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Control Variates for Constrained Variables
Simon Maskell, Member, IEEE, Yifan Zhou, and Antonietta Mira

Abstract—Numerical Bayesian inference methods typified by
Markov chain Monte Carlo generate a set of samples from
a probability distribution. When using real-valued samples to
approximate the expectation of a random variable, the variance
of the resulting estimator, obtained by averaging over those
samples, decreases as the number of samples increases. However,
it is often useful to reduce the variance without increasing the
number of samples. Using control variates is one method to
achieve such variance reduction and is applicable in contexts
where the random variable is unconstrained. To make it possible
to use control variates with constrained variables, this paper
proposes the use of a non-linear mapping from an unconstrained
space to the constrained space. Results indicate that significant
reductions in Monte-Carlo error is achieved with negligible
additional computational cost.

Index Terms—Constraints, Control Variates, Markov chain
Monte Carlo, Variance Reduction, Zero Variance.

I. INTRODUCTION

Numerical Bayesian inference involves drawing samples
from a target distribution, which is typically the posterior dis-
tribution of parameters given data, in order to make inferences
from such data1: such inferences can include deriving point
estimates, identifying credible intervals and hypothesis testing.
The broad applicability of this generic approach has given
rise to a diverse range of applications, spanning numerous
aspects of signal processing (see, for example, [4], [5] and [6]
for specific examples in image processing, deconvolution and
interference mitigation respectively) but also pertinent in the
context of, for example, health[7] and finance[8]. This paper’s
contribution is applicable across these contexts.

Furthermore, there are a growing number of probabilistic
programming languages (e.g. Stan[9], PyMC3[10], Figaro[11]
and Turing.jl[12]) being adopted with the express purpose of
easing the process of exploiting numerical Bayesian inference
to arbitrary applications. The majority of these implemen-
tations make use of Markov chain Monte Carlo and more
specifically, the No-U-Turn-Sampler (NUTS)[13].

If x(i) is the ith of N samples output by a numerical
Bayesian inference algorithm that is sampling from px (x|d),
where x is the parameter being inferred and d is some
(fixed) data (for which we know the likelihood), then we can
approximate the expectation of a function, fx (x) as:∫ u

x=l

px (x|d) fx (x) dx ≈
1

N

N∑
i=1

fx

(
x(i)
)
. (1)
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The Monte-Carlo variance, i.e. the standard error2, of such
an estimator is (σf )

2

N where σf is the standard deviation
of fx (.). Note that even if the Monte-Carlo variance were
zero, the variance of the px (x|d) will limit the accuracy of
any estimate of fx (x). None-the-less, particularly in contexts
where repeatability is desirable, it can be of significant interest
to minimise the Monte-Carlo variance. This can be achieved by
simply having a larger N . Unfortunately, however, increasing
N is, in general, computationally expensive.

An alternative is to attempt to make better use of the
available N samples via post-processing. When the parameters
to be inferred are continuous, this can be achieved by defining
a random variable such that it has an expected value of zero.
While the sample plus the ‘zero mean’ random variable will
not alter the expectation, we can design the random variable
to be negatively correlated with the sample and so reduce the
variance of the estimate[14]. This concept has been extended
to consider, for example, terms derived from a quadratic
function of the values and the samples[15], [16], [17], [18]
as well as more complex functionals[19]. The class of such
methods is known as ‘control variates’.

While control variates have been demonstrated to offer
significant reduction in variance (we note there can, albeit
infrequently, be circumstances where no variance reduction
is achieved), the approaches that have been developed are not
applicable in contexts involving constrained variables. The key
contribution made by this paper is to enable control variates
to be applied in such constrained contexts by using a mapping
from the constrained space to an unconstrained space and
then posing expectations in terms of non-linear functions of
the unconstrained samples. We consider two kinds of control
variates in this paper, those referred to previously in the
literature as linear and quadratic control variates.

The paper is organised as follows: Section II proceeds with
a description of control variates, highlighting that the samples
need to be unconstrained; Section III then explains how a non-
linear mapping can be introduced such that the approach can
be applied to constrained variables; results are then presented
in Section IV before conclusions are drawn in Section V.

II. CONTROL VARIATES

A. Linear Control Variates

For notational convenience and ease of exposition in the
context of explaining control variates to a potentially unfamil-
iar reader, we begin by considering x to be scalar. We go on
to consider vector-valued x in Section II-C.

2We emphasise that the standard error is the uncertainty associated with
estimation accuracy of the mean, whereas the standard deviation is the
uncertainty associated with the distribution of samples about the mean.



2

We assume that x is bounded such that l ≤ x ≤ u for finite
l and u. We note that we can calculate the expectation (with
respect to samples from the posterior) of the derivative of the
log (unnormalised) target density as follows:∫ u

x=l

px (x|d)
d log px (x, d)

dx
dx

=

∫ u

x=l

px (x|d)
d log [px (x|d) p (d)]

dx
dx (2)

=

∫ u

x=l

px (x|d)
d log [px (x|d)] + log [p (d)]

dx
dx

(3)

=

∫ u

x=l

px (x|d)
d log [px (x|d)]

dx
dx (4)

=

∫ u

x=l

px (x|d)
1

px (x|d)︸ ︷︷ ︸
=1

dpx (x|d)
dx

dx (5)

=px (u|d)− px (l|d) (6)

such that if px (u|d) = px (l|d) = 0 then the expectation of
the derivative of the log density is zero. Note that if x is
unconstrained, px (x|d) must tend to zero as |x| → ∞ (since∫
px (x|d) dx = 1, i.e. is finite, px (x|d) cannot tend to a non-

zero value when |x| → ∞).

B. Quadratic Control Variates

A similar argument can be used in the context of the
expectation of the product of an (assumed scalar for notational
convenience) state and the derivative of the log density:∫ u

x=l

px (x|d)x
d log px (x, d)

dx
dx =

∫ u

x=l

x
dpx (x|d)

dx
dx (7)

=upx (u|d)− lpx (l|d)−
∫ u

x=l

px (x|d) dx︸ ︷︷ ︸
=1

(8)

where, much as before, if x is unconstrained, xpx (x|d) must
tend to zero as |x| → ∞ and p (x|d) has a finite mean.

Let us consider now a bivariate x = [x1, x2]
T , and a control

variate consisting of the following expectation∫ u1

x1=l1

∫ u2

x2=l2

px (x1, x2|d)x1
d log px (x1, x2, d)

dx2
dx2dx1 (9)

=

∫ u1

x1=l1

u2px (x1, l2|d)− l2px (x1, u2|d) dx1
(10)

=u2px (u2|d)− l2px (l2|d) (11)

which, once again, is zero if p (x|d) has a finite mean (since∫ u1

x1=l1
px (x1, x2|d) dx1 = px (x2|d)).

C. Vectors of Control Variates

Given that the ith vector-valued sample from the MCMC is
x(i) ∈ RD, we can then form a vector of control variates, all
of which have zero mean with respect to the target distribution,
by considering

zxi =
[
zxi,1 . . . z

x
i,D, z

x
i,(1,1) . . . z

x
i,(1,D), z

x
i,(2,2) . . . z

x
i,(D,D)

]T
(12)

where zxi,(j,k) is only present for k ≥ j and where3

zxi,j =
d log

[
px
(
x(i)|d

)]
dxj

(13)

zxi,(j,j) =x
(i)
j zxi,j − 1 (14)

zxi,(j,k) =x
(i)
k zxi,j + x

(i)
j zxi,k. (15)

Note that there are D + 1
2D × (D − 1) = 1

2D × (D + 1)
control variates. Since this scales quadratically with D, if D
is large, it can be convenient to not calculate zxi,(j,k) for j 6= k.

D. Reducing Estimation Variance

If we wish to calculate an expectation of a function
fx (x), have N samples from px (x|d) and can calculate
d log[px(x|d)p(d)]

dx then we can improve on the variance of a
sample-based approximation of the expectation of fx (x) by
using the following estimator:∫ u

x=l

px (x|d) fx (x) dx ≈
1

N

N∑
i=1

[
fx

(
x(i)
)
+ αzxi

]
(16)

where we refer to the variance of the summand as the standard
error for this estimator and where, e.g. as a result of using
MCMC, x(i) ∼ px (x|d), zxi has an expectation of zero (as
explained in Section II-C) such that adding αzxi does not
introduce a bias. Note that α = 0 is not always the value
that minimises the estimation variance. Indeed, we can show
that the optimal (with respect to a least-squares criterion:
regularisation can be beneficial[16]) value for α is:

α? = −σfzσzz−1 (17)

where σfz is the cross-correlation between fx (x) and z, and
σzz is the corresponding covariance of z (both of which need
to be estimated from the samples). Note that this approach
will reduce the variance from σxx to σxx − σfzσzz−1σfzT .

III. CONTROL VARIATES FOR CONSTRAINED VARIABLES

The approach described in Section II-D assumes, for ex-
ample, that px (u|d) = px (l|d) = 0. In theory, one could
apply the approach if px (u|d) and px (u|d) were non-zero
and available as analytic functions. However, this case is
rarely encountered. The core contribution of this paper is to
consider a mapping to another variable, y = y (x) (such that
x = y−1 (y)), which is unconstrained, ie −∞ ≤ y ≤ ∞ and
chosen such that there is a mapping from each value of x to
a unique value of y. We note that such mappings are used in,
for example, the probabilistic programming language, Stan[9],
when considering constrained variables4. In this context for
example: ∫ ∞

y=−∞
py (y|d)

d log py (y, d)

dy
dy = 0. (18)

3We note that the right-hand side of (15) is actually the sum of two terms
each having a mean of zero such that we could consider each of the two terms
(separately) as control variates. We choose not to do so to conform with the
specific approaches used in previous work.

4Stan considers a wide range of constraints including: upper and lower
bounds; ordered vectors; simplexes; correlation matrices; covariance matrices.
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We can then write a similar expression to (16) as follows:∫ ∞
y=∞

py (y|d) fy (y) dy ≈
1

N

N∑
i=1

fy

(
y(i)
)
+ αzyi (19)

where (similarly to (12)) zyi is defined as

zyi =
[
zyi,1 . . . z

y
i,D, z

y
i,(1,1) . . . z

y
i,(1,D), z

y
i,(2,2) . . . z

y
i,(D,D)

]T
(20)

with

zyi,j =
d log

[
py
(
y(i)|d

)]
dyj

(21)

zyi,(j,j) =y
(i)
j zyi,j − 1 (22)

zyi,(j,k) =y
(i)
k zyi,j + y

(i)
j zyi,k. (23)

We now make the following choices:

py (y|d) =px
(
y−1 (y) |d

) ∣∣∣∣dx (y)dy

∣∣∣∣ (24)

fy (y) =fx
(
y−1 (y)

)
(25)

which are chosen such that:∫ u

x=l

px (x|d) fx (x) dx =

∫ ∞
y=∞

py (y|d) fy (y) dy (26)

fy

(
y
(
x(i)
))

=fx

(
x(i)
)

(27)

and we note that the gradients used in zyi are already calcu-
lated by some probabilistic programming languages, including
Stan[9], when applying the No-U-Turn-Sampler (NUTS)[13].

IV. RESULTS

A. Toy Example

We begin with a simple example involving a Beta distribu-
tion with parameters θ1 and θ2: px (x|d) = β (x; θ1, θ2) for
0 ≤ x ≤ 1. We specifically consider the case where θ1 = 1
and θ2 = 5 (ie d comprises 4 positive outcomes) such that
p (0|d) =∞. We also consider the following mapping:

y = log
x

1− x
(28)

or equivalently

x = y−1 (y) =
1

1 + exp (−y)
. (29)

We know that the mean of a Beta distribution is analytically
given by θ1

θ1+θ2
, which is equal to 1

6 for the parameter values
considered. We consider two estimators, one that considers
α = 0 and another that considers α = α? with linear control
variates. We compare the estimation performance of the esti-
mators across 100 Monte-Carlo runs, each of which involves
estimating the mean from (just) 10 samples, which we draw
from px (x|d). The results from the 100 Monte-Carlo runs are
shown in Figure 1. It is evident that, relative to the Monte-
Carlo errors provided by a conventional estimator, the Monte-
Carlo errors when using control variates are negligible5.

5The mapping chosen is such that y is well approximated as Gaussian, for
which linear control variates can reduce the Monte-Carlo variance to zero.
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Fig. 1. Results from considering a Beta Distribution.

B. Performance on Stan Benchmarks

To assess the performance of the approach, we considered
the 12 ‘benchmark models’ (as used by Stan developers when
assessing performance). Table I summarises some pertinent
features of these posteriors. We implemented the control
variates as a post-processing component that integrates with
PyStan26. For each parameter (and ‘generated quantity’) and
for each of linear and quadratic control variates, the software
outputs estimates of the: mean; standard deviation; standard
error; the effective sample size. Results in this paper were
generated using that code and run in Ubuntu 21.04 through
Virtualbox, the CPU is i7-7700K with 4 cores enabled.

The “ir 2pl” model has a large number of parameters. So,
in the context of this model alone, only D quadratic terms (in
(14)) were used and the terms in (15) were omitted.

We then assessed the variance reduction (relative to the
variance of an estimator that does not use control variates
and in the context of estimating the mean of each parameter,
whether it is constrained or not) resulting from using either
linear or quadratic control variates. We average performance
over all parameters for each model and show the results in
Table I along with results for the constrained parameters only.

It is evident that control variates can reduce the variances
of estimators in all the cases considered, including those
involving constrained parameters, and that using quadratic
control variates results in larger reductions in variance than
using only linear control variates. Note that for the model
“low dim gauss mix collapse”, the advantage of using the
two versions of control variates is modest. In contrast, control
variates reduce the Monte-Carlo error to within machine
precision of zero for the model “low dim corr gauss”.

To assess the implicit assertion that calculating control
variates is fast, we quantified the computational time spent on
each of: building the model; drawing 2000 samples (including
time spent in warm-up as well as time spent generating the
samples that are output); evaluating the gradients used to

6The code (with readme and data, d) is available here: https://github.com/
zhouyifan233/pystan2 in the branch ControlVariates.
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Model Parameter Count Variance Reduction Root Mean-Squared Error
All Constrained All Parameters Constrained Parameters Nones Linear Quadratic

Linear Quadratic Linear Quadratic
eight schools 18 1 19.04 72.46 3.04 5.45 0.11 0.06 0.03
gp pois regr 24 2 8.82 31.36 1.06 4.00 2.09×10−2 1.44×10−2 1.05×10−2

low dim gauss mix 5 4 6.35×103 3.25×105 7.88×103 3.82×105 1.46×10−3 1.96×10−4 1.06×10−4

low dim corr gauss 5 0 2.15×1031 4.70×1030 N/A N/A 0.11 0.09 0.01
low dim gauss mix collapse 5 3 1.08 1.46 1.11 1.63 0.21 0.21 0.21

arK 7 1 84.79 6.91×103 24.22 4.95×103 2.48×10−3 3.43×10−4 1.84×10−4

garch 4 3 11.96 129.85 3.83 17.09 1.25×10−2 6.20×10−3 3.3×10−3

gp regr 3 3 96.97 332.57 96.97 332.57 2.67×10−2 4.58×10−3 2.23×10−3

sir 84 4 83.41 2.42×104 58.26 6.43×103 6.26 1.44 0.32
arma 4 1 36.53 5.87×103 37.70 6.65×103 6.78×10−2 6.73×10−2 6.67×10−2

irt 2pl 144 23 7.59 12.84 2.48 5.58 2.51×10−2 1.96×10−2 1.41×10−2

one comp mm elim abs 44 4 3.59 32.13 3.39 31.86 0.23 0.19 0.10

TABLE I
OVERVIEW OF MODELS, VARIANCE REDUCTION (RELATIVE TO AN MCMC CHAIN THAT RUNS FOR 100 TIMES AS MANY ITERATIONS) FROM USING

CONTROL VARIATES (FOR ALL PARAMETERS AND FOR THE CONSTRAINED PARAMETERS ONLY) AND ROOT MEAN-SQUARED ERROR.

Model Stan Control variates
Build Sample Evaluate gradients Linear Quadratic

eight schools 91.80 0.14 9.26×10−3 7.62×10−4 1.66×10−3

gp pois regr 94.35 4.76 2.02×10−2 7.13×10−4 2.69×10−3

low dim gauss mix 89.43 4.78 0.26 7.63×10−4 9.30×10−4

low dim corr gauss 90.31 0.07 7.51×10−3 4.77×10−4 6.23×10−4

low dim gauss mix collapse 89.75 13.16 0.26 5.49×10−4 8.55×10−4

arK 88.52 4.02 6.67×10−2 6.24×10−4 1.01×10−3

garch 88.64 1.19 4.85×10−2 4.56×10−4 7.85×10−4

gp regr 94.69 0.28 2.14×10−2 4.45×10−4 7.66×10−4

sir 94.02 211.53 1.33 9.73×10−3 1.15×10−3

arma 88.76 2.43 3.18×10−2 4.48×10−4 9.29×10−4

irt 2pl 90.51 11.67 0.25 3.56×10−3 7.28×10−3

one comp mm elim abs 92.13 48.58 2.21 8.23×10−4 9.66×10−4

TABLE II
THE RUNTIMES (IN SECONDS) OF STAN COMPONENTS AND CONTROL VARIATE CALCULATIONS ON DIFFERENT BENCHMARK MODELS. 1000 SAMPLES

WERE DRAWN FOR EACH MODEL.

calculate the control variates7; calculating the estimates. These
times are shown in Table II. The run-time associated with
calculating the control variates is small relative to the time
spent generating the samples. Interestingly, while it is slightly
more computationally expensive to calculate quadratic rather
than linear control variates, the bulk of the time required to cal-
culate the control variates’ estimates relates to (re)-evaluation
of the gradients. In some cases (e.g. “eight schools”), this time
is commensurate with the time spent generating the samples.
We assume this occurs when the tree depth in NUTS is low
(so each sample only requires very few gradient calculations).

While, as explained in Section I, control variates can only
reduce the standard error and not the standard deviation, it is
still of interest to understand the improvement in estimation
accuracy that results from using control variates. To quantify
this improvement, for each benchmark model, we obtained
another set of samples by running Stan for 100 times longer
and calculated estimates using these samples (and no control
variates). We then calculated the root mean squared error
between these estimates and those produced from the smaller
set of samples with no control variates as well as with
linear and quadratic control variates. 100 Monte-Carlo runs
were used to generate all the experiment results. Table I

7These gradients have already been calculated by Stan but are not exposed
and so have to be re-evaluated.

tabulates the results and indicates that using control variates
reduces the error. Note that there is a case, the “sir” model,
where the use of quadratic control variates appears to increase
the error relative to the use of linear control variates. The
variance reduction is significantly improved as a result of
using quadratic control variates in the context of this model.
This implies that the quadratic control variates are providing
reductions in variance that are greater than those achieved by
using 100 times as many samples (which ‘only’ reduces the
variance by a factor of 10) such that the use of quadratic
control variates should, arguably, be the baseline against the
other estimators are assessed. We note that these variance
reductions are witnessed both in the full set of all parameters
and when only the constrained parameters are considered.

V. CONCLUSIONS

By considering a mapping from an unconstrained space to
the constrained space, control variates have been developed
for constrained parameters. Results indicate that significant re-
ductions in Monte-Carlo error result with negligible additional
computational cost. Future work will consider other types of
control variates, integrate the code more tightly with Stan,
interface the approach into other probabilistic programming
languages and apply the work to particle filters (extending an
existing application to Sequential Monte Carlo samplers[16]).
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