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Abstract

The need for comparison methods between crystal structures led the research to look for
proper descriptors that could encode the chemical properties of different materials. Many
crystal structures exist in theory, but only some of them may be synthesized in a labo-
ratory and used in the real world for practical applications. To discover new materials,
Crystal Structure Prediction is vital in predicting various crystal structure forms or gener-
ating new ones by building blocks or molecules. Usually, a structure prediction computes
chemical features that are not correct properties because they do not consider the entire
3-dimensional structure of a crystal. However, they rely on rules considering only the type
of particles involved. For example, some chemical properties are used frequently to select
a good candidate for synthesis because, in theory, they could tell if a crystal may exist in
its solid form under some environmental conditions.
This thesis project aims to design and develop new geometric tools or properties that can
properly distinguish 3-dimensional structures starting from the raw atom coordinates. The
Geometric features developed in this document are fast properties or numerical character-
istics that map crystal structure to a different space for a more reliable and efficient
comparison.
Firstly, we solved the comparison problem between crystal lattices by designing a prop-
erty that maps a crystal lattice to the space of polyhedra and a metric that can distinguish
them.
Secondly, we designed a new and faster geometric property that relies on vectors of in-
teratomic distances that are proved to change continuously under atom perturbations.
Finally, the chemical property prediction was addressed in our last work, where we
attempted to predict the chemical properties of crystals by using our geometric features.

iv



Chapter 1

Introduction to crystal structures

Crystals are solid crystalline materials that can be formed by many substances if cooled

sufficiently to reach a solid phase. In this phase, atoms pack together until they arrange in

a repeating array. A simple example of a crystal could be the ice structure, where water

molecules are arranged in different positions and adjusting their orientation accordingly to

chemical forces between atoms. In the following paragraphs, we will deal with atoms and

forces, starting from basic definitions and building up the concept of a crystal structure

step by step.

1.1 Atomic particles

1.1.1 Atoms

Before going to some definitions, let us take sodium and chlorine. Sodium (S) is a metal

that consists of sodium atoms, and chlorine is a green gas made up of two chlorine (Cl)

atoms paired up in Cl2 molecule. Both are toxic to humans and highly reactive. Neverthe-

less, when they react together, they form a joint compound called sodium chloride (NaCl)

or rock salt, the common salt that we can find daily in our kitchen to make our food

tastier and full of flavour. If we consider sodium and chlorine singularly, they are called

elements because they are made up of the same type of atoms and eventually paired up as

molecules. On the other hand, sodium chloride (NaCl) is called compound as different

types of atoms form its structure. Atoms could be arranged together in molecules or net-

work structures. When we refer to an atom, we think of a small particle with a nucleus

1
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in the centre and electrons spinning around it. The idea of this small entity is called

a model of an atom. According to this model of an atom, the nucleus is the dense and

positively charged part that consists of positively charged protons and uncharged neu-

trons (except for hydrogen), which keep the nucleus tight by a robust nuclear force. This

force is stronger than the repulsion between protons. Electrons are the particles involved

in chemical reactions, and they are arranged in circular shells around the nucleus. The

outer shell contains the reactive electrons called valence electrons on which the number

of possible reactions depends. Each element differs from the other based on the number of

protons, given by the symbol Z and called atomic number.

1.1.2 Ions

Under normal conditions, every atom is electrically neutral as the number of protons and

electrons are equal. Nevertheless, it is possible to move electrons away from the nucleus

during some types of reactions when charge neutrality is broken. For example, when sodium

and chlorine react together, energy is released to build bonds between them, and electrons

are transferred from sodium Na close to the chlorine nucleus Cl. In this case, protons

would be non-neutralized in Na forming a positive ion or cation Na+ and a negative

force will overcome the neutral charged nucleus in Cl forming a negative ion or anion

Cl−:

Na→ Na+ + e− (1.1)

Cl + e− → Cl− (1.2)

with Na+ the correspondent cation from sodium, e− the transferred electron, and Cl−

the anion from chlorine. The required energy to move the farthest electron away from the

nucleus is called ionization energy which is defined as the energy change for the process

in equation (1.1) and measured in kJ
mol . Each element has its own set of ionization energies

depending on the number of shells where electrons lie and their distance from the nucleus.

Therefore, the type of bond that two atoms may form depends on it. For example, in

sodium chloride, both atoms have different first ionization energies I1 such as 496 kJ/mol

for sodium and 1251 kJ/mol for chlorine. The high difference between them suggests that

they will form an ionic bond where electrons move closer to one atom with respect to the

other forming ions on both sides. The higher first ionization energy I1 of chlorine results
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from the fact that chlorine needs more energy to release an electron from the outer shell

because the high positive charge of protons keeps electrons tighter to the nucleus with

a lower distance. Thus, it needs more effort to release the first electron from the outer

shell. Moreover, ionization energies can be provided to remove electrons one by one from

an atom, and they should always be greater than the previous one. In fact, the electron

is removed from a more positively charged ion and could lie in tighter shells, closer to the

nucleus and subject to a stronger force. For example, the second ionization energy I2 of

sodium is 4562 kJ
mol and will follow the equation:

Na+ → Na2+ + e− (1.3)

1.2 Atomic structure and Interactions

Atoms are small entities that form the matter surrounding us, starting from the most

straightforward example, such as the water in our seas or oceans, and ending with the

carbon structure of a diamond, which occurs very rarely in nature and makes it the most

expensive crystal. Although we can not spot or see atoms, why would we be able to see

the matter they form under the light? The answer lies in light waves. Light behaves as

a wave, and we can see everything that is larger than the light wavelength (400 nm - 700

nm). The first quantum model of an atom was proposed by Bohr in 1913, who suggested

that electrons do move around a nucleus at specific distances from it and, indeed, their

ionization energy changes at each level. It means that the electronic energy in an atom

is quantized. He stated that the electron moves around the nucleus in a fixed orbit in

hydrogen, which can be thought of as a spherical shell. Shells are indexed by an integer

number n ∈ N called quantum number, which starts from 1, representing the closest

orbit to the nucleus. The electronic energy changes concerning the orbit (given by n) on

which the electron lies as shown below:

E = − k

n2
(1.4)

where n is the quantum number and k is a constant which considers the mass and charge of

the electron. Bohr’s model of an atom became outdated later but the concept of quantized

energy and quantum number remained as solid basics for further theories.
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1.2.1 Wave mechanics

Properties of matter are related to those small particles called electrons that spin around

the nucleus. Spectroscopy is a method used to study the atomic structure, and uses the

strength of electromagnetic radiations (such as X-rays) that are absorbed or emitted by

atoms. Electromagnetic radiation is a form of energy that consists of an oscillating

electric-magnetic field holding physical properties such as the wavelength λ, amplitude

and frequency v. The wavelength λ (measured in m or nm) is the distance between two

wave crests, and the frequency v (measured in hertz Hz) refers to the number of waves

crests that pass over the origin every second. According to the electromagnetic spectrum,

which contains all types of radiation, we can see only a small part of it with our eyes

depending on the waves that all matter emits. These emissions allow us to see different

colours that lie in the electromagnetic spectrum, provided that a wavelength ranges from

390 nm (purple) to 740 nm (red) with intermediate values that correspond to all remaining

colours. Every type of wave before and after this range cannot be seen by our eyes, but

they exist as radio waves, microwaves, infrared, ultraviolet, x-rays and γ-rays. In 1924,

De Broglie proposed that electrons can behave as waves, so that they have a wavelength

property which is inversely proportional to the mass(m) and the velocity (v) as shown

below:

λ (wavelength) =
h

mv
(1.5)

where h is the Planck constant. This idea of an electron could seem strange since we cannot

see the wave behaviour of the surrounding matter. Only in 1925, Davison, Germer

and Thomson carried out an experiment to obtain a diffraction pattern given by the

matter. They shot a beam of electrons to a crystal of nickel, matching the electron beam

wavelength with the distance between nickel atoms, and modifying the electrons’ velocity

v according to the equation (1.5). The diffraction pattern was originated by the electrons,

which are charged particles (unlike neutrons and X-rays). Therefore, the beam of electrons

interacted with nickel atoms, particularly with protons and electrons travelling at a specific

wavelength. Indeed, diffraction occurs because the particle’s wavelength is the same as the

interatomic distance and the crystal acts as a diffraction grid. To study the electron

trajectory, we should shoot electromagnetic radiation at high energy that will cause the

trajectory deviation and the change in velocity. Therefore, it will not be possible to obtain

the perfect position and calculate the exact velocity at which an electron spins around.

The electron uncertainty theory was first discussed by Heisenberg in the 1920s. Although
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it is not possible to spot a precise location, we can take into consideration the probability

of an electron occupying a region of the space, which is called atomic orbital. Finally,

after the old Bohr model that belongs to the quantum mechanics theory, the concepts

of uncertainty, probability and atomic orbitals led chemistry to a modern theory called

wave mechanics. Before 1927, electrons were described in terms of position, velocity and

energy until Schrodinger developed an equation called wavefunction ψ. This function

led to the wave mechanics theories where undetermined orbitals replaced Bohr’s determined

orbits. Consequently, the wave function is not used to determine the exact position but

only to detect the probability that an electron has to occupy a particular region of the space

around the nucleus (atomic orbital). The study of electron energy involves computations

of partial derivatives meaning that we can study the change in energy associated with ψ

along one axis. In contrast, the others are constant or fixed.

The wave function is not directly measurable, but contains only information about the

electron behaviour. The German physicist Born suggested considering the square of the

wave function ψ2 and thinking of it as a measurable property proportional to the probability

of finding the electron within a small space dτ . In particular, where ψ2 is large, the

probability of finding an electron is high. Finally, the location of an electron cannot be

precisely computed, and indeed, we should take the probability that an electron has to

occupy a specific space. When we consider a small volume of space dτ , it is suitable to

refer to the probability per unit volume, defined as the electron density.

1.2.2 Atomic orbitals

Unlike Bohr’s orbit, the atomic orbital does not have precise borders and represents the

space around the nucleus where the probability of finding an electron is very high. Accord-

ing to Bohr’s model, the hydrogen atom has a positive nucleus and an electron spinning

around it on an orbit of radius 0.53 Å. On the other hand, according to wave mechanics,

the hydrogen atom consists of a positive nucleus located at the centre of the orbital (cen-

tre of a sphere with radius 0.53 Å), which circumscribes the space where the maximum

probability of finding an electron lies.

Schrodinger succeeded in solving the total energy equation related to the wave function ψ

in 1927, showing that the following equation gave energy levels:

En =
h R

n2
(1.6)
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where R is a constant that involves the mass and charge of the electron, h is the Plank

constant and the vacuum permittivity and n is the quantum number. Since there are

different quantum numbers resulting from Schrodinger equation, n is called principal

quantum number and can be assigned to values from 1 to ∞ (just the first 7 are chem-

ically significant). The principal quantum number represents the electron’s energy level

that is almost similar to Bohr’s energy rings, but with the difference that there is no fixed

distance nucleus-electron (wave mechanics uncertainty). The size of the orbital depends

on n together with the maximum number of electrons that it can contain.

Each energy level n may have several types of orbitals that have different shapes. The

type is referred to as the secondary quantum number or orbital quantum number and

it is represented by the symbol l . The symbol l can take values from 0 to n−1, though only

values from 0 to 3 are chemically significant. These sublevels referred by l were found to

be strictly related to each level n and indeed each energetic level n may have at maximum

n sublevels. As well as representing them by integers from 0 to 3, the following lower case

letters were used to name the most significant ones (first four): s, p, d, f (ordered according

to the increasing energy) and each sublevel has a different geometric shape: spherical for

s, a filled 3D infinity symbol shape for p and a more complex symmetric shape for d and

f. Take as example the oxygen atom (O): in its ground state, electrons occupy two energy

levels n = 2: the first one contains a spherical sublevel s with 2 electrons (exponent), the

second has a spheric sublevel s plus a p-type sublevel with 6 electrons in total.

O

1s22s22p4

Finally, each orbital type l may have different orientations in the 3D space and the set

of all possible orientations forms the entire type. For example, the p type orbital (l = 1)

may be located in the 3D space along the three axis thanks to its shape and therefore, it

may have three different orientations m1 ∈ [−1, 0,+1] that is referred to as the magnetic

quantum number (symbol ml). The magnetic quantum number ml depends on l and

can be assigned to values from -l to l with 2l+1 values in total. In particular, the sublevel

s (l = 0) contains only one orbital type that does not have any preferred orientation

(spherical symmetry) and corresponds to m0 = 0. Regarding the sublevel p (l = 1),

three values are allowed m1 ∈ [−1, 0,+1] which define three orbitals along x, y and z axis
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(px, py, pz), perpendicular to each other and oriented differently that form the entire

orbital p.

1.2.3 Components of the wave function ψ

The wave function ψ determines the behaviour of an electron spinning around a nucleus.

According to Born, the square ψ2 can be related to the probability of finding it within

a small region of the space dτ . This behaviour can be explained in a 3D space on a

Cartesian system with the origin at the point (0, 0, 0) and any other point at coordinates

(x, y, z). Therefore the wave function will be a function that takes in input three coordi-

nates ψ(x, y, z). Nevertheless, an atom can be modelled as a sphere where the nucleus lies

at the origin coordinates (0, 0, 0) and all electrons spin around it. Since an atom is related

to a sphere, it is more suitable to identify points in the space through another system

called the spherical system, which is similar to the Cartesian system except for the values

used as coordinates. Indeed, the first coordinate will be the distance from the origin to a

specific point x = r where r is the distance between the electron and the nucleus, followed

by two angles y = θ and z = ϕ that describe the orientation of the electron concerning the

nucleus.

ψ(x, y, z) = ψ(r, θ, ϕ) = R(r) Y (θ, ϕ) (1.7)

A spherical system allows us to split the wave function into two components: the radial

wave function that depends on the distance between the nucleus and the electron R(r),

and the angular wave function Y (θ, ϕ) that depends on the angles describing the shape

of the orbital, as shown in (1.7). Since nuclear forces applied to electrons follow a spherical

behaviour, it is reasonable to consider the radial wave function, which depends only on the

distance from the nucleus. Given the Born interpretation of ψ2, it represents the probability

of finding an electron within a small volume dτ . Consequently, the function R2(r) dτ is

the probability of finding an electron within a small volume dτ at a distance r from the

nucleus, which is equal to the electron density at that point. Finally, the probability of

finding the electron anywhere in the whole space must be equal to 1 and it is expressed as

follows ∫ r=∞

r=0
ψ2dτ = 1 (1.8)

and called single-electron wave function.

Although we need to consider a region of the space to calculate the probability, it is more
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beneficial to restrict the probability computation to a spherical region around the nucleus

with a specific region thickness. Indeed, we may want to compute the most probable

distance of finding an electron. It can be achieved by plotting the radial distribution

function against r. The radial distribution function is related to the probability of

finding an electron in a spherical shell of radius r and thickness dr:

RDF = 4πr2 R2(r) dr (1.9)

1.2.4 Octet rule

How can elements join together to form compounds of different types and with various

physical properties? It is rare that, in nature, elements exist as isolated atoms. Indeed

most of the atoms combine with the same or different types to create molecules of elements

or molecules of compounds. To understand how chemical reactions cause the making and

breaking of bonds, we need to understand how electrons interact with each other to create

a bond and which energy levels are involved.

The bonding in many molecules can be achieved by considering their electronic configu-

ration. Atoms approach a stable state where the outer orbital has the maximum number

of electrons. For example, the hydrogen atom is formed by an atomic orbital in the first

energy level n = 1 with only the spherical type s (l = 0). It has 1 electron, which lies in

this orbital type 1s1, identified by the exponent of s. Since the orbital type s can have

a maximum of 2 electrons, it needs another electron to reach a stable state and match

the electronic configuration of helium (He), a noble gas (stable element with the maximum

number of electrons in the outer shell that belongs to the VIII group of the periodic table).

All elements are listed in the periodic table and belong to a specific group that deter-

mines the number of electrons they have in the outer shell called valence electrons. For

instance, carbon C belongs to the IV group meaning that the outer shell has 4 valence elec-

trons involved in reactions. Some elements tend to complete their outer shell by acquiring

electrons, like chlorine Cl, from other atoms. Others remove a few remaining electrons of

the outer shell to reach stability. This rule is called octet rule since for most atoms eight

electrons in the outer shell corresponds to the filled s and p orbital types ns2np6 where

n is the energy level, s and p are orbital types of n and the exponents are the number of

electrons in the atomic orbital (2 + 6 in total).

In 1916, Lewis was the first person to develop the concept of electron sharing in molecules
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and recognized that atoms in a molecule could obey the octet rule by sharing electrons

of the outer shell. Bonds and electron configuration can be represented by dots and lines

to show lone pairs of electrons in the outer atomic orbital (shell) and highlight those that

make a physical bond. For example, an oxygen molecule is formed by two oxygen atoms

that belong to the VI group of the periodic table, and it means that they need other 2

electrons to complete and match with the corresponding noble gas Neon (Ne). Each atom

can be drawn in the Lewis diagram with four dots that represent lone pairs and two lines

meaning that they share 2 electrons (double bond) to both complete the octet as shown

in diagram 1.10. Indeed, the outer shell n = 2 is made of 2 + 4 valence electrons, and 2 of

them will be shared with the other to complete the outer atomic orbital n = 2 and reach

8.

. .
.
.O

1s22s22p4

==

. .

O
.
.

1s22s22p4

(1.10)

1.2.5 Bond types

In Section 1.1.2, we dealt with a structure called sodium chloride NaCl that has ionic

bonding, a strong and non-directional bond formed by a cation (Na+) and an anion (Cl−).

This type of bond forms between two oppositely charged ions thanks to the electrostatic

attraction. Electrons are transferred from one atom to another and the attractive force,

F, that keeps them tight is given by Coulomb’s Law: F = q1q2
r2

where q1, q2 are the ions

charges and r is the distance between them. Indeed, sodium belongs to the II group of

the periodic table. Therefore it is unstable since it needs other 7 electrons to complete

the outer shell n = 3 according to its electronic configuration 1s22s22p63s1. This type of

atom tends to get rid of electrons instead of sharing them to become stable, as shown in

diagram 1.11.

.Na

1s22s22p63s1

+

. .
.
.Cl

.

. .

1s22s22p63s23p5

Na+

1s22s22p6

+

. .
.
.Cl

.

.
. .

−

1s22s22p63s23p6

(1.11)

After the ionic bond has occurred, sodium ion reaches stability with 8 electrons in the outer

shell n = 2 after giving the remaining one to chlorine, which becomes a negatively charged
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ion. Ionic forces are effective over large distances where ions pack together in repeating

arrays in ionic crystals to maximize the Coulomb attraction and minimize repulsion.

Sodium Na does not occur in nature, but it can be found in different compounds from which

it can be prepared to pack sodium cations and make a crystalline structure. The type of

bond that keeps the sodium ions tight is called metallic bond which is a characteristic of

all metals in the first three groups, including the transition metals such as iron Fe. This

type of bond is genuine and generates regular arrays of metal cations surrounded by a ’sea’

of electrons. Electrons are delocalised because they occupy the space between the cations

and can move around, giving these materials the property of electric conductivity. Indeed,

these atoms, which belongs to the first groups, tend to lose electrons easily since their first

ionization energies are lower.

In order to react, all atoms in a molecule try to attract electrons as much as they can. The

power of electrons’ attraction is called electronegativity, and the shared electrons are

pulled towards the more electronegative atom. This property depends on how hungry atoms

of electrons are, and it is directly related to the number of electrons they need to complete

the outer shell. According to the periodic table of elements, electronegativity increases

by rows and decreases down a column (or group). For example, a water molecule H2O

consists of 1 oxygen (electronegativity at 3.44) and two hydrogen atoms (electronegativity

at 2.2). Because of its higher electronegativity, all electrons in the hydrogen orbital type

s are pulled closer to the oxygen one. Instead, let us take a diatomic molecule made of

the same elements as in the green gas chlorine Cl2. Electrons are not moved towards the

other atom since Cl atoms have the same electronegativity (3.16). This type of bonding,

in which electrons are shared between atoms, is called covalent bond. It is strong and

directional, and may involve reactions between different atoms where each of them may be

more or equally hungry of electrons, see diagram 1.12.

. .

O
. . H

H . .
.
.Cl
. .

. .

Cl
.
.

. .
(1.12)

The presence of a covalent bond can affect the structure of a molecule where elec-

tronegative elements such as oxygen attract the bonding electrons considerably. There-

fore, electronegative atoms in a molecule, such as water H2O, cause the bond to acquire a
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partial negative charge δ− on one end and a partial positive charge δ+ on the other end.

The separation between these two charges generates an electric dipole, and the molecule

is said to be a polar molecule. Given their modified electronegative structure, polar

molecules in water can interact with each other since the negative part Oδ− of a molecule

A can interact through a weak bond with the positive part Hδ+ of molecule B. This type

of interaction is called dipole-dipole interaction, and it is 100 times weaker than ionic

interactions and falls off quickly with the distance r following the function 1
r3
. Specifi-

cally, water molecules have a particular case of dipole-dipole interaction that, in general,

concerns highly electronegative atoms connected to hydrogen atoms such as fluorine F,

nitrogen N and oxygen O. In this case, attractions between dipoles are powerful so as to

be called hydrogen bonds. Hydrogen atoms create proper ”bridges” between a molecule

A and the most electronegative atom of molecule B thanks to their high positive charge

and align all molecules in a crystalline network. This type of bond does not affect the

chemical properties of a compound, but it influences the physical properties such as the

boiling point, density and solubility.

Polar molecules consist of dipole moments that divide them into two parts. Even in ap-

olar compounds, such as iodine I2 crystal, which are not subject to a high difference in

the dipole charges (symmetric distribution), various attractive forces may exist. Assum-

ing electrons move around continuously, their distribution may be altered, causing a small

dipole moment that will alter the electronic distribution of molecules in the neighbourhood

(this effect is called induced dipole). This type of weak connection between diatomic

molecules belongs to the non-bonded interaction class referred to as van der Waals forces

that are dispersion forces which drop off rapidly with the distance r, following mostly a

leading term close to 1
r6
.

δ−
I I

δ+ −−−− δ−
I I

δ+ (1.13)

1.2.6 Atomic radii

We cannot measure the correct size of atoms and find the exact position of an electron

that behaves like a wave. Although electrons are very difficult to spot, atoms’ nuclei in

compounds or elements are found at proper distances from each other and are characterized
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by a specific atomic radius, where they apply their nuclear force. When we deal with

covalent bonds, reaction forces are stronger and keep atoms at a certain distance depending

on the type of atoms involved in the interaction. According to this bond type, a covalent

radius rc is assigned to the atoms, and it is defined as half the inter-atomic distance

between two singly bonded atoms (or pure elements). For diatomic molecules such as

iodine I2, there is no problem in computing the nuclei’s distance since they form a molecule

with a single bond. However, for elements that do not have diatomic molecule forms, such

as carbon C–C (e.g. they exist only in larger compounds), an average value is calculated

from a range of compounds containing it.

Ionic solids are formed by ionic bonding, where atoms are arranged in a crystalline network

and retain different inter-nuclear distances from the usual atomic radii that are called ionic

radii. According to ionic bond rules, atoms modify their usual atomic radius by increasing

or reducing the inter-atomic distance. Indeed, when an atom as Na forms a cation Na+ in

sodium chloride NaCl, it gives an electron to chlorine Cl reducing its ionic radius (because

an electron moved away). As a consequence, chlorine accepts the electron and increases

its atomic radius. Ions regularly pack together in crystals. Therefore, their inter-atomic

distance can be measured accurately with an average from many crystal structures using

X-rays Crystallography and electron density maps.

Furthermore, unlike the covalent radius, Van der Waals radius is defined as a non-

bonded distance of the closest approach, and it is calculated from the smallest inter-atomic

distances in crystal structures that are not bonded to one other. These values are computed

as averages compiled from many crystal structures. For example, when bonded, the iodine

atom I has a covalent radius of 1.33 Å. On the other end, if not bonded, it has a van

der Waals radius of 1.98 Å. It means that, in theory, atoms within 1.98 Å from iodine

that are not bonded, should be considered in computing chemical features. Therefore,

knowing these experimental values of bond lengths, it is easier to treat or identify bonds

computationally.

1.3 Solids

According to standard conditions (e.g. room temperature and pressure), the matter may

be found in different states such as solid, liquid or gas. In the liquid phase, molecules are

close together and arranged randomly, occupying a fixed volume but not a fixed shape,

such as the water H2O adapting to different containers. Gaseous substances are in a fluid
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form as well, where molecules are far apart from each other and spread around by filling

all the available space and adapting to the shape of a container, such as oxygen O2 or

chlorine Cl2 gases. A solid is a rigid form that can arrange in repeating arrays or layers

and extend to infinity. In this document we will focus on these perfectly ordered structures,

although it is also possible to have non repeating patterns such as in the glass structure.

Atoms, ions or molecules in a solid phase of the matter vibrate around their positions

and cannot easily move due to the strong interactions between them given by the perfect

arrangement with specific distances between atoms. Nevertheless, the temperature is a

good condition to use to provide the system with energy by increasing it and pushing the

system to instability. Indeed, atoms, ions or molecules vibrate in their position, and these

vibrations become intense as the temperature rises, causing a phase change which is the

transition phase that brings matter from a particular state to another. For example, if we

provide a block of ice with heat (just considering a room temperature of 25°), hydrogen

bonds become weaker and weaker, allowing the block to melt down, moving from a solid

phase to a liquid phase. Moreover, given a sodium crystal Na mixed with some water,

sodium melts down at standard conditions. It is a highly reactive metal and changes its

phase from solid to liquid, making bonds with hydrogen and oxygen atoms. On the other

hand, many substances may reach a solid phase making tighter bonds when environmental

conditions change, such as the same water which freezes to ice below 0° C after fixing and

aligning hydrogen bonds at specific distances.

Furthermore, many simple crystalline solids exist or can be prepared from compounds

at room temperature and pressure such as iodine I2, sodium Na, lithium Li or iron Fe.

Iodine I2, as the ice, is a molecular solid which means that covalent bonds connect iodine

atoms, but iodine molecules are linked together by weaker non-covalent forces such as van

der Waals and hydrogen bond forces. Due to the weaker forces, iodine easily evaporates,

passing to gaseous phase and releasing iodine vapour if a small amount of heat is provided

to the system.

Sodium, lithium and iron are metals formed by metallic bonds, which may arrange in an

infinite metallic network structure. It is held up by electromagnetic forces between

cations of the same type and surrounded by a sea of electrons that provide them with

the electricity conduction property. This property occurs for the metal groups of the

periodic table (I, II, III and transition metals) because all valence electrons of the atoms

are delocalized and can move freely around. Most of these metals exist in a solid state

except for mercury, which is liquid at room temperature.
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Figure 1.1: [61] Fig. 10. Crystal
structure of diamond.

In addition, ionic solids usually tend to form

between elements on the far left of the periodic table

with groups I or II, such as Li and Na that prefer

to remove electrons and form cations. They pair

up with elements on the far right with groups VI

or VII that form anions and need to reach a stable

configuration as the closest noble gas. Elements in

the other first groups (III or IV) may also be used,

but the reaction becomes harder because they need

more potent ionization energies as the number of

electrons to be removed increases for making subsequent ions.

Figure 1.2: [61] Fig.
10. Crystal structure of
graphite.

Ionic bonds are non-directional, meaning that their

strength decreases with the increasing separation of the

ions that pack together to maximize the Coulomb at-

traction and minimize repulsions. An example of an ionic

solid is the sodium chloride NaCl made of an ion of group

I (Na+) and an ion of group VII (Cl−).

Many types of structures are found in different non-metal

elements and their compounds (right part of the peri-

odic table), including carbon C. They are called covalent

network structures and are formed by covalent bonds,

which are stronger than ionic forces. An example is the

diamond in Figure 1.1, a carbon form structure very

rare in nature. Each carbon in the diamond is equivalent

and connected to precisely four atoms at a distance of 1.54 Å because four is the maximum

number of bonds that a carbon atom can make. Moreover, it forms a big molecule with all

carbons connected, and these bonds make it the hardest substance known. Another form

of carbon may be described with the graphite in Figure 1.2, a soft grey solid that consists

of 2-dimensional layers of atoms joined together, where each carbon atom C makes only

three bonds with the carbons in the surroundings within a layer, fixing at a distance of

1.42 Å in a hexagonal shape. It is a soft metal because layers are kept closer by weak van

der Waals forces with a distance of 3.4 Å from each other. Carbon can form more than one

structure, indeed diamond and graphite are called allotropes because they are different

structures of the same element. All these examples of crystalline materials have a regular
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structure consisting of a small repeating unit or particles that can build up the entire

crystal. The underlying periodic structure where a unit is repeating is called a lattice.

1.4 Energy changes and disorder

1.4.1 Energy changes

Energy is used in everyday life, and indeed, each action we perform requires energy to

be completed. During the energy release, work is done, and it involves motion occurring

against a force. Even in elements reactions, work is performed by taking in or releasing

energy and consequently, the environment is affected by being cooled down or heated up.

When a reaction produces energy and heats the surroundings, it is called exothermic

where the product resulting from it gains less energy than the reactants. On the other

hand, if a reaction needs energy to be performed, it takes in energy by cooling down the

surroundings, and it is called endothermic reaction. It is difficult to measure the energy

transferred between a reaction and the surroundings. However, we can only measure the

change in energy at constant pressure called enthalpy change ∆rH where enthalpy H

is the heat transferred and r is the reaction type among different processes (e.g. crystal

formation identified by f ).

∆rH = Hproducts −Hreactants (1.14)

Exothermic reactions have a negative value of the enthalpy change addressing the fact

that energy is lost to the surroundings. On the contrary, the value of ∆rH is positive

for endothermic changes because the system gains energy from the surroundings. Usually,

standard conditions and temperature in kelvin at which they occur are specified respectively

by the superscript symbol 
 and a numerical subscript as in ∆rH


298. For example, for

the reaction of sodium Na and chlorine Cl we can use the following thermochemical

equation to describe the beginning of the process, which links the enthalpy change to the

molar amount of elements:

Na(s) + Cl2(g)→ NaCl(s)

In the thermochemical equation, we can notice that, in nature, chlorine gas Cl2 exists as

an element which is paired up into a molecule of two chlorine atoms. During a reaction,
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masses should be preserved as the mass conservation law states, and therefore the mole

of atoms of reactants should be the same in the product. Indeed, in the product of the

equation, only one atom of chlorine is counted, and consequently, the thermochemical

equation is said to be unbalanced. To find the correct balance, we need to match the

mole of atoms on both sides of the equation as follows:

Na(s) +
1

2
Cl2(g)→ NaCl(s) ∆fH



298 = −411.12

kJ

mol
(1.15)

where 1 mole of sodium solid Na reacts with 1
2 the mole of Cl2 gas to form 1 mole of

sodium chloride solid NaCl, and throughout the process 411.12 kJ are transferred to heat

the surroundings for crystal formation (f ).

After a reaction, chemical bonds are broken, atoms rearranged and new bonds are made

in the final product releasing or taking in energy measured in kJ
mol . When bonds break, an

input of energy is taken in to separate the atoms or ions and disrupt the attractive electro-

static forces. So the process is called endothermic because it cools down the environment

absorbing energy from it. Conversely, when a bond is formed, energy is released by heating

the surroundings. Finally, the overall change in enthalpy is determined to be endothermic

or exothermic by the difference in energy between the bond-breaking and bond-forming

processes as defined in equation 1.14.

During the phase of bond breaking, the system absorbs energy allowing the atoms to divide

depending on their bond strength. To measure the bond strength, the bond dissociation

enthalpy D or ∆dissH can be used. It is defined as the standard enthalpy change for the

reaction in which a bond is broken. For some homonuclear diatomic molecules, we have

different dissociation enthalpies that are summarized below:

H2(g)→ 2H(g) ∆dissH = D(H−H) = +435.8
kJ

mol

O2(g)→ 2O(g) ∆dissH = D(O−O) = +498.5
kJ

mol

I2(g)→ 2I(g) ∆dissH = D(I−I) = +152.3
kJ

mol

Cl2(g)→ 2Cl(g) ∆dissH = D(Cl−Cl) = +242.4
kJ

mol

where values of dissociation energy change are positive because bond breaking requires to

take in energy in the system (molecule) from the environment.
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When a reaction process is ongoing, the reactants may need an amount of energy that

allow them to break bonds and consequently form new ones. It could be given by simply

providing the system with more heat. We say that during a reaction, reactants need to

pass the energy barrier or activation enthalpy to start breaking bonds and approach to

the formation of the product when the enthalpy of the reacting system gradually decreases.

Under normal conditions such as room temperature and standard pressure, some reactions

can occur without providing energy because they have small energy barriers. For instance,

sodium Na and chlorine Cl cannot react without providing heat to the system, which is

performed by adding some water and let the sodium mix to get hotter. Therefore, the

chlorine gas molecules Cl2 can react with hot sodium to form sodium chloride NaCl or

table salt, unleashing a very bright red light that confirms the exothermic reaction and, if

no precautions are taken, the reaction force may break the bottle where the elements are

contained.

In order to form a crystal, bonds should be broken and then formed to lead to the product.

As the Hess’s law states, the total enthalpy change for a chemical reaction is independent

of the path by which the reaction occurs, provided the starting and ending states are the

same for each reaction path. In particular, it does not matter what is the path to form a

crystal; the energy released will not change. For instance, given the experimental standard

enthalpy change of the sodium chloride formation ∆fH

(NaCl) in 1.15, whatever are the

states of the reactants, the enthalpy energy of formation will not change [9].

1.4.2 Entropy

It is not entirely true that a solid have always an infinite repeating pattern. The repeating

structure can be interrupted at some point breaking the periodicity of a crystal structure.

This is the case of disordered solids such as the glass that we find in our windows or

bottles. It is formed from heating up a viscous liquid made by sand and other compounds,

and then cooling it down. A glass material is characterized by brittleness, transparency,

heat-resistance, and belongs to the class of amorphous solids, which may retain in parts

the properties of a periodic solid and the molecular randomness of a liquid. These type of

solids forms from a disordered system that did not succeed in building the final structure

in which all atoms converge into an ordered pattern. One way of looking at the disorder

is to consider what is happening to the organisation of molecules in the system and how

the energy is exchanged. The factor that affect the disorder of a system is called entropy
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and is given by the symbol S. Entropy is a state function and therefore its change is given

by the difference between the final and initial states of a system

∆S = Sproducts − Sreagents (1.16)

The higher is the number of microstates the more disordered is a macroscopic system.

These microstates are the set of different molecules arrangements that form the system.

The entropy is a measure of randomness or disorder in a system and can be represented

by the Boltzmann formula below:

S = kB lnW (1.17)

where W is the of ways of arranging molecules and their energies and kB = 1.381 ×
10−23 J

K is the Boltzmann constant. Another measure of the entropy change is to considered

the energy exchange under a certain temperature at equilibrium (when the reaction has

reached a ”stable” state).

∆S =
q

T
(1.18)

where q = ∆H is the enthalpy change at constant pressure and T is the temperature.

Every isolated system tends spontaneously to increase its disorder, reaching the most

probable state. An increasing value in ∆S refers to a transition from an ordered state to

a disordered one (from solid to gaseous). Vice versa, a decreasing value in ∆S defines the

inverse process.

Since our experiments are based on perfectly ordered structures, we will refer only to

periodic crystal structures.

1.5 Atom packing

A lattice highlights the perfect arrangement of particles in a crystal structure that can be

aligned on different layers. Indeed, a unit of particles should be repeated in all directions

to build the entire structure, and consequently, atoms, ions or molecules may be arranged

in layers that superimpose on each other. Many crystals adopt structures based on layer

superimposition. How can we model atoms to reach the best superimposition? According

to the wave mechanics model, atoms are formed by a nucleus in the centre and electrons

spin around different types of orbital. The more an electron is far away from the centre, the

less ionization energy is required to remove it. Therefore the atom structure resembles a
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sphere where the nuclear force fades out concerning the distance from the nucleus (radius).

Once we set a theoretical atom structure, we can start building layers of hard spheres and

see how they pack together, keeping in mind the principal aim of minimizing the empty

space. This type of arrangement on different layers is defined as close packing. Sphere

packing starts from the first horizontal layer A where spheres are aligned and placed to

minimize the empty space by letting each touch six neighbours. Consequently, a second

layer B is located on top of it, where each sphere occupies a depression between the spheres

of the first layer. When the first two layers are located on top of each other, two different

types of hole open in between, occupied by a third layer. Regarding the third layer, since

there are two types of depressions formed by superimposing AB layers, we can place the

third one in two ways: the first one (ABC), could be found by placing hard spheres of a

layer C above the spaces of the first layer A (cubic close packing or ccp), and the second

one (ABA) consists of another layer A directly above the first one (hexagonal close

packing or hcp). There are many different types of layer arrangements such as ABCAB

or ABCB, but ccp and hcp are the most common used by the majority of metals and noble

gases: copper Cu and aluminium Al have a cubic close-packed structure, magnesium Mg

and zinc Zn adopt the hexagonal close packing (Figure 1.3). After the third layer is added,

we can count a total number of neighbour spheres equal to 12 for each one, where 12 is

called coordination number. Ccp and Hcp structures have coordination number equal

to 12 because each sphere of layer B touches: 6 spheres on the same layer B, 3 spheres

on layer A and 3 spheres on layer C (or A). The structures of close packing represent the

most efficient way to pack spheres or atoms, indeed, spheres occupy 74% of the space, and

this percentage value is said packing efficiency.

There are different types of cubic structures, and all of them differ from each other by a

minor detail. When dealing with a crystal structure, we refer to an object with a particular

shape containing all particles and defining the smallest possible set of repeating units. This

object is called unit cell. In cubic unit cells (Figure 1.4), if atoms, ions or molecules are

placed on the vertices and in the centre of each face, we define a face-centred cubic unit

cell or fcc, which is adopted by metals like calcium Ca or aluminium Al. Particles can also

lie at the centre of the unit cell with no atom in the faces’ centres, and in this case, it will

be a body-centred cubic or bcc structure used by lithium Li, sodium Na and iron Fe.

Moreover, the simplest of the cubic types is the primitive cubic where all particles are

located on the only vertices leaving the empty space inside. Therefore, the face-centred

type occupies all possible space of a unit cell with coordination number 12 and could also
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Figure 1.3: Cubic and hexagonal close packing.

be called a close-packed structure. In contrast, body-centred and primitive types contain

bigger empty spaces and their packing efficiency drops from 74% of the face-centred to

68% and 52.4% with coordination numbers 8 and 6 respectively [50].

1.6 Crystal Structure

Crystals are solid crystalline materials formed by atoms, ions or molecules. They consist

of an underlying periodic structure called a lattice Λ and a set of particles (atoms, ions

or molecules) called a motif M which is repeated at each lattice point (Figure 1.5).

Definition 1.1. (lattice Λ). More formally, given a linear basis of n vectors v⃗1, v⃗2, ...v⃗n,
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Figure 1.4: The unit cells of body-centred, face-centred and primitive cubic lattices.

a lattice in Rn is the discrete set of their linear combinations with integer coefficients ti:

Λ = {
n∑

i=1

tiv⃗i ∈ Rn | ti ∈ Z} (1.19)

It is an infinite arrangement where all points are equivalent in the sense that each of them

can be found by translation along the three axes. Moreover, they define a place in the

space where the repeating units lie. In metallic bonded structures such as sodium or iron,

each lattice point is occupied by a set of metal atoms or ions. Their unit cell follows

a body-centred cubic structure with two lattice points in total because 1 point is shared

between 8 unit cells (18) and altogether account for 1, plus 1 point in the centre of the cube.

Therefore, the repeating unit is formed by two atoms or ions. The set of lattice points is

Figure 1.5: A crystal structure made of a lattice plus a motif.
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used to simplify the periodic pattern of a structure (underlying periodic structure). Indeed

they do not retain any information about chemical bonds. To add chemical information,

we need to consider atoms and their positions which repeat at each lattice point.

Definition 1.2. (unit cell U , motif M). A unit cell U is a parallelepiped spanned

by the linear basis v⃗1, v⃗2, ...v⃗n, and containing a finite set of points p⃗1, p⃗2, ...p⃗m ∈ M . All

points of a motif can be addressed by the linear combinations with real coefficients in the

interval ri ∈ [0, 1]:

U = {
n∑

i=1

riv⃗i ∈ Rn | ri ∈ [0, 1]} (1.20)

The unit cell is periodically repeated by translations along the unit cell vectors v⃗i to

span the infinite crystal structure.

Definition 1.3. (periodic point set S). Generally, a periodic point set S ⊂ Rn

is the Minkowski sum S = Λ +M = {u⃗ + v⃗ : u ∈ Λ, v ∈ M}, so S is a finite union of

translates of the lattice Λ.

A unit cell U is primitive when it contains the smallest part of a crystal structure.

Since every smallest part (molecules, atoms or ions) can be repeated at each lattice point,

no any other lattice point must be included in the unit cell to be primitive (see Figure 1.4

for the primitive cubic unit cell). An example of periodic set is a lattice Λ plus a 1-point

motifM = {p}. The motif point p (smallest part) repeats at each lattice point overlapping

it. Each point can be found by translating the other, and so p can be any point in a

unit cell U . Examples of periodic sets are given in Fig. 1.6a-b that shows equivalent (or

isometric) square lattices. Whereas the periodic sets in the bottom part of Fig. 1.6c-d

represent isometric hexagonal lattices, because every black point has exactly six nearest

neighbours that form a regular hexagon. A lattice Λ of a periodic set S = M + Λ ⊂ Rn

is not unique, in fact, S can be generated by different unit cell vectors that contains a

motif larger than M . This results in a non-primitive unit cell that is bigger. For instance,

imagine to double the vectors in Figure 1.5, and consequently, four repeating units can be

clearly identified inside the new bigger parallelogram, together with other lattice points

included.

In the previous paragraphs we dealt with cubic unit cell types, but, usually, crystals could

be also described by non-cubic unit cells where linear bases have angles different from

90° degrees and different bases lengths. Angles and vector lengths are called unit cell
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a b

c d

Figure 1.6: Equivalent square lattices (a-b) where b has been transformed by a rigid
motion with respect to a. Equivalent hexagonal lattices (c-d) where d has different

bases with respect to c.

parameters which form the parallelepiped containing the set of particles, and are stored

in the crystallographic information file (CIF) together with other structural details

and chemical information.

1.7 Crystal systems

In the previous sections cubic unit cells were mentioned to explain that most of the metallic

network structures adopt this type to form a crystal structure of ions which allow the

electricity conduction. Cubic unit cells are said to belong to the 7 crystal systems

together with other 6 classes. The unit cell is defined by a parallelepiped and it is stored in

the CIF file with 3 lengths a, b, c and 3 angles α, β, γ (see Section 1.10). When a = b = c

and α = β = γ = 90° it belongs to the cubic crystal system and all the other possible values

for lengths and angles characterize the remaining classes as it is summarized in table 1.1.

For example, the hexagonal crystal system, which follows an atom packing of ABA layers,

is adopted by metallic networks such as zinc Zn, magnesium Mg and titanium Ti, holding

angles α = β = 90° and γ = 120°.

Each crystal system can have at most four types of unit cells. In Section 1.5, we dealt

with atom packing and three types of unit cells of the cubic crystal system: face-centred,

body-centred and primitive cubic unit cells. Crystal systems may also be formed by a
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System Lengths Angles

Cubic a = b = c α = β = γ = 90°
Tetragonal a = b ̸= c α = β = γ = 90°
Orthorombic a ̸= b ̸= c α = β = γ = 90°
Hexagonal a = b ̸= c α = β = 90°, γ = 120°
Trigonal a = b = c α = β = γ ̸= 90°

Monoclinic a ̸= b ̸= c α = γ = 90°, β ̸= 90°
Triclinic a ̸= b ̸= c α ̸= β ̸= γ ̸= 90°

Table 1.1: Features of all 7 crystal systems.

fourth type that belongs to the face-centred type but holds lattice points only in two of

the face centres. It gains its name from symbols A, B and C depending on the two faces

where lattice points lie. For example, a B-type face-centred unit cell has a lattice point at

each corner and two lattice points in two parallel faces’ centres perpendicular to vector b⃗.

All 4 types are shown in Table 1.2. Crystal systems and unit cell types form a total of 14

lattices called Bravais lattices.

Type Symbol Lattice point positions

Primitive P Each corner
Body-centred I Each corner and parallelepiped’s centre
Face-centred F Each corner and each faces’ centres
Face-centred A, B, C Each corner and two parallel faces’ centres

Table 1.2: Features of all 4 unit cell types.

1.8 Crystal Packing and Density

1.8.1 Packing efficiency

A crystal structure of a metal tends to form a metallic network where atoms of the same

type pack together lying at specific distances from each other to support electrical conduc-

tivity. The Close-packed structure is the most efficient way to pack spheres in space. The

property that addresses how good atoms are packed is called packing efficiency, defined
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as follows:

pe =

∑n
i=1 V (ai)

V (U)
100 (1.21)

where n is the number of atoms in the unit cell U, V() is the function that outputs the

volume, ai is the i-th atom in the unit cell U, and the result is multiplied by 100 to get the

percentage value. Since the volume of the unit cell V(U) usually is higher than the sum of

all atoms’ volumes the result belongs to the range [0, 100].

To compute the numerator of the packing efficiency, we need to check what atoms we

should consider in the unit cell. Indeed, some atoms could belong to different repeated

unit cells in the crystal structure. Therefore we need to assign a weight for each of them

as follows: 1
x where x is the number of unit cells that share that particular atom or sphere.

For example, in the close-packed cubic (or face-centred cubic) structure of calcium crystal

Ca there are 8 atoms on the vertices plus the other 6 at the face centres. In the repeated

unit cell domain, each atom on the vertices is shared with 8 unit cells and therefore, it

should be accounted with weight 1
8 , whereas each atom on the face centres is shared with

2 unit cells and should be accounted with weight 1
2 . Once we have identified the count

values, we can find the effective number of atoms in the unit cell:

nfcc(number of atoms in fcc) =
1

8
8 +

1

2
6 = 4

Regarding the other cubic structures, the number of atoms changes reporting a different

number of shared atoms as shown below:

nbcc(number of atoms in bcc) =
1

8
8 + 1 = 2

np(number of atoms in primitive) =
1

8
8 = 1

where bcc has 1 atom inside that belongs only to 1 unit cell and the primitive structure

has atoms only at each lattice point (or cube vertex). Given the effective number of atoms

in a unit cell, we need to compute the volume of an atom which is modelled as a sphere

with radius r and volume 4
3πr

3. Once we can compute the numerator, we need to find

the volume of a cubic close-packed unit cell (fcc) to solve the packing efficiency for

metallic network structures. Suppose we do not know the side length l of the cube. In

that case, we can find it in function of the sphere (atom) radius by using the Pythagora’s

theorem and knowing that each fcc unit cell’s face has a diagonal of length d = 4r where
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each sphere in the face centre is touching other 4 neighbours. Therefore, the side length l

can be found as follows:

l2 + l2 = d2 ⇐⇒ l2 + l2 = (4r)2 ⇐⇒ l = 81/2r

from which the volume of the cubic unit cell is equal to:

V (Ufcc) = l3 = (81/2r)3 = 83/2r3

The packing efficiency of a close-packed (fcc) unit cell is shown below:

pefcc =

∑nfcc

i=1 V (ai)

V (Ufcc)
100 =

nfcc
4
3πr

3

83/2r3
100 =

16
3 πr

3

83/2r3
100 = 74.0%

where
∑nfcc

i=1 V (ai) is the sum of all atom volumes.

When the unit cell is not represented by a cubic shape, it could be easier to calculate the

packing efficiency by relying on the linear bases of the unit cell by the following formula:

pe =

∑nfcc

i=1 V (ai)

V (U)
100

where the volume of the non-cubic unit cell V (U) may be computed with the absolute

value of the cross product and the scalar product between unit cell vectors:

V (U) = |(v1 × v2) · v3| (1.22)

1.8.2 Relative atomic mass and Crystal Density

To compare atomic masses, a relative scale is used. The standard scale is a single atom

of carbon-12 (12C) of which the relative atomic mass (Ar) is defined as a value equal

to 12. All the other atom masses are considered with respect to this reference value,

which has no unit. Starting from the notion that exactly 12 grams of 12C contain 6.022

x 1023 atoms, every other element or compound that has the same weight contains the

same number of atoms (mole of atoms). The number of atoms per mole is referred to

as the Avogadro constant, NA. Practically, the unit of the amount of substance is the

mole (mol) that always contains 6.022 x 1023 entities (NA). The relative atomic mass is

used to compare masses of atoms. However, if we want to consider a comparison between
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compounds we need to compute the relative formula mass given by the symbol Mr (if

discrete molecules are involved such as the benzene molecule C6H6 the relative formula

mass is called relative molecular mass). Take the previous example of the common salt

sodium chloride NaCl that is formed by two ions arranged in a network structure. Given

the relative atomic mass of sodium Ar(Na) = 22.989 and chlorine Ar(Cl) = 35.453, the

relative formula mass is:

Mr(NaCl) = (1 · 22.989 + 1 · 35.453) = 58.442 (1.23)

When dealing with compounds chemists want to know the amounts of entities that

they contain (could be atoms, molecules or ions) since reactions occur between them.

Therefore, chemical amounts are based on the concept that the mass of one mole (the

molar mass, M) is equal to the relative atomic mass, relative formula mass or relative

molecular mass in grams per mole ( g
mol ). For example, given 12C and its relative atomic

mass Ar(
12C) = 12.011, its molar mass is exactly M(12C) = 12 g

mol . Moreover, if we con-

sider the relative formula mass of the sodium chloride at (1.23), its molar mass will be

M(NaCl) = 58.442 g
mol .

Given 12 grams of common salt or sodium chloride, can we estimate the number of ions con-

tained? The answer is ’yes, we can’, indeed the amount of substance (in mol) is computed

by the following equation:

amount (in mol) =
mass (in g)

molar mass (in g
mol )

=
12g

58.442 g
mol

= 0.205 mol (1.24)

It means that there are at least 1
5 entities (ions in our case) of a mole contained in 12

grams of sodium chloride. The result makes sense because the sum of sodium and chlorine

relative atomic masses is 5 times bigger than the reference 12C mass, therefore in 12 grams

they will contain a less number of entities or ions for 1 mole, which is indeed equal to the

number of ions (NA) in 12g of 12C.

Most of the time, when dealing with crystal structures, we already know the content

of the unit cell, such as atom positions and their types. Since atoms in compounds are

various and have different atomic radii, it is hard to find the side length in terms of the

atomic radii and compute the packing efficiency. Therefore, we can use another measure

called density (ρ) that is defined as the mass per unit volume. It explains how dense

atoms or molecules are packed together, and it is measured in g
cm3 where values close to 0
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mean that there are many empty spaces:

ρ =
m

V (U)
(1.25)

where V is the volume of the unit cell and m is the sum of all molar masses (or relative

atomic masses) described in Section 1.8.2, which should be divided by the Avogadro con-

stant NA to find the mass of the atoms out of 1 mole. For instance, calcium crystal is

formed by a close-packed or fcc cubic structure, and this means that we count 4 atoms in

total that belong to the unit cell, therefore m is given by:

m =
4×Ar(Ca)

NA

Once we have the mass m and the volume of the fcc unit cell V (Ufcc), the density is

computed as follows:

ρ =
m

V (Ufcc)
=

4×Ar(Ca)

NA 83/2r3
=

4× 40.078 g mol−1

(6.022× 1023 mol−1)× 83/2 × (1.97× 10−10m)3
= 5.972

g

cm3

where 40.078 g
mol is the relative atomic mass of calcium atom and 1.97 Å is its atomic

radius. If we consider a different crystal structure characterized by a non-cubic unit cell,

the volume can be computed with equation 1.22.

Density is a valuable property that can be applied to find the level of porosity in

materials and acts as a threshold measure when a range of structures with a specific

porosity level should be explored for further stability assessments (see chapter 3.2).

1.9 Lattice Energy

1.9.1 Experimental lattice energy

To form a solid, bond breaking and formation processes are involved. Therefore, an ex-

change in energy occurs between the system and the surroundings. To measure the energy

used for lattice formation, we refer to the lattice energy ∆lattU that is the negative

of the internal energy change of the system where all potential and kinetic energies are

summed up:

∆U = ∆lattH − p∆V (1.26)
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∆lattU = −∆U (1.27)

where p is the pressure constant, ∆V is the change in volume and ∆lattH is the lattice

enthalpy. The lattice enthalpy ∆lattH is the enthalpy change used for the conversion

of 1 mole of the ionic solid into the gaseous ions:

NaCl(s)→ Na+(g) + Cl−(g) ∆lattH

(NaCl) (1.28)

To compute the lattice enthalpy ∆lattH, we need to build a formation cycle called Born-

Haber cycle that describes the enthalpies needed to lead the reactants to their gaseous

state ions. The Born-Haber cycle for sodium chloride NaCl, shown in Figure 1.7, occurs

following different steps starting from the balanced thermochemical equation:

Na(s) +
1

2
Cl2(g)→ NaCl(s) (1.29)

1. Sodium should be converted to its gaseous form and chlorine bond has to be cleaved

to release one atom of chlorine.

Na(s)→ Na(g) ∆aH

(Na) = +108

kJ

mol
1

2
Cl2(g)→ Cl(g) ∆aH 
 (Cl) = +121

kJ

mol

where a is the atomization process to get gaseous atoms.

2. Gaseous atoms should be then ionized to form a sodium cation and a chlorine anion.

Na(g)→ Na+(g) + e− ∆iH(1)
(Na) = +496
kJ

mol

Cl(g) + e− → Cl−(g) ∆egH(1)
(Cl) = −349 kJ

mol

where i is the ionization process, ∆iH(1)
(Na) is the first (1) ionization energy, eg

is the electron gain process and ∆egH(1)
(Cl) is the energy needed to acquire the

first (1) electron.

3. Finally, gaseous ions are combined to form the solid state structure.

Na+(g) + Cl−(g)→ NaCl(s) −∆lattH

(NaCl) (1.30)
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where −∆lattH

(NaCl) is the negative of the lattice enthalpy that highlights the

inverse process to form a crystalline structure from gaseous phase ions.

As Hess’s law states, the final enthalpy of formation involved in a reaction does not change

if reactants are found in a different phase state. The Born-Haber cycle is based on this

law, and indeed, the entire sequence of phase changes leads to solid formation. Therefore,

to find the lattice enthalpy of sodium chloride, we need to sum up all enthalpies of the

phase change sequence with the following equation:

∆fH

(NaCl) = ∆aH


(Na)+∆aH 
 (Cl)+

+∆iH(1)
(Na) + ∆egH(1)
(Cl)−∆lattH

(NaCl)

Knowing the enthalpy of formation we can rearrange the equation to find, finally, the

lattice enthalpy ∆lattH

(NaCl) as arranged below:

∆lattH

(NaCl) = ∆aH


(Na)+∆aH 
 (Cl)+

+∆iH(1)
(Na) + ∆egH(1)
(Cl)−∆fH

(NaCl)

∆lattH

(NaCl) = +108

kJ

mol
+121

kJ

mol
+

+496
kJ

mol
− 349

kJ

mol
+ 411

kJ

mol
= +787

kJ

mol

Experimentally, lattice energy values are computed with a negative sign to describe the

stability of a crystal structure where the lower is the energy the more stable is the struc-

ture. Therefore, the inverse process from gaseous ions to solid sodium chloride is taken

into account for the heat transferred [9]. Supposing the gaseous ions behave ideally, the

following equation holds:

p∆V = ∆ngasRT

where ∆ngas = −2 mol is the difference of gaseous moles between products and reactants,

T is the constant temperature (298 K) and R = 8.314 J
Kmol . Therefore, the lattice energy

∆lattU is computed as follows:

∆lattU = −∆lattH +∆ngasRT = −787 kJ

mol
− 5

kJ

mol
= −792 kJ

mol
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Figure 1.7: The Born-Haber cycle of the sodium chloride (NaCl) formation.

1.9.2 Approximated lattice energy

When we want to calculate the energy and we do not have enough thermodynamic data

regarding the enthalpies of the Born-Haber cycle, we may use a theoretical method to

approximate the energy. For first, ions can be considered as point charges where a distance

r lies between them. For ionic solids, like sodium chloride, it is easier because their solid

structure consists of only electrostatic interactions between ions of sodium and chlorine

and therefore, they are subject to the Coulomb’s Law:

∆CU = −Z+ Z− e2

4πϵ0r

where Z+ and Z− are the ion charges (cation and anion’s), e = 1.6022 × 10−19 C is

the charge on the electron, ϵ0 is the vacuum permittivity constant and r is the distance

between them. In ionic solids, ions interact to each other and these interactions should

be considered pairwise. Forces that divide cations and anions are attractive, but repulsive

forces push away ions of the same charge. Coulomb interactions are calculated by summing

up all these ion interactions by producing an infinite sequence, and only the neighbourhood

of the ions is considered. The sum of all interaction that involves the geometric structure

is called Madelung constant A that contributes to the electrostatic potential of the

Coulomb law:

∆CU = −A NA Z+ Z− e2

4πϵ0r
(1.31)
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where NA is the Avogadro constant which is added as a factor to take into consideration

a molar amount of the energy value. The Madelung constant A is computed by summing

internal energies given by specific pairwise electrostatic interactions between an atom in

the centre and its first neighbours ∆U1, second neighbours ∆U2 and so on until all ions of

the unit cell are involved. For example, for sodium chloride NaCl, which has a close-packed

cubic (fcc) structure, a sodium ion in the centre is chosen and the potential energies given

by the interaction of sodium with its first neighbour at distance d1, second neighbour at

distance d2 and third neighbour at distance d3 are computed in the following way:

A = ∆U1 +∆U2 +∆U3

∆U1 = 6×−(1× 1)e2

4πϵ0d1
= −6× e2

4πϵ0d1

∆U2 = 12×+
(1× 1)e2

4πϵ0d2
= 12× e2

4πϵ0d2

∆U3 = 8×−(1× 1)e2

4πϵ0d3
= −8× e2

4πϵ0d3

where ∆U1 is the total potential or electrostatic energy between the central sodium and

the 6 closest chlorine ions (first neighbours) with negative values due to the attractive force

and distance d1 = r, ∆U2 is the potential energy between the central sodium and the 12

sodium ions (second-closest neighbours) with positive values due to the repulsive force,

and distance d2 =
√
2 r, and ∆U3 is the potential energy between the central sodium and

the 8 third-closest chlorine ions with distance d3 =
√
3 r.

Moreover, repulsive forces should be added to equation 1.31. Because ions are not point-

charges, their electron cloud should be considered when approaching each other at small

distances. Therefore, Max Born suggested that the repulsive force potential could be

expressed by an additional term for the Coulomb potential:

∆BU =
B

rn
(1.32)

where B is a constant and n is a constant large number called Born exponent. Adding

this term to the Coulomb potential energy gives the Born-Landè equation of the lattice

energy with attractive and repulsive forces:

∆lattU = ∆CU +∆BU = −A NA Z+ Z− e2

4πϵ0r
+
B

rn
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that can be simplified considering that lattice energy will be a minimum at equilibrium

when r = r0, the distance between ions at the equilibrium state. Minimizing the equation

will give:

∆lattU = −A NA Z+ Z− e2

4πϵ0r0
(1− 1

n
) (1.33)

where the Born exponent n can be found experimentally or approximated according to the

electronic configurations of the ions by averaging pre-calculated values for each ion type in

the solid structure. For example, in sodium chloride, values of n for sodium and chlorine

are respectively 7 and 9. The Born exponent for sodium chloride will be n = 7+9
2 and

the lattice energy ∆lattU = −754.7 kJ
mol which is close to its experimental value found in

subsection 1.9.1 [9].

1.9.3 Lattice energies from Force Fields

When we consider molecular crystals, and we want to compute their approximated lat-

tice energy, the process becomes more complex because a proper cut-off of the molecular

structure is needed to compute it on a finite set of molecules. This choice arises because

molecules are located in various positions, and all of them may have different orientations.

In this case, also distant molecules may participate in assessing the approximated energy

since several forces such as Van Der Waals, electrostatic or hydrogen bondings, may affect

the lattice energy on a specific part. Therefore, after choosing a cut-off threshold, the sum

of all possible interaction forces (intra and inter molecules) should be taken in considera-

tion to better approximate the energy. To achieve this goal, force fields could be used to

describe a molecular system through a functional part that addresses the geometry of the

molecules, and a second part that includes parameters depending on the atomic elements

involved. To gather all the essential parameters, computations are usually conducted in

experiments among different types of compounds to record and fit the results into the

force field function. Many force fields have been developed to reveal the nature of a system

through atomistic simulations. They can depends on simpler and general functions such

as in the UFF [39] force field that was made for any combination of elements. Neverthe-

less, more complex combinations may raise when taking into consideration conformational

properties, energies of formation and atomic vibrations. These parameters are included

in force fields such as MMFF [20] that is trained on a huge amount of data and used

for mostly biological molecules, or the PCFF [46] that is trained on organic compounds
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but does not have suitable parameters for describing the molecular dynamics under fixed

environmental conditions such as the temperature. A later approach, based on PCFF, was

developed to address the condensed-phase applications. The COMPASS [45] force field

was re-parametrised to accept various properties of the condensed-phase (when the driving

force of transformation is triggered) together with the usual empirical data on isolated

molecules.

1.10 Crystallographic information file (CIF)

Structure resolution occurs utilizing X-rays crystallography, where X-rays are ”focused” on

the crystal until the Bragg equation (see subsection 3.1.1) is fulfilled. After the resolution,

each type of information gained is stored in the crystallographic information file ending

with extension CIF. The main structure of the file contains attributes, list of attributes

(loop) and their values. There are following summarized some of the most important

attributes:

� atom sites

Data items with the atom sites attribute store a details’ list about crystallographic

cell and cell transformations of all atom positions. Usually, atom coordinates are

expressed in fractional coordinates which represent a fraction of the unit cell vec-

tors and are assigned to the attributes atom sites fract x, atom sites fract y

and atom sites fract z. Every atom is assigned to a name with the attribute

atom sites label and its type is saved in atom sites type symbol.

� atom type

The radius of intramolecular bondings can be found in the attribute atom type radius bond

measured in Angstroms Å together with the intermolecular bond length in

atom type radius contact which are stored as a list or loop for each atom type

atom type symbol.

� cell

This part of the file is formed by different attributes that describe the geometry

of the unit cell. Unit cell parameters are stored in cell length a, cell length b,

cell length c, cell angle alpha, cell angle beta and cell angle gamma which

are respectively the length of unit cell vector a⃗, b⃗, c⃗, the angle α on the plane b-c,

the angle β on the plane a-c and the angle γ on the plane a-b.
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� chemical formula

These items specify the composition and chemical properties of the compound. All

discrete bonded residues or ions are stored singularly in chemical formula moiety,

the chemical structure is explicitly expressed in chemical formula structural

with parenthesis, the total number of moieties is typed in the attribute

chemical formula sum and the molecular weight of the formula saved in sum is

registered in the attribute chemical formula weight.

� exptl crystal

Data items in the exptl crystal category store details about experimental measure-

ments on the crystal such as shape, size or density. The category starts with a descrip-

tive name of the target crystal in exptl crystal description followed by values

representing the density of a crystal (see subsection 1.8.2) measured from the crystal

cell and content in the attribute exptl crystal density diffrn and size of the crys-

tal used for the x-rays diffraction method measured in millimetres in the attributes for

the length exptl crystal size length, maximum, medial and minimum dimensions

exptl crystal size max, exptl crystal size mid, exptl crystal size min.

� geom angle

It is common to add details about bond angles as calculated from the atoms data.

The category geom angle is a useful loop to check on angles formed by triplets of

atoms. There is one line for each triplet with the atom labels that are assigned

to three attributes geom angle atom site label and the angle that they form in

geom angle attribute.

� geom bond, geom contact and geom hbond

These categories store information about intramolecular, intermolecular and hydro-

gen bonds respectively. Each category has a loop formed by one line for each bond.

Main values of the categories consist of two labels of the atoms involved and the dis-

tance between them ( geom bond atom site label 1, geom bond atom site label 2

and geom bond distance) in angstroms Å .
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1.11 Objectives and Thesis Outline

After a wide introduction to crystal structures and their chemical properties, we will dig

into a new topic that brings the 3D-dimensional structure of a crystal and its geometric

features to be the protagonists of this thesis.

In chapter 2 we start discussing the equivalence relation between structures by defin-

ing which type of transformations should be considered in R3 to find a proper solution for

crystal structure classification.

Chapter 3 highlights the chemistry context in which we are applying our study. It

starts by explaining how a crystal structure is resolved (brought from the real world to a

CIF file) and what is the recent state-of-the-art method used to address the comparison

problem of big datasets of crystal structures. Our new contribution will be strictly related

to improving these methods.

The first geometric feature (Voronoi Domain of a lattice), taken into consideration, is

shown in chapter 4 and it is introduced together with the definition of Voronoi Diagram.

This property defines a specific geometric structure in the space by holding interesting

characteristics of a point set. Our emphasis was to understand the similarity of the closely

related underlying periodic structures of crystal datasets.

The second geometric property, Averaged Minimum Distance (AMD), is explained in

chapter 5. This is the fastest developed characteristic of point sets that bases its speed

and effectiveness on mapping crystal structures to distance vectors (definition 5.1), con-

sidering the atoms inside a unit cell. The key advantage of these objects is that they are

easily and quickly comparable by usual metrics, such as the Euclidean distance.

Finally, in the last chapter 6, we make use of AMD features from chapter 5 to perform

predictions on the chemical data retained by a crystal structure.



Chapter 2

The Equivalence and Metric

Problems of Crystal Structures

2.1 Equivalence

An ideal crystal is formed by a periodic point cloud that extends 3-dimensionally in all

directions. Definitions of both a lattice and a motif lead to the crystal periodicity, where

each point belongs to a periodic net that builds up the entire crystal structure. Since

infinitely many bases can generate the same lattice, it can have many different unit cells

that define the repeating unit. A periodic crystal is defined by a lattice Λ and a motif M,

which is a collection of molecules (for molecular crystals), atoms or ions (in the case of an

ionic crystal such as NaCl). The motif is periodically translated in the directions along the

3 vectors that define a unit cell of Λ. The infinite set of linear bases of a lattice leads to a

strong ambiguity. It becomes hard to decide if crystal structures (or lattices) are equivalent,

when represented by infinitely many different unit cells. This information (which

may be ambiguous) about crystals are contained in the Crystallographic Information Files

(CIFs), such as edge lengths and angles of a unit cell U. All atoms are represented by

fractional coordinates concerning the vector of U, i.e. as numbers within the interval [0,1].

These coordinates are often given for an asymmetric unit that generates a full motif in U

by applying symmetry operations specified in the CIF file (see Section 1.10).

Imagine holding and moving a diamond in your hands. Distances between its corners do

not change, and every part of the most precious stone remains intact as before. Crystals are

rigid bodies, and every transformation, such as a rotation or translation, applied to them

37
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does not change the distances between their points. Their structure remains unchanged.

Crystals are solid materials; hence no rigid motion, which is a composition of rotations

and translations in R3, can affect them. Therefore, any comparison of crystals should

consider infinitely many positions (of a crystal or its lattice) related by rigid motions in

R3. Crystal structures (or lattices) are called equivalent (or isometric) in R3 if they

can be obtained from each other by a rigid motion, which preserves distances between

any points in R3. In addition, reflections can be applied to them leading to the definition

of isometry (rigid motions + reflections). An isometry is a linear map that preserves

pairwise Euclidean distances between all points. For example, an isometry, like a rotation,

maps points of a set to different coordinates but preserves the inter-atomic distances (see

Figure 2.1).

Definition 2.1. (isometry). An isometry of Rn is a map f : Rn → Rn that preserves

the Euclidean distance, so |p − q| = |f(p) − f(q)| for any points p, q ∈ Rn. The map f

can also preserve the orientation if the matrix whose columns are images under f of the

standard vectors e⃗1, . . . , e⃗n has a positive determinant. In this case f can be specifically

called a rigid motion.

Any isometry is a bijective function that can be inverted and decomposed. A composi-

tion of isometries is also an isometry and it is defined as an operation in the group Iso(Rn).

A subset Iso+(Rn) ⊂ Iso(Rn) consists of all those isometries that can also preserve the

orientation of an object. For example, a translation by a vector or a rotation over a line

are called rigid motions and are a smaller subgroup of those orientation-preserving isome-

tries. When a transformation (or matrix) preserves the orientation of a point cloud, the

matrix belongs to the group SO(R3). All orientation-preserving isometries in Rn can be

decomposed into translations and rotations R ∈ SO(Rn) around the origin in Rn.

Equivalence relations between transformations, applied to point clouds, are crucial for

studying crystals as solid materials. Indeed, if we slightly perturb a crystal at the atomic

level, its structure will change, but the small perturbation is not easy to detect, though

it occurred, and it should be quantified. Since crystal can be equivalent to each other,

they can be related by rigid motions (or isometries). An isometry class of crystals is a

set of structures that may have different representations (e.g. different bases and motif

coordinates), but they remain equivalent under isometries. If such crystals are found, we

can say that they belong to the same isometry class. So, the space of isometry classes of

crystals under isometries is infinite because many structures exist with infinitely many unit
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(a) C’ on the left, C” on the right (b) C’ on the left, C” on the right

Figure 2.1: Crystal C’ and Crystal C” are equivalent because if we rotate C”
counter-clockwise by 90° we obtain C’

cells, and continuous because a crystal is a rigid body that can be transformed into another

by even small perturbations. Therefore, quantifying similarity between perturbed crystals

is an important problem that helps detect any perturbation. Consider crystal lattices,

for instance. The Bravais classification puts them into a much smaller number of classes

(only 14 types in dimension 3), even if geometrically identical lattices may be classified as

different. Hence we need other tools to check if given lattices are not equivalent. These

tools are called invariants.

2.2 Isometry classification problem of crystal structures

In this section, we define the isometry invariant as a mapping function. Defining a mapping

function that transforms crystals into simpler objects may help for a further comparison.

Crystals are rigid bodies, and they should be considered under rigid motions (compositions

of translations and rotations) or isometries (including reflections).

For a given equivalence relation, any objects can be distinguished only by an invariant.

However, many descriptors of crystals include non-invariant values, for example, parame-

ters of a unit cell, which are ambiguous since infinitely many unit cells exist for a given

lattice.

Definition 2.2. (isometry invariant). An isometry invariant I on a crystal is a

property or numerical characteristic that does not change under isometries. To describe

the fact that two crystals are isometric or equivalent (whatever is their orientation), the

invariant should map both of them to the same number or property (Figure 2.2).

Definition 2.3. (isometry invariant properties). To correctly classify crystals, an
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isometry invariant I should satisfy the following conditions:

� 2.3(a). Invariance: if any periodic sets S,Q are isometric, then I(S) = I(Q);

� 2.3(b). Continuity: I(S) continuously changes under perturbations of points;

� 2.3(c). Computability: a distance between values of I is computable fast;

In addition, an invariant I is complete when it can uniquely identify a crystal, so the

condition below is satisfied:

� 2.3(d). Completeness: if I(S) = I(Q), then the periodic sets S,Q are isometric;

Condition 2.3(a) is needed for any reliable comparison of crystals. Indeed, it states

that if two objects are equivalent or isometric, an invariant should map them to the same

value. Many crystal descriptors include cell parameters or fractional coordinates, neither

of which are isometry invariants. If a non-invariant takes different values on two crystals,

these crystals can still be isometric, hence they can not justifiably distinguish crystals or

predict crystal properties. In condition 2.3(b), our invariant should be sensitive to small

perturbations of a point cloud and correctly detect those small changes in order to distin-

guish very similar structures and strongly discern very different crystals. Computability

2.3(c) states that an invariant should be quickly computable, for example in a polynomial

time in the number of points in a motif M of a periodic set S. Finally, it is possible that

some structural information can be lost when applying an invariant to a crystal. The con-

dition 2.3(d) of completeness allows us to uniquely identify any crystal S by its complete

invariant since we can easily and uniquely reconstruct the original crystal from the mapped

space [2].

Problem 2.4. (Isometry classification problem). Find numeric characteristics or

properties (isometry invariants) of crystals or their lattice that can properly allow a further

classification and distinguish classes among the entire continuous crystal space.

An isometry invariant of crystals up to a particular relation (e.g. a rigid motion)

is a function that should take the same value or property on all isometric crystals.

When crystal structures are not equivalent, we may want to quantify their differences,

and therefore, our invariant should be continuous in order to detect and distinguish prop-

erly any tiny perturbation, which structures can be subject to. Indeed, the similarity
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Figure 2.2: The invariant I applied to equivalent crystal structures maps to the
same property.

of crystal structures can be assessed by isometry invariants that preserve their continu-

ity in the mapped space under small perturbations. Without the continuity property

we can only state whether they are equivalent or not, and we are not able to quan-

tify those perturbations. Then, similar crystal structures, which are distinguished by a

small perturbation in their motif, should be mapped by our invariant to close values (fig.

2.3). Let us consider an example of two 1-D periodic point sets (fig. 2.4), for example

Figure 2.3: [43] Fig. 2. Similar crystals with 1-point, 2-point and 4-point motif
should be mapped to close values of invariant.

S = {0, 1, 2, 3}+ 8Z and Q = {0, 3, 4, 5}+ 8Z which are repeated by a period of 8 towards

all directions. If we define an invariant as the following:

Ilist(C) = List of ordered set of pairwise distances
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Figure 2.4: Not-complete invariants cannot reconstruct the original point set.

and then apply it to both S and Q:

Ilist(S) = Ilist(Q) = {1, 2, 3, 4, 5, 6, 7...}

we can notice that both sets are mapped to the same list of all ordered pairwise distances.

Therefore, we cannot reconstruct the original point set from this invariant type. The

invariant is called not-injective or not-complete in the sense that non-equivalent point

clouds may map to the same invariant Ilist (Figure 2.4). We aim to define new isometry

invariants that can distinguish crystal structures properly in a continuous space. Chapters

4 and 5 will deal with two isometry invariants such as the Voronoi Domain of a lattice

and the Averaged Minimum Distances (AMDs) of a motif. Moreover, new metrics will

be defined to solve the distance problem between lattices through their Voronoi domain,

and usual vector metrics (such as Euclidean distance) will be used for AMD comparison

of motifs.

2.3 Metric problem for crystal lattices comparison

Erroneously, edge lengths and angles (unit cell parameters) were considered before for

lattice comparison [35]. However, they are not invariants because infinitely many primitive

cells with different unit cell parameters may define the same lattice. The equivalence

problem for lattices is to design a metric that accepts two arbitrary lattices and decides

whether they are equivalent or not. Theoretically, such an algorithm can be based on

Niggli’s reduced cell [35] in subsection 2.4.1, and its instability under perturbations [1]

leads to the metric problem (Problem 2.6).

Suppose a metric function between crystal lattices satisfies the metric axioms below.
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In that case, the crystallography will be open to rigorous methods of metric geometry that

will measure what portions of a crystal space are explored and what regions require more

sampling in computer simulations.

Definition 2.5. (metric). Let R+ denote the set of all non-negative real numbers.

Let S be any set. A metric on S is a function d : S × S → R+, such that the following

conditions (or metric axioms) hold:

� 2.5(a). Coincidence: For any Λ,Λ′ ∈ S, the metric function d(Λ,Λ′) = 0 if and

only if Λ,Λ′ are equivalent;

� 2.5(b). Symmetry: d(Λ,Λ′) = d(Λ′,Λ) for any Λ,Λ′ ∈ S;

� 2.5(c). Triangle inequality: d(Λ,Λ′)+ d(Λ′,Λ′′) ≥ d(Λ,Λ′′) for any Λ,Λ′,Λ′′ ∈ S.

For S = Rn, one will use the Euclidean distance d(p, q) =
√
(p1 − q1)2 + ...+ (pn − qn)2

between points p = (p1, ..., pn) and q = (q1, ..., qn), which satisfies the axioms above. For

a set S of crystal structures or arbitrary lattices, it is a hard problem to define a metric

function d satisfying the axioms above, because d should not depend on crystal lattices

representation, hence should be independent of many unit cells. Axiom 2.5(a) highlights

the fact that when equivalency is satisfied a metric should be d(Λ,Λ′) = 0, and for any

non-equivalent crystal lattices Λ ̸= Λ′ the value should increase. Axiom 2.5(b) says that a

metric function remains the same if arguments are swapped. Axiom 2.5(c) is motivated by

the assumption that a shortest path from Λ to Λ” should not be longer than a combination

of shortest paths from Λ to Λ’ and then from Λ’ to Λ”. Any approach should justify that

any non-equivalent crystal lattices Λ, Λ’ have different representations. Else the metric

function between numerical properties of non-equivalent crystal lattices Λ, Λ’ is 0 and

axiom 2.5(a) fails. The metric problem for crystal lattices requires a metric function that

satisfies metric axioms 2.5(a), 2.5(b), 2.5(c) and also the continuity and scaling conditions

below:

� 2.5(d). Continuity: The metric function d(Λ,Λ′) continuously changes under per-

turbations of crystal lattices, e.g., if cell parameters are noisy; in particular, the range

of d should be a continuous interval, possibly [0,∞), but not only a finite collection

of discrete values.

� 2.5(e). Uniform Scaling: The metric function d(Λ,Λ′) should remain unchanged
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if both sets Λ,Λ′ ⊂ Rn are scaled by the same factor s > 0, i.e., d(Λ,Λ′) = d(s ×
Λ, s× Λ′), where s× Λ = {s× p ∈ Rn : for any point p ∈ Λ}.

Equivalence under scaling could be in theory useful to distinguish lattices that are

scaled by a different factor. We did not dive into this topic in our experiments, but

we provide a possible future application below. Let us take the example in subsection

3.2.3 where triptycene-based molecules are formed (mostly) by a various number of

carbon rings. If we imagine adding more rings to all the molecules’ arms, we scale up

the molecules and eventually the lattice. Since molecules are repeated at each lattice

point and may exist in differently scaled forms, the scaled lattices can be grouped for

a further assessment on the structure of their motif (which may be related by some

moieties addition).

From the above definition of metric and its axioms, the problem below on a metric of

lattices follows:

Problem 2.6. (metric problem). The metric problem for crystal lattices is to find

a function that satisfies the metric axioms 2.5(a), 2.5(b), 2.5(c) and 2.5(d) to correctly

distinguish them in a continuous space when small perturbations may be applied.

2.4 Past methods to quantify differences between crystal

lattices and structures

Most solid minerals in nature and several important synthetic materials are periodic crys-

tals at the atomic scale.

A periodic point set, even without extra links (bonds), is a fundamental model for any

solid crystalline material. Indeed, atomic centres (nuclei) have a less ambiguous physical

meaning than inter-atomic bonds, which can be challenging to classify and require bespoke

and empirical definitions. For example, at what distance does a hydrogen bond become a

bond? However, for any zero-size point representing an atom, one can add a label such as

a chemical element or a radius or another physical property.

Typically, a periodic crystal is stored as a Crystallographic Information File (CIF), includ-

ing parameters of a unit cell (three edge-lengths and three angles in R3) and all atoms

with chemical labels and coordinates of atomic centres in the unit cell. The input size of a

crystal is best measured as the number of atoms in its unit cells or the number of points in
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a motif of a periodic set. Unit cells may have a high number of atoms and so a near-linear

time algorithm should be preferred to find proper isometry invariants. Many methods have

been developed in the past years trying to address and classify the vast space of crystal

structures, although some of them neglect the continuity property as described below.

2.4.1 Niggli’s reduced cell

Crystallographers used Niggli’s reduced cell [35] as a canonical cell for a lattice. This

reduced cell is unique but at the price of continuity, and retains the interesting properties

below:

� Angles close to 90◦

� Uniqueness

� Can be found regardless of the starting point

Following the general idea of the reduction process, every unit cell vector is reduced

with respect to the others. The reduction continues until every condition is satisfied. For

instance, given the bidimensional unit cell with the two vectors a⃗ and b⃗, the vector b⃗ is

considered reduced with respect to a⃗ when the following condition holds: |b cos γ| ≤ 1
2a

with b = ||⃗b|| and a = ||⃗a||. It means that, by fixing a⃗, the projection of b⃗ on a⃗ is lower

than half of a⃗.

Figure 2.5: Vector reduc-
tion: Fix a⃗ and reduce b⃗1
to b⃗2.

In Figure 2.5, for example, it is shown a skewed unit

cell with vector b⃗1 and a⃗. Since the projection of b⃗1

on a⃗ is bigger than half of a, b⃗1 needs to be reduced

to b⃗2 where b⃗2 = b⃗1 − a⃗. With the last step, the

condition holds, and b⃗2 is considered reduced. The

same procedure is performed on a⃗ by following the

condition: |a cos γ| ≤ 1
2b. It means that b⃗ is fixed

and a⃗ should be reduced. The projection of a⃗ on b⃗2

is lower than half of b2 = ||⃗b2|| and the reduction

is complete. Regarding the three-dimensional unit

cell, the number of conditions rises up to 6: two

conditions for every pair of the unit cell vectors a⃗, b⃗ and c⃗. In this case, the unit cell is in

its reduced form if it satisfies all conditions:
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|a cos γ| ≤ 1

2
b |b cos γ| ≤ 1

2
a

|b cosα| ≤ 1

2
c |c cosα| ≤ 1

2
b

|c cosβ| ≤ 1

2
a |a cosβ| ≤ 1

2
c

where a = ||⃗a||, b = ||⃗b||, c = ||⃗c||, γ is the angle between a⃗ and b⃗, α is the angle between

b⃗ and c⃗, β is the angle between a⃗ and c⃗.

Despite the uniqueness property [35], the Niggli’s reduced cell cannot be used directly

to study the similarity between crystal structures because of its instability [1]. Indeed,

there is also the possibility that similar crystals may have a very different reduced cells.

It means that a reduced cell of a slightly perturbed lattice is not close to a reduced cell of

the non-perturbed lattice, as shown in Figure 2.6. Even a small perturbation may increase

the number of reduction steps and, consequently, change the resulted cell parameters such

as the angle between unit cell vectors drastically. Examples of discontinuous Niggli’s cells

were known since 1980 [1]. Discontinuity under small atomic perturbations is the major

weakness of all discrete invariants, including symmetry groups. In practice, the nearly

identical periodic sets in the last two pictures of Fig. 2.3 should be recognisable as very

similar.

a b

Figure 2.6: (a) Non-perturbed lattice with 1 reduction step from b1 to b2. (b)
Slightly perturbed lattice with 2 reduction steps which lead to a very different

angle between a⃗ and b⃗3.
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2.4.2 The COMPAK algorithm for the Cambridge Structural Database

(CSD)

Though there was no justified distance that satisfies all metric axioms for any periodic

crystals, theCOMPACK algorithm [10] is widely used for pairwise comparison of crystals.

Within given tolerances (20◦ for angles and 20% for distances), up to a given number (15

by default) of molecules from two crystals are matched by a rigid motion that minimizes

the Root Mean Square deviation of N matched atoms RMS =

√
1

N

N∑
i=1
|pi − qi|2.

m matched molecules 5 of 5 9 of 10 12 of 15 16 of 20 21 of 25 26 of 30 28 of 35

RMS, 1Å = 1
10nm 0.603 0.708 0.874 0.969 1.080 1.040 1.044

running time, seconds 0.168 0.422 2.026 14.61 63.51 151.4 759.3

Table 2.1: The Root Mean Square (RMS) deviation between the experimental T2-δ crystal
[37] and its closest simulated version with ID 14. The irregular dependence of RMS on m
makes this comparison unreliable. The running time substantially grows in the number of
molecules.

Informally, the RMS is restricted to a finite subset of atoms or molecules whose choice

may depend on extra parameters. If a match between these finite subsets is extended,

RMS can also increase, potentially to infinity, for example, between cubic lattices of sizes

1 and 1.1. Table 2.1 shows how RMS depends on the maximum number m of attempted

molecules to match by rigid motion.

2.4.3 Powder X-rays Diffraction Pattern similarity (PXRD)

When single-crystal diffraction data are missing, PXRD could be used to characterise

a solid material. Since crystallites may be oriented in different ways, the diffraction is

performed in a range of angles guided by the mechanical motion of the source and detector

together. Crystals are assessed in a different orientation; therefore, this procedure helps to

reveal crystalline impurities or phase mixtures in products [48]. The procedure involves the

comparison of diffraction profiles of two crystal structures. The squared difference method

is used to overlap, in theory, both patterns and check similarities among their intensity

peaks.
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2.4.4 The COMPSTRU algorithm of Bilbao Crystallographic Server (BCS)

Similarly to COMPACK, the recent COMPSTRU algorithm [15] measures similarity be-

tween a given reference structure S and crystal structures whose lattice parameters should

be close to those of S (by default 0.5 Å for distances and 5° for angles). This comparison is

restricted to crystal structures that have the same space-group type. A small perturbation

of atomic positions of the reference S will produce a nearly identical crystal that is not

comparable to the reference S, breaking the continuity condition 2.3(b).

2.4.5 Pair Distribution Function (PDF)

More complex materials as disordered crystals require the PDF analysis. It gives a deep

quantitative insight of a material since these type of crystals may have a very noisy diffrac-

tion pattern where peaks of intensities lose information due to a nanoscale structure [5].

Therefore, the idea is to count the number of atoms on a shell of radius r, starting from a

specific origin. The probability of meeting an atom at distance r starting from the reference

atom (origin) is the Pair Distribution Function. The computation extends for each type

of atoms in the crystal. However, it is not a continuous function and it is very sensitive to

small changes since they can result in large signal shifts.

2.4.6 Radial Distribution Function (RDF)

The Radial Distribution Function (RDF), described partially in subsection 1.2.3 for elec-

trons, is based on the density of atoms in a shell of radius r and width dr centred around

an atom of a specific type [49]. Since atom types are essentially used, the RDF can be

used for comparing crystals that are composed of the same atom types. Due to averaging

across atoms of a specific type within a unit cell, the RDF is independent of a cell choice.

A similar distance-based fingerprint was introduced earlier by Valle and Oganov [52]. As

in the PDF, small changes in the internal structure may cause large shifts of the distribu-

tion since atoms may not be found in the same shell of radius r and width dr after small

perturbations.

2.5 Recent progress on Isometry Invariants

Our goal is to develop and implement new geometric features that can unveil the structural

composition of crystal structures and allow an easy and fast comparison of their charac-
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teristics. By doing so, we will be able to bring the materials’ discovery to the next level:

comparing properly more crystal structures means having more possibility to discover

new structures with different functions applicable in the real world.

Our group of Data Science and Theory Applications made different steps forward in

developing new invariants of crystal structures that are summarised below.

More recently, for any periodic point set S ⊂ Rn with a motif M in a unit cell U ,

Edelsbrunner et al. [12] introduced the density functions ψk(t) for any integer k ≥ 1. The

k-th Density Function ψk(t) is the total volume of the regions within the unit cell U

covered by exactly k balls B(p; t) with a radius t ≥ 0 and centres at points p ∈M , divided

by the unit cell volume V ol[U ]. In practice, k balls grow around points passing through

various states of intersection between each other. When an intersection occurs, a new

density function is released, indicating the volume of the new regions generated when their

intersection began. The density function ψk(t) was proved to be invariant under isometry,

continuous under perturbations, complete for periodic sets in general position in R3, and

computable in time O(mk3), where m is the motif size of S. The concept of single-value

density ρ is practically extended to density functions which consider the periodic geometric

structure in a proper and continuous way. The resulting densigram is provably complete

for periodic sets in a general position, but is slow to compute.

In addition, the invariant Isoset [2] reduces the isometry classification of all periodic

point sets to a finite collection of isometry classes of α-clusters around points in a motif

at a certain radius α and proved to be continuous under perturbations. Checking if two

isosets coincide needs a cubic algorithm, which is not yet implemented. The idea is to find

all clusters of points depending on the α-radius chosen and check if they could be related

by equivalence or similarity under isometries. An isometry f ∈ Iso(Rn) between local

clusters should match their centres.

Moreover, another new invariant Root Invariant has been developed to solve the

problem of isometry classification of lattices where a list of specific vectors, called super-

bases, can be found from any lattice and stored as a list of squared lengths or norms

(vonorms). They can be computed in function of their vectorial scalar product (conorms)

and vice versa. Conorms are then square rooted and ordered (root form RF) to represent

a complete invariant of a lattice [26] [25].

The latest invariant Pointwise Distance Distribution (or PDD) [59] of periodic sets,

is considered also up to isometry in R3. It involves a simpler computation of inter-atomic

distances that maps a crystal structure to distance distributions. The new representation
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of a crystal by a numerical matrix is faster and continuous under perturbations. Moreover,

each mapped crystal can be reconstructed from the numerical matrix space. A recent

computation of PDD ran on the entire CSD dataset consisting of 660K crystals, and 5

crystals have been found to have identical structures but with different atom types.



Chapter 3

Introduction to materials discovery

3.1 X-rays crystallography

To be studied at the atomic level, solids should be resolved to gather structural information

that will help determine the structure and the physicochemical properties. A powerful

method for resolving a solid crystalline structure is X-rays crystallography. A crystalline

solid acts as a grid when directed by a beam of X-rays. It means that the electron cloud

of the atoms scatters the X-rays leading to a diffraction pattern formed by a series

of spots on an image plate. From the diffraction pattern, the electron density can be

rebuilt with computer software allowing to determine the bond lengths and angles. In the

following paragraphs we will deal with two types of X-rays diffraction methods, powder

and single-crystal diffraction.

3.1.1 X-rays diffraction

The discovery of X-rays is dated to 1895 when Rontgen benefited of his discovery for

medical diagnosis and treatment. Diffraction techniques can measure bond lengths. The

electron beam is a powerful tool to resolve structures because electrons can be forced to

travel at a specific wavelength to match the size of the object involved. Indeed, when an

electron beam wavelength is of the same order of the distance between two atoms, it can

generate a diffraction pattern. Since the wavelength depends on the electron velocity, it

can be tuned easily by applying a specific potential difference.

Emission of electrons comes from an electrically heated filament of tungsten where electrons

are accelerated by a high potential difference of 20-50 kV, allowing to change the wavelength

51
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at which they travel accordingly to De Broglie equation 1.5. Moreover, this beam of

electrons is directed to a metal target or anode that is water-cooled. It redirects the

electron beam out as high-intensity X-rays for the specific X-rays wavelength. Usually,

copper and molybdenum are used as target metals in X-ray crystallographic studies because

they can redirect the electron beam with high intensities at a wavelength of 1.54 and 0.71

Å respectively. Crystalline solids are formed by periodically arranged arrays of atoms,

ions or molecules with inter-atomic spacing of the order of 1 Å . The beam’s wavelength

must be of the same order of magnitude as the grating spacing, and a crystal can act as

a diffraction grid with specific wavelength values. In 1913, W.H. and W.L. Bragg started

their experiments on using X-rays diffraction to determine the structures of solids. The

first structure that they resolved was the sodium chloride NaCl followed by many others.

They noticed that crystal diffraction behaves as reflections of structure layers on which

atoms lie and that only specific orientations of a crystal with respect to the source and

detector are suitable to reflect X-rays. When we deal with parallel layers of atoms (each of

them identified by a triplet hkl), we may want to consider also the inter-layer distance dhkl

or inter-planar spacing. When the source shoots X-rays, the beam with parallel X-rays is

incident to the planes at an angle θhkl which hits atoms on different layers. If an atom is

directed and struck by the beam, X-rays are reflected with an angle 2θhkl travelling towards

the detector placed accordingly. The reflected beam should arrive in phase to the detector

as a single one to hold a strong intensity, and this property is known as constructive

interference. For example, two X-rays beams strike two atoms on the first and second

layer with incidence θ. Both the redirected rays are reflected by 2θ towards the detector

(fig 3.1). To detect both atoms on the same vertical line, the X-rays beams must arrive in

phase given that the second one traverses an extra length. Therefore, the first beam and

the second bean have a path difference as described below:

2dhkl sin θ (3.1)

To arrive in phase, the difference in equation 3.1 must be equal to an integral number of

wavelengths as the following Bragg equation states:

nλ = 2dhkl sin θ (3.2)
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Figure 3.1: An example of X-rays shot by a source and
reflected by atoms A, B and C on different planes

which relates the spacing between crystal planes, dhkl, to Bragg angles, θ, used to observe

them. The property of an atom to scatter X-rays is called scattering factor f0, which

depends on the atomic number Z. Indeed, the higher the number of electrons, the more

strongly X-rays will scatter on the Bragg angle θ and the beam’s wavelength. Moreover,

the scattering power could decrease when the angle θ increases. Once X-rays hit an atom

and reflect towards the detector, they could miss other electrons around the nucleus as the

angle becomes wide. Practically, the Bragg equation serves as a mathematical tool used

to increase the focus on the crystal to hit as many atoms as possible on the layers.

3.1.2 Powder diffraction

To study high symmetric crystals, a thin ground crystalline powder is used. It contains

numerous small crystals known as crystallites which are oriented in different ways. When

a beam of X-rays strikes the crystallites, it will hit only those oriented in such a way that

the Bragg equation gets integral values on the left side, and the diffracted beams make an

angle of 2θ with the incident beam. Even if the crystallites can lie in different orientations,

they could be still suitable to fulfil the Bragg equation, and, in this case, the diffraction

pattern behaves as a set of cones where reflections lie. The collection of powder diffraction

patterns is performed automatically by a diffractometer that adjusts the angle of diffraction



54 Marco Michele Mosca

accordingly to fix the intensity of diffracted beams by storing intensity values, angles and

positions of the X-ray tube and detector sequentially.

3.1.3 Single crystal X-rays diffraction

It is also possible to work on a single crystal in order to measure the position or intensity

of the hkl reflections and determine the unit cell dimensions, space groups and atomic

positions. Single crystal X-ray diffraction data is collected using an automated diffrac-

tometer that measures Bragg angles θ and the intensity for each reflection hkl where all

of them can be collected and measured at the same time by a flat-plate detector (CCD).

Thanks to this method, we can determine the size and shape of the unit cell by finding

all unit cell parameters. Each reflection hkl is indexed, and symmetry elements can be

determined, allowing to identify the space group to which the crystal belongs. In addition

to the reflection collection, determined structures should undergo a refinement process to

allow the electron density of an atom to be better refined around the nucleus. To perform

the refinement, we need to collect the result of the waves scattered by all atoms in the

unit cell that is called structure factor Fhkl and depends on each atom position and its

scattering factor:

Fhkl = 2

n∑
i

fi cos2π (hxi + kyi + lzi) (3.3)

where i is the atom index, xi, yi, zi are its fractional coordinates, fi is its scattering factor,

and it defines a way of combining the power of reflections with atomic coordinates. The

presence of the cosine confirms the periodic behaviour of the waves originated from a

reflection.

As mentioned before, the structure factor can be computed knowing about the atom

type and position together with its scattering factor. Consequently, we may want to rebuild

(or resolve) the atomic structure and store the crystal in a CIF file by detecting intensities

of reflections at which atoms occurs. We can do that by reversing the computation and

be able to find the atom position starting from the amplitudes of the structure factors.

Unfortunately, this reversed procedure can lead us to experience loss of information known

as the phase problem. In fact, intensities produced from each atom Ihkl are proportional

to the square of the structure factor Ihkl ∝ F 2
hkl. Therefore, if we take the square root of

the intensity, we will not know the amplitude sign |Fhkl| ∝
√
Ihkl of the waves. Intensities

are crucial for detecting atom types especially for heaviest atoms that produce a stronger
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signal as they have more electrons. One solution to the phase problem is the Patterson

method that makes use of the so-called Patterson function, named after the scientist that

first proposed it. The idea is to consider N atoms and all inter-atomic vectors up to

N2 − N that represent peak positions. Peak heights refer to the product of electron

(atomic) numbers involved in specific atom pairs.

Once each atom has been identified with its atomic coordinates, many structure factors

are calculated Fc and compared to the observed amplitudes Fo to refine the atom positions.

Finally, to assess the quality of the determined structure, they are used in a final measure

that describes its correctness and precision, called R factor. It is usually applied to

estimate errors in a data set and follows the function below:

R =

∑
|(|Fo| − |Fc|)|∑

|Fo|
(3.4)

where Fo is the observed structure factor after data correction (or reduction) and Fc is

the calculated structure factor. The lower is the R factor the better is the structure

determination since the difference between observed and calculated factors decreases [50].

3.2 Materials discovery

Materials have been resolved through different crystallographic methods, and two of the

most important ones have been described in the previous paragraph. A significant mile-

stone, which helped the progress of materials science, consists of methods that use previous

structural information of resolved crystals and generate new structures that could be more

or less suitable for a crystalline material to be called a solid and to exist in the real world.

Most important, the first step of a scientist is to design the composition or structure of a

new compound, knowing that there are some sets of physicochemical rules that should be

considered. Finding new physico-chemical properties of a compound is the primary

purpose of materials discovery science that is strictly related to the possibility of designing

and synthesising a new crystal or, practically, to the possibility for a chemist to shape

materials to their will. Regarding the synthesis of a compound, the aim is to look for a

structure that, following all set of rules, may be synthesised or, in particular, keep a stable

structure that prevents it from changing its solid phase according to different environmen-

tal conditions such as the temperature. The foundation of this approach is based on the

lattice energy (see subsection 1.9.1 and 1.9.2), a measure of structural stability that gathers
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all possible potential energies of atoms and molecules. It should be minimised to find the

most negative value as the number of interactions between particles increases. Therefore,

to explore the space of stable conformations, it is a valuable decision to project crystals

onto an energy landscape that embraces the whole world of known compounds where

some of them may not have been synthesised yet but, in theory, are capable of existence.

When a structure has the lowest lattice energy value, it is called thermodynamically

stable and corresponds to the global minimum. The potential energy is taken into consid-

eration and could be written in terms of external thermodynamic variables or considering

atomic charges and distances between neighbours (see subsection 1.9.2). Moreover, the

remaining local minima of the landscape may exist in theory and are called metastable

structures. In the case of molecular solid, creativity can give birth to materials with

hopefully various properties where the main focus falls on the concept of polymorphism

which relates to the possibility of having the same compound with a different arrangement

of molecules in the 3D space [22]. Although only one molecule can be enough to generate

a vast energy landscape of compound polymorphs as in porous molecular materials

, such as hydrogen-bonded organic frameworks (HOFs), it would be also possible

to use more of them. Some of them can serve as linkers that connect target molecules

and keep them tight by building blocks such as in extended frameworks like covalent

organic frameworks (COFs) or metallic-organic frameworks (MOFs). The differ-

ence between the former and the latter is that porous molecular materials are porous solids

formed by discrete molecules held together by weak interactions such as hydrogen bonds,

which may support the solubility of a compound in organic solvents. So they can be pro-

duced by crystallisation where no new bonds are formed. Single crystal x-rays diffraction

becomes possible to resolve them, whereas extended organic frameworks have molecules

covalently linked together by strong interactions [11]. These particular examples are open-

pored structures, three-dimensional frameworks used for important applications such as

gas storage for vehicles’ tanks. These molecular solids arrange their building units through

covalent or non-covalent interactions in such a way that they form infinite channels passing

throughout the structure used to trap gas molecules inside.

3.2.1 Functional materials discovery

Molecular solids, such as HOFs, do not follow the usual rules of bondings as extended frame-

works do because weak interaction positions and orientations are not easily predictable.
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Therefore, crystal structure prediction has been used over the past years as a tool

to generate new possible crystal structures that may exist in the landscape. Moreover,

the prediction of chemical properties became possible through maps that relate crystal

functions to both their structure and lattice energy [37]. The method consists of a first

step that involves the choice of a specific experimental molecule already known. Secondly,

it would be optimised in its internal energy to make a better structure which has more

suitable bond lengths and where atoms occupy the best positions to balance covalent forces

within the molecule. It has already been applied for several materials such as allotropes

of common elements, organic photovoltaics, and porous solids where a thousand or million

crystal structures are predicted with the only molecular structure as input.

Despite the high number of structures produced, the final aim is to predict the properties

of hypothetical crystal structures identified as best candidates for synthesis in a laboratory

which implies the structure-related knowledge of their stability considering various atomic

configurations. Molecular solids are characterized by complex energy landscapes be-

cause weak interactions are less predictable than covalent bonds. Therefore, small changes

in the molecular structure may result in big changes in the molecule packing. The stabil-

ity of each structure depends on its predicted lattice energy and so, the projection of a

structure on the energy landscape became the first necessary step.

3.2.2 Crystal Structure Prediction (CSP)

Challenges in material science involve the prediction of structures at the atomic level, which

may depend on the lattice energy or, mostly, on the atom packing. A model should be

created to approximate bonding rules because it includes all possible characteristics used to

express a compound behaviour about the internal or intermolecular bonds. A model and

a prediction have two different meanings. The former is more related to the fact that an

experimental structure could be validated under certain rules by checking the equilibrium

state that keeps a stable solid phase and minimises a lattice energy function. Indeed, a

model may take as input an experimental structure and apply modifications to the bond

lengths according to the rules expressed to find a more stable state. In contrast, the latter

has a significantly different approach because we have no empirical information about the

atom positions that should be firstly generated. Moreover, models of force fields for lattice

energy minimisation could be used by prediction methods to refine the procedure of build-

ing a crystal structure by predicting its atomic configuration. There are many methods



58 Marco Michele Mosca

used in crystal structure predictions that explore the configuration space and use different

procedures to cover the whole landscape. A review of different methods can be found in

[62] of which some are dealt with in the current paragraph.

The simulated annealing method is based on the physical concept of increasing and low-

ering the temperature to simulate a disordered and ordered state of atoms in a compound,

respectively. Ions in a crystal structure are continuously perturbed at each temperature

through the Monte Carlo approach, where a random number of atoms is affected. Metropo-

lis criterion is used to decide whether the Monte Carlo move or random perturbations are

accepted or not. Since the disordered status is reached by increasing the temperature, the

initial temperature should be high enough to let the compound pass the energy barriers

to break bonds physically. The consequent cooling down phase will lead to a local mini-

mum with bond formations, decreasing the probability of jumping among other minima.

Indeed, if the annealing process of perturbing and cooling down is done slowly enough, the

global minimum could be reached. A modified version of the Monte Carlo move has been

called Monte Carlo basin hopping (MCBH [54]) where the current perturbed structure is

optimised (or technically relaxed) at once to find first the closest stable phase. Then the

Monte Carlo move is assessed for acceptance. The problem with the simulated annealing

is that the exploring phase starts from a single point (or single atomic configuration) and

could miss different minima wells around the landscape.

Genetic algorithm methods are another way to explore the lattice energy landscape

that relies on the fact that crystals are gathered in a population of structures following the

analogy of species’ evolution. The first generation is the starting point that includes many

structures that will be ”mating” to each other for the first time and that are generated by

a random arrangement of atoms. As in the species evolution, crossing over and mutations

occur to support diversity in the next population and so, combination or insertion of fea-

tures are performed during the perturbation phase. Crossing over and mutations are two

operators that help the population to evolve to a better one. Therefore, the previous pop-

ulation of structures needs to evolve to approach a better evaluation of the lattice energy

function. Thus, not all structures are allowed to mate because some of them, resulting

from two parent crystals, may retain bad mutations or insertions that could lead to high

energy values. A selection of each population occurs to choose those that can evolve to a

lower energy structure. Furthermore, structure relaxation could be used for each resulted

structure to better and quicker converge to lower energy packings.

Molecular packing approaches act differently because of the high possibility of molecular
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crystals forming polymorphs of the same compound. The lattice energy landscape is more

complex as the molecules may pack differently. Small changes in their orientation and posi-

tion may result in high lattice energy changes. Grid-search approaches, such as MOLPAK

method [21], find densely packed structures modelling atoms as hard spheres, together

with simulated annealing and Monte Carlo methods adapted for predicting polymorphic

structures [16].

3.2.3 Energy-structure-function maps

In the work mentioned above [37], the energy-structure-function map of molecular organic

crystals is used to guide the discovery of new molecular materials with specific porosity

and high predicted gas selectivity. Authors studied different molecules used as candidate

building blocks for porous solids, but we will deal with three of them for the explanatory

purpose of this chapter. The energy-structure related landscape involves the use of density

property (see subsection 1.8.2), which can be plotted against lattice energy to check and

select a subset of crystal structures having good possibilities to be candidates for synthesis.

Target molecules have a tripod shape with three arms and mostly consist of carbon rings

followed by a few nitrogen and oxygen atoms. Triptycene-based molecules T1 and T2

tend to form intermolecular hydrogen bonding stabilizing in a porous phase, except for

T0 (Fig 3.2a-c). Specifically, T2 structures are made of two carbon rings per arm plus

other two in the geometric (or mass) centre, four nitrogen atoms and one oxygen atom in

each extreme of the arms. Many simulated crystal structure from this molecule present, in

their energy-density landscape (Fig 3.2f), some low density structures indicating unusual

stability for their density values such as T2-γ found in the spike of 0.4 g
cm3 , T2-β and T2-α

in the 0.8 g
cm3 spike, whereas T2-δ is the second global minimum after T2-ϵ lying around

1.3 g
cm3 .

The landscapes of T0 and T1 belong to the typical behaviour of organic molecules that have

the potential to densely pack, retaining low lattice energy where the energy-density distri-

bution decreases monotonically. (Fig 3.2d-e). T0-α is an example of a non-porous structure

which keeps a stable structure with only a high-density value. In the T2 dataset, 5 out of

5679 have been synthesised with the global minimum T2ϵ, despite the low density featuring

hydrogen-bonded networks with two-dimensional rings. They form one-dimensional pore

channels and lie in the minima spikes of the landscape by keeping the most stabilising

electrostatic interactions. Low-density structures such as T2-γ showed a high predicted
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Figure 3.2: [37]. Target molecules (a-c) and their respective energy-density landscapes
(d-f) coloured by methane capacity [37]

methane capacity concerning the previous synthesised T2-α (about 32% higher), confirm-

ing the more substantial potential for methane storage of the T2 simulated dataset.

Laboratory syntheses were guided by the energy landscapes in Fig 3.2d-e of simulated

crystals. Only the density value was taken into account to distinguish crystal structures,

which were only nano-porous organic crystals. Indeed, inorganic crystals, which may retain

close-packed structures and consequently high density, are not suitable targets for this ap-

proach as they may not be separated appropriately. Using the density ρ of an experimental

crystal, one can search through multiple simulated crystals within a vertical ‘stripe’ of the

energy-vs-density landscape in Fig. 5.5 over a small density interval to allow for errors.
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One might take the simulated crystal with the lowest energy as the most likely structure

from this stripe. As such, a result depends on the tolerance error for the density among

other factors. A final match is confirmed by the non-invariant RMS deviation between

finite portions of crystals, see Table 2.1.



Chapter 4

Voronoi-based distances between

Crystal Lattices

The current chapter deals with the concept of metric (or distance function) between objects

which aims to compare crystal lattices, and solve the metric problem 2.6 that is the key

contribution of this first PhD project. It is based on our paper published in the Crystal

Research and Technology journal [29]. The C++ code is available on my github account

[28]. Before defining the developed metrics on crystal lattices, we need to explain the

Voronoi Diagrams and how we can compute them.

4.1 Voronoi Diagrams

Nowadays, renewable energy sources are the main topic, which all countries in the world

are discussing. The ecological transition will be necessary to keep our earth clean and tidy.

To introduce the concept of Voronoi Diagrams, I will make a simple example on how it

could be used in order to highlight its properties.

Consider that ecological transition has been found so necessary in a country that they

decided to install more solar panels in the countryside to provide more cities with clean

energy. To predict whether a new solar panel station will be advantageously located for

inhabitants and not overload the central system, we must estimate the number of cities

that will use it. In particular, we need to find the area for which each solar panel station

is providing electricity. More generally, we have a set of places, called sites, that provides

clean energy to the population, and we want to know for each site which city receives

62
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the electricity resource. To study this question, we need to follow the simple assumptions

below:

� All cities have the same number of inhabitants

� All stations are working perfectly

Figure 4.1: A Voronoi
diagram of 11 sites or
solar panel stations.

The model above could give a very simple approx-

imation; indeed, cities may have a different number

of people living there. The cost may vary depending

on cities’ policies and solar stations may be damaged

or not working at maximum performance. However,

for our discussion, we will assure those simple assump-

tions. Finally, we are interested in subdividing the

territory into subregions to find all areas close to

the sites (or solar panel stations) where cities lie. It

means that cities receive the electricity resource from

the nearest site. The action area of a solar station con-

sists of all those cities for which that station is closer than any other, as shown in Figure

4.1. The model where every point (or city) is assigned to the nearest site (or station)

is called Voronoi assignment model. The subdivision induced by this model is called the

Voronoi Diagram of the set of sites.

Figure 4.2: A Voronoi
domain of a point cloud
(red) and a possible city
location (blue).

We can extract different geometric information

about the cities’ locations such as: which are those

cities that receive electricity from 2 or more stations,

or where is the closest city in a specific range or,

moreover, which is the best location to install a new

solar panel station taking into accounts the system

overload and the area provided with electricity. In

addition, this beneficial geometric structure finds its

applications in different sectors such as physics, bi-

ology, robotics and other fields.

In the next chapter, Voronoi diagrams will be used

to extract a Voronoi domain of a lattice which is just one area related to one site (Figure

4.2), however in the current chapter we will discuss how to compute this interesting geo-

metric structure.
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Let us start with some notation and definitions. Denote the Euclidean distance between

two points p and q in R3 by d(p, q) which is defined as follows:

d(p, q) =
√

(px − qx)2 + (py − qy)2 + (pz − qz)2 (4.1)

Definition 4.1. (voronoi diagram). Let S be a set of n distinct points pi in R3. The

Voronoi diagram VD of S is the subdivision of the space into n domains V (pi), one

for each point in S. A random point q lies in a particular domain V (pi) if and only if

d(q, pi) ≤ d(q, pj) for each site p ∈ S with j ̸= i. [4].

We use the notation VD to address the set of vertices and edges of the Voronoi structure

and the symbol V (pi) to consider the single Voronoi domain (or the action area of the panel

station) of a site pi. The single Voronoi domain is computed by intersections that involve

halfspaces defined below.

Definition 4.2. (halfspaces). For p, q ∈ S in R3, let us draw a segment pq between

the points and mark the middle point m. Let B(p, q) be the bisector plane perpendicular to

pq and passing through m that divides the space in half. The halfspace hs(p,q) contains all

the points lying on one side of B(p, q).

hs(p, q) = {x | d(p, x) ≤ d(q, x)} (4.2)

A point r ∈ hs(p, q) if and only if d(r, p) ≤ d(r, q). Therefore, the Voronoi domain of a

point pi is computed by intersecting all n− 1 halfspaces hp(pi, pj):

V (pi) =
⋂

1≤j≤n,j ̸=i

hs(pi, pj) (4.3)

It could happen that some bisector planes are not involved in creating the Voronoi domain

region because V (pi) may be generated with only a subset of n−1 bisector planes. It occurs

when some of them lie beyond the newly formed polyhedron. In a Voronoi diagram, the

common boundary of two Voronoi domains of pi and pj is called Voronoi edge e which is

basically part of the bisector plane between the two corresponding points, e ⊂ hs(pi, pj).

Let us call the points pi and pj in S Voronoi sites. If we expand a ball starting from a

point on the edge e, it will intersect both sites pi and pj at the same time. On the other

end, if we expand a ball from a point r inside the Voronoi domain of the site pi, it will
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intersect the point pi before the others, hence r ∈ V (pi). If the ball expanding from point r

intersects three or more sites at the same time, then r is a Voronoi vertex of the Voronoi

diagram.

The intersection of all halfspaces hs(pi, pj) is an expensive procedure that is more than

quadratic with respect to the number of sites (even with halfplanes in R2). The next

section discusses another method that could be adopted to faster compute the Voronoi

diagram by using Delaunay Triangulations.

4.2 Triangulations

Before dealing with specific cases, let us find a different problem from the previous one to

help the reader understand a triangulation and how we can use it.

We are given a set of points S that represent solar panel stations placed in a territory.

We want to install a closed network that connects all stations to keep the entire system

online and capable of providing electricity to the population without interruptions. Hence,

each station needs to exchange messages related to eventual malfunctions to the other

neighbours to be replaced at once. In other words, the entire system should provide cities

with a continuous service when some stations could be shut down for maintenance or run

into sudden hardware or software failure.

To not connect all the solar stations directly to each other, it is better to install physical

cables from each station to only a few neighbours. A simple partition of this space through

triangles, called triangulation, may help identify each solar station’s proper neighbours and

build the network structure. Before defining formally the triangulation, we need to explain

what is a convex hull.

Definition 4.3. (convex hull). A point set S is called convex if and only if for any

pair of points p, q ∈ S the line segment pq is completely contained in S. The convex hull

of S is the smallest convex set that contains S.

An example of a convex hull in R2 is shown in (Figure 4.3a) and it could be imagined as

a fence that encloses S by surrounding all its points and everything inside. In R3, we can

refer to a convex hull as the smallest box that would be enough to contain all points of S

considering even vertices, sides and edges of the box as spots where the points may lie.

Definition 4.4. (triangulation). A triangulation T of a set S of points pi ∈ R3 is a

partition of the convex hull of S into tetrahedra (or triangles in R2) whose vertices are the
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points of S.

The partitioning of the convex hull of S results in a graph G(TS) whose vertices v are

the points of S and the physical cables are the edges e connecting the solar stations. A

triangulated point set TS is subdivided into simple regions such as triangles in R2 (or

tetrahedra in R3) for a point cloud on a plane as shown in Figure 4.3b. Triangles partition

the space and are not always incident to all vertices, which, as consequence, are directly

connected only to a few neighbours.

4.3 Delaunay Triangulations

A triangulation is not unique because more than one type of partitions of a convex hull may

exist. Changing the convex hull division leads to a change in the angles of different triangles.

Let us denote AT a vector of angles from all triangles that belong to the triangulation T .

Definition 4.5. A Delaunay Triangulation DT for a set of points S is a triangulation

T such that no point lies inside the circumdisk passing through any 3 adjacent vertices of

DT in R2 (or in a circumscribing ball passing through any 4 adjacent vertices in R3).

To assure that every circumcircle passing through 3 adjacent vertices does not contain

any other point of S inside, each edge that belongs to the graph should be legalized or,

better to say, the minimum angle of T must be maximized. It means that if it does not

satisfy the condition above, some edges should be replaced and different points may be

allowed to form a connection by changing the partition type. Consider the 2D example

in Figure 4.4, a partition of a 4-points set P has the edge pipj that makes the trian-

gulation illegal because the circumcircle passing through pi, pk, pj contains the point pl.

a b

Figure 4.3: (a) The convex hull of S which contains all points inside the formed
polygon. (b) Triangulation or partition of the convex hull of S.
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The triangle pi, pk, pj is said to be in a conflict zone. In order to legalize an edge, a re-

placement should occur by flipping the edge pipj itself and moving the link between other

two vertices pkpl. Given the ordered angle vector of the illegal triangulation T on the

left: Ail
T = {30, 30, 30, 35, 115, 120}, the resulting legalization led the minimum angle value

(30◦) to maximization. Indeed, the minimum angle in the angle vector of the Delaunay

Triangulation DTP , ADTP
= {50, 55, 60, 65, 65, 65}, is 50◦.

The Delaunay triangulation can be computed in a subquadratic time complexityO(n(2d−1)/d)

by using the Watson algorithm [57] that works in an arbitrary dimension d on n points.

For simplicity consider the space R2. The main idea of this algorithm is to start with a

triangle that fully contains all points of a set S. The algorithm begins with no points inside

the triangle. We need to populate the outer triangle with all the points si ∈ S and every

time a point is added, new triangles are formed. So, one by one, take a point si ∈ S and

locate the triangle where it should be contained. Check all triangles in a conflict zone

because of the insertion of si and remove their edges. Finally, triangulate the remaining

empty region with the new point and its neighbours to satisfy the non-empty circle condi-

tion. The number of searched regions that should be fixed depends on the location of the

newly inserted point, which can lie inside a triangle or on its edges.

The Delaunay triangulation always exists for points in a generic position (e.g. all of

them should not be co-planar or co-linear to each other). An algorithm based on points

insertion can detect a non-optimal local case and modify the structure accordingly to satisfy

the Delaunay condition of the circumsphere or circumdisk [57] [23].

Figure 4.4: Illegal edge pipj is legalized and replaced by plpk in a 4-points set P.



68 Marco Michele Mosca

4.4 Voronoi Diagram from Delaunay Triangulation

Definition 4.5 is based on the Delaunay empty-ball or empty-disk property, where there

exists a circumscribing ball or circle whose interior does not contain any vertex of the

triangulation. If this condition is satisfied in a triangulation, the Delaunay triangulation

itself could be used as a starting point to generate the Voronoi Diagram of a point set.

a b

Figure 4.5: (a) The Delaunay triangulation of DTS (black line) and its
circumcircles with centres (blue points). (b) Voronoi diagram (blue line) with
Voronoi vertices in blue computed from the Delaunay triangulation DTS .

According to Definition 4.1, a Voronoi Diagram is a subdivision of the space where a

circumcircle expanding from each vertex r intersects three or more sites. Hence, the

distances of those sites to the Voronoi vertex r are the same. Moreover, definition 4.1

assures that the Voronoi diagram takes into consideration a balanced subdivision among

all the space, where all Voronoi vertices are equidistant from the closest sites. To confirm

the balanced subdivision of the space, each circumdisk that intersects three or more sites

should not contain any other site. If it was the case, the vertex r would not have an equal

distance to all its closest sites and the definition breaks. This is exactly the key-property

of the Delaunay triangulation which does not have any points inside the circumdisk of

any 3 or more adjacent vertices. Therefore, starting from a Delaunay triangulation we

can generate the Voronoi Diagram of a point set by finding the circumcentre of each

triangle (or tetrahedron). All triangles in Figure 4.5a are not in a conflict zone because

every circumdisk does not contain any other black point, hence all edges are legalized.

The circumcentre of each triangle is a Voronoi vertex of the Voronoi diagram and it is
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connected to its Voronoi neighbour only if the triangles inscribed into the circumcircles

have a common edge as shown in Figure 4.5b. The resulting graph is called dual graph

of the Delaunay triangulation.

Starting from the Delaunay triangulation of a point set in R3, all polyhedra should

be iterated to compute the circumcentres and build the Voronoi diagram. The number of

polyhedra may vary from Θ(n) to Θ(n⌈
d
2
⌉) concerning n points [44] and the time complexity

of computing the Delaunay triangulation is O(n(2d−1)/d) [57] with d number of dimensions.
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4.5 Voronoi Domain of a point of a lattice

The geometric structure of a Voronoi Diagram is used for many applications. We decided

to use this geometric object as a tool to develop two distance functions or metrics by using

a Voronoi Domain of a Lattice. The Voronoi Domain of a point O of a lattice L is a

convex and centrally symmetric polyhedron, or better to say a convex polyhedron that is

symmetric with respect to its centre. It means that a plane passing through its centre

may split the polyhedron in two specular parts. It has several faces equal to the number

of closest neighbours of O. This geometric object allows us to have local information of O

neighbourhood encoded in its shape.

Definition 4.6. Given a fixed origin point O in a lattice L ⊂ R3, the Voronoi

Domain VO(L) is the set of all points p ∈ R3 that are (not necessarily strictly) closer to

O (in the usual Euclidean metric) than to all other points of L. [4].

VO(L) = {p ∈ R3 | d(p,O) ≤ d(p, q) for any q ∈ L \O} (4.4)

Since all points in a lattice are translationally equivalent, the Voronoi Domain of point O

will be the same for any other point. Therefore, it can cover all the space by its tessellation

(Figure 4.6a). We will use the notation V (L) to address the Voronoi domain of a generic

point in the lattice.

We want our isometry invariant to rely on a stable object, continuously changing under

lattice perturbations. The Voronoi Domain of any lattice is not combinatorially stable

because lattice perturbations can lead to a different underlying graph structure. Hence

the number of vertices may change from 4 to 6 in a 2D square example (Figure 4.6b) or

from 8 to 12 in a 3D cube example (Figure 4.6c). Nevertheless, it can be defined as a

geometrically stable object if we consider its shape. Indeed, if a linear basis is slightly

perturbed, it can lead to a small change from a rectangular to a hexagonal shape (Figure

4.6b) or from a cubic to a truncated cubic shape (Figure 4.6c). A stability theorem can

be found in [40] which was proved by D. Reem and links Voronoi Domains with their

corresponding lattices. The geometric stability of the Voronoi Domain is necessary for

comparison because it allows us to assure the stability of our lattice metrics.
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a b c

Figure 4.6: (a) The Voronoi Domains of points of a 2D hexagonal lattice. (b)
2D square lattice with a square Voronoi Domain perturbed to a hexagon. (c)
Cubic lattice with a cubic Voronoi Domain perturbed to a truncated cube.

4.6 Voronoi-based metrics between arbitrary crystal lattices

4.6.1 Neighbourhood of a point set

Before going through the definitions, we need to explain some concepts needed to define

our metrics. The first concept is the neighbourhood of a point set.

Definition 4.7. (neighbourhood). Formally, given any subset C ⊆ Rn, its r-offset

neighbourhood N(C; r) is the set of all points p ∈ Rn that are at distance at most r from

C.

N(C; r) = {p ∈ Rn | d(p, q) ≤ r for some q ∈ C} (4.5)

If C has only a point, N(C; r) will be a closed ball with radius r. If we consider

a point set that forms a convex polyhedron, N(C; r) will contain the area around and

the polyhedron itself. In Figure 4.7, a 2D example is shown where the point in C has

a neighbourhood defined by a yellow disk of radius r, including the point itself, and the

hexagon has a neighbourhood defined by the yellow zone around it with the hexagon itself.

4.6.2 Hausdorff metric

We defined the first metric based on the already known Hausdorff metric dH which

measures how far two point sets A and B are from each other. The main idea is to try to

include point set A into B and vice versa by considering a specific offset r between them,

but knowing that we want to make a minimum effort to cover both. When we say that a
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Figure 4.7: Left: The yellow neighbourhood N(C; r) where C is a point.
Right: The yellow neighbourhood N(C; r) where C is a hexagon.

set A covers a set B, we mean that the union of all balls with radius r, drawn from each

point of A, includes the whole set B. Therefore, we need to find an r-offset to compute

the Hausdorff metric defined as follows:

dH(A,B) = min{r ≥ 0 : B ⊂ N(A; r) and A ⊂ N(B; r)} (4.6)

where N(A; r) is the neighbourhood of A with offset r. The Hausdorff metric outputs

a value that quantifies the similarity between fixed point sets where no rigid motion is

applied. Whereas, the new metrics defined in the following paragraphs consider both point

sets over all rotations.

4.6.3 Rotationally-invariant metric dR

The previous Hausdorff metric was defined for fixed point sets where no isometry is taken

into account. For example, let us consider two isometric hexagons located in different

positions with their centres being at distance r from each other. The Hausdorff metric be-

tween hexagon H1 and hexagon H2 will be r as well, although both polygons are isometric.

Therefore, we defined an extended version of the Hausdorff metric that detects equivalent

and similar lattices through their Voronoi polyhedra. Two polyhedra are the input point

sets. They need to have the same centre to minimize the r -offset and so, they need to be

shifted or translated by a vector v⃗. A translation Tv of a vector set P is the set of vectors

PTv resulted from the sum of v⃗ applied to any vector of P .

PTv = {u⃗+ v⃗ | for any u⃗ ∈ P}



Chapter 4. Voronoi-based distances between Crystal Lattices 73

Lemma 4.8. For any centrally symmetric polyhedra P, P ′ ⊂ Rn and a translation Tv

by a vector v⃗ ∈ Rn, the offset parameter min{r : Tv(P ) ⊂ N(P ′; r)} is minimal when Tv

moves the centre c(P) of the polyhedron P to the centre c(P’) of P’.

Proof. Assume by contradiction that min{r : Tv(P ) ⊂ N(P ′; r)} is minimized for a vector

that differs from c(P ′) − c(P ). Without loss of generality, one can assume that v = 0

and r = 0 because we consider P completely included in P ′ and we want to prove that

if P ⊂ P ′, then this inclusion is preserved when the centre c(P ) is shifted to c(P ′). Let

us consider Figure 4.8 with P and a symmetric copy S(P ) of it that is mirrored over the

centre c(P ′). The polyhedron P ′ remains at the same position and covers the symmetric

image S(P ) of P . Here, it is allowed to talk about symmetric images because Voronoi

domains of lattices are centrally symmetric. If we move the centre c(P ) by continuous

motion to its symmetric image S(P ) through the centre c(P ′), all intermediate images of

P remain covered by P ′ due to the convexity of P ′. Indeed, any two points belong to P ′

together with the line segment connecting them. Hence, the polyhedron P shifted by the

vector c(P ′)− c(P ) is also covered by P ′. Symmetrically, if one fits a translational image

of P ′ into a minimal offset of P , then an optimal translation should make the centres of

P, P ′ identical.

Figure 4.8: A centrally symmetric polyhedron P ′ covers a cen-
trally symmetric polyhedron P . Then the symmetric image of P ,
S(P ), is also covered by P ′

Secondly, consider both polyhedra over all rotations to pick the best one that will quantify

their similarity or assure their equivalence. Rotations are defined by square and orthogonal

matrices n× n that belong to the group of rotations SO(n) with n number of dimensions.
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To finally design our metric we need to define the r -offset distance for polyhedra shifted

to the same origin and subject to all rotations.

Definition 4.9. (r-offset). Given two crystal lattices L and L′ and their respective

Voronoi Domains V (L) and V (L′) at the origin O ∈ R3, we define the minimum offset r

over all rotations R:

offset(L,L′) = min{r ≥ 0 : R(V (L)) ⊂ N(V (L′); r)} (4.7)

where the minimum is taken over all rotations R ∈ SO(3) of V (L) about the ori-

gin in R3. In Figure 4.9 an example is shown where we are trying to compute the off-

set(Lhex, Lrect) between two lattices Lhex and Lrect that have, respectively, a hexagonal

and a rectangular Voronoi domain. Lrect is fixed and Lhex is considered over all rotations.

In practice, the offset offset(Lhex, Lrect) is the minimum effort needed to cover all vertices

of the hexagon inscribed in a neighbourhood of the rectangle defined by r -offset.

→

Figure 4.9: Left: Possible rotations of the hexagon inside the respective
r -offset neighbourhoods of the rectangle. Right: The minimum offset

offset(Lhex, Lrect) = 2 (red segment) between a hexagonal V (Lhex) and a
rectangular V (Lrect) Voronoi domains over all rotations.

Definition 4.10. (rotationally-invariant metric). Finally, the rotationally-invariant

metric between two lattices will be the symmetric maximum between two offsets:

dR(L,L
′) = max{ offset (L,L′), offset (L′, L)} (4.8)
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The Voronoi domain is defined in terms of distances to lattice nodes and computed from

the unit cell vectors stored in the CIF file of a crystal. Since the unit cell parameters are

stored in Angstroms, and the offsets are found through the Euclidean distance between

nodes, the computation of dR will output a value with the Angstrom measure unit. To

continue with the previous example of the hexagon and rectangular Voronoi domains,

Figure 4.10 shows the final result of the rotationally-invariant metric in Angstroms. The

second offset offset(L′, L) is already computed on the right where V (L′) rotates and V (L)

is fixed.

Figure 4.10: The two non-symmetric offsets offset(Lhex, Lrect) = 2 on the left
and offset(Lrect, Lhex) = 0 on the right will give a rotationally-invariant metric

dR(Lhex, Lrect) = 2

The rotationally-invariant metric can be considered independent of a lattice representation.

It means that although two crystal lattices may be represented by different unit cell vectors,

the metric will output the same value as their representation changes (i.e. different angles or

vector lengths). It satisfies the identity, symmetry and triangle inequality axioms together

with the continuity condition as stated and proved in the following theorem.

Theorem 4.11. The rotationally-invariant metric dR is independent of a lattice rep-

resentation and satisfies the axioms 2.5(a), 2.5(b), 2.5(c) and condition 2.5(d).

Proof. The rotationally-invariant metric between lattices is based on the Voronoi domains,

which are defined in terms of distances to lattice nodes, hence are independent of a linear

basis of a lattice. By equation 4.7 dR(L,L
′) is always not negative and equals 0 only

when there is a rotation R that matches R(V (L) with V (L′), hence the Voronoi domains

V (L), V (L′) become identical under the rotation R, so the lattices L,L′ are equivalent,

which proves axiom 2.5(a). Axiom 2.5(b) follows from equation 4.8 taking the maximum of

two offsets when L,L′ are swapped. To check axiom 2.5(c), one can assume that maxima in

equation 4.8 are attained on first offsets. Let us fix two rotations R,R′ so that dH(L,L′) =
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offset(R(V (L)), V (L′)) and dH(L′, L′′) = offset(R′(V (L′)), V (L′′)). In practice, consider

just 1 rotation for V (L) and 1 for V (L′) and no more transformations. Both refer to a

minimum inclusion offsets r and r′ as follows. By equations 4.6, 4.7, 4.8 the first Hausdorff

metric dH(L,L′) above has a minimum value (say, r) when

R(V (L)) ⊂ N(V (L′); r) and V (L′) ⊂ N(R(V (L)); r) or R−1(V (L′)) ⊂ N(V (L); r) (4.9)

Similarly, the second Hausdorff metric dH(L′, L′′) has a minimum value (say, r′) when

R′(V (L′)) ⊂ N(V (L′′); r′) and V (L′′) ⊂ N(R′(V (L′)); r′) or (R′)−1(V (L′′)) ⊂ N(V (L′); r′)

(4.10)

When applying the first rotation, the offset is set to a minimum value r where both Voronoi

domains V (L) and V (L′) are included in each other’s neighbourhood. The Hausdorff

metric with the second optimal rotation outputs an r′ value that includes V (L′) in V (L′′)’

neighbourhood and vice versa. Given the previous rotations, their composition (applied

from right to left) rotates the Voronoi domain V (L) to the position R′(R(V (L))). The first

inclusions from 4.9, 4.10 above imply the inclusion below:

R′(R(V (L))) ⊂ R′(N(V (L′); r)) = N(R′(V (L′)); r) ⊂ N(N(V (L′′); r′); r) = N(V (L′′); r+r′)

(4.11)

Similarly, the opposite composition of rotations R−1(R′)−1 (applied from right to left)

rotates the Voronoi domain V (L′′) to R−1((R′)−1(V (L′′))). In equation 4.11, one rotation

causes the output of r of V (L) with respect to V (L′), but the second rotation results in the

offset r′ of V (L′) with respect to V (L′′). The axiom 2.5(c) wants that both rotations are

applied to the first domain V (L), to demonstrate that it is included in the neighbourhood

of the third domain V (L′′). The inclusion is possible since offsets may be added. Indeed,

take the example when the second offset r′ = 0. It means that V (L′) is equivalent to V (L′′)

(no bigger neighbourhood needed), therefore V (L) does not need any other than r+0 = r

to be included in V (L′′). The sum increases if the V (L′) and V (L′′) are different and need

a wider neighbourhood. Inclusions 4.9, 4.10 mean that the Hausdorff metric dH(L,L′′) has

the upper bound r+ r′ attained for the rotations R′R and R−1(R′)−1. The minimum over

all rotations can be even smaller, hence the triangle inequality dR(L,L
′′) ≤ r+ r′ in axiom

2.5(c) holds. Continuity condition 2.5(d) follows from the stability of Voronoi domains in

Section 4.5.
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4.6.4 Scale-invariant metric dS

We prove that the rotationally-invariant metric dR satisfies all metric axioms and is con-

tinuous under perturbations of unit cell parameters. In this section we introduce the new

notation s × P used when a point set P is scaled uniformly by a factor s. The following

scale-invariant metric is additionally invariant under uniform scaling of a lattice. As for

the previous metric, the minimum can be obtained by shifting the polyhedra to a common

centre as the lemma below states:

Lemma 4.12. For any centrally symmetric polyhedra P, P ′ ⊂ Rn and a translation

Tv by a vector v⃗ ∈ Rn, the scale factor min{s > 0 : Tv(P ) ⊂ s × P ′} is minimal when Tv

moves the centre c(P) of the polyhedron P to the centre c(P’) of P’.

Proof. Proof of this lemma is similar to the proof of Lemma 4.8 with r-offset N(P ; r) re-

placed by scaled polyhedra s×P ⊂ Rn, because all other inclusion and convexity arguments

remain valid.

Definition 4.13. (scale). Given two Voronoi Domains of crystal lattices V(L) and

V(L′), we want to find the minimum scale factor s over all rotations as follows:

scale(L,L′) = min{s > 0 : R(V (L)) ⊂ s× V (L′)} (4.12)

where R ∈ SO(3) and SO(3) is the group of all rotations in R3. Similarly to the

previous offset, the scale measure is computed over all rotations by fixing one polyhedron

V (L′) and rotating the other one V (L). Instead of considering a neighbourhood of the

fixed domain, in the scale function we consider a scaled version of the fixed domain that

should include the rotating domain.

Let us take the example in Figure 4.11 where the hexagonal V (Lhex) and rectangular

V (Lrect) Voronoi domains are reproposed and adapted for the scale measure. Two segments

are considered for each rotation to find the scale(L,L′). The first segment (red lines) is

between the centre of both Voronoi domains O and a vertex p of the rotating domain

d(O, p), which intersect a side of the fixed domain at point q. The second (green lines)

is the segment between the centre O and point q, d(O, q). Since the scale factor s is a

ratio between the two distances in Angstroms, it will result in a dimension-less measure
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which represents the number of times (s) a fixed domain should be enlarged to cover all

vertices of the rotating domain. Practically, the scale scale(Lhex, Lrect) is the minimum

→

Figure 4.11: Left: Possible rotations of the hexagon inside the respective
s-scaled versions of the rectangle. Right: The minimum scale

scale(Lhex, Lrect) =
2
√
5√
5
= 2 (red over green distances) between a hexagonal

V (Lhex) and a rectangular V (Lrect) Voronoi domains over all rotations.

effort needed to cover all vertices of the hexagon inscribed in the s-scaled version of the

rectangle.

Definition 4.14. (scale-invariant metric). Finally, the scale-invariant metric is

defined as the logarithm of the symmetric maximum between two scale measures:

dS(L,L
′) = ln{max{scale(L,L′), scale(L′, L)}} (4.13)

where the logarithm is in base e which is needed to make the metric additive and map

isometric (or equivalent) lattices to 0. Figure 4.12 shows the results of the scale-invariant

metric on the comparison between the hexagonal and rectangular Voronoi domains.

Moreover, the scale-invariant metric can be considered independent of an isometry class

and satisfies the identity, symmetry and triangle inequality axioms together with continuity

and scaling conditions as stated and proved in the following theorem.

Theorem 4.15. The scale-invariant metric dS is independent of a lattice represen-

tation and satisfies the axioms 2.5(a), 2.5(b), 2.5(c), and both conditions 2.5(d), 2.5(e).

Proof. Similarly to the proof of Theorem 4.11, the scale-invariant metric between lattices
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Figure 4.12: The two non-symmetric scales scale(Lhex, Lrect) =
2
√
5√
5
= 2 on the

left and scale(Lrect, Lhex) =
2
√
5

2
√
5
= 1 on the right will give a scale-invariant

metric dS(Lhex, Lrect) = ln 2

is based on the Voronoi domains and is independent of a lattice representation. The

scaling factor is the main feature of this metric that refers to the ability to recognise scaled

versions of specific lattices. To check that dS(L,L
′) ≥ 0, let R,R′ be optimal rotations

that minimize the factors s = scale(L,L′) and s′ = scale(L′, L), respectively. Equation

4.12 implies that

R′(R(V (L))) ⊂ R′(s× V (L′)) = s×R′(V (L′)) ⊂ s× s′ × V (L)

The composition of both rotations applied to V (L) does not change the volume of V (L)

and R′R(V (L)) and V (L) are isometric. Therefore, the inclusion

R′(R(V (L))) ⊂ s× s′ × V (L)

implies that s× s′ ≥ 1, and ln{max{s, s′}} ≥ 0. The equality is possible only if s = s′ = 1.

It means that no scaling operation needs to be applied and V (L), V (L′) can be found from

each other by applying a rotation, hence the lattices L, L′ are equivalent, so axiom 2.5(a)

is proved. Axiom 2.5(b) follows from symmetric equation 4.13. To check axiom 2.5(c),

let us fix optimal rotations R,R′ such that scale(L,L′) and scale(L′, L′′), and consider

minimum values of scaling (say, s and s’, respectively) when

R(V (L)) ⊂ s× V (L′) andR′(V (L′)) ⊂ s′ × V (L′′)

Then

R′(R(V (L))) ⊂ R′(s× V (L′)) = s×R′(V (L′)) ⊂ s× s′ × V (L′′)
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Similarly to the dR, take the example of s > 1 where V (L) needs a wider scale of V (L′) to

be contained, and s′ = 1 which refers to the fact that V (L′) and V (L′′) are equivalent. If

V (L) is included in V (L′), it does not need any other scale factor to be contained in V (L′′)

because s× 1 = s. Differently, if the second couple outputs a higher scale, the total scale

factor will be affected. Hence, scale(L,L′′) ≤ s × s′, because an optimal rotation from

V (L) to V (L′′) may have a smaller scale. The symmetric scale(L′′, L) has a similar upper

bound from optimal rotations or scale(L′′, L) and scale(L′, L). The triangle inequality

follows after taking the logarithm of both sides:

max{scale(L,L′′), scale(L′′, L)} ≤

≤ max{scale(L,L′), scale(L′, L)} ×max{scale(L′, L′′), scale(L′′, L′)} (4.14)

To prove continuity condition 2.5(d), let us fix two Voronoi Domain and define the

distance that we require. Let r(L) be the distance from the origin O ⊂ L to the boundary

of the Voronoi domain V (L) of which we consider its neighbourhood. The geometric

stability of Voronoi domain, in Section 4.5, confirms that the Voronoi domain V (L′) of a

perturbed lattice is included in the r -offset N(V (L); r) of V (L) for a small r > 0. Let us

assume that their centres are superimposed and coincide with the origin in Rn. We may

want to use the neighbourhood definition to find the correspondent upper bound of a scale

factor, indeed by fixing r and r(L). For any p ∈ N(V (L); r), let R(O, p) be the straight

ray emanating from O and passing through p. Let q be the intersection of R(O, p) with

the boundary of V (L′). The total distance from the origin O to the furthest point of V (L′)

is d(p,O) = d(p, q) + d(O, q), hence the scale(L′, L) is equal to

scale(L′, L) =
d(p, q) + d(O, q)

d(O, q)

which is upper bounded by the correspondent ratio of r and r(L) as follows

scale(L′, L) =
d(p, q) + d(O, q)

d(O, q)
≤ r + r(L)

r(L)

Then the Voronoi domain V(L’) is included in the neighbourhood of V(L) and consequently
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in its respective scaled version

V (L′) ⊂ N(V (L); r) ⊂
(
1 +

r

r(L)

)
V (L)

Therefore

scale(L′, L) ≤
(
1 +

r

r(L)

)
Swapping L and L’ and computing the scale(L,L′), we get the upper bound for the scale-

invariant metric

dS(L,L
′) ≤ ln

(
1 +

r

min{r(L), r(L′)}

)
which means that L’ remains close to L. The scale-invariant in condition 2.5(e) holds by

equation 4.12, because the inclusion R(V (L)) ⊂ s × V (L′) remains unchanged then both

lattices L, L’ are simultaneously scaled by the same factor.

4.6.5 Metric Algorithms

In order to quantify lattice similarities, we need to consider their Voronoi domains over all

rotations. In our algorithm we use a uniform rotation sampling procedure depending

on a parameter n. The Voronoi domain of a lattice is a centrally symmetric polyhedron,

and thanks to this property, we can limit the number of rotations to a certain amount.

Let us consider the unit sphere in Figure 4.13. Each rotation is performed in the 3D space

over an axis of rotation (which is a unit vector). The axes shown in the figure represent

two axes of rotations with a different height from the plane x-y. The parameter n defines

the number of intervals of the z-axis where axes fall at the centre in order to find a set of

axes of rotations, with specific height and orientation, around which the polyhedron is

permitted to rotate. The symmetry of this type of convex polyhedron allows us to restrict

the number of rotations to half the sphere meaning that the generated axes of rotations

belong only to the upper hemisphere. Therefore, a polyhedron may rotate around the axis

of rotation at about θ and around the z-axis at about µ.

Theorem 4.16. For any polyhedra P, P ′ ∈ Rn symmetric with respect to the origin O,

offset(P, P ′) = min{r ≥ 0 : P ⊂ N(P ′; r) and scale(P, P ′) = min{s > 0 : P ⊂ s× P ′} can
be computed in a linear time with respect to the number of vertices and faces of P, P’.

Proof. The minimum distance r in the offset offset(P, P ′) = min{r > 0 : P ⊂ N(P ′; r)}
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is updated with the minimum value by iterating all vertices v of P as follows. Find the

intersection of the line segment [0, v] from the origin O to v with a face F of P ′. If there

is such an intersection, then r increases to the distance d(v, F ). Similarly, scale(P, P ′) =

min{s > 0 : P ⊂ s × P ′} is computed by finding the minimum scale value according to

which each vertex v of P is inside P ′. Detect the intersection of the ray R(O, v) passing,

from the origin O, through v with a face F of P ′, then s increases to d(O,v)
d(O,R(O,v)∩F ) . In the

worst case, intersecting lines through vertices of P and flat faces of P ′ requires a loop over

all vertices and a loop over all faces. An upper bound for the asymptotic complexity is the

product of the numbers of vertices and faces, which is a linear function in each number.

Indeed, those numbers are in a fixed range, as explained below.

Figure 4.13: Rotation sampling example from a unit sphere with n = 2. In
addition to x-axis and z-axis, two rotation axes are generated, around which

the Voronoi domain may rotate.

The Voronoi domain of a lattice in R3 may have at least 8 vertices and 6 faces and at most

24 vertices and 14 faces. It may rotate about θ ∈ [0, 360°) around a unit length rotation

axis v⃗ in the upper hemisphere defined as follows:

v⃗ = (
√

1− z2 cosµ,
√
1− z2 sinµ, z) (4.15)

where z ∈ (0, 1) is the height parameter which has n samples as decided by the user input.

Each of the n rotation axes generated with a specific height is rotated by θ and µ accounting

for 2πn samples for each angle. In total, about 4π2n3 rotations will be sampled. In our

experiments, we used several samples equal to 1065 given by n=3. Each vertex u⃗ of the

Voronoi domain is rotated by the following Rodriguez formula around a rotation axis v⃗
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by θ:

R(u⃗) = u⃗ cos θ + (v⃗ × u⃗) sin θ + v⃗ (v⃗ × u⃗)(1− cos θ) (4.16)

Let Rsamples be the set of all rotation samples generated with the previous method, the

algorithms used to compute the above-mentioned metrics dR and dS are shown below with

a pseudo-code.
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Algorithm 1 Rotationally-invariant metric

1: procedure Offset(L, L′)
2: Rsamples = {Ri is a rotation sample s.t. Ri ∈ SO(3)}
3: offset ← −1
4: for Ri ∈ R do
5: distrot ← r ▷ with r ≥ 0 : Ri(V (L)) ⊂ N(V (L′); r)
6: if (offset == -1) then
7: offset ← distrot
8: else if (distrot < offset) then
9: offset ← distrot

10: end if
11: end for
12: return offset
13: end procedure

1: procedure RID dR(L, L
′)

2: offsetLL′ ← OFFSET(L,L′)
3: offsetL′L ← OFFSET(L′, L)
4: return max(offsetLL′ ,offsetL′L)
5: end procedure

Algorithm 2 Scale-invariant metric

1: procedure Scale(L, L′)
2: Rsamples = {Ri is a rotation sample s.t. Ri ∈ SO(3)}
3: scale ← −1
4: for Ri ∈ R do
5: distrot ← s ▷ with s > 0 : Ri(V (L)) ⊂ s × V (L′)
6: if (scale == -1) then
7: scale ← distrot
8: else if (distrot < scale) then
9: scale ← distrot

10: end if
11: end for
12: return scale
13: end procedure

1: procedure SID dS(L, L
′)

2: scaleLL′ ← SCALE(L,L′)
3: scaleL′L ← SCALE(L′, L)
4: return ln(max(scaleLL′ ,scaleL′L))
5: end procedure
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4.7 Results and conclusions

When comparing crystal lattices, structure similarity is satisfied when dS(L,L
′) or dR(L,L

′)

are close to 0. We performed some experiments on a manually curated version of T2 dataset

made of 5688 structures using our metrics to assess the similarity between crystal lattices.

There is following a plot with the heatmap of the first 100 lowest-Energy crystals compared

by our rotational-invariant metric and scale-invariant metric [Figure 4.14]. A white colour

highlights the close similarity. On the other hand, different crystal pairs appear in black.

Figure 4.14: [29] Fig. 7. Heatmaps of the Voronoi-based geometric invariants.
On the left the rotationally-invariant metric and on the right the

scale-invariant metric.

We want to show that our metrics can find geometric differences in crystal lattices that

could not be addressed by energy or density values. The aim was to emphasize that the

usual approach for studying crystal structures should be based on geometric information

and chemical data separately. The following experiment shows that energy or density

values cannot be used to imply the geometric similarity. Indeed, we could highlight it only

by looking at the differences between crystal lattices.

We applied our metrics to the T2 dataset made of 5688 simulated crystal structures.

Among the results, we looked for pairs of crystals very close in energy and density values

but very different in the values of our metrics. The search resulted in several pairs of
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crystals, e.g., with IDs (41,47), (68,71), (63,73), (71,83), (71,93), which have small energy

differences within 3 kJ
mol and also small density differences within 0.01 g

cm3 . However, the

lattices of these crystal structures have Rotationally-Invariant metrics dR ≥ 15 Angstroms

and scale-invariant metrics dS ≥ 1.1, i.e., with scale factors more than e1.1 ∼ 3. Crystal

lattices 41 and 47 have unit cell angles close to 90◦, but different unit cell sides: (53.3,

23.7, 7.3), (15.4, 12.9, 16.5). These differences in their structure were found only through

geometric information by using the new metrics. Chemical information such as energy and

density were not considered. Finally, to summarize:

� Arbitrary crystal lattices are considered up to rigid motions, and their equivalence

classes can be distinguished by the new metrics (dS and dR). Their computation is

independent of a choice of unit cells or coordinates in crystal representations.

� Differences are quantified continuously. This concept is fundamental in producing

a continuous hierarchy of crystal structures and showing new patterns among their

classes.

� Energy and density are not proper characteristics to distinguish the geometric struc-

ture. Indeed experiments on simulated T2 crystal structures show that dR and dS

better distinguish crystal lattices that have almost identical energy and density.



Chapter 5

Average minimum distances of a

periodic point set

The following chapter deals with a new isometry invariant of crystals focusing on their

motif. It aims to develop a property that can correctly classify the space of crystals,

solving the isometry classification problem 2.4. My contribution to this project was to

develop and implement an early version of the algorithm in C++ that made use of the

proper data structure to compute distances. Later, it was extended by new progresses

of the other authors with theorems, proofs, a python version [58] and new plots that I

collected in this chapter from our paper published in the MATCH journal [60].

The new isometry invariant extracts a geometric feature that directly considers the inter-

atomic distances, and maps the atomic structure to distance vectors. The early version of

the software can be found on my github account [27].

5.1 Inter-atomic distance distribution

The previous invariant example in chapter 2 Figure 2.4 is not enough to distinguish non-

equivalent point clouds since they could map to the same list of ordered pairwise distances.

Instead of a full list of distances, consider a matrix of distances: 1 row (list of distances) for

each point in the central unit cell. Let a crystal C have m points in a unit cell p1, ...., pm.

For any integer k ≥ 1, we define a m × k matrix D(S; k) of distances whose i-th row

consists of the ordered Euclidean distances di1 ≤ ... ≤ dik measured from pi to its first

k nearest neighbours within the infinite crystal C. For example, let us consider the 1-D
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periodic point set S = {0, 1, 3, 4} + 8Z repeated by a period of 8 towards both directions

and its matrix of distances D (Figure 5.1). D would consist of four rows (one for each

point) of distances between a point in the central unit cell and its k nearest neighbours.

In the example, only k = 3 neighbours are considered.

5.2 Averaged Minimum Distances for Periodic Sets

As stated in [60] and repeated below, the distance matrix D is used to extract an isometry

invariant called Average Minimum Distance.

Definition 5.1. (Average Minimum Distance AMDk(S)). Let a periodic point set

S = Λ+M ⊂ Rn have points p1, ...., pm in a primitive unit cell. For a fixed integer k ≥ 1

and i = 1, ...,m, the i-th row of the m× k matrix D(S;k) consists of the ordered Euclidean

distances di1 ≤ ... ≤ dik measured from the point pi to its first k nearest neighbours within

the infinite set S.

The j-th Average Minimum Distance of a periodic motif S with m points p1, ...., pm in a unit

cell U is the average of the j-th column in the matrix D(S; k) of distances to neighbours.

AMDj(S) =
1

m

m∑
i=1

Dij(S; k) (5.1)

The full AMD(k) vector of k distances of S is the set of AMDj that can be computed

as follows:

AMD(k)(S) = (AMD1(S), AMD2(S), ..AMDk(S)) (5.2)

Figure 5.1: Periodic point Set S and its AMD vector.

This invariant is independent of a unit cell because it does not matter whether a unit cell
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is primitive or not-primitive; the AMD vector of distances will be the same between two

isometric crystals. For example, a periodic point set may be described by two unit cells

where one is doubled with respect to the other, as shown in Figure 5.3 for the periodic

point sets S and Snp. In addition, similarity between two crystal structures is correctly

assessed thanks to the tendency of the AMD invariant to detect small perturbations within

the point cloud. Figure 5.2 presents a toy example where the AMD distance values change

slightly after a small point perturbation of the point 1 in 1.5.

Figure 5.2: Periodic point Set S and its slightly perturbed version Spert with their
respective and similar AMD vectors.

Moreover, if two unit cells U and U ′ have different unit cell parameters, although they

belong to the same crystal, AMD can recognise them as the same crystal structure since

they map to the same AMD vector. Having different unit cell parameters means that

the points have different coordinates, but distances between them are the same. Indeed,

regardless the starting point, the set of distances AMD(k) of the crystal generated by both

U and U ′ will be the same after ordering. Therefore, AMD solves the ambiguity problem

regarding the infinitely many unit cells that a crystal structure may have. Indeed, ordered

lists of distances allow us to retrieve the exact distances in a unique order starting from

a central unit cell. Moreover, the number of neighbours k can be increased to involve

more distances within the infinite point cloud and add extended information to the AMD

invariant about the periodic structure. AMD is an isometry invariant demonstrated by the

theorem and proof below.

Theorem 5.2. (Theorem 4 in [60]. isometry invariance of AMD). For any finite
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Figure 5.3: Periodic point Set S with a primitive unit cell (red points), periodic point set
Snp with a non-primitive unit cell (red points) and their respective AMD vectors.

or periodic point set S ⊂ Rn, the Average Minimum Distance AMDk(S) is an isometry

invariant of S for any k ≥ 1.

Proof. AMD is an isometry invariant of crystal structures since, firstly, any primitive and

non-primitive unit cell of a crystal structure S can be mapped to the same AMD vector.

Let us take two primitive unit cells U and U’ of the same crystal lattice Λ, consequently

with the same number of points. We can establish a bijection between them because points

of U can be translated along a unit cell vector v⃗ ∈ Λ to match points in U’. Hence, the

distance matrix D will be the same up to rows permutations, where each row is a distance-

vector that consists of real value distances between one point and all k neighbours.

Secondly, the distance matrix D is preserved under any isometry f : S → Q applied to the

points in the unit cell with S and Q periodic point sets. Let us consider two primitive unit

cells US and UQ that are related to each other by a function map f which maps all points of

US into points of UQ. Q is preserved by a translation along vector v⃗, therefore S is preserved

by a translation along f−1(v⃗) having points defined by different integer coefficient of linear

combinations. They are primitive unit cells, so they contain the same number of motif

points, and all points are bijectively mapped to each other from S to Q and vice versa.

Since f preserves distances, every ordered row of the distance matrix contains real values

that do not change after applying a certain bijection where each point pi of S is mapped
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to its corresponding point in Q. If the bijection exists, distance matrices D(S, k) and

D(Q, k) are equivalent up to rows’ permutations because rows could be ordered in different

ways but still exist in both matrices, hence AMDk(S) = AMDk(Q). Moreover, being

invariant under isometry means that neighbours do not change their distance to points in

the surroundings when any isometry is applied to the point cloud. Therefore, to assure

invariant values ofAMD, distances are ordered within each row to gather them in the matrix

at specific positions according to the vicinity between points and their neighbours.

5.2.1 Continuity of AMD under perturbations

Crystal structures are rigid bodies subject to perturbations (or atom vibrations) around

their position resulting from different environmental conditions, such as the temperature

at which their structure is resolved. The simplest way to measure a perturbation is a

deviation of their position. The deviation over a full infinite crystal is defined as the

Bottleneck Distance.

Definition 5.3. (Definition 6 in [60]. bottleneck distance between sets). For a bi-

jection g : S → Q between finite or periodic point sets S,Q ⊂ Rn, the maximum de-

viation is the supremum sup
p∈S
|p − g(p)| over p ∈ S. The bottleneck distance is defined as

dB(S,Q) = inf
g:S→Q

sup
p∈S
|p−g(p)| is the infimum over bijections g : S → Q where all bijections

are considered from S to Q.

Informally, it is the minimum effort that we need to individually shift and match points in

S to points in Q. Given the maximum deviation between point sets, when points in both

periodic sets are slightly perturbed, neighbour distances in AMD vectors are subject to

minor changes, as explained by the following lemmas and theorems.

Lemma 5.4. (Lemma 2 in [12]). Let periodic point sets S,Q ⊂ Rn have the bottleneck

distance dB(S,Q) < r(Q), where r(Q) is the minimum half-distance between points of Q.

Then S,Q have a common lattice Λ with a unit cell U such that S = Λ + (U ∩ S), Q =

Λ+ (U ∩Q).

The packing radius r(Q) refers to that distance between particles that confirms the exis-

tence of the smallest bond in an infinite crystal motif. When we match points in S with

points in Q, we may want to shift and match S onto Q by performing a minimum effort.

Practically, a small enough distance between two sets may assure that points of US remains
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inside UQ up to translations. Indeed, consider a point s⃗ ∈ S and its infinitely many copies

s⃗n = s⃗ + nv⃗ towards a direction along vector v⃗ with n ∈ Z. For any point s⃗ ∈ S we can

always find its copy at a lattice point of ΛQ inside a unit cell UQ translated by a number

of times towards that direction, s⃗n ∈ q⃗n + UQ where qn ∈ ΛQ.

Lemma 5.5. (Lemma 8 in [60]. perturbed distances). For some ϵ > 0, let g : S → Q

be a bijection between finite or periodic sets such that |a− g(a)| ≤ ϵ for all a ∈ S. For any

i ≥ 1, let ai ∈ S and bi ∈ Q be the i-nearest neighbours of points a ∈ S and b = g(a) ∈ Q,

respectively. Then the Euclidean distances from a,b to their i-th neighbours ai, bi are 2ϵ-

close, i.e ||a− ai| − |b− bi|| ≤ 2ϵ.

Below an explanation of the proof is presented from the related paper. First, we need to fix

a value (or upper bound) that will define the interval within which distances may change.

The maximum value will be based on the maximum deviation ϵ allowed for a distance of

two points. When a maximum deviation is to be found, it is better to consider both point

clouds superimposed. Think of the bijection g as a tool used for the superimposition. Each

point a ∈ S is linked by the function g to a point b ∈ Q and vice versa (bijection). In

theory those points should be superimposed if shifted, but that depends on the rest of the

point cloud. Indeed, we may want to translate the full set Q by the vector a⃗− ⃗g(a) to shift,

and eventually match, S with Q. A minimum effort for the superimposition is considered,

and therefore ϵ is found over all the maximum distances (Bottleneck distance). In practice,

given the maximum distances over pairs of points, the minimum is computed. Provided

that any two points change their distance at most by ϵ, distances between neighbours have

at most a 2ϵ offset. Finally, considering the space inside a ball of diameter 2ϵ, the new

distances between a, b and their neighbours will be similar to each other by at most 2ϵ.

It means that perturbing neighbours around will lead to small deviations which are upper

bounded by 2ϵ, and if point sets are isometric these distances between neighbours will be

equivalent ||a − ai| − |b − bi|| = 0. If distances of a, b and their i − th neighbours were

completely different, and a kept the maximum deviation allowed 2ϵ with its i− th nearest

neighbour ai (e.g. both located in the closed-ball border), then ||a−ai|− |b− bi|| will tend
to 2ϵ as b and bi get closer. Hence, distance perturbations are bounded by a closed ball of

diameter 2ϵ.

Theorem 5.6. (Theorem 9 in [60]. continuity of AMD under any small perturbations).

Let finite or periodic sets S,Q ⊂ Rn satisfy dB(S,Q) < r(Q), where r(Q) is the packing

radius of Q. Then |AMDk(S)−AMDk(Q)| ≤ 2dB(S,Q) for any k ≥ 1.
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In an informal discussion we may say that since all atoms vibrate, the simplest way to

measure a perturbation is a deviation of their position. However, the deviation can be

measured only over a bounded domain. The deviation over full infinite crystals is defined

as the Bottleneck Distance dB(S,Q). From S and Q, we compare the matrices D(S; k)

and D(Q; k) and the distance between the k-th values of both is upper bounded by 2ϵ =

2dB(S,Q) by the Lemma 5.8. Therefore, the average of each column of both D(S; k) and

D(Q; k) will be bounded to the same value.

5.2.2 The asymptotic behaviour of AMD

AMDk(S) approaches c(S) n
√
k. The point packing coefficient c(S) is introduced below.

The volume of the unit ball in Rn is Vn =
πn/2

Γ(n2 + 1)
, where Γ denotes Euler’s Gamma

function Γ(m) = (m− 1)! and Γ(m2 + 1) =
√
π(m− 1

2)(m−
3
2) · · ·

1
2 for any integer m ≥ 1.

Definition 5.7. (Definition 10 in [60]. (U,m)-sets S, AMDk(S;U), the point packing

coefficient c(S)). Let U be a unit cell of a lattice Λ ⊂ Rn. For any fixed m ≥ 1, a set

S ⊂ Rn is called a (U,m)-set if S ∩ (U + v⃗) consists of m points for any vector v⃗ ∈ Λ. For

any point p ∈ S ∩U , let dk(S; p) be the distance from p to its k-th nearest neighbour in S.

The Average Minimum Distance is AMDk(S;U) =
1

m

∑
p∈S∩U

dk(S; p). The Point Packing

Coefficient is c(S) = n

√
V ol[U ]

mVn
.

For example, a periodic set S = Λ +M is generated by a unit cell U with a lattice Λ

and a motif M with m points. If a non-periodic perturbation of S is considered, the unit

cell above changes its AMDk(S;U + v⃗) value, because only one point is perturbed, and it

belongs to the original unit cell. Moreover, if the perturbation is periodic (as it is in crystal

structures), the same perturbation will affect all copies in the point cloud S, resulting in

another change of the AMDk(S;U + v⃗) value. While the AMDk(S;U + v⃗) values depend

on those perturbations, the number of motif points and the unit cell volume remain the

same. Therefore, V ol[U ]
m is independent of a choice of U , and it is an isometry invariant also

for any (U,m)-set S. If all points have the weight Vn of the unit ball in Rn, then (c(S))n

is inversely proportional to the density ρ = mVn
V ol[U ] of S. The diameter of a unit cell U is

d = sup
a,b∈U

|a− b|.

Distances in AMD vector follows a cubic root behaviour as shown in Figure 5.4 for nine T2

experimental crystals. This plot highlights experimental crystals’ AMDs when k = 1000
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neighbours are chosen, and each k on the x-axis is the index in the AMD vector. All

gamma structures resolved under different temperatures overlap in the first curve from the

top, followed by alpha, both (overlapping) betas, delta and epsilon structures.

Figure 5.4: AMD values of T2 experimental crystals with k = 1000.

Lemma 5.8. (Theorem 12 in [60]. distance bounds). Let S ⊂ Rn be any (U,m)-set

with a unit cell U of diameter d, see Definition 5.7. For any point p ∈ S ∩ U , let dk(S; p)

be the distance from p to its k-th nearest neighbour in S. Then c(S) n
√
k − d < dk(S; p) ≤

c(S) n
√
k + d for any k ≥ 1.

The AMD retains the behaviour of n
√
k and each distance within the point cloud

bounded by the diameter of a ball follows that trend. This behaviour is demonstrated

by the following theorem that defines an upper bound to limit allowed perturbations (< d)

within the point cloud included in a ball of diameter d. AMD is linked to the cubic root

trend through the point packing coefficient, which in this case represents the isometry

invariant part of a distance distribution owned by each periodic point set.

Theorem 5.9. (Theorem 13 in [60]. asymptotic behaviour of AMD). For any (U,m)-

set S ⊂ Rn from Definition 5.7, we have |AMDk(S;U)− c(S) n
√
k| ≤ d for any k ≥ 1 and

lim
k→+∞

AMDk(S;U)
n
√
k

= c(S).
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5.3 A near linear time algorithm for AMD

AMD is a powerful isometry invariant that can encode a large number of information in a

vector of distances. The following section describes the algorithm used in Theorem 5.10.

The input is strictly related to the 3D-dimensional structure of its crystal, where the

entire motif with all m motif points is stored as atom coordinates in the CIF file, following

the Cartesian system. Each crystal structure can be mapped to a vector AMD(k)(S) =

(AMD1, . . . , AMDk) that is independent of a periodic point set S. Increasing k adds

more components to the vector AMD(k) without changing any previous values. There is

the following theorem for near linear time complexity of AMD.

Theorem 5.10. (Theorem 14 in [61]. a near linear time algorithm for AMD). Let

a periodic set S ⊂ Rn have m points in a unit cell U . For a fixed dimension n and

i = 1, . . . , k, AMDi(S) can be computed in a time O(ν(S;n)km log(km)), where ν(S;n) is

independent of k,m.

The algorithm starts by building an n-d tree [8] of an extended point cloud of µ points

in time O(nµ logµ). Briefly, all space, in which a point cloud lie, is divided into regions,

and each of these regions can be accessed by a point query p that interrogates the n-d tree

structure. Regions of the space are traversed until the closest point to p is found. For

each p ∈ M , all k neighbours of p can be found and ordered by distances to p in time

O(µ logµ). By Definition 5.1 we lexicographically sort m lists of ordered distances in time

O(km logm), because a comparison of any two ordered lists of length k takes O(k) time.

The ordered lists of distances are the rows of the matrix D(S; k). All AMDi(S) are found

in time O(km). The total time is O((m+ n)µ logµ+ km logm) = O(ν(S;n)km log(km)).

5.4 Comparison between crystal structures through AMD

The motivation that led us to develop new tools, which can continuously describe the space

of crystals, was based on the fact that many simulated crystal structures coming from

CSP methods may be very similar to each other. Indeed, the lattice energy minimisation

is performed on supercomputers, which requires many weeks and may gather all close

crystals from the same local minima. Indeed, the landscape in Fig. 5.5 required 12 weeks

of supercomputer time [37]. This issue has been assessed as the ‘over-prediction’ because

of the high amount of generated structures of similar crystals. The lattice energy has
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no closed expression due to the dependence on infinitely many interactions between all

atoms within a periodic crystal. Simulated crystals are often visualised by the energy-

vs-density landscape where each point represents a crystal with two coordinates (density,

energy). This single-value density is insufficient to differentiate crystals because many

non-isometric sets can have the same density.

Figure 5.5: [37, Fig. 2d]: energy-vs-density plot shows many of 5679 crystals as nearly
identical.

Figure 5.6: [61, Fig. 12]. T2 molecule and the crystals T2-α, T2-β, T2-γ, T2-δ, T2-ϵ
based on the T2 molecule were synthesized in the laboratory after the Crystal Structure
Prediction in Fig. 5.5 reported in [37].

A manual approach was used to detect the candidates for synthesis among the crystal

structure, and only 5 of them were chosen and synthesised. However, now, AMD can

automatically identify them as close neighbours in the clustering dendrogram in Fig. 5.7.
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Here are the numerical IDs in the T2 dataset: 0186 for T2-α, 0054 for T2-β, 0120 for T2-γ,

0014 for T2-δ, 0001 for T2-ϵ. Fig. 5.7 shows the dendrogram obtained by the L∞-distance,

which is more stable with respect to the length k of AMD vectors than Euclidean L2 due

to Theorem 5.9. All expected similar crystals, including the four versions of T2-γ that

relate to different conditions of synthesis, belong to the same small cluster highlighted by

the orange colour in Fig. 5.7. Fig. 5.4 clearly shows five different patterns for the various

experimental structures of T2, thus showing that AMD curves can distinguish between

polymorphs (that is, different crystal packings of the same molecule).

For molecular crystals, which are the focus here, chemical bonds can range in strength,

from strong covalent bonds to weak hydrogen bonds and even weaker inter-atomic disper-

sion forces. The concept of bonding is qualitative and quasi-continuous in nature, while

atomic positions are more unambiguously defined. To identify any crystal, we should avoid

ambiguous descriptors that are not preserved under isometries and changes of a basis, such

as chemical properties-based descriptors or non-invariant values. Table 2.1 showed com-

parisons between the experimental crystal T2-δ and its closest simulated version (crystal

14 in the T2 dataset). The RMS deviations do not provide a single distance but strongly

depend on the number of molecules that are matched in two crystals.

5.5 Conclusions

A key tool in any classification is an invariant that is a function or a property preserved

under equivalence (see chapter 2).

In the experiments on T2 crystals, each of 42 atoms in the T2 molecule was represented

by one point. Each of 5679 T2 crystals [37] contains up to 16 T2 molecules in a unit cell,

with eight molecules on average. AMD(200) was computed in 5 min over 5679 T2 crystals

on a modest desktop, which is negligible in comparison with the 12-week supercomputer

time for the CSP plot in Fig. 5.5. Computational CSP datasets have the potential to be

much larger than this, so a complete classification of periodic crystals and quick compu-

tations are the key characteristics to understand structure-property relationships. X-ray

diffraction determines crystal structures in a rigid form so that material transformations

can be connected in the continuous space of all isometry classes of periodic crystals.

AMD(k) vectors were computed for full periodic structures and much larger k on the

modest desktop AMD Ryzen 5 6-core 4.60Ghz, 32GB DDR4. Although the Cambridge

Structural Database (CSD) has more various crystal forms in comparison with T2 struc-
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Figure 5.7: [61, Fig. 13]. Complete-linkage clustering by the L∞-distance on AMD(1000)

of T2 crystals: nine experimental and 100 simulated crystals with lowest energies, see [37].
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tures based on the same molecule, AMD(100) required less than 52 min for all 228,994

organic structures. Their relations are showed by the TreeMap in Figure 5.8.



100 Marco Michele Mosca

Figure 5.8: [61, Fig. 18]. TreeMap of the Cambridge structural Database with 228,994
molecular organic crystal structures.



Chapter 6

Fast prediction of lattice energies

by AMD invariant

In this chapter, we will go through a machine learning method used to predict chemical

properties that makes use of our previous isometry invariant AMD. It is based on our

paper published in 2022 [43] and accompanied by a new abstract for the Congress of the

International Union of Crystallography (IUCr) [42]. The goal of this third PhD project is to

solve the problem of structure-related property prediction 6.1. T2 dataset (see subsection

3.2.3) is taken into account to perform our experiments. Average Minimum Distance is

computed to predict the lattice energy by splitting the dataset in a test set made of 1136

AMD vectors and a training set of 4543 AMD input vectors containing ordered distances.

The last set trains the machine learning model explained in Section 6.4.

6.1 Importance of structural information for crystal prop-

erties

Problem 6.1. (Structure-related property prediction). Find geometric characteristics

and proper isometry invariants that thoroughly predict desired properties of crystals such

as the lattice energy.

Each crystal retains a specific function that manifests in the real world as physical

property such as electrical conductivity, malleability and gas absorption rate. Since physic-

ochemical properties depends on the structure, distances between atoms should be consid-

101
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ered for a proper classification and new characteristics’ discovery.

The most important property of a crystal is the energy of its crystal structure, which is usu-

ally called the lattice energy or potential energy surface or energy landscape [55]. Chemists

refer to these chemical properties to assess a structure and its stability or, better to say,

to decide its capability to retain a solid phase under standard environmental conditions.

If the energy value is acceptable, then such a crystal can be accessible for synthesis in a

lab and hopefully can remain stable under particular environmental conditions. Since the

lattice energy is a steep and high-frequency function with no closed analytic expression,

calculations are always approximated, from the force field (FF) level [31] to the more exact

density functional theory (DFT) [19].

The main novelty of our approach to energy predictions is using a fast computable and

easily interpretable invariant of crystals, which should follow the conditions highlighted in

Section 2.2.

Many widely used isometry invariants, including symmetry groups, split the space of all

crystal structures in a discrete set of classes. However, what should be decided when an

unknown structure lies on a boundary of two classes? How should it be classified? There-

fore, these types of invariants are considered discontinuous under perturbations of atoms

because they isolate classes of crystals, stating that there is no relation between them.

Conversely, there is a huge relation between each type of structure: they belong to a con-

tinuous space. Perturbations are then crucial for distinguishing simulated crystals obtained

via Crystal Structure Prediction (CSP). Indeed, CSP methods stop at some local minima

[33] causing the simulation of many structures to converge to the same local minimum.

The lattice energy is a function of the continuous crystal space whose geometry needs to be

unrevealed by using proper invariants that can help distinguish one structure from another.

6.2 AMD: a resource for lattice energy prediction

The key problem is to describe structure-property relations through suitable isometry

invariants that can approximate chemical properties of crystals such as the lattice energy.

The Average Minimum Distances (AMD) (see chapter 5) solve the above-mentioned prob-

lem of property prediction 6.1. AMD is an infinite sequence of isometry invariants that can

change by at most 2ϵ if the atom coordinates are perturbed in their ϵ-neighbourhoods. The

continuity of AMD in Theorem 5.6 confirms that small perturbations of crystal structures

lead to small changes in AMD values and can be tested for checking continuity of energy
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under crystal perturbations. Continuity is a local property that can be assessed by finding

a boundary within which a specific property may change (in our case, the lattice energy).

This boundary is given by the difference in AMD. In practice, we need to find a constant

λ and δ such that a small distance d < δ between AMD vectors can limit a slight change

in energy, within 1 kJ
mol for a good outcome to rise small changes in AMD values followed

by small changes in energy. Past invariants, such as density, RMSD (see subsection 2.4.2),

PXRD (see subsection 2.4.3) do not satisfy the continuity property (no boundary constant

at all), indeed same values from their computations do not guarantee close values of energy.

PRDF (see subsection 1.2.3 where refers to electrons) was used in the past to predict the

lattice energy. The computation requires distance thresholds r and dr, which can affect

the output. Schutt et al. confirm in [[49], Table I] that the PRDF consists of non-invariant

features such as cell parameters. The mean absolute error (MAE) of energy predictions

based on PRDF is 0.68 eV
atom or 65.6 kJ

mol .

Wigner-Seitz cells (also called Dirichlet or Voronoi domains) of atoms were used by Ward

et al. [56] and 271 cell-based geometric and chemical attributes were extracted to reach

the MAE of 0.09eV/atom or 8.7kJ/mole to predict the formation enthalpy. A further

neural network approach [[47], Fig. 4] improved the mean absolute error (MAE) to

1.8kcal
mol = 7.56 kJ

mol . Egorova et al. [13] predicted the difference between the accurate DFT

energy and its force field approximation with MAE less than 2kJ/mole by using GGA DFT

(PBE) calculations and symmetry function descriptors [3].

Lattice energies of the T2 dataset come from force field calculations and DFT optimiza-

tions. The COMPASS force field (Section 1.9.3) is used to compute energy values of all

the simulated crystal structures. It consists of different terms for bonds (b), angles (θ), di-

hedrals (ϕ), out-of-plane angles (χ), cross-terms, two non-bonded functions, electrostatics

(Eq) and van Der Waals (EvdW ) interactions.

Etotal = Eb+Eθ +Eϕ+Eχ+Eb,b′ +Eb,θ +Eb,ϕ+Eθ,ϕ+Eθ,θ′ +Eθ,θ′,ϕ+Eq +EvdW (6.1)

Especially, we may want to focus on the van der Waals term EvdW that follows a 9-6

Lennard-Jones potential to describe dispersion forces of non-bonded interactions.

EvdW =
∑
ij

ϵij [2(
roij
rij

)9 − 3(
roij
rij

)6] (6.2)

where rij is the distance between two atoms. The property of the AMD that could
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relate to these interactions is parametrised in the number of neighbours k that should be

considered during the computation of distances. A higher number of neighbours will lead

to a higher number of pairwise distances encoded in the AMD vector. Therefore, it can

store the geometric information of long-range interactions between particles, averaged by

definition.

We achieved a mean absolute error less than 5 kJ
mol using AMD vectors as descriptors.

The fact that we wanted to exclude chemical data arises from our concept of isometry

invariant. Geometric-based descriptors should assess chemical properties to relate the

structure of a crystal with its function properly. The training process took 10 minutes

using a modest desktop on the T2 dataset made of 5679 crystal structures.

6.3 Continuity of structure-property relation in terms of

AMD

A crystal function depends on its structure, and therefore, it becomes essential to reveal

which geometric features can be computed. Machine learning approaches rely on properties

from crystal descriptors where not all are invariants up to isometry. It is not demonstrated

or may be hard to find that small changes in the input data can release small perturbations

in the output.

Continuity of a structure-property relation can be mathematically expressed as

Lipschitz continuity [32], Section 9.4]:

|E(S)− E(Q)| ≤ λ d(S,Q) (6.3)

where λ is a constant, E is a chemical property such as the lattice energy, d(S,Q) is a

distance function. The inequality 6.3 should hold for all crystals S, Q with small distances

d(S,Q) < δ.

Figure 6.1,6.2,6.3 show past methods of crystal similarity, which are insufficient to assess

the continuity of the lattice energy. Crystal were paired up and each pair were represented

by a square dot. Differences in the past metric between two crystals link to the x-axis and

differences in energies on the y-axis.

Figure 6.1 shows crystal pairs with very close densities and somewhat different lattice

energies, which means that the energy varies very differently from the density changes.

However, density is still used as a key property of crystal structures in CSP landscapes. It
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is an isometry invariant, continuous and constant under perturbations.

Figure 6.2 illustrates the packing similarity computed by the COMPACK algorithm (see

subsection 2.4.2 as the Root Mean Square Deviation (RMSD). Atomic positions are matched

up to 15 molecules in two crystals, which correspond to the default value. Different thresh-

olds are considered for the computation, such as angle offsets whose values affect the RMSD.

For example, when only 1 of 15 molecules is matched, the RMSD equals 0 because each

crystal among 5679 consists of the same T2 molecule in Figure 3.2. Finally, the powder

X-ray diffraction (PXRD) similarity has the range [0,1] with values close to 1, indicating

the similarity of diffraction patterns. Figure 6.3 has 1− PXRD. The same conclusion of

density and RSMD is also adopted for this structural feature since high energy differences

may have shallow differences in PXRD.

Figure 6.1: [43] Figure 5. 5679 T2 crystals in Figure 3.2 have the density in
the range [0.3; 1.4]. Several crystals have differences in densities within 0.003

g
cm3 and differences in the energy up to 3 kJ

mol .
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Figure 6.2: [43] Figure 6. Crystal pairs with RMSD < 0.1Å have energy
differences up to 3 kJ

mol .
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Figure 6.3: [43] Figure 7. Crystal pairs with 1− PRXD < 0.0005 may have
high energy differences (∆E > 1 kJ

mol ), though 1− PXRD ∈ [0, 0.0005] suggests
they are very similar structures.

Figure 6.4: [43] Figure 8. The green line |∆E| = 75L2 with L2 ∈ [0, 0.04] shows
that if crystals have a distance L2 < 0.04Å between AMD100 vectors, their

energy difference ∆E measured in kJ
mol is at most 75L2.
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In Figure 6.4, 6.5, 6.6 the continuous AMD invariant of the T2 dataset changes together

with the lattice energy. Crystals are paired up and compared through AMD100 vectors of

length k = 100 and represented by a rhombus-shaped dot. The distances between vectors

p⃗ = (p⃗1, .., p⃗k) and q⃗ = (q⃗1, .., q⃗k) on the horizontal axis are computed by the Euclidean

metric

d(p, q) = L2(p, q) =

√√√√ k∑
i=1

(|pi − qi|2)

the Chebyshev metric

L∞(p, q) = max
i=1,..,k

|pi − qi|

and the Manhattan metric

L1(p, q) =
k∑

i=1

|pi − qj |

Figure 6.5: [43] Figure 9. The green line |∆E| = 200L∞ with L∞ ∈ [0, 0.009]
shows that if crystals have a distance L∞ < 0.009Å between AMD100 vectors,

their energies differ by at most 200L∞.

In Figure 6.4 the Lipschitz’s continuity for the energy

|∆E| = |E(S)− E(Q)| ≤ λ2L2(AMD100(S), AMD100(Q)) (6.4)
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Figure 6.6: [43] Figure 10. The green line |∆E| = 10L1 ∈ [0, 0.32] shows that if
crystals have a distance L1 < 0.32Å between AMD100 vectors, their energies

differ by at most 10L1.

holds for λ2 = 75 and all pairs of crystals S, Q whose AMD100 vectors have the Euclidean

distance L2 < δ2 = 0.04Å. These pairs are below the green line ∆E = 75L2 up to the

distance threshold δ2 = 0.04Å. Figure 6.5 similarly illustrates continuity of the lattice

energy with respect to the metric L∞(p, q) between AMD100 vectors. All pairs of crystals

with distances L∞ < δ∞ have energy differences less than λ∞L∞ with λ∞ = 200, so all

dots are below the green line |∆E| = 200L∞. In Figure 6.6 is shown that the lattice

energy is continuous for the metric L1(p, q) between AMD100 vectors. All pairs of crystals

with distances L1 < δ1 = 0.32Å have energy differences less than λ1L1 with λ1 = 10, so

all dots are below the green line |∆| = 10L1. The thresholds δ1 = 0.32Å and δ2 = 0.04

are larger than δ∞ = 0.009Å, because the metrics L1, L2 sum up all deviations between

corresponding coordinates of AMD100 vectors. On the other hand, the metric L∞ measures

only the maximum deviation. Lipschitz continuity for the previous descriptors (density,

RMSD, PXRD) in Figure 6.1,6.2,6.3 would have had huge slopes or gradients (Lipschitz

constants) as the difference in their values increases.
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6.4 Mean Absolute Error of energy prediction

This section will deal with the important contribution of inferring the lattice energy from a

crystal structure by using a training dataset of ground truth energies. The discontinuity of

the previous descriptors in Figure 6.1,6.2,6.3 does not allow resolving the energy prediction

problem. Indeed, if we input a perturbed crystal, we expect a close energy value in the

output.

Figure 6.7: [43] Figure 11. Example of Gaussian Process that predicts values
of f(x) = x cosx by training on observed data points. Left: the starting
prediction is 0 for any x. Right: After training on six data points the

prediction improves.

The training and prediction procedures have been performed by the Gaussian Process

Regression [24] as implemented in SciKit Learn [36] (see Figure 6.7 for a general example).

This procedure achieved the highest score on the T2 dataset of 5679 crystals. Let us move

briefly to the explanation of this type of regression.

This machine learning method belongs to the supervised learning class. Like all

methods in this class, its procedure consists of a training set full of empirical data (or

labelled data). In our case, the model is trained through AMD values (or inter-atomic

distances), and it aims to link lattice energy values with distances’ information. Given an

unknown crystal structure represented by its AMD vector, the prediction output will be

the lattice energy. The computation is performed by a regression since the output falls

in a continuous range of values. The model start with a prior distribution or, better to

say, a poor knowledge of how our data behaves. In Figure 6.7a, the prior knowledge states

that all values are 0 (mean is 0), and no initial noise is considered. When the first set of
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observed data populates the prior knowledge, the model changes its state and a posterior

distribution (or knowledge) is generated given the observations(Figure 6.7b). The state’s

change implies the alteration of the mean either in the observed data points that perfectly

match it or in the confidence intervals where, most probably, it may lie.

Each crystal structure S is mapped to a vector and represented by its AMDk(S) vector.

The length k is in the interval [50, 500]. The distance d chosen between AMDk vectors was

L∞ due to the smallest Lipschitz constant λ = 2 in the continuity property |AMDk(S)−
AMDk(Q)| ≤ λdB(S;Q). For the metrics L1, L2, the Lipschitz constants would be 2k, 2

√
k.

Machine learning methods need to run on mapping functions (kernels) used to map input

features in a space where they can be compared and their parameters updated. These

functions are called Kernels, and for any pair of crystals S and Q, we consider the Rational

Quadratic Kernel defined as follows:

K(S,Q) = (1 +
d2(S,Q)

2αl2
)−α (6.5)

where α, l are scale parameters optimized by training. A training set (80%, 4543 crystals)

was randomly separated from the T2 dataset and the remaining 20% was used as test

subset of m = 1136 crystals. Table 6.1 shows three averages of errors, over 10 runs:

RMSE =

√√√√ 1

m

m∑
i=1

|Etrue(Si)− Epred(Si)|2 (6.6)

is the root-mean-square error in the lattice energy averaged over m crystals S1, .., Sm from

the test subset, then

MAE =
1

m
max

i=1,..,m
|Etrue(Si)− Epred(Si)| (6.7)

is the mean absolute error and

MAPE =
1

m
max

i=1,..,m

|Etrue(Si)− Epred(Si)|
Etrue(Si)

(6.8)

is the mean absolute percentage error.

All errors RMSE, MAE, MAPE are consistent across different values of k as shown in

Table 6.1, where each row corresponds to 10 runs for a specific AMD length k, with the
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k RMSE ±std MAE ±std MAPE ±std training time, full test time,
sec ms

50 6.503 ± 0.123 4.900 ± 0.86 3.509 ± 0.059 627 ± 85 15961 ± 183

100 6.344 ± 0.152 4.801 ± 0.103 3.439 ± 0.070 349 ± 47 7979 ± 564

150 6.607 ± 0.119 4.977 ± 0.077 3.559 ± 0.053 400 ± 23 12789 ± 203

200 6.617 ± 0.147 4.966 ± 0.114 3.554 ± 0.079 506 ± 40 15943 ± 46

250 6.517 ± 0.109 4.914 ± 0.082 3.514 ± 0.055 574 ± 91 16464 ± 193

300 6.632 ± 0.139 5.003 ± 0.092 3.577 ± 0.062 545 ± 15 16431 ± 52

350 6.615 ± 0.077 4.990 ± 0.077 3.581 ± 0.053 500 ± 22 12395 ± 44

400 6.611 ± 0.149 4.984 ± 0.080 3.569 ± 0.053 585 ± 25 17906 ± 201

450 6.559 ± 0.179 4.954 ± 0.127 3.545 ± 0.085 512 ± 21 12927 ± 67

500 6.622 ± 0.116 5.004 ± 0.092 3.581 ± 0.068 598 ± 24 18429 ± 219

Table 6.1: [43] Table 1. The Gaussian Process with the Rational Quadratic
Kernel predicts the energy reported in [37] and discussed in subsection 3.2.3
with the mean absolute error (MAE) of less than 5 kJ

mol on m = 1136 crystals.
The training is performed on the isometry invariants AMDk of 4543 crystals for
several k.

empirical standard deviation ±std computed from all runs. Speed is the key advantage

over past methods and reports 10 min time for training 4543 vectors AMD(k). The last

column collects the full test time on m = 1136 crystals. Referring to the highest k chosen

(k = 500), we achieved a mean absolute error of 5.004 ± 0.092 that is the maximum among

all the runs for each value of k.

We tried to run the Gaussian Process Regression on the density functions descriptors

ψk(t) [12], which are continuous isometry invariants extending the single-value density for a

variable radius t ≥ 0. Smaller values of AMD-based predictions were reported with respect

to density functions ψk, which are slower to compute than AMD (cubic time in k). Two

other machine learning methods were trained on AMD and density functions such as the

Random Forest [30] and Dense Neural Network [18] that performed slightly worse than the

Gaussian Process, although the training and test times were much faster (seconds instead

of minutes) [41].
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Conclusions

This PhD project found its importance in developing new geometric tools called isometry

invariants of crystal structures. This section will highlight my main contribution to the

projects.

My first project on crystals started in 2018 when I studied the concept of a Voronoi

domain. We needed a proper metric to compare crystal lattices without considering discrete

classifications such as unit cell parameters-based methods (e.g. Niggli’s reduced cell). I

contributed to the development and implementation of the algorithm to compute and

compare Voronoi Domains of lattices (chapter 4). Most importantly, we addressed the

problem of finding a continuous metric between crystal lattices (problem 2.6). It was

our first paper published about periodic geometry where the definition of a metric was

highlighted. The key contribution includes the development of two metrics on lattices

(rotationally-invariant 4.10, and scale-invariant 4.14) defined in terms of Voronoi domains

that satisfy the metric axioms (theorems 4.11 and 4.15). My software computes the Voronoi

Domain for each given lattice in a dataset. All crystal files must be in CIF format. The

algorithm proceeds by triangulating the domain of lattice points and computing their

Voronoi Diagram. Moreover, the above-mentioned metrics can be calculated on all pairs

of lattices during the software run by specifying the related command line options. The

metric computation runs in multithreading where the number of threads can be chosen by

the user and different rotation samples are processed in parallel for each pair of lattices

(see [28] for more details). This software can be used to output information on lattices that

can be mapped to Voronoi domains and saved in different formats for both visualization

and geometric information storage. In addition, the metrics values are stored in comma

113
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separated values (csv) files and can be used to plot heatmaps or dendrograms. So, the end-

user can analyse clusters of crystal lattices that are grouped by similarity from these files.

I implemented this algorithm in C++ and used different software libraries such as CGAL

for computational geometry algorithms [51], Gemmi for handling the unit cell data [17],

VTK for visualizing Voronoi Domains [53] and Eigen to cope with linear algebra data

[14]. Heatmaps of the results were generated with R statistics programming language [38].

After dealing with lattices, we moved our focus on inter-atomic distances inside the

unit cell. For this second project, I contributed to the development and implementation

of the early version of the algorithm to compute inter-atomic distances by proposing

and using the kd-tree data structure to efficiently query points in a neighbourhood. This

algorithm was then proved and supported by the other authors with the theorems and

proofs in Chapter 5. Average Minimum Distance (definition 5.1) has been proved to

be an isometry invariant (theorem 5.2) that led us to solve the problem of isometry

classification (problem 2.4) because any two equivalent crystal structures map to the same

AMD vector. Since small perturbations affect the rigid form of a crystal, the continuity

property must be taken into consideration to correctly detect these small changes (theorem

5.6). My AMD software takes in input a dataset of CIF files and for each crystal builds

the k-d tree to speed up the neighbours retrieval. Supported by the kd-tree, it computes

the pairwise distances between the particles inside the unit cell and their neighbours. At

the end, all distances are averaged by the number of particles. AMD computations run

in multithreading and therefore more crystals are processed in parallel (see [27] for more

details). This software can be used to output a set of isometry invariants (AMDj) that can

identify a crystal structure, and be used by further studies that need to consider continuous

geometric information of a crystal. Finally, I implemented the software in C++ using the

following libraries: Gemmi for handling the unit cell data [17], Eigen to cope with linear

algebra vectors [14], Boost and OpenBabel for building molecular graphs [7] [34], and

Nanoflann for building the kd-tree and for quick distance computations [6].

Capable of retaining vital information about the geometric structure of a crystal, our

invariants can be used for predicting chemical properties. My third contribution includes

the visualization of plots related to the change of energy values versus different similarity

measures. In addition, I checked and proposed various methods to undergraduate students

to predict the lattice energy by using AMD as a source (problem 6.1). We found that

Gaussian Processes performed better than other regression algorithms in our experiments

(Section 6.4). Although the prediction was not perfect and the structure-property problem
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(6.1) is not solved, the key point was to highlight the continuity of the lattice energy

with respect to the AMD invariant and other similarity measures. I used R statistic

programming language [38] to plot and visualize how the energy continuously changes

when proper invariants, such as AMD, are considered (Section 6.3).
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the mean absolute error (MAE) of less than 5 kJ
mol on m = 1136 crystals. The

training is performed on the isometry invariants AMDk of 4543 crystals for

several k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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Malmberg, and Nataša Sladoje. Cham: Springer International Publishing, 2021, pp. 229–

241. isbn: 978-3-030-76657-3.

[3] J. Behler. “Atom-centered symmetry functions for constructing high-dimensional

neural network potentials.” In: The Journal of chemical physics 134.7 (2011).

[4] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer, 2010.

[5] S. J. L. Billinge. “The rise of the X-ray atomic pair distribution function method: a

series of fortunate events.” In: Phil.Trans. R. Soc. A377: 20180413 (2019).

[6] J. L. Blanco and P. K. Rai. nanoflann: a C++ header-only fork of FLANN, a li-

brary for Nearest Neighbor (NN) with KD-trees. https://github.com/jlblancoc/

nanoflann. 2014.

[7] Boost. https://www.boost.org/.

[8] R. A. Brown. “Building a Balanced k-d Tree in O(kn log n) Time”. In: J. Computer

Graphics Techniques 4.1 (2015), pp. 50–68.

[9] A. Burrows, J. Holman, A. Parsons, G. Pilling, and G. Price. Chemistry 3: Introduc-

ing inorganic, organic and physical chemistry. 2017.

122

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://www.boost.org/


Bibliography 123

[10] J. Chisholm and S. Motherwell. “COMPACK: a program for identifying crystal struc-

ture similarity using distances”. In: J. Applied Crystallography 38.1 (2005), pp. 228–

231.

[11] A. I. Cooper. “Porous Molecular Solids and Liquids”. In: ACS Cent. Sci. 3 (2017),

pp. 544–553. doi: 10.1021/acscentsci.7b00146.

[12] H. Edelsbrunner, T. Heiss, V. Kurlin, P. Smith, and M. Wintraecken. “The Density

Fingerprint of a Periodic Point Set”. In: Proceedings of Symposium on Computational

Geometry. 2021. doi: 10.4230/LIPIcs.SoCG.2021.32.

[13] O. Egorova, R. Ha zi, D.C. Woods, and G.M. Day. “Multifidelity statistical ma-

chine learning for molecular crystal structure prediction.” In: The Journal of Physical

Chemistry A 124 124.39 (2020), pp. 8065–8078.

[14] Eigen library. https://gitlab.com/libeigen/eigen.

[15] G. de la Flor, D. Orobengoa, E. Tasci, J. M. Perez-Mato, and M. I. Aroyo. “Compari-

son of structures applying the tools available at the Bilbao Crystallographic Server”.

In: J. Appl. Cryst. 49 (2016), pp. 653–664. doi: https://doi.org/10.1107/

S1600576716002569.

[16] R. J. Gdanitz. “Prediction of molecular crystal structures by Monte Carlo simulated

annealing without reference to diffraction data”. In: Chem. Phys. Lett. 190 (1992),

pp. 391–396.

[17] Gemmi library. https://gemmi.readthedocs.io/en/latest/.

[18] I. Goodfellow, Y. Bengio, and A. Courville. “Deep learning.” In: MIT Press 1 (2016).

[19] E. Gross and R.: Dreizler. “Density functional theory.” In: Springer Science & Busi-

ness Media 3 (2013).

[20] T. A. Halgren. “Merck molecular force field. I. Basis, form, scope, parameteriza-

tion, and performance of MMFF94”. In: Journal of Computational Chemistry 17.5-6

(1996), pp. 490–519. doi: https://doi.org/10.1002/(SICI)1096-987X(199604)

17:5/6<490::AID-JCC1>3.0.CO;2-P.

[21] J. R. Holden, Z. Y. Du, and H. L. Ammon. “Prediction of possible crystal structures

for C-, H-, N-, O- and F-containing organic compounds”. In: J. Comput. Chem. 14

(1993), pp. 422–437.

https://doi.org/10.1021/acscentsci.7b00146
https://doi.org/10.4230/LIPIcs.SoCG.2021.32
https://gitlab.com/libeigen/eigen
https://doi.org/https://doi.org/10.1107/S1600576716002569
https://doi.org/https://doi.org/10.1107/S1600576716002569
https://gemmi.readthedocs.io/en/latest/
https://doi.org/https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P


124 Marco Michele Mosca

[22] M. Jansen and C. Schon. “”Design” in Chemical Synthesis - An Illusion?” In: Angew.

Chem. Int. Ed. 45 (2006), pp. 3406–3412. doi: 10.1002/anie.200504510.

[23] B. Joe. “Construction of three-dimensional Delaunay triangulations using local trans-

formations”. In: Computer Aided Geometric Design 8 (1991).

[24] C. KI Williams. “Gaussian processes for machine learning”. In: Taylor & Francis

(2006).

[25] V. Kurlin. “A complete isometry classification of 3-dimensional lattices”. In: arXiv

(2022). url: https://arxiv.org/abs/2201.10543.

[26] V. A. Kurlin. “Mathematics of 2-dimensional lattices”. In: Foundations of Compu-

tational Mathematics (2023).

[27] M. M. Mosca. C++ AMD github. url: https://github.com/mmmosca/AMD.

[28] M. M. Mosca. VoronoiLatticeDistance github. url: https://github.com/mmmosca/

VoronoiLatticeDistances.

[29] M. M. Mosca and V. Kurlin. “Voronoi-based similarity distances between arbitrary

crystal lattices”. In: Cryst. Res. Technol. 55 (2020). doi: 10.1002/crat.201900197.

[30] A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, and S.D. Brown. “An introduction

to decision tree modeling.” In: Journal of Chemometrics 18.6 (2004), pp. 275–285.

[31] S.R. Niketic and K. Rasmussen. “The consistent force field: a documentation.” In:

Springer Science & Business Media 3 (2012).

[32] M. O’Searcoid. “Metric spaces”. In: Springer Science & Business Media (2006).

[33] A. Oganov. “Modern methods of crystal structure prediction”. In: Wiley & Son

(2011).

[34] Openbabel. http://openbabel.org/wiki/Main_Page.

[35] Niggli P. In: Handbuch der Experimentalphysik, Leipzig: Akademische Verlagsge-

sellschaft 7 (1928), p. 750.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and et al. “Scikit-learn: Machine

learning in python.” In: Journal of machine Learning research 12 (2011), pp. 2825–

2830.

https://doi.org/10.1002/anie.200504510
https://arxiv.org/abs/2201.10543
https://github.com/mmmosca/AMD
https://github.com/mmmosca/VoronoiLatticeDistances
https://github.com/mmmosca/VoronoiLatticeDistances
https://doi.org/10.1002/crat.201900197
http://openbabel.org/wiki/Main_Page


Bibliography 125

[37] A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, S. Y. Chong, B. J.

Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, A. Stephenson, C. M. Kane,

R. Clowes, T. Hasell, A. I. Cooper, and G. M. Day. “Functional materials discovery

using energy-structure-function maps”. In: Nature 543 (2017), pp. 657–664. doi:

10.1038/nature21419.

[38] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing. Vienna, Austria, 2020. url: https://www.R-

project.org/.

[39] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, andW. M. Skiff. “UFF,

a full periodic table force field for molecular mechanics and molecular dynamics

simulations”. In: J. Am. Chem. Soc. (1992).

[40] D. Reem. “The geometric stability of Voronoi diagrams with respect to small changes

of the sites”. In: (2011). doi: 10.48550/ARXIV.1103.4125. url: https://arxiv.

org/abs/1103.4125.

[41] J. Ropers. Applying machine learning to geometric invariants of crystals to predict

crystal energy. url: https://github.com/JRopes/CrystalEnergyPrediction.

[42] J. Ropers, M. M. Mosca, O. Anosova, and V. Kurlin. “Introduction to invariant-based

machine learning for periodic crystals.” In: Acta Cryst. A77, C671. (2021).

[43] J. Ropers, M. M. Mosca, O. Anosova, V. Kurlin, and A. I. Cooper. “Fast predictions

of lattice energies by continuous isometry invariants of crystal structures”. In: Inter-

national Conference on Data Analytics and Management in Data Intensive Domains.

2022, pp. 178–192.

[44] B. L. Rotschild and E. G. Straus. “On triangulations of the convex hull of n points”.

In: Combinatorica 5 (1985). url: https://doi.org/10.1007/BF02579380.

[45] Huai S. “COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Ap-

plicationssOverview with Details on Alkane and Benzene Compounds”. In: J. Phys.

Chem. B (1998).

[46] Huai S., Stephen J. M., Jon R. M., and Arnold T. H. “An ab Initio CFF93 All-Atom

Force Field for Polycarbonates”. In: J. Am. Chem. Soc. (1994).

https://doi.org/10.1038/nature21419
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.48550/ARXIV.1103.4125
https://arxiv.org/abs/1103.4125
https://arxiv.org/abs/1103.4125
https://github.com/JRopes/CrystalEnergyPrediction
https://doi.org/10.1007/BF02579380


126 Marco Michele Mosca

[47] P. Sacchi, M. Lusi, A.J. Cruz-Cabeza, E. Nauha, and J. Bernstein. “An extensible

neural network potential with dft accuracy at force field computational cost.” In:

Chem. Science 8 (2017), pp. 3139–3203.

[48] P. Sacchi, M. Lusi, A.J. Cruz-Cabeza, E. Nauha, and J. Bernstein. “Same or different

that is the question: identification of crystal forms from crystal structure data.” In:

CrystEngComm 22.43 (2020), pp. 7170–7185.

[49] K. Schutt, H. Glawe, F. Brockherde, A. Sanna, K.R. Muller, and E. Gross. “How to

represent crystal structures for machine learning: Towards fast prediction of electronic

properties.” In: Physical Review B 89.20 (2014).

[50] L. E. Smart and E. A. Moore. Solid State Chemistry: An Introduction. 2005.

[51] The CGAL Project. CGAL User and Reference Manual. 4.14.3. CGAL Editorial

Board. url: https://doc.cgal.org/4.14.3/Manual/index.html.

[52] M. Valle and A. R. Oganov. “Crystal fingerprint space-a novel paradigm for studying

crystal structure sets.” In: Acta Crystallographica Section A: Foundations of Crys-

talloraphy 66.5 (2010), pp. 507–517.

[53] Visualization ToolKit library. https://vtk.org/.

[54] D. J. Wales and J. P. K. Doyle. “Global optimization of clusters, crystals and

biomolecules”. In: Science 285 (1999), pp. 1368–1372.

[55] D.J. Wales. “Exploring energy landscapes.” In: Annual review of physical chemistry

69 (2018), pp. 401–425.

[56] L. Ward, R. Liu, A. Krishna, V. Hegde, A. Agrawal, A. Choudhary, and C. Wolver-

ton. “Including crystal structure attributes in machine learning models of formation

energies via voronoi tessellations”. In: Physical Review B 96.2 (2017).

[57] D. F. Watson. “Computing the n-dimensional Delaunay tassellation with application

to Voronoi polytopes”. In: The Computer Journal 24.2 (1981).

[58] D. Widdowson. Python AMD github. url: https://github.com/dwiddo/average-

minimum-distance.

[59] D. Widdowson and V. Kurlin. “Resolving the data ambiguity for periodic crystals”.

In: Advances in Neural Information Processing Systems (Proceedings of NeurIPS

2022) 35 (2022).

https://doc.cgal.org/4.14.3/Manual/index.html
https://vtk.org/
https://github.com/dwiddo/average-minimum-distance
https://github.com/dwiddo/average-minimum-distance


Bibliography 127

[60] D. Widdowson, M. M. Mosca, A. Pulido, V. Kurlin, and A. I. Cooper. “Average Min-

imum Distances of periodic point sets - foundational invariants for mapping periodic

crystals”. In:MATCH Communications in Mathematical and in Computer Chemistry

87.3 (2022), pp. 529–559. doi: 10.46793/match.87-3.529W.

[61] D. Widdowson, M. M. Mosca, A. Pulido, V. Kurlin, and A. I. Cooper. “The asymp-

totic behaviour and a near linear time algorithm for isometry invariants of periodic

sets”. In: arXiv (2021).

[62] S. M. Woodley and R. Catlow. “Crystal structure prediction from first principles”.

In: Nature materials 7 (2008), pp. 937–946.

https://doi.org/10.46793/match.87-3.529W

	Contents
	Abstract
	Introduction to crystal structures
	Atomic particles
	Atoms
	Ions

	Atomic structure and Interactions
	Wave mechanics
	Atomic orbitals
	Components of the wave function bold0mu mumu 
	Octet rule
	Bond types
	Atomic radii

	Solids
	Energy changes and disorder
	Energy changes
	Entropy

	Atom packing
	Crystal Structure
	Crystal systems
	Crystal Packing and Density
	Packing efficiency
	Relative atomic mass and Crystal Density

	Lattice Energy
	Experimental lattice energy
	Approximated lattice energy
	Lattice energies from Force Fields

	Crystallographic information file (CIF)
	Objectives and Thesis Outline

	The Equivalence and Metric Problems of Crystal Structures
	Equivalence
	Isometry classification problem of crystal structures
	Metric problem for crystal lattices comparison
	Past methods to quantify differences between crystal lattices and structures
	Niggli's reduced cell
	The COMPAK algorithm for the Cambridge Structural Database (CSD)
	Powder X-rays Diffraction Pattern similarity (PXRD)
	The COMPSTRU algorithm of Bilbao Crystallographic Server (BCS)
	Pair Distribution Function (PDF)
	Radial Distribution Function (RDF)

	Recent progress on Isometry Invariants

	Introduction to materials discovery
	X-rays crystallography
	X-rays diffraction
	Powder diffraction
	Single crystal X-rays diffraction

	Materials discovery
	Functional materials discovery
	Crystal Structure Prediction (CSP)
	Energy-structure-function maps


	Voronoi-based distances between Crystal Lattices
	Voronoi Diagrams
	Triangulations
	Delaunay Triangulations
	Voronoi Diagram from Delaunay Triangulation
	Voronoi Domain of a point of a lattice
	Voronoi-based metrics between arbitrary crystal lattices
	Neighbourhood of a point set
	Hausdorff metric
	Rotationally-invariant metric bold0mu mumu dRdRdRdRdRdR
	Scale-invariant metric bold0mu mumu dSdSdSdSdSdS
	Metric Algorithms

	Results and conclusions

	Average minimum distances of a periodic point set
	Inter-atomic distance distribution
	Averaged Minimum Distances for Periodic Sets
	Continuity of AMD under perturbations
	The asymptotic behaviour of AMD

	A near linear time algorithm for AMD
	Comparison between crystal structures through AMD
	Conclusions

	Fast prediction of lattice energies by AMD invariant
	Importance of structural information for crystal properties
	AMD: a resource for lattice energy prediction
	Continuity of structure-property relation in terms of AMD
	Mean Absolute Error of energy prediction

	Conclusions
	Acknowledgements
	List of Figures
	List of Tables

