. It is also important to note
that the condition ||W − Z||σ < sin(πε) is asymmetric in W and Z because Z is the charge of
σ. This asymmetry is illustrated in the example below.

Example 5.4. Let σg = (Pg, Zg) the classical geometric stability condition on C = Db(P1) with
charge Zg = − deg+i · rk, and slicing Pg from Example 3.14, i.e. Pg(1) = 〈Ox : x ∈ P1〉 and
Pg(ϕ) = 〈O(n)〉 for ϕ = 1

π arg(−n + i) ∈ (0, 1). And let σd = (Pd, Zd) := (Pg, 0) be the lax
stability condition with the same slicing but zero charge so that all objects are massless.

Now d(Pg , Pd) = 0 and ||Zg − Zd||σg = ||Zg||σg = 1 and ||Zd − Zg||σd = ||Zg||σd = 0 because
there are no massive σd-stable objects. Thus σg ∈ Bε(σd) but σd 6∈ Bε(σg) for any ε > 0.

For classical σ the intersections of the Bε(σ) with Stab(C) form a basis for the topology, see
[6, §6]. The semi-norm neighbourhoods Bε(σ) are similarly useful for studying the topology of
StabL(C). Clearly, if σ ∈ StabL(C) then Bε(σ) ∩ Stab(C) 6= ∅ for any ε > 0. The next result is
a partial converse.

Lemma 5.5. Suppose σ is a lax pre-stability condition such that Bε(σ) ∩ Stab(C) 6= ∅. Then
σ is a lax stability condition.

Proof. Let σ = (P,Z) and suppose τ = (Q,W ) ∈ Bε(σ) ∩ Stab(C). Suppose c is a massive
σ-stable object, and let S be the set of its τ -semistable factors. Then

mσ(c) = |Z(c)| >
1

1 + sin(πε)
|W (c)| ≥

cos(2πε)

(1 + sin(πε))

∑
s∈S |W (s)|

≥
cos(2πε)

K(1 + sin(πε))

∑
s∈S ||v(s)|| ≥

cos(2πε)

K(1 + sin(πε))
||v(c)||,

where we have used successively the norm bound ||W−Z||σ < sin(πε) and the triangle inequality,
the fact that d(P,Q) < ε, the support property for τ , and the triangle inequality for the norm
on Λ⊗ R. �
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The HNfactors of a massless object are, by definition, massless. In fact, this property persists
in an open neighbourhood in the following sense.

Lemma 5.6. Let σ = (P,Z) be a lax pre-stability condition with massless subcategory N. If
d(P,Q) < 1/8 then Q restricts to a slicing QN on N. In particular this applies to the slicing of
any lax pre-stability condition in Bε(σ) for 0 < ε < 1/8.

Proof. Let d(P,Q) < ε < 1/8. We must show that the Q-semistable factors of any c ∈ N lie in
N. Suppose b ∈ Q(ϕ) is a Q-semistable factor of c ∈ N. Then b is also a Q-semistable factor of

c′ = H
(ϕ−ε,ϕ+ε)
P (c) because Q(ϕ) ⊂ P (ϕ− ε, ϕ + ε) so that

Hϕ
Q(c

′) = Hϕ
QH

(ϕ−ε,ϕ+ε)
P (c) = Hϕ

Q(c) = b.

Moreover, c′ ∈ N too, since each of its P -semistable factors lies in N. In particular, Z(c′) = 0.
Let b1, . . . , bm be the Q-semistable factors of c′, so that b = bi for some 1 ≤ i ≤ m. Since

c′ ∈ P (ϕ− ε, ϕ+ ε) ⊂ Q(ϕ− 2ε, ϕ + 2ε) we have

b1, . . . , bm ∈ Q(ϕ− 2ε, ϕ + 2ε) ⊂ P (ϕ− 3ε, ϕ + 3ε).

Now let bij for j = 1, . . . , ni be the P -semistable factors of bi for 1 ≤ i ≤ m. Since 6ε < 1 the
equation ∑

i,j

Z(bij) =
∑

i

Z(bi) = Z(c′) = 0

implies that Z(bij) = 0, and hence that bij ∈ N, for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni. In
particular, all P -semistable factors of b lie in N, so that b ∈ N as claimed. �

Recall the constructions of restriction and quotient stability conditions:

ρN : StabL(C,N)→ StabL(N) , σ = (P,Z) 7→ ρN(σ) = (PN, 0);

µN : StabL(C,N)→ Stab(C/N) , σ = (P,Z) 7→ µN(σ) = (PC/N, Z);

for the latter, see Proposition 4.13. The next lemma says that these maps are contractions and
hence, in particular, continuous.

Lemma 5.7. Let σ and τ be lax pre-stability conditions on C such that their slicings are adapted
to a thick subcategory N of C. Then

d(µN(σ), µN(τ)) ≤ d(σ, τ) and d(ρN(σ), ρN(τ)) ≤ d(σ, τ).

Proof. Writing σ = (P,Z) and τ = (Q,W ), Corollary 3.7 gives d(PN, QN) ≤ d(P,Q) and
d(PC/N, QC/N) ≤ d(P,Q). For any U ∈ Hom(Λ,C) let UN = U |ΛN

∈ Hom(ΛN,C) be the
restriction. Using the embedding Hom(ΛN,C) →֒ Hom(Λ,C) arising from the inner product on
Λ⊗R, see §2.3, we may also consider UN ∈ Hom(Λ,C). Write (in this proof only) U ′

N
= U −UN

for the component in the orthogonal complement Hom(Λ/ΛN,C) to Hom(ΛN,C). Because
U = UN+U

′
N
is an orthogonal decomposition: ||U ||2 = ||UN||

2+ ||U ′
N
||2. Applied to U := Z−W ,

this shows that ||ZN−WN|| ≤ ||Z −W || and ||Z
′
N
−W ′

N
|| ≤ ||Z −W ||. The claimed inequalities

follow because ρN(σ) = (PN, ZN) and µN(σ) = (PC/N, Z
′
N
), and likewise for τ . �

If σ = (P,Z) ∈ StabL(C,N) then its restriction to the massless subcategory produces a lax
stability condition ρN(σ) = (P ∩ N, 0) in which all objects are massless. By Lemma 5.6, this
construction extends to nearby lax stability conditions.

Corollary 5.8. Given σ = (P,Z) ∈ StabL(C,N) and 0 < ε < 1/16 there is a continuous map

ρN : {τ = (Q,W ) ∈ StabL(C) : d(P,Q) < ε} → StabL(N)

τ = (Q,W ) 7→ ρN(τ) = (Q ∩ N,WN),

in particular this restricts to a map ρN : Bε(σ) ∩ StabL(C)→ StabL(N).
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Proof. The restriction, ρN(τ), is a lax pre-stability condition by Lemma 5.6. It also satisfies the
support property because QN(ϕ) ⊂ Q(ϕ) and so a ρN(τ)-semistable object s is also τ -semistable,
hence v(s) = vN(s) ∈ ΛN. In particular, the restricted charge map WN satisfies

mρN(τ)(s) = |WN(vN(s))| = |W (v(s))| ≥
1

K
||v(s)|| =

1

K
||vN(s)||.

Next, we check that ρN(τ) ∈ Stab(N). Since τ ∈ StabL(C) ⊆ Stab(C), for each ε > 0 there
exists σε = (Pε, Zε) ∈ Stab(C) with d(τ, σε) < ε in the metric on Slice(C) × Hom(Λ,C). As
d(P,Pε) ≤ d(P,Q) + d(Q,Pε) < ε+ ε = 2ε, the slicing Pε restricts to N by Lemma 5.6. Hence,

d(ρN(τ), ρN(σε)) < ε in the metric on Slice(N)× Hom(ΛN,C). It follows that ρN(τ) ∈ Stab(N).
Finally, the map ρN is continuous by Lemma 5.7. �

The next result shows that the massless subcategory of a lax pre-stability condition varies
semi-continuously.

Lemma 5.9. Suppose σ is a lax pre-stability condition with massless subcategory N. If τ =
(Q,W ) ∈ Bε(σ) for 0 < ε < 1/8, then the massless subcategories Nτ ⊂ N are nested. Moreover,
the inclusion is equality if and only if W ∈ Hom(Λ/ΛN,C) ⊂ Hom(Λ,C).

Proof. Let σ = (P,Z). For σ-stable c ∈ C there is an inequality

(2) (1− sin(πε))|Z(c)| ≤ |W (c)|.

This is evident if c is massless, and follows from the definition of the norm and the (reverse)
triangle inequality if it is massive.

Now suppose b ∈ Q(ϕ) is τ -semistable. Let S be a (finite) multi-set of σ-stable factors of b.
Since τ ∈ Bε(σ) we know that S ⊂ P (ϕ−ε, ϕ+ε) ⊂ Q(ϕ−2ε, ϕ+2ε). Hence, using elementary
trigonometry and the inequality (2) we have

|W (b)| ≥ cos(2πε)
∑

s∈S

|W (s)| ≥ (1− sin(πε)) cos(2πε)
∑

s∈S

|Z(s)|.

Therefore mτ (b) ≥ (1− sin(πε)) cos(2πε)mσ(b). In particular, if b ∈ Nτ then b ∈ N.
For the equality statement, clearly, W ∈ Hom(Λ/ΛN,C) if and only if W (c) = 0 for all

c ∈ N. In particular, if Nτ = N then W ∈ Hom(Λ/ΛN,C). Conversely, if W ∈ Hom(Λ/ΛN,C)
then, by Lemma 5.6, the τ -semistable factors of any c ∈ N are also in N which implies that
mτ (c) = 0 because |W (c)| ≤

∑
s∈S |W (s)| ≤ ||W ||σ

∑
s∈S |Z(s)| = 0, where S is the multi-set

of τ -semistable factors of c. Hence Nτ ⊃ N and so we have equality as claimed. �

We next show that the quotient stability map extends to the closure of StabL(C,N).

Proposition 5.10. The map µN : Stab
L(C,N)→ Stab(C/N) extends to a continuous map

µN : Stab
L(C,N)→ StabL(C/N) .

Moreover, µN(σ) ∈ Stab(C/N) ⇐⇒ σ ∈ StabL(C,N).

Proof. By Proposition 4.13, the assignment σ = (P,Z) 7→ (PC/N, Z) = µN(σ) defines a map

StabL(C,N)→ Stab(C/N). It is continuous by Lemma 5.7.
If σ is in the boundary of StabL(C,N) in StabL(C) then it has massless subcategory Nσ ⊃ N

by Lemma 5.9. We claim that the slicing P is well-adapted to N.
Suppose c ∈ N has a σ-semistable factor b 6∈ N. For sufficiently close τ = (Q,W ) ∈

StabL(C,N) the HNfiltration of c with respect to τ will be the concatenation of the filtra-
tions of its σ-semistable factors. Since b 6∈ N its filtration must contain at least one factor not
in N. This contradicts Proposition 4.4 which says that Q is adapted to N. Therefore P restricts
to N after all.

Now suppose that b ∈ N ∩ P (I) and that 0 → a → b → c → 0 is a short exact sequence in
the abelian category P (I). Then for sufficiently close τ = (Q,W ) in StabL(C,N) and suitable
strict length one interval J it is also a short exact sequence in Q(J). Therefore a, c ∈ N because
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Q is adapted to N by Proposition 4.4. Since N ∩ P (I) is clearly extension-closed it is therefore
a Serre subcategory of P (I). Thus P is adapted to N.

By Proposition 3.6 there is a slicing PC/N on the quotient. Since d(PC/N, QC/N) ≤ d(P,Q)

and σ ∈ StabL(C,N) this slicing is the limit of slicings appearing in Stab(C/N). Thus PC/N is
locally finite by Lemma 5.3. Therefore P is well-adapted to N as claimed.

It follows that µN(σ) is well-defined by Remark 4.14, is in the boundary of Stab(C/N), inherits
the support property from σ and has massless subcategory Nσ/N. Hence it is in StabL(C/N) as
claimed. �

Finally we relate the semi-norms associated to nearby lax pre-stability conditions. This is
the (weaker) analogue of the fact that the norms associated to stability conditions in the same
component of Stab(C) are equivalent, cf. [6, Lemma 6.2].

Lemma 5.11. Let σ be a lax pre-stability condition with massless subcategory N and let τ ∈
Bε(σ). Then for any U ∈ Hom(Λ/ΛN,C)

||U ||τ ≤
||U ||σ

(1− sin(πε)) cos(2πε)
.

Proof. Let σ = (P,Z) and τ = (Q,W ). Suppose b ∈ Q(ϕ) is a massive τ -stable object and S is
a multi-set of its σ-stable factors. Note that |U(s)| ≤ ||U ||σ |Z(s)| for each s ∈ S by definition
of || · ||σ when s is massive, and trivially when s is massless since then U(s) = 0. Therefore,
using (2) and the fact that S ⊂ P (ϕ− ε, ϕ + ε) ⊂ Q(ϕ− 2ε, ϕ + 2ε), we have

|U(b)| ≤
∑

s∈S

|U(s)| ≤ ||U ||σ
∑

s∈S

|Z(s)| ≤
||U ||σ

1− sin(πε)

∑

s∈S

|W (s)| ≤
||U ||σ

1− sin(πε)
·
|W (b)|

cos(2πε)
.

Dividing by |W (b)| and taking the supremum over all massive τ -stable b ∈ C gives the result. �

5.2. Continuity of masses and phases.

Proposition 5.12. For each 0 6= c ∈ C the functions σ 7→ mσ(c) and σ 7→ ϕ±
σ (c) are continuous

on StabL(C).

Proof. Fix 0 6= c ∈ C. The result is immediate for the minimal and maximal phases ϕ±
σ (c). To

show that the mass is continuous consider σ = (P,Z) ∈ StabL(C). For sufficiently small ε > 0
and τ = (Q,W ) with d(P,Q) < ε the HNfiltration of c with respect to τ is the concatenation
of the filtrations of the σ-semistable factors {ci} of c. Hence

mτ (c)−mσ(c) =
∑

i

(mτ (ci)−mσ(ci)).

Therefore it suffices to consider the case in which c is σ-semistable. Assume c ∈ P (ϕ) and let S
be a multi-set of τ -stable factors of c. Since d(P,Q) < ε and c ∈ P (ϕ) we have S ⊂ Q(ϕ−ε, ϕ+ε).
By the triangle inequality and elementary trigonometry

|W (c)| ≤
∑

s∈S

|W (s)| ≤
|W (c)|

cos(2πε)

and therefore

|mτ (c)−mσ(c)| =

∣∣∣∣∣
∑

s∈S

|W (s)| − |Z(c)|

∣∣∣∣∣ ≤ max

{
|Z(c)| − |W (c)|,

|W (c)|

cos(2πε)
− |Z(c)|

}
.

Applying the triangle inequality to each term on the right-hand side and the operator norm
bounds |W (c)− Z(c)| ≤ ||W − Z|| · ||v(c)|| and |Z(c)| ≤ ||Z|| · ||v(c)|| we obtain

|mτ (c)−mσ(c)| ≤ max

{
||W − Z||,

||W − Z||+ (1− cos(2πε))||Z||

cos(2πε)

}
||v(c)||.

Requiring ||W − Z|| < ε, in addition to d(P,Q) < ε, we see the bound can be made arbitrarily
small by reducing ε. The result follows. �
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Proposition 5.13. For any c ∈ C the function σ 7→ mσ(c) is locally constant on the fibres of the
charge map Z : StabL(C) → Hom(Λ,C). Moreover, the set of phases of the massive semistable
factors of c is also locally constant on the fibres of Z.

Proof. Fix c ∈ C and σ ∈ StabL(C). Then for τ sufficiently close to σ the HNfiltration of c with
respect to τ is the concatenation of the filtrations of the σ-semistable factors of c. Suppose
ci is one of these σ-semistable factors. The charges of the τ -semistable factors of ci lie in a
cone of angle 2πε in C, centred on the phase of ci. If Z(τ) = Z(σ) then all but one of the
τ -semistable factors of ci must be massless because otherwise the massive semistable factors
would already destabilise ci with respect to σ. The unique massive factor must have the same
charge, in particular the same mass, as ci. It follows that mτ (c) = mσ(c), and also that the sets
of phases of the massive factors of c with respect to σ and τ are the same. �

Corollary 5.14. The subcategory N of massless objects, and the stability condition on the
quotient µN(σ) are locally constant on the fibres of the charge map Z : StabL(C)→ Hom(Λ,C).

Proof. The massless subcategory N and the semistable objects of the stability condition on the
quotient µN(σ) are locally constant on the fibres of the projection by Proposition 5.13. By
construction the charge of µN(σ) is constant. �

5.3. Group actions. Let AutΛ(C) be the subgroup of auto-equivalences α : C → C which
descend (necessarily uniquely) to an isomorphism [α] : Λ → Λ with v ◦ α = [α] ◦ v. Then
AutΛ(C) acts smoothly on the left of Stab(C) via

(P,Z) 7→
(
α ◦ P,Z ◦ [α]−1

)
.

There is also a smooth right action of the universal cover G of the orientation-preserving compo-
nent GL+

2 (R). An element g ∈ G corresponds to a pair (Tg, θg) where Tg is the projection of g to
GL+

2 (R) under the covering map and θg : R→ R is an increasing map with θg(t+1) = θg(t)+ 1
which induces the same map as Tg on the circle R/2Z = (R2 − {0})/R>0. The element acts by

(3) (P,Z) 7→
(
P ◦ θg, T

−1
g ◦ Z

)

where we think of the central charge as taking values in R2. This action preserves the semistable
and stable objects and the HNfiltrations of all objects. The subgroup consisting of pairs with
T conformal is isomorphic to C with w ∈ C acting via

(P,Z) 7→
(
P (ϕ+Rew), exp(−iπw)Z)

)

i.e. by rotating the phases and rescaling the masses of semistable objects. The C action is free
provided C 6= 0. Clearly the charge map Z : Stab(C) → Hom(Λ,C) is equivariant with respect
to these actions and the evident actions on Hom(Λ,C).

The group actions preserve the semi-norms || · ||σ for σ ∈ StabL(C) in the sense that

(4) ||α · U · w||α·σ·w = ||U ||σ

for any automorphism α ∈ AutΛ(C), element w ∈ C and charge U ∈ Hom(Λ,C). They also
preserve the semi-norm neighbourhoods: α ·Bε(σ) ·w = Bε(α · σ ·w) for any α ∈ AutΛ(C) and
w ∈ C.

Lemma 5.15. The actions of AutΛ(C) and of G on Stab(C) extend uniquely to continuous
actions on StabL(C) so that the charge map is equivariant. Elements of G preserve StabL(C,N)
and each α ∈ AutΛ(C) maps StabL(C,N) to StabL(C, α(N)). The map µN : Stab

L(C,N) →
Stab(C/N) is G-equivariant and such that

StabL(C,N) StabL(C, α(N))

Stab(C/N) Stab(C/α(N))

α

µN µα(N)

α
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commutes for each α ∈ AutΛ(C). In particular µN is equivariant for the subgroup of AutΛ(C)
preserving N.

Proof. The actions of AutΛ(C) and G extend to continuous actions on Slice(C) × Hom(Λ,C)
which preserve the subsets of lax and classical stability conditions. Hence they preserve StabL(C).
The equivariance of the charge map and the properties of the µN are easy to verify. �

5.4. Neighbourhoods of strata. Fix 0 < ε < 1/8 and consider the open neighbourhood

BLε (C,N) = StabL(C) ∩
⋃

σ∈StabL(C,N)

Bε(σ)

of StabL(C,N) in StabL(C). Intuitively this is the subset where objects of N, and only those,
are close to massless. These neighbourhoods are C-invariant and compatible with the action of
automorphisms in the sense that α · BLε (C,N) = BLε (C, α(N)). Note that BLε (C, 0) = Stab(C),

and that BLε (C,C) = StabL(C) because the closure of the C-orbit of any σ ∈ StabL(C) contains
a lax stability condition with massless subcategory C.

For σ ∈ StabL(C,N), Corollary 5.8 shows that restriction (Q,W ) 7→ (Q ∩ N,W |ΛN
) gives a

continuous map ρN : Bε(σ)∩Stab
L(C)→ StabL(N). It clearly extends to BLε (C,N) so that there

is a commutative diagram

BLε (C,N) StabL(N)

Hom(Λ,C) Hom(ΛN,C)

ρN

Z Z

of continuous maps which are equivariant for the right action of C and for the left action of the
subgroup of automorphisms preserving N. More generally, α · ρN(σ) = ρα(N)(α · σ) as elements

of StabL(α(N)) for any α ∈ AutΛ(C).

6. Deforming lax stability conditions

The technical heart of the theory of stability conditions is Theorem 4.1 which governs their
deformation. We cannot expect such a simple result for lax stability conditions, but it turns
out that it is still possible to deform them in a reasonable way. The heuristic is that the massive
and massless parts of a lax stability condition deform independently.

6.1. Tangential, normal and fibrewise deformations. For a lax stability condition σ =
(P,Z) ∈ StabL(C,N) with massless subcategory N, the base of the charge map Z : StabL(C)→
Hom(Λ,C) decomposes as

Hom(ΛN,C)⊕Hom(Λ/ΛN,C),

with Z ∈ Hom(Λ/ΛN,C). Here, as elsewhere, we consider Hom(ΛN,C) as a subspace of
Hom(Λ,C) using the splitting arising from the inner product on Λ ⊗ R — see §2.3. It is
geometrically appealing to distinguish three (not mutually exclusive) cases of deformation:

(1) A tangential deformation of σ is given by varying the charge in Hom(Λ/ΛN,C). Such a
deformation fixes the massless subcategory and hence stays inside StabL(C,N).

(2) A normal deformation of σ is given by varying the charge in Hom(ΛN,C). Such a

deformation moves out of StabL(C,N) into StabL(C,M) for some thick subcategory M

of N. We think of this as deforming in a normal slice to the stratum.
(3) A fibrewise deformation of σ takes place when the charge function is fixed, i.e. only the

slicing is deformed. In the classical setting, the charge map Stab(C) → Hom(Λ,C) has
discrete fibres, so there are no non-trivial fibrewise deformations. However for the lax
stability condition σ we can potentially vary the slicing on N in a continuous way, as
this is not controlled by the charge function.
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We begin with a variant of Theorem 4.1 which shows that a lax stability condition with massless
subcategory N can be freely deformed in the normal direction with respect to a nearby stability
condition on N.

Theorem 6.1. Suppose σ = (P,Z) is a lax pre-stability condition on C with massless subcat-
egory N. Then there is some 0 < ε0 < 1/8 such that for any 0 < ε < ε0 and pre-stability
condition τN = (QN,WN) on N with

• ||WN||σ < sin(πε)
• and d(PN, QN) < ε

there is a unique pre-stability condition τ = (Q,W ) on C with

• charge W = Z +WN,
• restricted slicing Q ∩ N = QN

• and d(P,Q) < ε.

If σ ∈ Stabl(C) and τN ∈ Stab(N) then τ ∈ Stab(C).

Remark 6.2. This is a normal deformation at least whenever τN is a stability condition — the
charge Z is changed by WN ∈ Hom(ΛN,C), and since the deformation τ is in Stab(C) which has
discrete fibres over Hom(Λ,C), the slicing of τ cannot be deformed in the fibre. The construction
defines a continuous map

(5) δN : Stab
L(C,N) ×Slice(N) Stab(N) 99K Stab(C)

where the fibre product denotes the set of pairs (σ, τN) ∈ StabL(C,N)× Stab(N) whose slicings
agree on N and the dashed arrow indicates that the map is only defined on the open subset
where the charge WN of τN satisfies ||WN||σ < sin(πε) for some suitably small ε > 0.

The continuity of the charge Z + WN of δN(σ, τN) is evident; the continuity of the slicing
follows from the fact that Stab(C) is locally homeomorphic to Hom(Λ,C) and Corollary 4.18.

Proof. Choose 0 < ε0 < 1/8 sufficiently small so that P (ϕ − 4ε0, ϕ + 4ε0) is a length category
for all ϕ ∈ R and fix 0 < ε < ε0. Recall that P (s, t) is a thin subcategory, see [6, Definition 7.2],
if 0 < t − s < 1 − 2ε, and that this implies that it is quasi-abelian. The charge W = Z +WN

defines a skewed stability function, see [6, Definition 4.4], on any thin subcategory P (s, t).
That is, W : K(P (s, t)) → C is a group homomorphism taking every non-zero object into a
rotated copy of the strict half-plane H ∪ R<0. To see why, suppose that c ∈ P (ϕ) for some
ϕ ∈ (s, t). Let A be a finite multi-set of stable factors of c in the quasi-abelian length category
P (ϕ). If, on the one hand, a ∈ A is a massless stable object in N then a ∈ QN(ϕ − ε, ϕ + ε)
and so W (a) = (Z + WN)(a) = WN(a) is non-zero and therefore one can assign the phase
1
π argWN(a) ∈ (s− ε, t+ ε) to a. On the other hand, if a 6∈ N is a massive stable factor then

|W (a)− Z(a)| < sin(πε)|Z(a)|

because ||W − Z||σ = ||WN||σ < sin(πε). Therefore W (a) 6= 0 and differs in phase from
Z(a) by less than ε and again the phase of a with respect to W lies in (s − ε, t + ε). Since
W (c) =

∑
a∈AW (a) we conclude thatW (c) 6= 0 too and the phase of c, 1

π argW (c) ∈ (s−ε, t+ε).
The remainder of the proof follows that of Theorem 4.1 in [6, §7] verbatim. This is possible

because, after the above initial step of showing that W defines a skewed stability function on
each thin subcategory, the charge Z and the masses of objects with respect to σ play no role in
the proof, one only uses the locally finite slicing P . Therefore the same argument goes through
even though σ is lax, and we can construct a unique pre-stability condition τ = (Q,W ) with
d(P,Q) < ε.

By Lemma 5.6 the slicing Q restricts to a slicing Q ∩ N on N with d(PN, Q ∩ N) < ε. Since
σ has massless subcategory N we know Z ∈ Hom(Λ/ΛN,C) so that W |ΛN

= WN. Therefore
τ = (Q,W ) restricts to a pre-stability condition on N with chargeWN and slicing within distance
2ε of QN. By Corollary 4.18 it follows that the restriction is τN, i.e. that Q∩N = QN as claimed.

Finally, we must verify that τ satisfies the support property when σ and τN do. We may
assume that σ and τN satisfy K-support for the same constant K. Suppose b ∈ Q(ϕ) and let
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S be a multi-set of its σ-stable factors. Since d(P,Q) < ε these factors lie in P (ϕ− ε, ϕ+ ε) ⊂
Q(ϕ− 2ε, ϕ + 2ε). Therefore

mτ (b) = |W (b)| ≥ cos(2πε)
∑

s∈S

|W (s)|.

We consider massive factors in S − N and massless ones in S ∩ N separately. For a massive
σ-stable factor s the triangle inequality in C, the norm estimate ||W − Z||σ < sin(πε), and
support for σ imply that

|W (s)| ≥ |Z(s)| − |Z(s)−W (s)| > (1− sin(πε))|Z(s)| ≥
1− sin(πε)

K
||v(s)||.

For a massless factor s in S ∩N consider the set T of its τ -semistable factors. Since d(P,Q) < ε
these lie in Q(ψ − ε, ψ + ε) where s ∈ P (ψ). Moreover, since the slicing Q restricts to the
slicing QN on N we know that each t ∈ T is a τN-semistable object in N, and in particular that
W (t) = Z(t) +WN(t) = WN(t). Together with support for τN and the triangle inequality for
the norm || · || these observations yield the inequality

|W (s)| ≥ cos(2πε)
∑

t∈T

|W (t)| = cos(2πε)
∑

t∈T

|WN(t)| ≥
cos(2πε)

K

∑

t∈T

||v(t)|| ≥
cos(2πε)

K
||v(s)||.

Combining these estimates for the massive and massless factors of b, and using the triangle
inequality for the norm again, gives

mτ (b) ≥
1

L

∑

s∈S

||v(s)|| ≥
1

L
||v(b)||

where L = Kmax{1/(1 − sin(πε)), 1/ cos(πε)}.
Hence τ satisfies the support property and so is a stability condition in Stab(C). �

Example 6.3. Let C = Db(P1) and Λ = K(P1) ∼= Z2 with basis [O], [Ox]. The inner product
is chosen so that this basis is orthonormal. Let σ = (P,Z) be the lax stability condition
with charge Z(O) = 0, Z(Ox) = −1 and slicing P = Pb from Example 3.14, i.e. P (1) =
〈Ox,O(n),O(−n)[1] : x ∈ P1, n ∈ N>0 〉 and P (1/2) = 〈O 〉. The massless subcategory N =
thick(O) and the massive stable objects are, up to shifts, the skyscrapers Ox for x ∈ P1, the
line bundle O(1) and the shifted line bundle O(−1)[1]. This lax stability condition can be
deformed to a classical one using the previous result. Let τN = (QN,WN) where QN = PN is the
restricted slicing with QN(1/2) = 〈O〉 and WN(O) = ri for some r > 0. Considered as a charge
in Hom(Λ,C) via the orthogonal splitting we also have WN(Ox) = 0. Therefore

||WN||σ = sup

{
|WN(c)|

|Z(c)|
: c massive σ-stable

}
= sup

{ r
n
: n 6= 0

}
= r

and the conditions of Theorem 6.1 are satisfied. The deformed stability condition τ = (Q,W )
has chargeW (Ox) = −1, W (O(n)) = −n+ri and heart Q(0, 1] = coh(P1). Note that d(P,Q) =
arctan(r) so that the slicing converges to P as r → 0.

Example 6.4. In contrast there are lax pre-stability conditions which cannot be deformed to
classical ones. Again on C = Db(P1), let τ = (Q,W ) be defined by the charge W (Ox) = 0,
W (O) = i and slicing Q = Pt from Example 3.14, i.e. Q(1/2) = 〈O(n) : n ∈ Z 〉 and Q(1) =
〈Ox : x ∈ P1 〉. The massless subcategory N = thick(Ox : x ∈ P1) and the massive stable objects
are, up to shifts, the line bundles O(n) for n ∈ Z. Let τN = (QN,WN) where WN(Ox) = w for
some 0 6= w ∈ C and QN is a compatible slicing. Considering WN as a charge in Hom(Λ,C) via
the orthogonal splitting we also have WN(O) = 0. Therefore

||WN||τ = sup

{
|WN(c)|

|W (c)|
: c massive τ -stable

}
= sup{|n||w| : n ∈ Z} =∞.

Thus the conditions of Theorem 6.1 are not satisfied. Indeed we have already seen in Exam-
ples 4.12 and 4.17 that τ is not a lax stability condition, so not in StabL(C), because it does
not satisfy the support property as well as not being in the closure of Stab(C).
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Theorem 6.1 leads to the following inductive criterion for recognising when a lax stability
condition is in StabL(C).

Corollary 6.5. Suppose σ ∈ Stabl(C) is a lax stability condition with massless subcategory N.
Then σ ∈ StabL(C) ⇐⇒ ρN(σ) ∈ StabL(N).

Proof. If σ = (P,Z) ∈ StabL(C,N) then ρN(σ) ∈ StabL(N) by Lemma 5.6.
Conversely, if ρN(σ) = (PN, 0) ∈ StabL(N) then we can choose a sequence of stability condi-

tions (Qn,Wn) ∈ Stab(N) converging to (PN, 0) in the sense that d(PN, Qn)→ 0 and Wn → 0 in
the operator norm on Hom(ΛN,C). It follows thatWn → 0 in the operator norm on Hom(Λ,C),
where as usual we consider Wn ∈ Hom(Λ,C) via the fixed splitting Hom(ΛN,C) →֒ Hom(Λ,C).
Since σ satisfies the support property this implies ||Wn||σ → 0. Therefore we can apply Theo-
rem 6.1 to lift this sequence uniquely to a sequence of stability conditions (Pn, Z+Wn) ∈ Stab(C)
converging to (P,Z) = σ. Hence σ ∈ StabL(C) as claimed. �

The above criterion is tautological, and useless, when every object is massless i.e. when N = C.
In that case we have the following result.

Lemma 6.6. Suppose P is a slicing. Then

(P, 0) ∈ StabL(C) ⇐⇒ P ∈ {Q : (Q,W ) ∈ Stab(C)}.

Proof. Suppose (P, 0) ∈ StabL(C). Then there is a sequence (Pn, Zn) of stability conditions in
Stab(C) converging to it, in particular with Pn → P .

Conversely, suppose Pn → P and there exists a charge Zn such that (Pn, Zn) ∈ Stab(C) for
each n ∈ N. Then P is locally finite by Lemma 5.3. Moreover, (Pn, Zn/n||Zn||) ∈ Stab(C)

and converges to (P, 0) in Slice(C) × Hom(Λ,C) as n → ∞. So (P, 0) ∈ Stab(C) and since the
support property is automatic when all objects are massless in fact (P, 0) ∈ StabL(C). �

Example 6.7. Suppose C = Db(kA2), where A2 is the quiver 1 −→ 2. Define a sequence of
stability conditions τn = (Qn,Wn) viaWn(S1) = −1/n andWn(S2) = i/en, where S1 and S2 are
the simple modules at 1 and 2 in the standard heart, respectively. Note that the indecomposable
projective module P1 in mod(kA2) is also τn-semistable. The limit slicing Q = limn→∞Qn is
given by Q(1/2) = add(S2) and Q(1) = add(S1 ⊕ P1). Note that Q is not a slicing for any
(pre-)stability condition on Db(kA2) because the slice Q(1) is not abelian.

We now refine Theorem 6.1 by considering deformations of a lax pre-stability condition with
massless subcategory N to one with massless subcategory M ⊂ N. We saw in the proof of
Proposition 5.10 that if σ = (P,Z) is in the closure of StabL(C,M) then P is well-adapted to
M. Therefore it is natural to impose this condition. The result is weaker than Theorem 6.1 in
that even if we start with lax stability conditions on C and N, we only show that the resulting
deformation is a lax pre-stability condition which satisfies support on the quotient C/M but not

necessarily on C; the set of such is denoted Stabls(C,M) below. In the notation of Remark 6.2,
we get a continuous map

(6) δN,M : Stabl(C,N) ×Slice(N) Stab
l(N,M) 99K Stabls(C,M)

where the domain is the set of pairs (σ, τN) whose slicings agree on N, and are well-adapted
to the subcategory M. It is not clear that this is an open subset of the fibre product. It is a
natural question when the image of this map is within lax stability conditions; this is discussed
in Subsection 6.2.

Proposition 6.8. Suppose σ = (P,Z) is a lax pre-stability condition on C with massless sub-
category N such that P is well-adapted to the thick subcategory M of N. Then there is some
0 < ε0 < 1/8 such that for any 0 < ε < ε0 and lax pre-stability condition τN = (QN,WN) on N

with

• massless subcategory M,
• ||WN||σ < sin(πε)
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• and d(PN, QN) < ε

there is a unique lax pre-stability condition τ = (Q,W ) on C with

• massless subcategory M,
• W = Z +WN,
• restricted slicing Q ∩ N = QN

• and d(P,Q) < ε.

If in addition σ ∈ Stabl(C) and τN ∈ Stabl(N) then τ ∈ Stabls(C).

Remark 6.9. We do not know if a version of the last statement holds that includes the closure
property, i.e. whether σ ∈ StabL(C) and τN ∈ StabL(N) implies τ ∈ StabLS(C).

Proof. For M = 0 this is Theorem 6.1. When M 6= 0 the strategy is to reduce to this case by
taking the quotient by M and then lifting back up to C using Proposition 3.10.

We first observe that QN is well-adapted to M. It is adapted to M by Proposition 4.4, so we
just need to see that QN/M is locally finite. The restricted slicing PC/M(ϕ) ∩ N/M = PN/M(ϕ)
for each ϕ ∈ R because the proof of Proposition 3.2 shows that each is the full subcategory
of N/M consisting of those objects having an HNfiltration with one factor in P (ϕ) ∩ N and all
others in M. Hence, since d(PN/M, QN/M) ≤ d(PN, QN) < ε by Corollary 3.7, and PN/M is a
locally finite slicing, so is QN/M. Now, by Proposition 4.13, τN induces a pre-stability condition
µM(τN) = (QN/M,WN) on N/M. Moreover, since P is well-adapted to M, Remark 4.14 shows
there is a lax pre-stability condition µM(σ) = (PC/M, Z) on C/M with massless subcategory
N/M. We verify that these satisfy the conditions of Theorem 6.1.

The charge WN is in Hom(ΛN/ΛM,C) and the splitting Hom(ΛN,C) →֒ Hom(Λ,C) restricts
to one Hom(ΛN/ΛM,C) →֒ Hom(Λ/ΛM,C). We use this to consider WN as an element of
Hom(Λ/ΛM,C). With this identification ||WN||µM(σ) ≤ ||WN||σ < sin(πε) by Lemma 4.15.
Since the restricted slicing PC/M(ϕ) ∩ N/M = PN/M(ϕ) for each ϕ ∈ R and d(PN/M, QN/M) ≤
d(PN, QN) < ε the conditions of Theorem 6.1 are satisfied. Applying that result we construct a
pre-stability condition (QC/M,WC/M) on C/M where WC/M = Z +WN and d(PC/M, QC/M) < ε.

Since d(PM, QM) ≤ d(PN, QN) < ε we can use Proposition 3.10 to glue QM and QC/M to a
locally finite slicing Q with d(P,Q) < ε by Lemma 3.11. By Lemma 5.6 this slicing Q restricts to
N. It follows from the construction that the restriction is the slicing glued from QM and QN/M,
which by uniqueness is QN. Thus we have constructed a lax pre-stability condition τ = (Q,W )
with d(P,Q) < ε, massless subcategory M, charge W = Z+WN and slicing Q restricting to QN

on N. Corollary 4.18 implies that τ is unique with these properties.
Finally, when σ and τN are lax stability conditions then µM(σ) is a lax stability condition

and µM(τN) a stability condition. Therefore by the last part of Theorem 6.1 the pre-stability

condition on the quotient µM(τ) = (QC/M, Z +WN) is in Stab(C/M). Hence, τ ∈ Stabls(C) as
claimed. �

The deformations described in this result are in general neither purely normal nor fibrewise,
but a mixture of the two: the charge W is changed by WN ∈ Hom(ΛN,C), so for M 6= N, a
component of the deformation occurs in the normal direction, but for M 6= 0 the slicing on N is
not fully determined by WN, and the choice of QN determines the fibrewise deformation. When
M = N the deformation is purely fibrewise since the charge, indeed the associated pre-stability
condition on the quotient, is fixed and only the massless slicing is deformed.

Corollary 6.10. Suppose σ = (P,Z) is a lax pre-stability condition on C with massless sub-
category N. Then there is some ε0 > 0 such that for any 0 < ε < ε0 and QN ∈ Slice(N) with
d(PN, QN) < ε there is a unique lax pre-stability condition τ = (Q,Z) on C with

• massless subcategory N

• massless slicing QN

• and d(P,Q) < ε.

If σ is a lax stability condition then we may choose ε0 = 1/4.
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Proof. This is the special case M = N of Proposition 6.8, i.e. τN = (QN, 0) except for the last
statement. If σ is a lax stability condition then P (I) is length for any interval I of length strictly
less than one by Lemma 5.3. Therefore we may choose ε0 = 1/4. �

Finally, we consider tangential deformations where the charge is varied in Hom(Λ/ΛN,C) and
the massless slicing remains fixed.

Proposition 6.11. Suppose σ = (P,Z) is a lax pre-stability condition on C with massless
subcategory N. Then for any 0 < ε < 1/8 and W ∈ Hom(Λ/ΛN,C) satisfying ||W − Z||σ <
sin(πε) there is a unique lax pre-stability condition τ = (Q,W ) with d(P,Q) < ε and massless

slicing QN = PN. If in addition σ ∈ StabL(C,N) and τ ∈ Stabl(C) then τ ∈ StabL(C,N).

Proof. By Lemma 4.15, ||W − Z||µN(σ) = ||W − Z||σ < sin(πε) where µN(σ) = (PC/N, Z) is
the induced stability condition in Stab(C/N). Therefore, Theorem 4.1 allows us to construct a
stability condition (QC/N,W ) in Stab(C/N) with d(PC/N, QC/N) < ε.

By Proposition 3.10 the slicings PN and QC/N can be glued to a locally finite slicing Q
on C. Since Q(ϕ) ⊆ QC/N(ϕ) for all ϕ ∈ R, we have thus constructed a lax pre-stability
condition τ = (Q,W ) with massless subcategory N, restricted slicing QN = PN, and such that
d(P,Q) < ε. Uniqueness follows from Corollary 4.18. Since PN = QN the last statement follows
from Corollary 6.5. �

6.2. Support propagation. In the classical case support propagates in components of the
stability space: all nearby deformations of a stability condition are also stability conditions,
and not just pre-stability conditions. We now discuss the extent to which this remains true for
lax stability conditions.

Definition 6.12. We say that support propagates from

• a lax stability condition σ ∈ StabL(C,N) if there is ε > 0 such that any τ = (Q,W ) ∈

Bε(σ) with ||Z − (W −WN)||σ < sin(πε) and ρN(τ) ∈ StabL(N) is in StabL(C). See
Figure 1 for a schematic illustration of the charge conditions.
• a component Σ of StabL(C,N) if there is an ε > 0 such that support propagates from
all σ ∈ Σ with respect to ε.
• StabL(C,N) if it propagates from all components.

This condition on the lax stability condition σ means that nearby lax pre-stability conditions
τ have the support property provided ||Z − (W −WN)||σ < sin(πε) and ρN(τ) ∈ StabL(N). The
last condition is necessary because it is implied by τ ∈ Bε(σ) ∩ StabL(C). We illustrate this in
the degenerate example below.

Example 6.13. Consider the classical geometric stability condition σg = (Pg, Zg) on C =
Db(P1) from Examples 3.14 and 5.4. By sending all charges to zero uniformly, we obtain a lax
stability condition σ = (Pg, 0) with massless subcategory N = C. Consider the lax stability

condition τ = (Q, 0) given by Q(ϕ) = Pg(ϕ) for ϕ /∈ 1
2Z and Q(12 + ε) = Pg(

1
2) = 〈O〉 for

sufficiently small ε > 0. Since we have not changed the phase of any other slices, Q cannot be
compatible with any linear charge. Hence, τ ∈ Bε(σ) is a lax stability condition with the same
charge as σ but τ /∈ StabL(N) = StabL(C).

Example 6.14. Support propagates in the following cases:

(1) For Stab(C), i.e. classical stability conditions, by Theorem 4.1.

(2) For StabL(C,C), i.e. for lax stability conditions (P, 0) with massless subcategory N = C.
The propagation condition is tautological in this case because || · ||σ = 0 and ρN = id.

(3) For StabL(C,N) where rk (ΛN) = 1. This result is a combination of Theorem 6.1 (normal
deformations) and Theorem 9.4 (tangential deformations). The condition that ρN(τ) ∈
StabL(N) is necessary in this case.

(4) For any component of StabL(C,N) in the boundary of a finite type component Stab(C),
i.e. a component in which every heart is a length abelian category, by Corollary 10.7.
In this case we take Λ = K(C).
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Hom(Λ/ΛN,C)
Z

||Z − (W −WN)||σ < sin(πε)

||W − Z||σ < sin(πε)

Figure 1. The definition of support propagation from σ = (P,Z) ∈ StabL(C,N) im-
poses two conditions on the charge of τ = (Q,W ). These are illustrated schematically
above. We require two conditions because || · ||σ is only a semi-norm. When Z−W is in
the subspace Hom(Λ/ΛN,C) on which it restricts to a norm the conditions coincide, and
agree with the condition ||W − Z||µN(σ) < sin(πε) for the quotient stability condition
µN(σ). In particular when N = 0 they reduce to the usual condition in the classical
case. At the other extreme, when N = C, the conditions are vacuous because || · ||σ = 0.
Another special case which we use frequently is when Z −W ∈ Hom(ΛN,C) in which
case they again reduce to ||W − Z||σ < sin(πε).

We do not know of any examples in which support does not propagate. However, it is entirely
possible that such examples exist.

The next result is a refinement of Corollary 6.5.

Corollary 6.15. Suppose support propagates from StabL(C,N). Let σ be a lax stability condition
with massless subcategory N and M ⊂ N be a thick subcategory. Then

σ ∈ StabL(C,M) ⇐⇒ ρN(σ) ∈ StabL(N,M).

Proof. If σ = (P,Z) ∈ StabL(C,M) then the continuity of ρN implies ρN(σ) ∈ StabL(N,M).
Now suppose that ρN(σ) = (PN, 0) is in the closure of StabL(N,M). We always have

StabL(N,M) ⊆ Stabl(N) ∩ Stab(N) = StabL(N). Thus σ ∈ StabL(C,N) by Corollary 6.5. Next,
PN is well-adapted to M by the proof of Proposition 5.10, i.e. PN/M is locally finite and PN is
adapted to M. Thus P , being well-adapted to N by Proposition 4.13, is also adapted to M and
moreover PC/N is locally finite. As PC/M is compatible with the pair (PN/M, PC/N), we conclude
from Lemma 3.3 that PC/M is locally finite. Hence P is actually well-adapted to M.

Thus we can apply Proposition 6.8 to σ and a sequence of lax stability conditions in StabL(N,M)
converging to ρN(σ) to construct a sequence of lax pre-stability conditions with massless subcat-
egory M which satisfy support on the quotient C/M and which converge to σ. We conclude by
noting that support propagation implies this is eventually a sequence of lax stability conditions
in StabL(C,M). �

Remark 6.16. If we do not assume support propagates then we can only conclude that σ is
in StabL(C,N) and is in the limit in Slice(C) × Hom(Λ,C) of a sequence of lax pre-stability
conditions with massless subcategory M which satisfy support on the quotient C/M.
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Definition 6.12 asks for two properties of lax pre-stability conditions occurring as small defor-
mations of σ ∈ StabL(C,N): firstly the support property and secondly the property of being in
the closure of Stab(C). The next result shows that the latter is automatic. Thus the terminology
‘support propagation’ is justified.

Theorem 6.17. Suppose σ = (P,Z) ∈ StabL(C,N). Then for any sufficiently small ε > 0 the
set of lax pre-stability conditions τ = (Q,W ) ∈ Bε(σ) with ||Z − (W −WN)||σ < sin(πε) and

ρN(τ) ∈ StabL(N) is contained in Stab(C).

Proof. Let σ = (P,Z) ∈ StabL(C,N) so that ρN(σ) = (PN, ZN = 0). Since σ satisfies the support
property there is some K > 0 for which ||v(c)|| ≤ K|Z(c)| whenever c is a massive stable object.
Recall from Proposition 4.11 that this implies that || · ||σ ≤ K|| · || on Hom(Λ,C).

Let τ = (Q,W ) ∈ Bε(σ) be a lax pre-stability condition with ρN(τ) ∈ StabL(N) and ||Z −
(W −WN)||σ < sin(πε). Thus d(PN, QN) ≤ d(P,Q) < ε by Corollary 3.7 and

||WN||σ ≤ ||Z −W ||σ + ||Z − (W −WN)||σ < 2 sin(πε)

by the triangle inequality. To construct τ ′ ∈ Stab(C) suitably close to τ we proceed in a sequence
of steps. We first deform σ to σ′ ∈ Stab(C) using Theorem 6.1. We then apply Bridgeland’s
deformation theorem, Theorem 4.1, to deform the charge of σ′ to obtain a stability condition
τ ′ whose charge is closer to that of τ . Finally, we check that τ ′ is indeed suitably close to τ .

Step 1: Deforming σ to σ′ ∈ Stab(C).

Since ρN(τ) ∈ StabL(N) ⊂ Stab(N), for any ε > 0 there is τ ′
N

= (Q′
N
,WN +W ′

N
) ∈ Stab(N)

such that d(QN, Q
′
N
) < ε and ||(WN +W ′

N
)−WN|| = ||W

′
N
|| < sin(πε)/K. The latter inequality

implies ||W ′
N
||σ ≤ sin(πε) and then the triangle inequality gives

d(PN, Q
′
N) < 2ε and ||WN +W ′

N||σ < 3 sin(πε).

Set δ := max{2ε, arcsin(3 sin(πε))/π} and note that δ → 0 as ε→ 0. In particular we can choose
ε > 0 sufficiently small that δ < 1/8. By Theorem 6.1 there is a unique stability condition
σ′ = (P ′, Z ′) ∈ Bδ(σ) with charge Z ′ = Z +WN +W ′

N
and restricted slicing P ′ ∩ N = Q′

N
.

Step 2: Deform the charge of σ′ to get τ ′ ∈ Stab(C).

Set U :=W − Z −WN ∈ Hom(Λ/ΛN,C). Then by Lemma 5.11

||U ||σ′ ≤
||U ||σ
C
≤
||W − Z||σ + ||W

′
N
||σ

C
≤

2 sin(πε)

C
< sin(3πε)

where C := (1− sin(πδ)) cos(2πδ) → 1 as ε→ 0 so that the final inequality holds for sufficiently
small ε > 0. Possibly further shrinking ε we can apply Theorem 4.1 to obtain a stability
condition τ ′ = (Q′,W ′) ∈ B3ε(σ

′) with W ′ = Z ′ + U =W +W ′
N
.

Step 3: τ ′ is close to τ .

By construction ||W ′−W || = ||W ′
N
|| < sin(πε). Therefore it suffices to show that d(Q′, Q) < ε.

Consider a τ ′-semistable object b ∈ Q′(ϕ). Using d(P,Q) < ε, d(P,P ′) < δ and d(P ′, Q′) < 3ε
gives d(Q,Q′) < δ + 4ε and hence

Q′(ϕ) ⊂ Q(ϕ− δ − 4ε, ϕ + δ + 4ε) ⊂ P (ϕ− δ − 5ε, ϕ + δ + 5ε) =: A.

For sufficiently small ε > 0 Lemma 5.3 ensures that A is a quasi-abelian length category.
The simple objects in A are the σ-stable objects. The HNfiltration of b with respect to τ is
obtained by grouping the simple factors in some composition series of b in A into a sequence of
τ -semistable objects of strictly decreasing phase. Therefore it suffices to show that the phases
of these simple factors with respect to τ and τ ′ differ by less than ε.

If a ∈ A is a massless simple object then there is nothing to prove because d(Q′
N
, QN) < ε.

If a ∈ A is massive then it suffices to show that |W ′
N
(a)|/|W (a)| can be made arbitrarily small,

uniformly for all such a, by choosing ||W ′
N
|| sufficiently small. We do so by making a series of

estimates.
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The operator norm estimate and the support property for σ provide a bound

|W ′
N(a)| ≤ ||W

′
N|| · ||v(a)|| ≤ K||W

′
N|| · |Z(a)|

for some constant K > 0. Moreover, since Z ∈ Hom(Λ/ΛN,C) and d(P,Q) < ε we have

|Z(a)| ≤
∑

t∈T

|Z(t)| ≤
∑

t∈T

||Z||τ |W (t)| ≤
||Z||τ

cos(2πε)
|W (a)|

where T is a set of τ -stable factors of the object a. Finally,

||Z||τ ≤
||Z||σ

(1− sin(πε)) cos(2πε)
=

1

(1− sin(πε)) cos(2πε)

by Lemma 5.11 because Z ∈ Hom(Λ/ΛN,C). Combining these estimates, we have the bound

|W ′
N
(a)|

|W (a)|
≤

K||W ′
N
||

(1− sin(πε)) cos(2πε)2
,

uniformly in a. The result follows because we can make the right hand side smaller than any
given ε > 0 by rescaling W ′

N
. �

Proposition 6.18. Suppose support propagates from StabL(C,N). Then the map δN defined in
Remark 6.2 extends to a continuous map

δN : Stab
L(C,N)×Slice(N) Stab

L(N) 99K StabL(C)

defined on the open subset of pairs (σ, τN) =
(
(P,Z), (P ∩ N,WN)

)
with ||WN||σ < sin(πε) for

some suitably small ε > 0.

Proof. Let M ⊂ N be the massless subcategory of τN. Then PN = P ∩ N is adapted to M

by Proposition 4.4. It follows that the P -semistable factors of an object c ∈ M are the PN-
semistable factors, thus are in M. Moreover, for any strict length one interval I the intersection
P (I) ∩M = PN(I) ∩M is a Serre subcategory of PN(I), which is in turn a Serre subcategory
of P (I). Hence, P is adapted to M. Therefore, by Proposition 3.6, there is an induced slicing
PC/M on C/M. This induced slicing is compatible with PC/N and PN/M, both of which are locally
finite because they are respectively the slicings of the classical stability conditions µN(σ) and
µM(τN). Hence PC/M is locally finite by Lemma 3.3 so that P is well-adapted to M.

Thus Proposition 6.8 lets us define δN(σ, τN) as the unique lax pre-stability condition (Q,W =
Z +WN) with d(P,Q) < ε and restricted slicing Q ∩ N = PN. The assumption that support

propagates implies δN(σ, τN) ∈ StabL(C) so that δN is well-defined as a map of sets.
The restriction of δN to (an open subset of) StabL(C,N) ×Slice(N) Stab(N) is continuous by

Remark 6.2. The proof of Theorem 6.17 shows that the extension is continuous on each normal
slice {σ} ×Slice(N) Stab

L(N). Together these facts imply the extension is continuous. �

7. The topology of the space of lax stability conditions

We apply the deformation results of §6 to study the topology of the space of lax stability
conditions. Our starting point is the following consequence of support propagation.

Proposition 7.1. Suppose that support propagates from StabL(C,N). Then the following maps
are homeomorphisms onto unions of components:

(1) µN × ρN : Stab
L(C,N)→ Stab(C/N) × StabL(N,N);

(2) µN × id : StabL(C,N) ×Slice(N) Stab
L(N)→ Stab(C/N) × StabL(N).

Here StabL(C,N)×Slice(N)Stab
L(N) denotes the set of pairs (P,Z) in StabL(C,N) and (QN,WN)

in StabL(N) such that the restricted slicing PN = QN.
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Proof. (1) The quotient map µN : Stab
L(C,N)→ Stab(C/N) is well-defined by Proposition 4.13

and continuous by Proposition 5.10. The restriction map ρN : Stab
L(C,N) → StabL(N,N) is

continuous by Corollary 5.8. The product µN× ρN is injective: given σ = (P,Z) ∈ StabL(C,N),
the slicings PN and PC/N determine P uniquely by Propositions 3.2, 3.6 and 4.4; the charge Z
is determined by its factorisation through Λ/ΛN.

By Corollary 6.10, σ can be deformed along nearby slicings in StabL(N,N) ⊆ Slice(N) to
a unique lax pre-stability condition which, by the assumption that support propagates from
StabL(C,N), is in fact in StabL(C,N). Proposition 6.11 is the analogous statement about
tangential deformations, i.e. deforming charges in Hom(Λ/ΛN,C) or, equivalently, deforming
the stability condition on the quotient C/N. Therefore, there is an open metric ball around
(µN(σ), ρN(σ)) in the image of µN × ρN. Thus the map in (1) is open. The statement about
surjectivity on connected components follows.

(2) As in the first part, the map µN× id is injective because the slicing of σ in StabL(C,N) can
be reconstructed uniquely from the slicing of µN(σ) and the slicing on N. It is surjective because
given

(
σC/N, σN

)
in a component meeting the image of µN × id we can apply the first part to

construct σ ∈ StabL(C,N) with µN(σ) = σC/N and restricted slicing that of σN. Then (σ, σN)

is the required lift of
(
σC/N, σN

)
. The inverse is continuous because the reconstruction of the

slicing on C from those on C/N and N is continuous in the slicing metric; see Lemma 3.11. �

We show in Corollary 7.4 that the product description of StabL(C,N) extends to a deformation
retract neighbourhood, and we describe how pairs of strata fit together in Proposition 7.8.

7.1. Neighbourhoods of strata. Our aim is to construct a deformation retract neighbour-
hood of StabL(C,N). The construction depends on the splitting Hom(ΛN,C) →֒ Hom(Λ,C)
induced from the inner product on Λ ⊗ R, and therefore we need a neighbourhood which is
adapted to this. We define one as follows. Fix 0 < ε < 1/8 and for σ ∈ StabL(C,N) set

Vε(σ) = {τ = (Q,W ) ∈ Bε(σ) : ||WN||σ < sin(πε)}

whereWN is the restriction of W to ΛN considered as an element of Hom(Λ,C) via the splitting.
Thus Vε(σ) is open in Slice(C)×Hom(Λ,C). Then define an open subset of StabL(C) by

VL
ε (C,N) = StabL(C) ∩

⋃

σ∈StabL(C,N)

Vε(σ)

These smaller neighbourhoods have the same good properties as the BLε (C,N), namely they are
C-invariant and satisfy α · VL

ε (C,N) = VL
ε (C, α(N)) for automorphisms α ∈ AutΛ(C). Further-

more, VL
ε (C, 0) = Stab(C) and VL

ε (C,C) = StabL(C) because the closure of the C-orbit of any

σ ∈ StabL(C) contains a lax stability condition with massless subcategory C.

Lemma 7.2. Assume that support propagates from StabL(C,N). Then, for sufficiently small
ε > 0, the identity on StabL(C,N) extends to a continuous map

ΦN : V
L
ε (C,N) −→ StabL(C,N)

mapping (Q,W ) to the unique element of StabL(C,N) with charge W −WN, massless slicing
QN and slicing within distance 5ε of Q. Moreover, ΦN is C-equivariant and satisfies α ·ΦN(τ) =
Φα(N)(α · τ) for each automorphism α ∈ AutΛ(C) and τ ∈ VL

ε (C,N).

Remark 7.3. The map ΦN is induced by the projection πN of charges onto their Λ/ΛN-
component, πN(W ) =W −WN:

VL
ε (C,N) StabL(C,N)

Hom(Λ,C) Hom(Λ/ΛN,C) Hom(Λ,C)

ΦN

Z Z

πN
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Proof. Given τ = (Q,W ) ∈ VL
ε (C,N) choose σ = (P,Z) ∈ StabL(C,N) such that τ ∈ Bε(σ)

and ||WN||σ < sin(πε) where ρN(τ) = (QN,WN) and the slicing restricts by Lemma 5.6. Then
W −WN ∈ Hom(Λ/ΛN,C) and

||Z − (W −WN)||σ ≤ ||Z −W ||σ + ||WN||σ < 2 sin(πε) ≤ sin(3πε)

where we assume ε ≤ 1/6 which enables the final trigonometric inequality.
Hence, for sufficiently small ε > 0, we can apply Proposition 6.11 to construct a lax pre-

stability condition σ′ = (P ′,W − WN) with restricted slicing P ′
N

= PN and d(P,P ′) < 3ε.
Therefore σ′ ∈ B3ε(σ), the restriction ρN(σ

′) = ρN(σ), and ||Z− (W −WN)||σ < sin(3πε). Thus
we can apply the support propagation assumption to conclude that σ′ is in StabL(C,N) when ε
is sufficiently small.

Since τ ∈ Bε(σ) we know that d(P,Q) < ε. Hence d(PN, QN) < ε too. Therefore we can
deform the massless slicing of σ′ using Corollary 6.10 to obtain a lax pre-stability condition
ΦN(τ) = (Q′,W −WN) with massless slicing Q′

N
= QN and d(P ′, Q′) < ε, from which it follows

that d(Q,Q′) < 5ε. It follows from Corollary 4.18 that ΦN(τ) is well-defined and independent
of the particular choice of σ used to construct it. For sufficiently small ε > 0 the support
propagation assumption implies that ΦN(τ) is in StabL(C,N).

By construction ΦN is continuous in the charge and in the restricted slicing on N. Since
ρNΦN(τ) = (QN, 0), in order to see that ΦN : V

L
ε (C,N) → StabL(C,N) is continuous, it is

sufficient to show that µNΦN(τ) varies continuously in τ . If τ ′ is sufficiently close to τ then,
since the slicing distance between τ and ΦN(τ) is less than 5ε, the slicing distance between
ΦN(τ) and ΦN(τ

′) can be made strictly less than 1. Therefore the slicing distance between
µNΦN(τ) and µNΦN(τ

′) is also strictly less than 1. Deformations of classical stability conditions
with slicing within distance 1 are uniquely determined by the deformation of the charge, i.e.
if the charge deforms continuously then so does the stability condition. Since µNΦN(τ) and
µNΦN(τ

′) are classical stability conditions whose slicings are within distance 1 of each other
whose charges are also close, it follows that µNΦN(τ) varies continuously with τ .

Moreover ΦN restricts to the identity on StabL(C,N). The characterisation of ΦN(τ) in the
statement follows immediately from the above construction, as does the compatibility with the
actions of C and of AutΛ(C). �

Using the map ΦN we can, for sufficiently small ε > 0, define a smaller, and even better
behaved, neighbourhood of StabL(C,N) namely

ULε (C,N) =
{
τ ∈ VL

ε (C,N) : τ ∈ Bε(ΦN(τ))
}
.

The compatibility of ΦN with the actions of C and AutΛ(C) ensures that these neighbourhoods
are C-invariant and that ULε (C,N) is mapped to ULε (C, α(N)) by α ∈ AutΛ(C). In the two
extreme cases of N = 0 and C the extra condition is vacuous, and we have equalities

ULε (C, 0) = VL
ε (C, 0) = BLε (C, 0) = Stab(C) ,

ULε (C,C) = VL
ε (C,C) = BLε (C,C) = StabL(C) .

Corollary 7.4. Suppose support propagates from StabL(C,N). Then, for sufficiently small
ε > 0 the map

ΦN × ρN : U
L
ε (C,N) −→ StabL(C,N)×Slice(N) Stab

L(N)

is a homeomorphism onto the set of pairs (σ, τN) with ||WN||σ < sin(πε) where τN = (QN,WN).

Proof. The map ΦN × ρN is continuous and, by definition of ULε (C,N), has image in the subset

{(σ, τN = (QN,WN)) : ||WN||σ < sin(πε)} .

The assumption that support propagates means that the map δN defined in Proposition 6.18
exists. We claim it is inverse to ΦN × ρN.

Let τ = δN(σ, τN), where σ = (P,Z). By construction ρN(τ) = τN. Moreover τ ∈ VL
ε (C,N)

so that ΦN(τ) is well-defined. Then ΦN(τ) has charge Z, massless subcategory N and massless
slicing QN. The slicing of ΦN(τ) is within distance 5ε of P so that ΦN(τ) = σ by Corollary 4.18

37



provided that 5ε < 1. We conclude that τ ∈ Bε(ΦN(τ)) so that τ ∈ ULε (C,N) and (ΦN×ρN)◦δN
is the identity.

Now set τ ′ = δN(ΦN(τ), ρN(τ)). This is a lax stability condition with the same charge,
massless subcategory and massless slicing as τ . Moreover, its slicing is within distance 5ε of
that of τ . Thus τ ′ = τ by Corollary 4.18 if again 5ε < 1 and δN ◦ (ΦN × ρN) is the identity
too. �

Clearly {(σ, (QN,WN)) : ||WN||σ < sin(πε)} is an open neighbourhood of StabL(C,N) in
StabL(C,N)×Slice(N)Stab

L(N), and therefore ULε (C,N) is an open neighbourhood of StabL(C,N).
Indeed it is a deformation retract neighbourhood.

Definition 7.5. Suppose support propagates from StabL(C,N) so that ΦN × ρN is a homeo-
morphism on ULε (C,N) for some sufficiently small ε > 0. For t ∈ [0, 1] let

ΦN,t : U
L
ε (C,N)→ ULε (C,N)

be the map corresponding to (σ, (QN,WN)) 7→ (σ, (QN, tWN)) under ΦN× ρN. Note that ΦN,0 =
ΦN and ΦN,1 = id.

When N = C the retraction ΦN,t is defined on the entire space of lax stability conditions

because ULε (C,C) = StabL(C). In this case ΦN,t(Q,W ) = (Q, tW ) = (Q,W ) · i log(t)/π is
obtained by dilating the masses of objects using the right action of iR ⊂ C defined in §5.3.
More generally

(7)

ULε (C,N) ULε (C,N)

StabL(N) StabL(N)

ΦN,t

ρN ρN

ΦN,t

commutes for each t ∈ [0, 1] where the bottom map is given by mass dilation in StabL(N). It is

also clear that the maps ΦN,t preserve the intersections U
L
ε (C,N)∩Stab

L(C,M) for thick M ⊂ N.

7.2. Pairs of strata. We now consider how the subsets StabL(C,M) and StabL(C,N) fit to-
gether when M ⊂ N are thick subcategories. The first observation is that the frontier condition
fails: that is in general

StabL(C,N) ∩ StabL(C,M) 6= ∅ 6=⇒ StabL(C,N) ⊂ StabL(C,M).

Example 7.6. Let C = Db(P1) and consider the pair M = thick(O) ⊂ Db(P1) = N. The above
intersection contains the slicings P occurring in Stab(C) for which O is semistable, so is non-
empty. However, it is not the whole of StabL(C,C) because it does not contain any slicings for
which O is unstable, such as those in which the only two semistable objects are O(1) and O(2)
and their shifts.

Nevertheless the situation is quite well-behaved. When we restrict to StabL(C,M) the maps
ΦN and ρN are compatible with passing to the quotient via µM. Effectively then we can reduce
to the case M = 0.

Lemma 7.7. Suppose M ⊂ N are thick subcategories such that support propagates from both
StabL(C,N) and StabL(C/M,N/M). Then for sufficiently small ε > 0 the map µM restricts to
a map

ULε (C,N) ∩ StabL(C,M) −→ ULε (C/M,N/M) .

Proof. The support propagation assumptions ensure that the maps ΦN,t for t ∈ [0, 1] and ΦN/M

are defined.
Let τ = (Q,W ) ∈ ULε (C,N) ∩ StabL(C,M) and ρN(τ) = (QN,WN). Then ΦN(τ) is also in

StabL(C,M) because ΦN,t preserves the intersection ULε (C,N) ∩ Stab
L(C,M), and µM(ΦN(τ)) is
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well-defined and lies in StabL(C/M,N/M); see Remark 4.14. Then

||WN||µM(ΦM(τ)) ≤ ||WN||ΦM(τ) < sin(πε)

by Lemma 4.15 and, by Lemma 5.7, the distance between the slicings of µM(ΦN(τ)) and µM(τ) is
less than that between those of ΦN(τ) and τ , which in turn is less than ε because τ ∈ Bε(ΦN(τ)).
Therefore, we also have µM(τ) ∈ Bε(µM(ΦM(τ))). This shows that µM(τ) is in VL

ε (C/M,N/M)
so that ΦN/M(µM(τ)) is well-defined. Applying Corollary 4.18 then shows that

ΦN/M(µM(τ)) = µM(ΦN(τ))

because they have the same charge W −WN, the same massless subcategory N/M and massless
slicing, and their slicings are within distance one of each other for sufficiently small ε > 0.
Therefore, µM(τ) ∈ Bε(ΦN/M(µM(τ))) and so is in ULε (C/M,N/M) as claimed. �

Proposition 7.8. Suppose M ⊂ N are thick subcategories such that support propagates from both
StabL(C,N) and StabL(C/M,N/M). Then for sufficiently small ε > 0 there is a commutative
diagram

Stab(C/N) StabL(C,N) ∩ StabL(C,M) ULε (C,N) ∩ StabL(C,M) StabL(N,M)

Stab(C/N) StabL(C/M,N/M) ULε (C/M,N/M) StabL(N/M) .

µM

µN ΦN ρN

µM µM

µN/M ΦN/M
ρN/M

Proof. The support propagation assumptions and the previous lemma ensure the maps in the
central square are well-defined, and that the square commutes. Consider the left hand square
and choose

σ = (P,Z) ∈ StabL(C,N) ∩ StabL(C,M).

Recall µN(σ) = (PC/N, Z) from Proposition 4.13 where PC/N(ϕ) is the isomorphism closure of
P (ϕ) in C/N. Similarly, µM(σ) = (PC/M, Z) where PC/M(ϕ) is the isomorphism closure of P (ϕ)
in C/M. Applying µN/M the charge remains the same, namely Z, and the category of semistable
objects of phase ϕ becomes the isomorphism closure of PC/M(ϕ) in (C/M)/(N/M) ≃ C/N which
is, as before, the isomorphism closure of P (ϕ). Hence µN = µN/M ◦ µM.

Now consider the right hand square. Choose

σ = (P,Z) ∈ ULε (C,N) ∩ StabL(C,M).

Both µM◦ρN(σ) and ρN/M◦µM(σ) have charge Z|ΛN
. On the one hand, the category of semistable

objects of µM ◦ ρN(σ) with phase ϕ is the isomorphism closure of P (ϕ) ∩ N in N/M. On the
other hand, that of ρN/M ◦ µM(σ) is the isomorphism closure of P (ϕ) in C/M intersected with
N/M. This clearly contains the former and hence is the same as the former since nested slicings
are equal. Therefore µM ◦ ρN = ρN/M ◦ µM. �

8. The space of quotient stability conditions

8.1. Definition. Define an equivalence relation on the points of StabL(C) by σ ∼ τ if they
have the same charge and lie in the same connected component of the corresponding fibre of
StabL(C)→ Hom(Λ,C). We refer to an equivalence class as a quotient stability condition on C

and denote the class of σ by [σ]. If σ ∼ τ then by Corollary 5.14 they have the same massless
subcategory, N say, and induce the same stability condition µN(σ) = µN(τ) in Stab(C/N).

Remark 8.1. If support propagates from StabL(C,N) then

µN × ρN : Stab
L(C,N)→ StabL(C/N)× StabL(N,N)

is a homeomorphism onto a union of components by Proposition 7.1. In this case σ and τ are
in the same component of the fibre of the charge map precisely when ρN(σ) and ρN(τ) are in
the same component of StabL(N,N).

39



Conjecturally, non-empty stability spaces are contractible, in particular connected. If this is
the case, and support propagates from all strata StabL(C,N), then a quotient stability condition
is specified by a choice of massless subcategory N and stability condition in Stab(C/N). Which
thick subcategories N arise as massless categories remains a subtle question.

The space of quotient stability conditions is defined to be StabQ(C) = StabL(C) /∼ equipped
with the quotient topology. By definition the charge map factors through the quotient, and we
denote this factorisation also by Z.

The theme of this section is that StabQ(C) is a stratified space in a reasonable way. The

first step is to specify a decomposition. Let StabQ(C,N) = StabL(C,N) /∼ be the subspace of
quotient stability conditions with massless subcategory N. Evidently

StabQ(C) =
⊔

thick N⊂C

StabQ(C,N)

is a disjoint union of these subsets. The strata are the connected components of these pieces.
The maximal and minimal dimensional strata are easy to identify. The fibres of the charge

map on Stab(C) are discrete so there are homeomorphisms

Stab(C) ∼= StabL(C, 0) ∼= StabQ(C, 0) .

Thus the usual space of stability conditions embeds continuously in StabQ(C, 0) as a union
of strata. At the other extreme StabQ(C,C) = π0

(
Z−1(0)

)
is the set of components of the

fibre Z−1(0) = StabL(C,C), with the discrete topology. These are the 0-dimensional strata. If
Stab(C) is connected there is a unique such stratum by Lemma 6.6.

8.2. The stratification of the space of quotient stability conditions. We show that,
under suitable technical assumptions, StabQ(C) is a stratified space. By this we mean that the

strata StabQ(C,N) are locally closed subspaces satisfying the frontier condition, i.e. the closure
of each such stratum is a union of strata.

For σ ∈ StabQ(C,N) and c ∈ C the mass mσ(c) is the mass of c in the corresponding stability
condition on C/N. For massive c ∈ C we define ϕ̃±

σ (c) to be the minimal and maximal phases
of the HNfactors of c in C/N.

Lemma 8.2. For each c ∈ C the mass m•(c) : Stab
Q(C) → R≥0 is continuous. The phases

ϕ̃±
• (c) : m•(c)

−1(R>0) → R are well-defined and ϕ̃−
• (c) and ϕ̃+

• (c) are respectively upper and
lower semi-continuous.

Proof. Recall that the mass of c is continuous on StabL(C) and is constant on equivalence

classes, since it depends only on the massive HNfactors. The continuity of masses on StabQ(C)
follows immediately. The statements for phases follow similarly using the fact that the minimal
and maximal phases are respectively bounded above and below by the minimal and maximal
phases of the massive factors (which are constant on equivalence classes). �

It follows immediately from the continuity of masses that the subsets StabQ(C,N) and hence
also their connected components, i.e. the strata, are locally closed. The following consequence
of Proposition 7.1 identifies the strata as components of spaces of stability conditions on various
quotient categories.

Corollary 8.3. Suppose that support propagates from StabL(C,N). Then the factorisation of
µN : Stab

L(C,N)→ Stab(C/N) through the quotient map induces a homeomorphism between the

component of σ ∈ StabQ(C,N) and the component of µN(σ) ∈ Stab(C/N). Thus each stratum
of StabQ(C) can be given the structure of a complex manifold in such a way that the restriction
of the charge map is a local homeomorphism to Hom(Λ/ΛN,C).

We begin by describing the equivalence relation in a neighbourhood of StabL(C,N).
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Lemma 8.4. Suppose support propagates from both StabL(C,N) and StabL(C/M,N/M) for each
thick M ⊂ N. Let σ, τ ∈ ULε (C,N) for some sufficiently small ε > 0. Then σ ∼ τ if and only if

µN(ΦN(σ)) = µN(ΦN(τ)) and ρN(σ) ∼ ρN(τ) as elements of StabL(N).

Proof. Suppose σ ∼ τ . Then ρN(σ) ∼ ρN(τ) as elements of StabL(N). Moreover, σ and τ have

the same massless subcategory, M say, so that σ, τ ∈ ULε (C,N) ∩ StabL(C,M). Since we also
have µM(σ) = µM(τ) Proposition 7.8 implies that µN(ΦN(σ)) = µN(ΦN(τ)).

Conversely, suppose µN(ΦN(σ)) = µN(ΦN(τ)) and ρN(σ) ∼ ρN(τ). Then σ and τ have the
same massless subcategory, namely the common massless subcategory M of ρN(σ) and ρN(τ).
Because ΦN(σ) and ΦN(τ) have the same charge, as do ρN(σ) and ρN(τ), we get that σ and τ have

the same charge. Next, ρM(ρN(σ)) and ρM(ρN(τ)) are in the same component of StabL(M,M),
since ρN(σ) ∼ ρN(τ). Then σ ∼ τ by Remark 8.1, as ρM ◦ ρN = ρM. �

Lemma 8.5. Suppose support propagates from both StabL(C,N) and StabL(C/M,N/M) for each
thick M ⊂ N. Then, for sufficiently small ε > 0, the open neighbourhood ULε (C,N) is a union of
equivalence classes.

Proof. Suppose τ ∈ ULε (C,N). By definition, the class [τ ] is connected in the subspace topology
from StabL(C). Its intersection with ULε (C,N) is an open subset of [τ ], so it suffices to show this
intersection is also closed in [τ ]. By Corollary 7.4, ULε (C,N) is homeomorphic via ΦN × ρN to

{(σ, τN = (QN,WN)) : ||WN||σ < sin(πε)} ⊂ StabL(C,N) ×Slice(N) Stab
L(N) .

And by the previous result τ ′ ∈ [τ ] ∩ ULε (C,N) if and only if µN(ΦN(τ
′)) = µN(ΦN(τ)) and

ρN(τ
′) ∼ ρN(τ). The set of such τ ′ is closed in the above fibre product, therefore also in

ULε (C,N) and in [τ ]. �

These lemmas show that UQε (C,N) = ULε (C,N) /∼ is an open neighbourhood of StabQ(C,N)
in StabQ(C) and allow us to describe the stratification within this neighbourhood.

Corollary 8.6. Suppose that support propagates from StabL(C,N). Then for sufficiently small
ε > 0 the map

µN ◦ΦN × [ρN] : U
Q
ε (C,N)→ Stab(C/N) × StabQ(N) , [σ] 7→ (µN (ΦN(σ)) , [ρN(σ)])

is a homeomorphism onto an open subset. Moreover, if for each thick M ⊂ N support also
propagates from StabL(C/M,N/M) then the homeomorphism above restricts to a biholomorphism

from UQε (C,N) ∩ StabQ(C,M) onto (an open subset of) a union of components of Stab(C/N)×
StabQ(N,M). In particular, locally we have

StabQ(C,M) ∼= Stab(C/N)× StabQ(N,M) ∼= Stab(C/N) × StabQ(N,M).

Proof. The existence of the homeomorphism, and the fact that it is stratum-preserving, follow
from Corollary 7.4 and Lemma 8.4. It restricts to a holomorphic isomorphism because it is
compatible with the charge maps. �

Theorem 8.7. Suppose that support propagates from both StabL(C,N) and StabL(C/M,N/M)
for each thick M ⊂ N. Then the space of quotient stability conditions is stratified by complex
manifolds. More precisely,

StabQ(C) =
⊔

thick N⊂C

StabQ(C,N)

decomposes into a disjoint union of locally closed subsets. Each StabQ(C,N) is a complex mani-
fold of dimension rk(Λ/ΛN); we refer to its connected components as strata. This decomposition
satisfies the frontier condition: the closure of each stratum is a union of strata.

Proof. We have already seen that there is such a decomposition into locally closed subsets
StabQ(C,N) and, by Corollary 8.3, StabQ(C,N) is a complex manifold locally homeomorphic to
Hom(Λ/ΛN,C).
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For the last part, consider [σ] ∈ StabQ(C,N). Note that [ρN(σ)] ∈ StabQ(N,N) which is a

discrete set of points. If [ρN(σ)] ∈ StabQ(N,M) then [σ] ∈ StabQ(C,M) by the last part of

Corollary 8.6. Since StabQ(N,N) is discrete and we have a local product description, an open
neighbourhood of [σ] in StabQ(C,N) is contained in

Stab(C/N) × { [ρN(σ)] } ⊂ Stab(C/N)× StabQ(N,M).

Therefore by the formula at the end of Corollary 8.6 the connected component of [σ] in
StabQ(C,N) is in the closure of StabQ(C,M). �

Corollary 8.8. Suppose support propagates from StabL(C,N). Let ΦN,t be the deformation
retraction of Definition 7.5. Then

[ΦN,t] : U
Q
ε (C,N)→ UQε (C,N) , [σ] 7→ [ΦN,t(σ)]

is an almost-stratum-preserving deformation retraction of UQε (C,N) onto StabQ(C,N). By this
we mean that the track of each point under the deformation retraction remains in the same
stratum until the last point, at which it may enter a higher codimension stratum.

Proof. Suppose σ, τ ∈ ULε (C,N) and σ ∼ τ . Then ΦN,t(σ) ∼ ΦN,t(τ) by Lemma 8.4, because
ΦN(ΦN,t(σ)) = ΦN(σ) and ρN(ΦN,t(σ)) = ρN(σ) · i log(t)/π. Thus ΦN,t descends to the quotient.
Since ΦN,t(σ) has the same massless subcategory as σ for t ∈ (0, 1] the resulting deformation
retraction is almost-stratum-preserving, i.e. its tracks remain in the same stratum until the last
moment, when they move into the deeper stratum StabQ(C,N). �

8.3. Group actions. To complete our description of the space of quotient stability conditions,
we note that the actions of AutΛ(C) and G descend to it, and that they respect the stratification
and local models.

Corollary 8.9. The actions of Aut(C) and of G on Stab(C) extend uniquely to continuous

actions on StabQ(C). The maps in the diagram

Stab(C) StabL(C) StabQ(C)

Hom(Λ,C)

Z
Z

Z

are equivariant with respect to these actions.
The actions respect the stratification: elements of G preserve StabQ(C,N) whereas the ac-

tion of an automorphism α ∈ AutΛ(C) takes StabQ(C,N) to StabQ(C, α(N)). Moreover, the

neighbourhood UQε (C,N) is C-invariant and α ∈ AutΛ(C) maps it to UQε (C, α(N)).
When support propagates from StabL(C,N) the actions are compatible with the local model in

Corollary 8.6 in that

UQε (C,N) Stab(C/N)× StabQ(N)

UQε (C, α(N)) Stab(C/α(N)) × StabQ(α(N))

α α×α

commutes, and that the horizontal maps are C-equivariant with respect to the evident diagonal
action of C on the right hand terms.

Proof. It is easy to check that the actions preserve the equivalence relation and so descend
to the quotient. Lemma 5.15 implies they respect the stratification as stated. The final part
follows from the properties of the maps µN, ρN and ΦN — see Lemma 5.15, Section 5.4, and
Lemma 7.2 respectively. �
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9. Codimension one strata

We investigate the case in which the massless subcategory is non-zero but ‘as small as possible’.
More precisely, throughout this section we fix a thick subcategory N for which the saturation
ΛN of the image of K(N) → K(C) → Λ is a rank one lattice. We abuse terminology by saying
that the massless subcategory N has rank one. We assume that StabL(C,N) is non-empty. For
simplicity of notation we also assume that it is connected; otherwise we consider each component
separately. The main result of this section, Theorem 9.4, is that StabL(C,N) is a component of
Stab(C/N) × R. In particular it is a real codimension one boundary stratum in StabL(C).

9.1. Objects and phases. When rk(ΛN) = 1 the massless subcategory N has a simple form.
In particular, up to shift, all the massless objects must have the same phase. This remains true
even for nearby stability conditions.

Lemma 9.1. Suppose σ ∈ Stab(C) is a lax pre-stability condition with rank one massless
subcategory N. Then N = triang(S) is the triangulated closure of a set S of stable objects of the
same phase.

Proof. Write σ = (P,Z). Suppose 0 6= c ∈ N is a σ-semistable object with phase 0 < ϕ(c) ≤ 1.
Given 0 < ε < 1/8 we can choose τ = (Q,W ) ∈ Stab(C) with d(P,Q) < ε. By Lemma 5.6 all
τ -semistable factors of c are in N. Since they have phases in (ϕ(c)− ε, ϕ(c) + ε) and mτ (c) > 0
we deduce that W |ΛN

6= 0. Therefore we can choose a generator λ ∈ ΛN with W (λ) ∈ H ∪R<0.
Let ψ ∈ (0, 1] be the phase of W (λ). Then |ϕ(c) − ψ| < ε and if c′ ∈ N is another σ-semistable
object with phase 0 < ϕ(c′) ≤ 1 we have

|ϕ(c) − ϕ(c′)| ≤ |ϕ(c) − ψ|+ |ψ − ϕ(c′)| < 2ε.

It follows that ϕ(c) = ϕ(c′) = ϕ, say, for all σ-semistable objects in N, i.e. N ∩ P (0, 1] ⊂ P (ϕ).

Since σ ∈ Stab(C) its slicing P is locally finite so that P (ψ) is a quasi-abelian length category.
The full subcategory N∩P (0, 1] is closed under extensions, strict subobjects and strict quotients.
Therefore N ∩ P (0, 1] = 〈S〉 is the extension-closure of a subset S of simple objects of P (ϕ).
Hence N = triang(S). �

Corollary 9.2. Fix 0 < ε < 1/8. There is a set S of objects with N = triang(S) and such that
for each σ in the open neighbourhood BLε (C,N) of StabL(C,N) all objects in S are stable of the
same phase.

Proof. Let σ = (P,Z) ∈ StabL(C,N). By the previous lemma there is 0 < ϕ ≤ 1 and a subset

S of simple objects in P (ϕ) with N = triang(S). Suppose τ = (Q,W ) ∈ Bε(σ) ∩ StabL(C).
Lemma 5.6 implies that

〈S〉 ⊂ Q(ϕ− ε, ϕ+ ε) ∩ N ⊂ P (ϕ− 2ε, ϕ + 2ε) ∩ N.

Since P (0, 1] ∩ N = 〈S〉 and 0 < ε < 1/8 the right-hand side above is 〈S〉[k] for k = 0 or
±1. Since it contains 〈S〉 we must have k = 0 so that the above containments are equalities.
Therefore all τ -semistable factors of each s ∈ S are also in 〈S〉, and since each object s ∈ S
is simple in 〈S〉 this implies that each s ∈ S is τ -semistable. It follows as in the proof of the
previous lemma that all s ∈ S have the same phase, so that in fact 〈S〉 = Q(ψ) ∩ N for some
ψ ∈ (ϕ − ε, ϕ + ε). Since each s ∈ S is simple, we deduce that each s ∈ S is actually τ -stable.
The result now follows from the definition

BLε (C,N) =
⋃

σ∈StabL(C,N)

Bε(σ) ∩ StabL(C)

of the neighbourhood and the fact that we have assumed StabL(C,N) is connected. �
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9.2. The neighbourhood of a stratum. The neighbourhood of the stratum StabL(C,N) has
a simple form when rk(ΛN) = 1: it is a fibration over C.

Recall that Stab(N) is the space of stability conditions on N whose charges factor through
ΛN
∼= Z. The space of non-zero charges is Hom(ΛN,C)−{0} ∼= C∗. As C acts freely on Stab(N)

we deduce that each component is homeomorphic to the universal cover C, with C acting freely
and transitively. The image of the continuous restriction map

ρN : B
L
ε (C,N)→ StabL(N) , (P,Z) 7→ (P ∩ N, Z|ΛN

)

consists of lax stability conditions in which the simple objects of the generating set S are stable
and have a common phase.

Lemma 9.3. Fix 0 < ε < 1/8. The map ρN restricts to a holomorphic fibration from BLε (C,N)∩
Stab(C) onto the component of Stab(N) consisting of stability conditions with heart a shift of
〈S〉.

Proof. If σ = (P,Z) ∈ BLε (C,N) ∩ Stab(C) then clearly ρN(σ) ∈ Stab(N). Moreover the objects
of S are stable with respect to ρN(σ) and by Corollary 9.2 have a common phase. It follows
that the heart P (0, 1] ∩ N is a shift of the abelian length category 〈S〉. The C-equivariance of
ρN implies that the restriction is surjective onto this component. Indeed it is a holomorphic
submersion whose fibres are biholomorphic to one another, and therefore it is a holomorphic
fibration. �

The only massless subcategory appearing in the boundary of this component is N itself. A
lax stability condition is determined by a common phase ϕ ∈ R for the objects in S. Thus we
have a commuting diagram

StabL(N) C ∪ (−∞+ iR)

Hom(ΛN,C) C

Z

≃

exp

≃

where we define exp(−∞+ ir) = 0 for r ∈ R. In the next section we show that the restriction
of ρN to StabL(C,N) is a fibration over −∞+ iR with fibre Stab(C/N).

9.3. The boundary stratum. In this section we show that the boundary stratum StabL(C,N)
is (a component of) the product Stab(C/N)×R of the space of stability conditions on the quotient
category C/N and a factor R recording the common phase of the massless objects. Recall that,
for simplicity of notation only, we assume that StabL(C,N) is connected.

We first observe that there are inclusions

StabL(C,N) ⊂ StabLS(C,N) ⊂ Stab(C/N) × R,

where we abuse notation by identifying σ ∈ StabLS(C,N) with its image under the continuous
inclusion µN × ρN, and where StabLS(C,N) denotes the set of lax pre-stability conditions σ in
the closure of Stab(C) with massless subcategory N and such that µN(σ) is a stability condition
on C/N; see Definition 5.1.

Theorem 9.4. Support propagates from StabL(C,N). Therefore, StabL(C,N) is a component
of Stab(C/N) ×R and StabQ(C,N) is a component of Stab(C/N).

Proof. Let σ = (P,Z) ∈ StabL(C,N). We show that support propagates from σ in two steps:

(1) for τ sufficiently close to σ, we have τ ∈ StabLS(C,N); and,

(2) any τ ∈ Stabls(C) with massless subcategory N satisfies the support property.

Step 1: Choose ε > 0 sufficiently small that we can apply Theorem 6.1 and Theorem 6.17. Let
τ = (Q,W ) ∈ Bε(σ). If W |ΛN

6= 0 then τ is a (classical) pre-stability condition in Bε(σ) and is
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therefore actually a stability condition by the argument at the end of the proof of Theorem 6.1.
Therefore we may assume that W ∈ Hom(Λ/ΛN,C). Then by Theorem 6.17

(8) {τ = (Q,W ) ∈ Bε(σ) :W ∈ Hom(Λ/ΛN,C)} ⊂ StabLS(C,N)

because µN(σ) is a stability condition and so therefore is any sufficiently small deformation of

it. (The condition that ρN(τ) is in StabL(N) is automatic because StabL(N,N) ∼= R.)

Step 2: It remains to show that any τ ∈ StabLS(C,N) satisfies the support property, for which
we need the following lemma, whose proof we defer.

Lemma 9.5. Suppose σ = (P,Z) ∈ StabLS(C,N). Let S ⊂ P (ϕ) be a set of stable objects
such that N = triang(S). Then, up to shifts, any sequence (bn) of massive stable objects with
m(bn)/||v(bn)|| → 0 contains a subsequence (cn) whose phases converge and such that

lim
n→∞

(
v(cn)

||v(cn)||

)
=

v(s)

||v(s)||

for any s ∈ S. Moreover, limn→∞ ϕ(cn) ∈ ϕ+ 2Z for any such subsequence.

Let S ⊂ Q(ϕ) be a set of τ -stable objects such that N = triang(S). By Lemma 9.5 any
sequence (bn) of massive stable objects with m(bn)/||v(bn)|| → 0 has, up to shifts, a subsequence
(cn) with ϕ(cn) → ϕ. Without loss of generality we may assume ϕ(cn) ≤ ϕ for all n ∈ N; the
other case is similar. Since cn is stable and not in S this implies that Hom(s, cn) = 0 for all
s ∈ S.

Perturbing the common phase of the massless objects slightly using Corollary 6.10, we can
find τ ′ = (Q′,W ) also in StabLS(C,N) with µN(τ

′) = µN(τ) and S ⊂ Q
′(ϕ′) where ϕ′ > ϕ. The

cn remain massive and stable for τ ′ by Proposition 3.2 because

cn ∈ QC/N(ϕ(cn)) = Q′
C/N(ϕ(cn))

where ϕ(cn) < ϕ′ and Hom(s, cn) = 0 for all s ∈ S. However now ϕ′(cn) = ϕ(cn) → ϕ < ϕ′

contradicting Lemma 9.5. We conclude that there is no sequence (bn) of massive stable objects
with m(bn)/||v(bn)|| → 0. Therefore τ satisfies the support property and so is in StabL(C,N).

The final statement on the space of quotient stability conditions follows from Proposition 7.1
and the definition of StabQ(C,N) because StabL(N,N) ∼= R. �

Proof of Lemma 9.5. If σ satisfies the support property then there is no sequence (bn) with
m(bn)/||v(bn)|| → 0 and the result is vacuously true. Therefore we assume σ does not satisfy the
support property i.e. there is a sequence (bn) of massive stable objects with m(bn)/||v(bn)|| → 0.

Since ΛN has rank one and by Corollary 9.2 the objects in S are stable with a common phase
in nearby classical stability conditions, there is λ ∈ ΛN⊗R with ||λ|| = 1 such that v(s) ∈ R>0 ·λ
for all s ∈ S. Lemma 4.16 tells us that there is a subsequence (cn) such that

lim
n→∞

(
v(cn)

||v(cn)||

)
∈ ΛN ⊗ R.

By replacing cn with cn[1] if necessary we can ensure that the limit is λ = v(s)/||v(s)||. Further
shifting by an even integer if necessary we may assume that ϕ(cn) ∈ [ϕ − 1, ϕ + 1] for each
n ∈ N. Therefore, we can pass to a subsequence (cn) whose phases converge. It remains to
show that the limit is the common phase ϕ of the objects s ∈ S.

Suppose that (σm) is a sequence in Stab(C) tending to σ. By the argument in the proof
of Corollary 9.2, for sufficiently large m ∈ N, the objects in S are σm-stable with common
phase ϕm(s) for all s ∈ S. For similar reasons, cn is massive for each σm and its charge has a
well-defined phase ϕm(cn) in the interval (ϕ(cn) − 1/8, ϕ(cn) + 1/8). Since d(Pm, P ) → 0 and
ϕ(cn)→ ϕ′, say, for any ε > 0 we can find M,N ∈ N such that

|ϕm(cn)− ϕ
′| ≤ |ϕm(cn)− ϕ(cn)|+ |ϕ(cn)− ϕ

′| < ε

whenever m ≥M and n ≥ N . Therefore we can switch the limits to compute

ϕ′ = lim
n→∞

ϕ(cn) = lim
n→∞

lim
m→∞

ϕm(cn) = lim
m→∞

lim
n→∞

ϕm(cn) = lim
m→∞

ϕm(s) = ϕ
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where the penultimate step follows because the phase ϕm only depends on the normalised vector
in Λ⊗ R and v(cn)/||v(cn)|| → v(s)/||v(s)||. �

Remark 9.6. In Step 2 of the proof of Theorem 9.4 we established the support property for all
elements of StabLS(C,N). This special situation in the codimension one case is not obvious in
general: Example 6.4 gives an example of a lax pre-stability condition which satisfies support
on the quotient of C/N but does not satisfy the stronger support property required to be a lax
stability condition. However, this is not quite a counter-example because it is not in the closure
of Stab(C) since the slicings do not converge as we approach it.

10. Finite type components

Let C be a triangulated category with K(C) ∼= Zn and set v = id : K(C) → Λ. For simplicity
of notation we assume that Stab(C) is connected; otherwise consider a component. Say that
a stability condition σ = (P,Z) has discrete phase distribution if {ϕ ∈ R : P (ϕ) 6= 0} is a
discrete subset of R, and that it has algebraic heart if P (0, 1] is a finite length abelian category
with finitely many simple objects. Finally, we say that Stab(C) has finite type if each stability
condition has an algebraic heart admitting only finitely many torsion pairs [30].

Lemma 10.1. Assume that K(C) ∼= Zn is free abelian. The following are equivalent:

(1) Each σ ∈ Stab(C) has algebraic heart.
(2) Stab(C) has finite type.
(3) Stab(C) has dimension n and each stability condition has discrete phase distribution.

Proof. (1) =⇒ (2): Suppose each σ ∈ Stab(C) has algebraic heart. Then the set of hearts
of stability conditions in Stab(C) is closed under HRS-tilting at simple objects of these hearts
(see, for example, [19, 33] for the definition), because a stability condition with such a heart is
given by freely assigning a charge in the upper half plane to each simple object of the heart.

Moreover, by [30, Corollary 3.27] the poset of strata is pure of length n = rkK(C), i.e. each
maximal chain in the poset has length n. This implies that each heart has only finitely many
torsion pairs because the poset of torsion pairs in the heart has a uniform bound on the valency
of each element and on the length of each chain. Therefore Stab(C) has finite type.

(2) =⇒ (3): Now suppose Stab(C) has finite type. The phase distribution of each σ ∈
Stab(C) must be discrete, for otherwise rotating phases would yield an infinite sequence of tilts,
and thus infinitely many torsion pairs in the heart of σ.

(3) =⇒ (1): Finally, suppose each σ ∈ Stab(C) has discrete phase distribution. Then for
each σ there exists ε > 0 such that Pσ(0, ε) = 0. Hence by [30, Lemma 3.1] the heart of σ is
algebraic. �

In general, we do not know which thick subcategories N of C can appear as massless sub-
categories. If N occurs as a massless subcategory then, by Corollary 7.4, both Stab(C/N) and
Stab(N) are non-empty. However this is not sufficient, as can be already seen for Db(P1).

Example 10.2. Let C = Db(P1) with Λ = K(C) ∼= Z2 and let N = thick(Ox : x ∈ P1). Note

ΛN = im(K(N)→ K(C)→ Λ) ∼= Z even though K(N) ∼= ZP1
. With these lattices, Stab(N) ∼= C

and Stab(C/N) ∼= C are non-empty. However, it follows from Proposition 12.6 that N does
not occur as a massless subcategory because the skyscrapers Ox are not simple objects in any
algebraic heart.

For a finite type component of a stability space the situation is much simpler: we can classify
the massless subcategories completely, and show that support propagates from each boundary
stratum.

Corollary 10.3. Suppose Stab(C) has finite type and σ = (P,Z) ∈ Stab(C). Then for any
ϕ ∈ R the full subcategory P (ϕ,ϕ + 1] is the heart of some classical stability condition in
Stab(C), and so, in particular, is algebraic. Moreover, σ has discrete phase distribution.
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Proof. Rotating phases by the C action it suffices to prove the first part for ϕ = 0. Choose
τ = (Q,W ) in Stab(C) with d(P,Q) < 1/2 so that the hearts P (0, 1] and Q(0, 1] are both
contained in Q(−1/2, 3/2]. Then P (0, 1] is obtained by first tilting from Q(0, 1] to Q(−1/2, 1/2]
and then tilting from that to P (0, 1]. Since the set of hearts of stability conditions in the finite-
type component Stab(C) is closed under tilting, P (0, 1] is the heart of some stability condition
in Stab(C). Therefore P (0, 1] is algebraic.

Since P (ϕ,ϕ + 1] is algebraic there exists ε > 0, depending on ϕ, for which P (ϕ,ϕ+ ε) = 0.
It follows that σ has discrete phase distribution. �

Corollary 10.4. Suppose Stab(C) has finite type. Then N is the massless subcategory of some

σ ∈ StabL(C) if and only if N is the triangulated closure of a finite subset of simple objects in
the heart of some classical stability condition τ ∈ Stab(C).

Proof. Suppose N is generated by a finite subset I of simple objects in the heart Q(0, 1] of some
classical τ = (Q,W ) ∈ Stab(C). By deforming the charge we may assume that

W (s) =

{
−r ⇐⇒ s ∈ I,

−1 ⇐⇒ s 6∈ I,

for some r ∈ R>0. Clearly the charges converge as r → 0. Moreover, since Q(0, 1] = Q(1) for all
r the slicings also converge as r → 0. In the limit as r → 0 we obtain a lax stability condition
σ with massless subcategory N and the same slicing Q. Therefore the only stable objects of σ
are the simple objects of Q(0, 1]. Since there are finitely many of these, σ satisfies the support
property and therefore lies in StabL(C).

Now suppose σ = (P,Z) ∈ StabL(C). By Lemma 4.5 the massless subcategory N is the
triangulated closure of the set of stable massless objects in P (0, 1]. Since P (0, 1] is algebraic
each stable massless object has a composition series whose factors are massless simple objects,
each of which is of course also stable. Therefore N = triang(S) is the triangulated closure of
the set S of massless simple objects in P (0, 1]. The result follows because P (0, 1] is the heart
of some classical stability condition in Stab(C) by Corollary 10.3. �

Remark 10.5. Corollary 10.4 tells us that massless subcategories need not be admissible.
An example is the derived-discrete algebra A = Λ(2, 1, 0); see [4] for notation and [26, §8]
for a detailed description of Db(A). One of the two simple modules S is a 2-spherical object.
Therefore, its thick hull N := thick(S) occurs as a massless subcategory. On the other hand, the
duality property Hom(S,−) = Hom(−, S[2])∗ implies that an adjoint of the inclusion N →֒ Db(A)
would lead to a splitting Db(A) ∼= N⊕M but Db(A) is indecomposable.

Proposition 10.6. If Stab(C) has finite type, then StabL(C) = Stab(C).

Proof. Suppose σ = (P,Z) ∈ Stab(C) does not satisfy the support property. Then we can find
a sequence (cn) of massive stable objects with mσ(cn)/||v(cn)|| → 0. Shifting the objects if
necessary we may assume they all have phase in (0, 1] and hence, by passing to a subsequence,
that the phases ϕ(cn) → ϕ as n → ∞. Corollary 10.3 states that σ has a discrete phase
distribution so, again passing to a subsequence if required, we may assume that ϕ(cn) = ϕ for
all n ∈ N. Thus the cn are simple objects in P (ϕ), and therefore also simple in P (ϕ − 1, ϕ].
There are only finitely many iso-classes of such simple objects because P (ϕ− 1, ϕ] is algebraic
by Corollary 10.3. So, passing to a subsequence for a final time, we may assume that (cn) is a
constant sequence. Since the cn are massive this contradicts the fact that mσ(cn)/||v(cn)|| → 0.
We conclude that no such sequence exists, i.e. that σ satisfies support after all. �

Corollary 10.7. If Stab(C) has finite type, then support propagates from StabL(C,N).

Proof. This follows immediately from the fact that StabL(C) = Stab(C) and Theorem 6.17 which
show that deformations of an element of StabL(C,N) remain in the closure of Stab(C). �

Corollary 10.8. Suppose Stab(C) has finite type and that σ ∈ StabL(C,N). Then µN(σ) is in
a finite type component of Stab(C/N).
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Proof. By Corollary 10.7, the entire component of µN(σ) in Stab(C/N) is in the image of
StabL(C,N) under µN. The slicing of each lax stability condition σ = (P,Z) in StabL(C,N)
has discrete phase distribution by Corollary 10.3. Since PC/N(ϕ) = 0 when P (ϕ) = 0 the slicing
PC/N of µN(σ) also has discrete phase distribution. Thus the component of µN(σ) has finite
type by Lemma 10.1. �

Remark 10.9. We have thus shown that the conditions for the structure results of §7 and §8
are satisfied. If Stab(C) is a finite type component then the space StabL(C) of lax stability
conditions is a union of components of Stab(C/N) × StabL(N,N), where N is the triangulated
closure of a finite set of simple objects in the heart of a stability condition in Stab(C). Each
component of Stab(C/N) which appears has finite type. The space StabQ(C) of quotient stability
conditions is therefore stratified by these finite type components.

11. Closures of G-orbits

Recall that the the universal cover G of GL+
2 (R) acts on stability spaces and our partial

compactifications. In this section we describe the closures of G-orbits. The phase diagrams
Φσ = {ϕ+Z : P (ϕ) 6= 0} ⊂ R/Z of stability conditions σ = (P,Z) in the same orbit are related
by orientation-preserving diffeomorphisms of the circle R/Z. The structure of the closure of the
orbit in both Stab(C) and in StabQ(C)∗ can be described in terms of the phase diagram. Here
StabQ(C)∗ is the space obtained by removing the strata where all objects are massless from

StabQ(C). This is more convenient to consider because the action of C on StabQ(C)∗ is free and
in fact we will describe the closure of (σ ·G)/C in Stab(C)/C and in StabQ(C)∗/C.

Fix a stability condition σ = (P,Z). If there is only one point in the phase diagram Φσ
then there is a non-trivial stabiliser and (σ · G)/C is a point. In this case the orbit is closed
in Stab(C)/C and also in StabQ(C)∗/C. Henceforth, we assume that Φσ consists of at least two
points. In particular the image of the charge is the whole of C so that the G-orbit through σ is
free and (σ ·G)/C is biholomorphic to the Poincaré disk D because G ∼= C×H. We show that
the closures of the orbit in Stab(C)/C and in StabQ(C)∗/C are homeomorphic to subsets of the
closed disk, with appropriate topologies. Our constructions require an explicit identification of
the Poincaré disk and the strict upper half-plane; we choose f : D→ H given by

f(w) = i
1 + w

1− w
.

Note that f extends to a homeomorphism from the closure of the disk to H ∪ R ∪ {∞}. For
each w ∈ D we choose a charge Zw =Mw ◦ Z where Mw ∈ EndR(C) satisfies

Mw(1) = 1 and Mw(i) = f(w) (w 6= 1)

and M1(1) = 0, M1(i) = −1. Note that Mw(i) ∈ H when w ∈ D so that there is a unique
compatible slicing Pw with Pw(0, 1] = P (0, 1]. Mapping w to the C-orbit of σw = (Pw, Zw) gives
an explicit identification D ∼= (σ ·G)/C. The reason for this particular choice is that

P (ϕ) ⊂ kerZw ⇐⇒ Mw(e
iπϕ) = 0

⇐⇒ Mw(1) cos(πϕ) + f(w) sin(πϕ) = 0

⇐⇒ (w = 1 and ϕ = 0) or
(
w = e2πiϕ and ϕ 6= 0

)

⇐⇒ w = e2πiϕ

so that points on ∂D correspond to charges for which semistable objects of a certain phase have
vanishing mass in a natural way. For w = e2πiϕ ∈ ∂D and c ∈ P (ϕ′) the sine rule yields

(9) Zw(c) =




|Z(c)|

sin π(ϕ− ϕ′)

sinπϕ
if w 6= 1;

−|Z(c)| sin πϕ′ if w = 1.
48



When P (ϕ) = 0 there is a unique choice of slicing Pw for w = e2πiϕ which is compatible with
Zw and with P (0, 1] ⊂ Pw[0, 1], namely

Pw(1) = P (ϕ,ϕ + 1] = P [ϕ,ϕ + 1)

and all slices with phase in (0, 1) are zero. One can verify that σw = (Pw, Zw) is a pre-stability
condition.

Lemma 11.1. Suppose w = e2πiϕ ∈ ∂D and P (ϕ) = 0. Then σw = (Pw, Zw) is a stability
condition if and only if ϕ is not an accumulation point of the phase diagram Φσ.

Proof. Suppose ϕ 6= 0 so that Mw(1) = 1. If ϕ is an accumulation point of Φσ and ε > 0 then
using the first equation in (9) shows that one can choose ϕ′ ∈ Φσ sufficiently close to ϕ that

|Zw(c)| ≤
ε

||Z||
|Z(c)| ≤ ε||v(c)||

for any c ∈ P (ϕ′). Hence the support property fails since c remains semistable for σw.
Conversely, if ϕ is not an accumulation point then there is L > 0 such that

|Zw(c)| ≥ L|Z(c)| ≥ KL||v(c)||

for all c ∈ P (ϕ′) where ϕ′ ∈ (0, 1], and K is a support constant for σ. Therefore the same
inequality holds for all c ∈ Pw(1) = P (ϕ,ϕ + 1] so that σw satisfies the support property as
claimed.

The case ϕ = 0 is similar but uses the second equation in (9). �

When P (ϕ) 6= 0 there is a one-parameter family of compatible slicings Pψw for w = e2πiϕ

compatible with Zw and with P (0, 1] ⊂ Pw[0, 1]. They differ by the choice of phase for the

massless objects in P (ϕ). Namely, for each ψ ∈ [0, 1] there is a unique such slicing Pψw with

Pψw (1) ⊃ P (ϕ,ϕ + 1) and Pψw (ψ) ⊃ P (ϕ)

and all other slices with phase in (0, 1] zero. One can verify that σψw = (Pψw , Zw) is a lax pre-
stability condition. We now give criteria for when it is in the closure of the orbit, and when it
satisfies the support property.

Lemma 11.2. Suppose w = e2πiϕ ∈ ∂D and P (ϕ) 6= 0. The lax pre-stability condition σψw
is in the closure of the orbit σ · G in Slice(C) × Hom(Λ,C) if and only if one of the following
conditions holds

(1) ϕ is an isolated point of Φσ and ψ ∈ [0, 1];
(2) ϕ is an accumulation point of Φσ such that P (ϕ− ε, ϕ) = 0 for some ε > 0 and ψ = 1;
(3) ϕ is an accumulation point of Φσ such that P (ϕ,ϕ + ε) = 0 for some ε > 0 and ψ = 0.

In particular, the slicing Pψw is locally-finite in each of the above cases.

Proof. If there is a sequence in Φσ tending to ϕ from below then the slicings of a sequence in

σ · G can only converge to Pψw if ψ = 0. Similarly, if there is a sequence in Φσ tending to ϕ

from above then the slicings of a sequence in σ ·G can only converge to Pψw if ψ = 1. It follows

that if σψw is in the closure then we are in one of the three cases in the statement. In each of
those cases one can construct a sequence (wn) in D converging to w ∈ ∂D and with σwn → σψw
by controlling the limiting phase of objects in P (ϕ) appropriately. �

Lemma 11.3. Suppose w = e2πiϕ ∈ ∂D and P (ϕ) 6= 0 and moreover that the lax pre-stability

condition σψw is in the closure of the orbit σ · G. Then it satisfies the support property if, and
only if, there is some ε > 0 such that either

(1) P (ϕ− ε, ϕ) = 0 and no simple object in P [ϕ,ϕ + 1) lies in P (ϕ,ϕ + ε); or,
(2) P (ϕ,ϕ + ε) = 0 and no simple object in P (ϕ,ϕ + 1] lies in P (ϕ+ 1− ε, ϕ+ 1).

In particular, if ϕ is isolated both conditions are satisfied and σψw satisfies the support property.
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Proof. Under the assumption P (ϕ − ε, ϕ) = 0 the heart P [ϕ,ϕ + 1) is length so that it makes
sense to speak of simple objects, and similarly for the second case. We only need to check the
support property for massive stable objects. Each such is also σ stable. If ϕ is an isolated point

of Φσ then any massive σψw stable object lies in a slice P (ϕ′) whose phase ϕ′ is bounded away
from ϕ. Again the support property follows as in the proof of Lemma 11.1.

If ϕ is an accumulation point of Φσ with P (ϕ − ε, ϕ) = 0 then ψ = 1 by Lemma 11.2. It is

enough to consider massive stable objects in Pψw (1) = P [ϕ,ϕ+1). These are the simple objects
of this heart which are not in P (ϕ). Therefore each such lies in P (ϕ′) for some ϕ′ ∈ (ϕ,ϕ+ 1).
The result then follows as in the proof of Lemma 11.1. The other case is similar. �

Remark 11.4. If C has an algebraic heart then any length heart is algebraic, i.e. has finitely
many iso-classes of simple objects. In this situation the conditions simplify to P (ϕ − ε, ϕ) = 0
or P (ϕ,ϕ + ε) = 0, i.e. to ϕ being isolated or at worst a one-sided accumulation point.

Definition 11.5. We define subsets of the closure of the Poincaré disk by

Dσ = D ∪ {e2πiϕ : ϕ 6∈ Φσ}

and DQσ = D ∪ {e2πiϕ : ϕ satisfies either (1) or (2) of Lemma 11.3 for some ε > 0}.

Note that Dσ ⊂ D
Q
σ because (1) and (2) are satisfied when ϕ 6∈ Φσ. For each w ∈ D

Q
σ we

have defined a quotient stability condition σw ∈ StabQ(C)∗, namely σw = [σw] for w ∈ Dσ and

σw = [σψw] for w ∈ D
Q
σ − Dσ.

Proposition 11.6. Let σ ·G/C denote the closure of the orbit of σ in StabQ(C)∗/C. Then

DQσ → σ ·G/C given by w 7→ σw · C

is a bijection, and restricts to a bijection between Dσ and the closure of the orbit of σ in
Stab(C)/C.

Proof. By construction, and Lemma 11.2, σw is in σ ·G so the map is well-defined. Since the
image of the charge Z is the whole of C we can find λ, µ ∈ Λ⊗R with Z(λ) = i and Z(µ) = 1.
Then the assignment

(Q,W ) 7→ f−1

(
W (λ)

W (µ)

)

descends to a map σ ·G/C → D taking σw to w. We claim this is the inverse. Certainly, if w
is the image of (Q,W ) then W is in the same C orbit as Zw. It follows that the image of this

map is precisely D
Q
σ , because we have shown that there are no quotient stability conditions in

σ ·G with charge Zw for w 6∈ D
Q
σ . Moreover, there is a unique quotient stability condition in

σ ·G with charge Zw, which establishes the claim. �

Corollary 11.7. The orbit σ ·G is closed in Stab(C) and in StabQ(C)∗ if and only if the phase
diagram Φσ is dense.

Proof. This follows immediately from the above result since DQσ = D when Φσ is dense. Alterna-
tively, note that the Bridgeland metric induces the standard hyperbolic metric on the quotient
(σ ·G)/C ∼= D up to a factor [34, Proposition 4.1]. Since the hyperbolic metric is complete, the
orbit is closed. �

Finally we describe the topology on D
Q
σ for which the bijection in Proposition 11.6 is a

homeomorphism. This is the topology in which a sequence (wn) converges to w if and only if
the charges Zwn converge in Hom(Λ,C)/R>0 and the slicings Pwn converge in Slice(C). Since

d(Pw, Pw′) ≤ 1 for w,w′ ∈ D
Q
σ the convergence of charges implies uniform convergence of the

phases of massive objects. This occurs whenever wn → w in the subspace topology from C. To
ensure that the phase of the massless objects in P (ϕ) converges we have to refine this topology

in a neighbourhood of each w ∈ D
Q
σ −Dσ so that convergence also implies that

lim
n→∞

wn − w

|wn − w|
50



is a well-defined unit tangent vector in TwC. In other words, the required topology arises from

the real blow-up β : C̃ → C at the points in D
Q
σ − Dσ. More precisely, let D̃

Q
σ be the subspace

of β−1(DQσ ) consisting of β−1(Dσ) and those points (w = e2πiϕ, v) in the exceptional divisors
where the unit tangent vector v ∈ TwC is such that ϕ and

ψ =
1

π
arg dwf(v)

satisfy one of the conditions (1), (2) or (3) in Lemma 11.2. The above discussion leads to the
following description of orbit closures.

Corollary 11.8. Equip D
Q
σ with the quotient topology from β : D̃Qσ → D

Q
σ . Then

DQσ → σ ·G/C : w 7→ σw · C

is a homeomorphism, and restricts to a homeomorphism between Dσ and the closure of the orbit
of σ in Stab(C)/C.

Remark 11.9. In fact, although we have not filled in all the details, the subspace D̃
Q
σ is

homeomorphic to the closure of (σ ·G)/C in StabL(C)∗/C.

12. Two-dimensional stability spaces

We illustrate our results in the simplest non-trivial case in which the stability space is a 2-
dimensional complex manifold. In this context there is a very close relationship between the
boundary strata we add and the wall-and-chamber structure of the stability space.

12.1. Walls and chambers. Suppose that Λ is a rank two lattice, and moreover that if C
contains a length heart then that heart has two iso-classes of simple objects and Λ = K(C) ∼= Z2.
This assumption is reasonable because otherwise the stability space of C is naturally higher-
dimensional. Since rk (Λ) = 2 the quotient Stab(C)/C is a non-compact Riemann surface and

Stab(C) ∼= Stab(C)/C × C

as a complex manifold because all holomorphic bundles on a non-compact Riemann surface are
holomorphically trivial [16, Theorem 30.4]. Therefore it suffices to describe Stab(C)/C.

The action of C preserves the set of semistable objects, so the wall-and-chamber struc-
ture of the stability space descends to a partition of Stab(C)/C into open chambers and
real codimension one walls between them. The charge map descends to a holomorphic map
Stab(C)/C→ P(Hom(Λ,C)) ∼= CP1 which by abuse of notation we also denote Z. The equato-
rial copy of RP1 consists of the charges with rank one image.

The action of the universal cover G of GL+
2 (R) also preserves the sets of semistable objects,

so each chamber and each wall is a union of orbits. The image of a free orbit in Stab(C)/C is
a copy of G/C ∼= H biholomorphic to its image under the charge map. This image is either the
Southern or Northern hemisphere in CP1. We refer to these free orbits as cells.

The image of a non-free orbit in Stab(C)/C is a point. The heart of a stability condition in
such an orbit is length, and so by our assumption has two isoclasses of simple objects, say s and
t. There is a one-parameter family consisting of images of orbits through stability conditions
for which s and t are semistable of the same phase and where the ratio m(s)/m(t) varies in
R>0. This describes a real analytic curve in Stab(C)/C which we refer to as a cell-wall. Each
cell-wall is isomorphic to its image in PHom(Λ,C) which is an arc in the equator from the point
Z(s) = 0 to Z(t) = 0. The following lemma is immediate.

Lemma 12.1. Suppose C admits an algebraic heart with two simple objects. Then there is a
bijection between the set of cell-walls and the set of algebraic hearts (up to shift).

If there are non-split extensions between the simple objects s and t then a cell-wall is a
genuine wall in the stability space along which these extensions are strictly semistable. All
walls are of this form; in particular no two walls intersect. If there are no non-split extensions,
for instance if the heart is semisimple, then the cell-wall lies in the same chamber as the two
neighbouring cells.
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Lemma 12.2. Each chamber of Stab(C)/C is a linear chain of cells, separated by cell-walls. If
it is a doubly-infinite chain then it is biholomorphic to C, otherwise it is biholomorphic to H.

Proof. Let C be a cell. If it has no cell-walls in its closure then it is a chamber and we are
done. Let W be a cell-wall in the closure, and let s and t be simple objects in a corresponding
algebraic heart. Their phases agree on W and we may assume ϕ(t)− 1 < ϕ(s) < ϕ(t) in C.

Suppose W ′ is another cell-wall in the closure of C which is not an actual wall. Let s′ and
t′ be simple objects in a corresponding algebraic heart. Since s and t are semistable on W ′,
some shifts s[m] and t[n] lie in this heart. Indeed, since we assume ϕ(s) < ϕ(t) in C, we may
apply a shift so that the heart contains s[1] and t. Since these are indecomposable and there
are no non-split extensions between s′ and t′ we deduce, after swapping s′ and t′ if necessary,
that s[1] and t are respectively self-extensions of s′ and t′. However, the classes of s[1] and t
are primitive in Λ = K(C) so in fact s′ = s[1] and t′ = t. It follows that the closure of C in
Stab(C)/C is precisely W ∪ C ∪W ′.

Arguing inductively we conclude that the chamber is either a linear chain of cells as claimed
or a cycle. The possibility that it is a cycle is easily excluded since the phase difference between
s and t is well-defined and monotonic as we move along a chain of cells.

For the final part note that the chamber is an open subset of the universal cover C of
PHom(Λ,C)−{Z(s) = 0, Z(t) = 0}. If the chain of cells is doubly-infinite then it is the entirety
of C. Otherwise it is a proper simply-connected open subset of C and is therefore biholomorphic
to H by the Riemann Mapping Theorem. �

12.2. The Speiser graph. The topology and geometry of Stab(C)/C is encoded combinato-
rially in what we call the Speiser graph. This is the dual graph Sp(C) to the cell and cell-wall
decomposition, i.e. it has a vertex for each cell and an edge between two vertices when they
have a common cell-wall in their closures. (More properly the Speiser graph is defined when
Stab(C)/C→ PHom(Λ,C) has a finite set S of singular values. It is the preimage in Stab(C)/C
of the dual graph in PHom(Λ,C) − S to a Jordan curve passing through the singular values in
S in cyclic order, see for example [12, §2]. However, this definition is too restrictive for our
setting where there may be infinitely many singular values.) Since the cells and cell-walls are
contractible the Speiser graph encodes the homotopy type of Stab(C)/C. Indeed we can embed
the Speiser graph in Stab(C)/C so that each vertex is in the corresponding cell and each edge
is a smooth curve crossing the corresponding cell-wall once transversely (and not crossing any
other cell-wall). Then Stab(C)/C deformation retracts onto the embedded Speiser graph.

Conjecture 12.3. Each component of the Speiser graph Sp(C) is a tree and therefore each
component of Stab(C)/C is contractible.

When the Speiser graph is a tree the Uniformisation Theorem, see for example [16, Theorem
27.9], tells us that Stab(C)/C is biholomorphic to either C (parabolic type) or to the Poincaré
disk D (hyperbolic type). Either case may occur, for instance if C is the bounded derived
category of representations of the quiver with two vertices and no arrows then Stab(C)/C ∼= C

whereas if C = Db(X) is the bounded derived category of coherent sheaves on a smooth complex
projective curve X of strictly positive genus then Stab(C)/C ∼= D [6, 28]. The type is parabolic
if the Brownian motion on Stab(C)/C is recurrent and hyperbolic if it is transient [21, 22].
The idea behind the following conjecture is that the Brownian motion can be combinatorially
modelled by the random walk on the Speiser graph with suitable transition probabilities on
each edge (provided at least that we are not in the trivial case in which the Speiser graph has
a single vertex and no edges). See [12] for a nice discussion.

Conjecture 12.4. Assume the Speiser graph contains at least one edge. Equip the charge
space PHom(Λ,C) ∼= CP1 with the constant curvature Riemannian metric in which the equator
(consisting of charges with rank one image) has length one. Assign each edge in the Speiser graph
a transition probability given by the length of the image in charge space of the corresponding
cell-wall. Then Stab(C)/C is parabolic if the resulting random walk is recurrent and hyperbolic
if it is transient.
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The following criterion, proved by comparing with the random walk on the standard 2-
dimensional lattice, is useful for establishing recurrence and shows that it does not depend
delicately on the transition probabilities.

Theorem 12.5 ([13, §2.4]). Suppose Γ is an infinite connected graph, with a uniform upper
bound on the valency of its vertices. Assign transition probabilities in [ε, 1− ε], where ε > 0, to
each edge. Then the resulting random walk is recurrent if the vertices of Γ can be embedded in
R2 with a uniform lower bound on the distance between any two vertices, and a uniform upper
bound on the length of each edge.

12.3. The space of quotient stability conditions. We remove the boundary strata of
StabL(C) where all objects are massless, and denote the resulting space by StabL(C)∗. There-

fore rk(ΛN) = 1 when the massless subcategory N 6= 0. In this case StabL(C,N) is a union of
components each homeomorphic to C×R by Theorem 9.4. The action of C on StabL(C)∗ is free
and the quotient is a union of the open subset Stab(C)/C and a copy of R for each boundary
component in StabL(C)∗. Passing to StabQ(C)∗ replaces each of these copies of R by a point.

Recall, we abuse notation by using Z to denote the map StabL(C)∗/C → P(Hom(Λ,C)) ∼=
CP1 induced from the charge map on the space of lax stability conditions. This maps points
of StabQ(C,N)/C where N is massless to the point Hom(Λ/ΛN,C). By Corollary 8.6 such a
point has a punctured neighbourhood in StabQ(C)∗/C isomorphic as a complex manifold to the
universal cover of a punctured disk centred at Hom(Λ/ΛN,C). The partial compactification
StabQ(C)∗/C is obtained locally by adding a point to the universal cover over the puncture.
Such a point is called a logarithmic singularity of Z. It follows that StabQ(C)∗/C embeds in the
Mazurkiewicz completion which is the union of Stab(C)/C with all logarithmic singularities of
Z, see for example [15]. We do not claim that this embedding is a homeomorphism, i.e. that
every logarithmic singularity occurs as a boundary point in StabQ(C)∗/C.

The space StabL(C)∗/C is recovered by performing a real blow-up at each of the boundary
points, resolving them to copies of R. Note that StabL(C)∗/C is not a Riemann surface with
boundary because each boundary stratum has a holomorphic function which vanishes along it,
namely the charge of (any) object which becomes massless on that stratum.

The next result classifies the stable massless objects.

Proposition 12.6. An object is massless and stable at some point in StabQ(C)∗ precisely if it
is simple in some algebraic heart of C.

Proof. Suppose s is simple in an algebraic heart H. Let t be the other simple object. Define
stability conditions (P,Zn) for n ∈ N with slicing P (1) = P (0, 1] = H and charge Zn(s) = −1/n
and Zn(t) = −1. The limit σ = limn→∞(P,Zn) is a lax stability condition in StabL(C)∗ for
which s is massless and stable. (By construction the limit is in the closure of Stab(C) with
locally-finite slicing P , and the support property follows immediately because, up to shift, t is
the only massive stable object.)

Now suppose s is a massless stable object at some point in StabQ(C)∗. Since rk(Λ) = 2
each free G-orbit in Stab(C) is open, and StabQ(C)∗ is the union of their closures. Hence s is
massless and stable at some point in the closure of a free orbit σ ·G where σ = (P,Z) ∈ Stab(C).
Then by Remark 11.4 and Proposition 11.6 the object s is stable in some slice P (ϕ) such that
P (ϕ − ε, ϕ) = 0 or P (ϕ,ϕ + ε) = 0 for sufficiently small ε > 0 (or both). In the first case
P [ϕ,ϕ + 1) is a length heart in which s is simple and in the second P (ϕ− 1, ϕ]. �

Corollary 12.7. The boundary points of StabQ(C)∗/C are in bijection with iso-classes of mass-
less stable objects up to shift.

Proof. We must show that there is a unique boundary point of StabQ(C)∗/C at which a given
stable object is massless. Suppose σ ∈ StabL(C,N) where N = triangC(s) is generated by the
stable massless object s. By Proposition 12.6, s is simple in some algebraic heart and our
standing assumption K(C) ∼= Z2 implies K(C/N) ∼= Z and Stab(C/N) ∼= C. Thus the induced

53



stability condition σC/N = (PC/N, ZC/N = Z) on the quotient is fixed up to the action of C. By
Proposition 3.2 the slicing P is uniquely determined by PC/N and PN, i.e. by the slicing of the

quotient and the phase of s. However, by Theorem 9.4 the component of σ in StabL(C,N) is
isomorphic to Stab(C/N)×R ∼= C×R so that all possible such σ occur in the same component
of StabL(C,N). Hence they all determine the same point of StabQ(C)∗/C as claimed. �

Recall that cell-walls in Stab(C)/C correspond to algebraic hearts (up to shift) and that the
masses of the two simple objects vanish at the respective ends of the cell-wall. Therefore the
cell-wall starts and ends at the boundary points where these simple objects become massless.

12.4. The exchange graph. The exchange graph EG(C) has one vertex for each algebraic
heart of a stability condition in Stab(C) and an edge whenever two hearts are related by a
simple HRS tilt; see [19, 33]. Each vertex of EG(C) is 4-valent because we can tilt left or right
at each of the two simple objects of the corresponding heart. The shift acts freely on EG(C)
and we denote the quotient, the projective exchange graph, by EG(C)/Z. This quotient has one
vertex for each algebraic heart up to shift, i.e. one vertex for each cell-wall. If there is an edge
between two vertices then they share a common end point in the boundary of StabQ(C)∗/C.
The massless stable object at this boundary point is (up to shift) the common simple object of
the hearts corresponding to the two vertices.

The exchange graph can be embedded into StabQ(C)∗/C by placing a vertex on each cell-
wall and embedding edges as smooth curves in the unique cell containing the two cell-walls
corresponding to its vertices in its closure.

12.5. Dense phase case. Suppose that Stab(C) contains a stability condition σ whose phase
diagram Φσ is dense. Then the G-orbit of σ is free and by Corollary 11.7 closed. Since the orbit
is also open it is an entire connected component, consisting of a single chamber with no walls.
This is the case in which the Speiser graph is trivial. Every stability condition in this component
has dense phases and therefore no stability condition in this component has an algebraic heart.
Our theory adds no boundary points to this component.

This situation occurs for the space Stab(X) of numerical stability conditions on a smooth
complex projective curve X of genus g > 0, see [6, 28] respectively for the elliptic curve and
higher genus cases. It also occurs for the space Stab(Q) of stability conditions on the bounded
derived category of finite-dimensional representations of a 2-vertex quiver Q with an oriented
cycle, see [11, Remark 3.33] for the existence of a dense-phase stability condition.

12.6. Non-dense phase case. Now suppose that there is at least one σ in Stab(C) with non-
dense phases. By the above, every stability condition in the component of σ has non-dense
phases, and therefore lies in the C orbit of a stability condition with length heart. In this
situation we assume Λ = K(C) ∼= Z2.

Using the description of the closure of the orbit (σ · G)/C in Proposition 11.6 and Corol-
lary 11.8, we can describe the component of σ in StabQ(C)∗/C. First we determine the chamber
containing σ and its walls. The latter correspond to non-trivial algebraic hearts whose simple
objects are stable in the chamber. Then we find the stable objects in the adjacent chambers
and repeat. In the examples we consider there are only finitely many chambers up to the action
of AutΛ(C) so this is an effective strategy.

It is easy to find the cell decompositions of chambers (since each chamber is a linear chain of
cells) and thence construct the Speiser graph. In our examples this is always a tree, so Stab(C)
is contractible. The type of Stab(C)/C, either parabolic or hyperbolic, is known from previous
results and we confirm Conjecture 12.4 in these cases by showing that the random walk on
the Speiser graph is respectively recurrent or transient. In the former case AutΛ(C) acts by
rotations and translations of C, and in the latter by rotations, translations and ideal rotations
of D.
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12.7. The A2 quiver. Let Q be the A2 quiver with two vertices and one arrow. In this section
we consider several stability spaces associated with algebras associated with the A2 quiver,
namely the classical A2 path algebra, and the the associated 2-Calabi–Yau Ginzburg algebra.

12.7.1. Classic A2. First we consider the bounded derived category Db(A2) of finite-dimensional
representations of the classic A2. Its stability space Stab(A2) ∼= C2 was first described by King
[24], see [8] for further references.

The standard heart of Db(A2) has two exceptional simple objects s and t with one non-split
extension 0 → s → e → t → 0 between them. It is easy to construct a stability condition in
which s, e and t are the only stable objects up to shift. Its phase diagram has three isolated
phases. By Corollary 11.8 the cell containing this stability condition has three cell-walls, and
three boundary points where respectively s, e and t become massless. The object e destabilises
as we cross the cell-wall along which s and t have the same phase, and we enter a chamber
in which only s and t are stable. Since e is the unique indecomposable extension between any
shifts of s and t, this chamber is a chain of cells indexed by N. Similar considerations apply to
the other two walls of the initial cell. Thus the stability space has four chambers, one in which
s, e and t are all stable and three in which pairs of them are stable. The Speiser graph has one
central vertex with three infinite linear graphs attached. The random walk on this is recurrent
by Theorem 12.5 in agreement with the fact that Stab(C)/C ∼= C is parabolic. The category
Db(A2) is fractional Calabi–Yau; the Serre functor S satisfies S3 = [1]. This acts by rotation on

StabQ(C)∗/C preserving the central chamber and cyclically permuting the other three chambers,
and also the three boundary points. See Figure 2 for an illustration.

12.7.2. 2-Calabi–Yau A2. Now consider the 2-Calabi–Yau category Db(Γ2A2), where Γ2A2 is the
Ginzburg dg algebra of the A2 quiver; see [23, §7.2], for example, for details of the construction.

The stability space Stab(Γ2A2)/C ∼= D is the universal cover of the thrice punctured Riemann
sphere and was first described in [32]. See [8] for a detailed discussion and further references,
and also [25, 30] for more general discussions of the stability spaces of the Ginzburg dg-algebras
associated to Dynkin quivers.

The standard heart of Db(Γ2A2) has two 2-spherical simple objects s and t, with one non-split
extension 0 → s → e → t → 0 and 0 → t → f → s → 0 in each direction. Each 2-spherical
object in Db(Γ2A2) generates a twist automorphism. For example, applying the twist tws about
s to the triangle s → e → t → s[1] yields the triangle s[−1] → t → f → s, and then applying
twt yields the rotation e[−1] → t[−1] → s → e of the original triangle. In particular e and f
are also 2-spherical. The subgroup of Aut(Db(Γ2A2)) generated by tws and twt is isomorphic
to the Artin–Tits braid group B3 of the A2 quiver, i.e. the braid group on three strands. The
centre Z(B3) is generated by a single automorphism which acts as the Serre functor S = [2].
Let S be the set of equivalence classes of spherical objects in Db(Γ2A2) up to isomorphism and
shift. We abuse notation by using the same notation for spherical objects and their classes in
S; this is harmless since the twists tws = tws[1] agree. The quotient B3/Z(B3) ∼= PSL2(Z)
acts on S and the stabiliser of s is the infinite cyclic subgroup generated by tws. From the
above examples t is in the orbit of s (indeed the action on S is transitive although we do not
need this).

Now consider the stability space Stab(Γ2A2). As in the Db(A2) case one can easily construct a
stability condition in which, up to shift, the stable objects are the two simple objects s and t of
the standard heart and one, e say, of the two extensions between them. The phase diagram has
three isolated phases so the corresponding cell in Stab(Γ2A2)/C has three cell-walls. As before e
destabilises as we cross the wall where s and t have the same phase, but now the other extension
f becomes stable on the far side of the wall. Thus we enter the chamber obtained by applying
tws to the initial one. Similar considerations apply to the other walls of the initial chamber.
Therefore PSL2(Z) acts transitively on the chambers in Stab(Γ2A2)/C, each of which is a single
cell bounded by three walls. There are three stable 2-spherical objects in each chamber whose
respective masses vanish at the three boundary points of the chamber. The action of PSL2(Z)
on chambers is free because no pair of distinct spherical objects, a fortiori no triple, is fixed.
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The action on walls is also free and it quickly follows from the examples of twist actions that it
is transitive.

In conformity with Corollary 10.4 and Corollary 12.7, the only massless stable objects are the
simple objects of the hearts of stability conditions (all of which are algebraic; see e.g. [30]) and
there is one boundary point in StabQ(Γ2A2)

∗/C for each (up to shift and isomorphism). The
Speiser graph is the Cayley graph of PSL2(Z) with respect to the generating set consisting of the
images of tws, twe and twt. It is an infinite trivalent tree as expected from Conjecture 12.3
and the random walk on it is transient as expected from Conjecture 12.4. The twist tws acts
by a hyperbolic isometry fixing the boundary point at which s is massless. Therefore, tws acts
either by an ideal rotation about that point or a translation, since, locally at the fixed point
the action universally covers the action on PHom(Λ,C). This is given by the matrix

(
−1 0
1 1

)

with respect to the basis {[s], [t]} of Λ = K(Db(Γ2A2)). Since the eigenvalues are ±1 the
twist acts by an ideal rotation. Up to isometry, the three boundary points where s, e and t
are massless can be chosen arbitrarily on ∂D and this fixes the remaining boundary points of
StabQ(Γ2A2)

∗/C uniquely. They form a dense subset of ∂D. See Figure 2 for an illustration.

12.8. A discrete derived category. Let Q = Λ2,1,0 be the bound quiver with two vertices,
one arrow in each direction, and the zero relation given by the composite of these arrows. The
(principal component of the) stability space Stab(Λ2,1,0) ∼= C2 was first described in [33], see
also [9, 30] for proofs that the stability space is connected and generalisations to other discrete
derived categories.

Let s be the simple representation at the vertex with no relation, and t = t0 the other simple
representation. The object s is 2-spherical and t0 is exceptional. Since tws(s) = s[−1] the
twist tws generates an infinite cyclic subgroup of automorphisms. Set tn = twn

s (t0). There are
unique non-split extensions 0 → s → t−1 → t0 → 0 and 0 → t0 → t1 → s → 0. In particular
there is a stability condition in which s, t−1 and t0 are the only stable objects up to shift.
This lives in a chamber with three walls, and three boundary points at which these objects are
respectively massless. Crossing the wall where t−1 destabilises we enter a chamber in which t1
is stable. As in the previous example this chamber is the image of the initial one under the
action of the twist tws, and similarly crossing the wall where t0 destabilises we enter the image
of the initial chamber under tw−1

s . However, if we cross the wall where the spherical object s
destabilises then we enter a chamber in which only t0 and t1 are stable. Unlike the previous
chambers which consist of a single cell, this is the union of a sequence of cells, and cell-walls
upon which the phases of t0 and t1[n] agree for n ∈ N. In summary, there is one free orbit of
chambers with three stable objects (one spherical and two exceptional) and one free orbit of
chambers with two stable objects (both exceptional) under the action generated by tws. As
expected, there is one boundary point in StabQ(Λ2,1,0)

∗/C at which each of s and {tn : n ∈ Z} is
massless. Clearly tws fixes the former and acts freely and transitively on the latter. Its square
tw2

s acts trivially on the Grothendieck group so the images of the boundary points labelled by
the tn map to one of two points in charge space according to whether n is even or odd.

The Speiser graph has vertices Z×N with edges (m, 0) to (m+1, 0) and (m,n) to (m,n+1)
for m ∈ Z and n ∈ N. This is a tree as predicted by Conjecture 12.3. Moreover, the random
walk on the Speiser graph is recurrent by Theorem 12.5, as predicted by Conjecture 12.4. The
twist tws acts by an isometry without fixed points on Stab(Λ2,1,0)/C ∼= C and therefore acts
by a translation of C. This is illustrated in Figure 2.

12.9. The projective line. The stability space Stab(P1)/C ∼= C was first described in [29], see
also [28]. The ‘classical’ stability condition has heart the coherent sheaves, with stable objects
the skyscrapers Ox for x ∈ P1 and the line bundles O(k) for k ∈ Z. The cell containing it has
a sequence of cell-walls indexed by Z separated by boundary points at which O(k) is massless
for k ∈ Z. An example for a lax stability condition at the boundary is given by the slicing
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A2 quiver Ginzburg algebra Γ2A2
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O(1)O

Λ2,1,0 quiver Coherent sheaves on P1

Figure 2. Illustrations of StabQ(C)∗/C. In each case this is a contractible non-compact
Riemann surface. We depict it as a disk, which is holomorphically accurate in the
hyperbolic case (Ginzburg algebra Γ2A2, shown orange). In the parabolic cases (purple)
it is only topologically accurate, but has the advantage that we can more easily visualise
the partial compactification. This is obtained by adding logarithmic singularities on the
boundary circle at which certain objects become massless. These points are labelled by
the corresponding stable massless object. Chambers are indicated by the shading. The
set of stable objects in a chamber (up to shift) is the set of massless stable objects at
its boundary vertices. Walls are shown as arcs of circles spanning a pair of points on
the boundary. The objects labelling these two boundary points have equal phase on the
wall; they are the two simple objects of the corresponding algebraic heart. The subset of
stable objects which become strictly semistable on a wall is therefore the set of massless
stable objects labelling the other vertices of the chamber. The Speiser graph Sp(C) is
shown in red and the quotient EG(C)/Z of the exchange graph by the shift in blue. To
avoid clutter cell-walls which are not walls are omitted; these can be inferred from the
Speiser and exchange graphs.

Pb of Example 3.14 with charge map Z(O) = 0 and Z(O(1)) = i. These boundary points
accumulate on the boundary at a point where the charge of the skyscrapers vanishes. However,
Proposition 12.6 shows this point is not in StabQ(P1)∗/C because the skyscrapers are not simple
in any algebraic heart and so cannot become massless (see also Example 4.17). We indicate this
omitted point by a white dot in Figure 2 and label it by Ox to indicate that the skyscrapers
are stable in the adjacent chamber.
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Crossing the wall spanning the points where O(k) and O(k+1) are massless the skyscrapers
and all other line bundles destabilise and we enter a chamber in which the only stable objects
are O(k) and O(k + 1). This chamber is the union of a sequence of cells separated by walls on
which the phases of O(k + 1) and O(k)[n] for n > 0 agree.

The Speiser graph is the union of Z copies of the graph with vertices N and edges from n
to n+ 1 joined at the 0 vertices. This is a tree as expected from Conjecture 12.3. The central
vertex has infinite valence so Theorem 12.5 does not apply. Nevertheless the random walk is
recurrent as expected from Conjecture 12.4.

The infinite cyclic group generated by the automorphism − ⊗ O(1) preserves the chamber
containing the ‘classical’ stability condition (but does not fix any stability condition in this
chamber) and acts freely and transitively on the chambers in which only two objects are stable.
It also acts freely and transitively on the boundary points. It follows that it acts by a translation
on Stab(P1)/C ∼= C. See Figure 2 for an illustration.

Superficially, this closely resembles the previous example. However, there are several impor-
tant (and inter-related) differences. In this case there is a chamber bounded by a countably
infinite family of walls; there are stable objects whose mass does not vanish; the images of the
boundary points accumulate in charge space.

13. Comparisons with other constructions

We compare our partial compactification of the stability space with two alternative approaches,
namely Bolognese’s ‘local compactification’ [5] and Bapat, Deopurkar and Licata’s ‘Thurston
compactification’ [1].

13.1. Bolognese’s ‘local compactification’. In [5] Bolognese constructs an alternative ‘local
compactification’ of Stab(C) using a metric completion of Stab(C). In order to do so she
assumes that Z : Stab(C) → Hom(Λ,C) is a cover of the complement of a locally finite union
∆ ⊂ Hom(Λ,C) of submanifolds. She fixes an inner product on the underlying real space of
Hom(Λ,C) and gives Stab(C) the geodesic metric dB induced from the pullback of the associated
metric. Since Stab(C) is locally homeomorphic to Hom(Λ,C) with its norm topology this metric

induces the usual topology on Stab(C). Her local compactification Ŝtab(C) is the subspace of the
metric completion consisting of equivalence classes of Cauchy sequences satisfying the limiting

support property below. As a topological space Ŝtab(C) is independent of the choice of inner
product [5, Lemma 3.6].

Definition 13.1 (Limiting support property [5, Definition 4.3]). A Cauchy sequence (σn) in
the metric dB on Stab(C) has the limiting support property if lim infn→∞Cn = C > 0 where
for each n ∈ N the constant Cn is the infimum of those K > 0 such that |Zn(c)| > K||v(c)|| for
every c ∈ Pn(ϕ) with limn→∞Zn(c) 6= 0. (The set of such constants K is non-empty because
each σn is in Stab(C) and so satisfies the support property.) This property is well-defined on
equivalence classes of Cauchy sequences by [5, Lemma 4.4].

In fact Bolognese shows that one can construct Ŝtab(C) using only Z-local Cauchy sequences,
that is Cauchy sequences (σn) for dB which eventually lie in an open subset U ⊂ Stab(C)
homeomorphic to its image via Z. More precisely, she shows that any Cauchy sequence is
equivalent to a Z-local one, and that if two Z-local Cauchy sequences are equivalent then they
are Z-local with respect to the same open U [5, Theorem 3.7]. Moreover, each Z-local Cauchy
sequence determines a thick subcategory of objects which become massless in the limit, and
a well-defined stability condition on the quotient category [5, Propositions 4.2 and Theorem
6.1]. Finally, Z-local Cauchy sequences are equivalent precisely when they determine the same
massless subcategory and stability condition on the quotient [5, Theorem 6.2].

Lemma 13.2. Suppose (σn) is a Z-local Cauchy sequence for dB on Stab(C). Then (σn)
converges to a lax pre-stability condition σ in the product metric on Slice(C)×Hom(Λ,C).
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Proof. By construction the sequence (Zn) of charges converges in norm in Hom(Λ,C), say
Zn → Z as n → ∞. The full subcategories P (ϕ) := {c ∈ C : ϕ±

σn(c) → ϕ} define a slicing [5,
Proposition 5.3]. Bolognese notes in the proof of [5, Proposition 5.2] that the sequence (Pn) of
slicings is Cauchy in the slicing metric on Slice(C). It follows that Pn → P in Slice(C). For, if
this were not the case, then, after passing to a subsequence, we may assume there is some ε > 0
with d(P,Pn) ≥ ε for all n ∈ N. In other words there is a sequence (ϕn) of phases and objects
cn ∈ P (ϕn) such that cn 6∈ Pn(ϕn − ε, ϕn + ε). However, we know that for each n ∈ N there is
some N with cn ∈ Pm(ϕn− ε/2, ϕn+ ε/2) whenever m ≥ N . Choosing N sufficiently large that
we also have d(Pn, Pm) < ε/2 for all m,n ≥ N leads to a contradiction.

Therefore (σn) converges to (P,Z) in the product metric on Slice(C)×Hom(Λ,C). It is easy
to confirm that σ = (P,Z) is a lax pre-stability condition, i.e. that Z(c) ∈ R≥0e

πiϕ whenever
c ∈ P (ϕ). �

Let StabB(C) be the subset of the closure of Stab(C) in Slice(C) × Hom(Λ,C) consisting of
the limits of Z-local Cauchy sequences for dB which satisfy the limiting support property. In
order to compare Bolognese’s local compactification with our constructions, we need to be able
to compare this with StabL(C). Unfortunately the relationship is not obvious since our support
property is phrased in terms of massive stable objects in some P (ϕ) and Bolognese’s limiting
support property is phrased in terms of semistable objects in some Pn(ϕ) which remain massive
in the limit. Since the HNfiltration of a σn-semistable object with respect to σ may contain
massless objects, and similarly the other way round, there is no direct argument relating the
two notions of support.

If StabB(C) = StabL(C) then there should be a homeomorphism Ŝtab(C) ∼= StabQ(C). For
instance, this is so for the example of the A1 quiver computed in Bolognese’s paper. More

generally an inclusion in either direction should extend to a map between Ŝtab(C) and StabQ(C)
in the corresponding direction.

13.2. Bapat, Deopurkar and Licata’s ‘Thurston compactification’. In [1], the authors
take a different approach to compactifying the stability space, more precisely the quotient
Stab(C)/C, of a k-linear triangulated category C. By analogy with Thurston’s compactification
of Teichmüller space, they consider the map

m : Stab(C)/C→ P(RC) : σ · C 7→ [mσ(c) : 0 6= c ∈ C].

When P(RC) has the topology induced from the product topology on RC this map is continuous,
for instance by Proposition 5.12. Automorphisms of C act on P(RC) by pre-composing a real-
valued function on the objects of C with the inverse automorphism. The map m is equivariant
for AutΛ(C) because mα·σ(c) = mσ(α

−1c).
Under appropriate conditions on C, Bapat, Deopurkar and Licata conjecture that m is a

homeomorphism onto its image M(C), and that the closure M(C) is a manifold with boundary
and interior M(C). Moreover, motivated by the description of boundary points of Thurston’s
compactification as functionals given by unsigned intersections with closed curves, they conjec-
ture that there is a suitable class S of objects such that the functionals

hom(s) :=

[∑

n∈Z

dimk HomC(s, c[n])
∣∣ 0 6= c ∈ C

]
(s ∈ S)

form a dense subset of the boundary ∂M(C). These conjectures hold for the 2-Calabi–Yau
category associated to the A2 quiver [1, §5]. More generally, when C is the 2-Calabi–Yau
category associated to any connected quiver, they show m is injective, that the closure of the
image is compact, and that the functionals of all 2-spherical objects lie in the boundary.

Let StabL(C)∗ = StabL(C) − StabL(C,C) be the space of lax stability conditions with the
stratum where all objects are massless deleted, and define StabQ(C)∗ similarly. We can extend
m to a map from StabL(C)∗/C defined in the same way; the extension is also continuous by
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Proposition 5.12. This extension factorises continuously through the quotient

StabL(C)∗/C P(RC)

StabQ(C)∗/C

q

m

m

because the masses depend only on the associated quotient stability condition. (We abuse
notation by denoting the extension and the factorisation by m.) By construction the images

of both StabL(C)∗/C and StabQ(C)∗/C are contained within M(C). At least when C is the
2-Calabi–Yau category associated to a connected quiver, Bapat, Deopurkar and Licata expect
the boundary points in the image of StabQ(C)∗/C to be dense in the boundary [1, Remark 4.9].
We show that this is true for the A2 quiver. Before discussing that example we consider the
non Calabi–Yau case. We slightly modify the construction by considering the map

StabQ(C)∗/C→ P(RS) : σ 7→ [mσ(s) : s ∈ S]

where S is a suitable class of objects with the property that the masses of objects in S uniquely
determine the masses of all objects.

Example 13.3. Recall the description of Stab(A2)/C in §12.7. In each stability condition in
Stab(A2) the semistable objects are, up to shift, a subset of at least two of {s, e, t} where s
and t are the two simple representations and e the extension between them. It follows that the
masses of objects in S = {s, e, t} determine the masses of all objects. This remains true for lax
stability conditions in StabL(A2). Therefore it suffices to consider the map

Stab(A2)/C→ P(R3) : σ 7→ [mσ(s) : mσ(e) : mσ(t)].

The image is cut out by the inequalities x0, x1, x2 > 0 (the masses are strictly positive) together
with the cyclic permutations of the inequality x0 − x1 + x2 ≤ 0 (the mass of an extension is
bounded by the sum of the masses of its factors). If we normalise so that x0 + x1 + x2 = 1
then the image can be viewed as the shaded triangle, with vertices omitted, in the 2-simplex
in Figure 3. In particular we see that the map is not injective because when, for example, e is
unstable the masses of s and t do not suffice to determine their phases. The three boundary
points in StabQ(A2)

∗/C where the masses of s, e and t respectively vanish are mapped to
the three omitted vertices. So in this example, StabQ(A2)

∗/C surjects onto Bapat, Deopurkar
and Licata’s compactification, and the boundaries coincide. The boundary points correspond
precisely to the functionals hom(c) for c ∈ S.

Example 13.4. Let S be the set of equivalence classes of spherical objects in Db(Γ2A2) up to
isomorphism and shift. Then by [1, Proposition 5.7] the map

m : Stab(Γ2A2)/C→ P(RS) : σ 7→ [mσ(s) : s ∈ S]

is a homeomorphism onto its image which we denote M(Γ2A2). Moreover, M(Γ2A2) is home-
omorphic to an open disk by [1, Proposition 5.20]. After choosing an element s ∈ S to map
to [1 : 0], the action of the Artin–Tits braids group induces a bijection S ∼= P(Z2). Using this
identification the map

S → P(RS) : s 7→ [hom(s)(s′) : s′ ∈ S]

extends uniquely to a homeomorphism from P(R2) onto the boundary of M(Γ2A2) in P(RS) by

[1, Propositions 5.13 and 5.18]. The closure M(Γ2A2) is homeomorphic to a closed disk. The
functional hom(s) is the unique fixed point of the spherical twist tws.

Now consider the extension m : StabQ(Γ2A2)
∗/C→M(Γ2A2). Recall from §12.7 and Figure 2

that the partial compactification StabQ(Γ2A2)
∗/C contains one boundary point for each s ∈ S

at which the objects in the class s become massless. This boundary point is fixed by tws

because tws acts by a shift on s. The equivariance of m implies that this point is mapped to
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x2 = 0

x0 = 0

x1 = 0

Figure 3. The image of Stab(A2)/C → ∆2 : σ 7→ (λmσ(s), λmσ(e), λmσ(t)) where
λ = mσ(s) +mσ(e) +mσ(t) is shaded red. The chamber of the stability space in which
s, e and t are stable is mapped homeomorphically to the interior. The chamber in which
only s and t are stable, together with its bounding wall, are projected down onto the
edge x0 − x1 + x2 = 0, and similarly for the other two chambers. The three boundary
points in StabQ(A2)

∗/C where the masses of s, e and t respectively vanish are mapped
to the three black vertices.

hom(s). (At first sight this looks odd because
∑

n∈Z Hom(s, s[n]) = 2 is non-zero. However we
are working in an infinite-dimensional projective space and [1, Proposition 4.5] states that

lim
n→∞

mσ (tw
n
s (s

′))

n
= mσ(s) hom(s)(s′)

for any s′ ∈ S and stability condition σ in which s is stable. Since tws fixes s up to a shift,
this implies that hom(s)(s) = 0 as expected.) We conclude that

m : StabQ(Γ2A2)
∗/C→M(Γ2A2)

is a continuous embedding, restricting to a homeomorphism between the interiors, and whose
image is dense in the boundary. This accords with the expectations of [1, Remark 4.9], and pro-
vides a modular interpretation of the boundary points hom(s) as quotient stability conditions.

14. Open questions

We end with four open questions. (1) and (2) relate to the properties of composition series in
quasi-abelian categories. This technical issue plays a role because the slices P (ϕ) of a lax stabil-
ity condition are quasi-abelian but, in contrast to the situation for classical stability conditions,
need not be abelian. (3) and (4) relate to support properties for lax stability conditions. There
are various different notions in the literature, and it would be good to understand which are
equivalent, and to what extent each has the crucial propagation property enjoyed by support
for classical stability conditions.

(1) Are there examples where the Jordan-Hölder property fails for the slices P (ϕ) of a lax
stability condition? If there are then, whilst the HNfiltrations of objects are unique,
their refinements to filtrations with stable factors would not be. Presumably this would
have implications for the wall-and-chamber structure.

(2) Let P be a locally finite slicing on C and N ⊂ C a thick subcategory such that P descends
to C/N. Is the slicing PC/N on the quotient also locally finite? What if P is the slicing
of a lax pre-stability condition with massless subcategory N? (If P is the slicing of a lax
stability condition then the support property guarantees that PC/N is locally finite, see
Proposition 4.13.)

(3) Are there examples where support propagation fails? See Definition 6.12 and the dis-
cussion on page 33. This is crucial for the range of applicability of our results.
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(4) What is the relationship between the support property for a lax pre-stability condition σ
we use and Bolognese’s notion of limiting support for a sequence of stability conditions
converging to σ? Understanding this is key to clarifying the relationship between our
partial compactification and Bolognese’s, see §13.1.
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