
Renormalization of supersymmetric chiral theories in rational

spacetime dimensions

J.A. Gracey,
Theoretical Physics Division,

Department of Mathematical Sciences,
University of Liverpool,

P.O. Box 147,
Liverpool,
L69 3BX,

United Kingdom.

Abstract. We renormalize models with scalar chiral superfields with an odd superpotential to
several orders in perturbation theory. These extensions of the cubic Wess-Zumino model are
renormalizable in spacetime dimensions which are rational. When endowed with an O(N) sym-
metry it is shown that they share the same property as their non-supersymmetric counterparts
in that at a particular fixed point there is an emergent OSp(1|n − 1) symmetry, where n is
the power of the superpotential. This is shown at a loop order beyond that for which it was
established in the parallel non-supersymmetric theory.
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1 Introduction.

One of the more interesting developments in quantum field theory in recent years has been that
of emergent symmetries particularly in the case when a model of bosons and fermions develops
a configuration that possesses supersymmetry, [1, 2, 3]. Emergent properties derive from the
critical point analysis of the renormalization group functions of a multicoupling theory when
treated in d-dimensions. Ordinarily in a single coupling theory the β-function has a Wilson-
Fisher fixed point given by the first non-trivial zero of the d-dimensional β-function. By contrast
in the multicoupling case even with two coupling constants one can have a rich spectrum of fixed
points in d-dimensions, [2, 3]. These can be stable in the ultraviolet limit or alternatively in
the infrared if the running is in that direction, in addition to the presence of saddle points. At
each critical point the values of critical exponents can be determined in the ϵ expansion where
ϵ is a measure of the difference between d and the critical dimension of the theory. The concept
of emergence then arises when a fixed point possesses an enlarged or extended symmetry over
and above that of the fields in the original underlying Lagrangian. To illustrate the background
to this, for instance, one well-studied case is that of the Gross-Neveu-Yukawa (GNY) system,
[4, 5], which is important for phase transitions in condensed matter systems. A comprehensive
review can be found for instance in [3].

In these GNY models one has several scalar fields coupled to a multiplet of fermions in a
flavour symmetry group. It transpires that at one particular fixed point and a specific number
of flavours the condition is met for the presence of supersymmetry, [1, 2, 6, 7]. By this we mean
the critical point values of the two originally distinct coupling constants become equal. This
is not sufficient for there to be supersymmetry alone. Instead it is also the observation that
the field anomalous dimensions at this specific fixed point become equal. This occurs in the
GNY related models of the chiral Ising and chiral XY models when the parameter N takes the
respective values of N = 1

4 and N = 1
2 , [1, 2, 7] and has subsequently been verified up to four

loops, [7, 8, 9, 10]. In addition to the criteria for supersymmetry being satisfied at four loops
at one particular fixed point, the critical properties there have been connected, [11, 12], for
example, to those of the Wess-Zumino model, [13]. This has been demonstrated to three loops,
[12], and more recently at four loops, [14], using the explicit results of the renormalization group
functions in the Wess-Zumino model available in [13, 15, 16, 17, 18]. More recently the Wess-
Zumino model has been renormalized to five loops in various schemes, [14], in preparation for
verifying the emergence in the GNY system to the next order. In other words one can interpret
the emergent supersymmetric theory of the GNY system as that of the Wess-Zumino model.
This is important as it is believed that supersymmetry may be present in some condensed
matter systems, like those on the boundaries of three dimensional topological insulators, [6],
and so may be described by Wess-Zumino models. Interestingly the GNY model has a structure
that is similar to the Standard Model of particle physics where the scalar field is analogous to
the Higgs field. Therefore it has already been noted in, for instance, [9], that such emergence
properties of the relatively simple GNY model could equally hold in the Standard Model. If so
there is the possibility that an emergent supersymmetry could be a route to an extension of the
Standard Model.

It is worth stressing that emergent symmetries do not always lead to supersymmetry. For
instance, in a particular scalar cubic theory, [20, 21, 22, 23], which is renormalizable in six
dimensions, it was shown in [23], that an emergent flavour symmetry is present. In particular
the O(3) symmetry of the original Lagrangian enhanced to an SU(3) one at a particular critical
point. A more recent example of such a flavour symmetry emergence was discussed in [24].
In that work scalar field theories with an O(N) symmetry and potentials with an odd power
were studied. Although they are renormalizable in rational spacetime dimensions, for specific
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values of N there is a fixed point with an emergent OSp(1|2M) symmetry, [24]. The case of the
quintic theory or Blume-Capel theory, [25, 26], was of particular interest, [27, 28, 29, 30], given
that it is the next theory in the sequence after ϕ3 theory that underlies the Ising and Lee-Yang
universality classes and has a rational critical dimension close to three dimensions. However,
the underlying mechanism of the emergence in this instance was that the anomalous dimensions
of the fields in the O(N) multiplet became equal to that of another scalar field in the theory.
This field was analogous to the σ field that arises in the O(N) nonlinear sigma model. Indeed
the sigma model is the first in the sequence of such odd power potentials for this OSp(1|2M)
emergence to arise. The next model in the sequence after the sigma model is the cubic theory
akin to the one mentioned earlier. Indeed it is structurally similar to the Wess-Zumino model
in its superfield formulation with chiral superfields. Therefore given the parallel nature of the
scalar cubic theory with the Wess-Zumino model a natural question to ask is whether there is an
analogous sequence of supersymmetric models that is parallel to those considered in [24] which
have an emergent OSp(1|2M) symmetry.

This is the main aim of this article. It is possible to formulate these generalized Wess-Zumino
theories given the superspace techniques that allowed the original component field formulation
of the Wess-Zumino model, [13], to be rewritten in terms of chiral superfields, [31]. One con-
sequence was that the Wess-Zumino model was renormalized in an efficient way to very high
loop order, [14, 16, 18]. Therefore we will construct the relevant superspace actions for such a
sequence of chirally supersymmetric theories and then renormalize them to second order which
will be at an order beyond that considered in the scalar case of [24]. This is primarily due
to the chiral property which rules out a substantial number of higher order graphs that would
ordinarily have to be determined for the wave function renormalization. Moreover the underly-
ing supersymmetry Ward identity, [1, 2], means that the β-functions will follow trivially from
the field anomalous dimensions. One concern with following such a superspace approach here
might be its relation with the associated component theory especially in light of the potential
unequal boson and fermion degrees of freedom in a non-integer dimension. A similar issue arises
when one regularizes a supersymmetric component Lagrangian. It is known that while canonical
dimensional regularization does not preserve supersymmetry there is a way to circumvent the
degrees of freedom imbalance that is the underlying reason for this. Instead a modified regu-
larization is used known as dimensional reduction and involves the presence of additional fields
termed ϵ scalars. They inhabitat the subspace of the regularizing spacetime that excludes the
critical dimension spacetime. Such additional fields are absent in the critical dimension of the
theory but their presence preserves the supersymmetry property of that physical space. In the
rational spacetime such fields will naturally also be necessary to preserve the degrees of freedom
in the associated component theory. What would also be the case is that such a component
theory will have a non-supersymmetric associate which has the same Lagrangian but each in-
teraction has a different coupling constant. Indeed it will be of a similar nature to the three
dimensional GNY systems that have an emergent supersymmetry where not only will there be
a fixed point where all the critical couplings are equal but the field anomalous dimensions will
all be the same. In the three dimensional GNY case the underlying supersymmetric theory is
the four dimensional Wess-Zumino model. Indeed it can be formulated in superspace and the ϵ
expansion of its critical exponents agree precisely with the ϵ expansion of the exponents of the
emergent supersymmetric fixed point of the related GNY system. In regard to the generalized
Wess-Zumino theories we take a similar point of view that they in fact represent the emergent
supersymmetric fixed point of the associated non-supersymmetric partner theory. In studying
the fixed point structures in the supersymmetric theories an OSp(1|2M) emergent symmetry
will be present but it arises in a subtle way compared to the scalar case of [24]. Aside from this
main goal we will examine a more mundane aspect of the ϵ expansion in this class of theories
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with an odd power potential. For instance, the scalar quintic or Blume-Capel theory has a crit-
ical dimension of 10

3 which is close to the integer dimension of three. Therefore in d = 10
3 − 2ϵ

dimensions the value of ϵ needed to reach that integer dimension is relatively small compared
to a theory with a critical dimension of four for example. In other words the convergence of
the ϵ expansion in a quintic scalar theory should be quick. Unfortunately with the inability to
compute corrections beyond the leading order in that case due to difficult Feynman integrals,
which will be illustrated later, this convergence issue cannot be readily studied. In the super-
symmetric extension however we will be able to proceed to the next order as the corresponding
difficult graphs are excluded by the chiral property. Thus we will examine convergence issues
albeit in a simialar although different class of theories.

The paper is organized as follows. We devote Section 2 to renormalizing the basic chirally
supersymmetric scalar theories with an odd potential to the first few orders. While we will
concentrate on three specific theories some properties of critical exponents are provided for all
models with odd potentials. To examine the emergent symmetry property we construct the
O(N) versions of the specific theories in Section 3 before renormalizing them to allow us to
analyse their fixed point properties in Section 4. In Section 5 we concentrate on establishing
the OSp(1|2M) enhancement at one particular critical point before summarizing our study in
Section 6. An appendix provides explicit expressions for the renormalization group functions of
several of the O(N) theories we focus on.

2 Background.

First we consider the action of the most general superpotential with a chiral superfield which is
given by

S(n) =

∫
ddx

[∫
d2θd2θ̄ Φ̄o(x, θ̄)e

−2θ∂\θ̄Φo(x, θ) +
go
n!

∫
d2θΦn

o(x, θ) +
go
n!

∫
d2θ̄ Φ̄n

o(x, θ̄)

]
(2.1)

where θ and θ̄ are anti-commuting superspace coordinates and we use type I superfields with
the subscript o denoting bare quantities and g is the coupling constant. The kinetic term follows
that used in the Wess-Zumino model, [16, 18, 31], where the 2 × 2 covariant Pauli matrices
σµ play the role of the usual Dirac γ-matrices and satisfy the same Clifford algebra. We use a
variation on the canonical notation by defining ∂\ = σµ∂µ. At this stage we have not specified
the canonical dimension of the action as n is an arbitrary integer here. However it is a simple
exercise to deduce that the critical dimension Dn of (2.1) is

Dn =
2(n− 1)

(n− 2)
. (2.2)

Clearly there are only two cases where Dn is an integer which are D3 = 4 and D4 = 3 with the
former corresponding to the Wess-Zumino model. Subsequent potentials give D5 = 8

3 , D6 = 5
2 ,

D7 = 12
5 , D8 = 7

3 and D9 = 16
7 with limn→∞Dn = 2. It is worth contrasting (2.2) with the

critical dimension of the corresponding non-supersymmetric theories which is, [27, 32, 33],

Dscalar
n =

2n

(n− 2)
. (2.3)

In other words for each integer n ≥ 3 this is the dimension where the coupling constant is dimen-
sionless. The origin of the difference with Dn is the integration measure over the dimensionful
anticommuting spacetime coordinates in (2.1). The n = 5 potential shares a similar property to
its non-supersymmetric counterpart in that its critical dimension is close to three dimensions.
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The bare quantities in (2.1) are related to their renormalized partners via

Φo =
√
ZΦΦ , Φ̄o =

√
ZΦΦ̄ , go = µϵZgg (2.4)

where we will dimensionally regularize the superspace action in d = Dn − 2ϵ dimensions. The
arbitrary mass scale µ being introduced to ensure the coupling constant remains dimensionless
in the regularized theory. Like the Wess-Zumino model the suite of n dependent actions each
satisfy a supersymmetry Ward identity which follows simply by generalizing the argument given
in [13, 15, 31]. This means that there is only one independent renormalization constant since
the Ward identity implies

ZgZ
n
2
Φ = 1 . (2.5)

This provides a simple strategy to determine the β-function of (2.1) since Zg can be deduced
from ZΦ which means we only need to renormalize the 2-point function. In other words vertex
functions are finite and so do not need to be evaluated. A further simplification comes from the
use of superspace techniques. From the action (2.1) the propagator in momentum superspace
is, [18],

⟨Φ(p, θ)Φ̄(−p, θ̄)⟩ =
exp (2θp\θ̄)

p2
(2.6)

which means that prior to carrying out the integration over the loop momenta the θ coordinate
integration has to be performed. As these variables are anti-commuting the exponential asso-
ciated with each propagator will truncate after a finite number of terms. Once this has been
implemented the θ-integration is carried out. As this effectively equates to differentiating with
respect to the internal anticommuting variables, and is equivalent to the so-called D-algebra, it
results in simple traces over the covariant Pauli matrices. This procedure is based on the ap-
proach used in the four loop renormalization of the Wess-Zumino model, [18], and more recently
at five loops, [14]. In the latter case the θ coordinate integration for each graph was carried out
automatically through a routine written in the symbolic manipulation language Form, [34, 35].
We have used that same procedure for each of the three cases we focus on here. These will be
the n = 5, 7 and 9 potentials. Once the θ integration has been carried out the integration over
the loop momenta remains. For (2.1) this is possible for both the first two orders of graphs that
contribute.

Figure 1: Basic one and two loop topologies for a 2-point function in a scalar cubic theory.

To appreciate this for theories with higher order potentials it is instructive to focus for the
moment on the basic one and two loop topologies that can arise in a scalar ϕ3 theory. These
are illustrated in Figure 1. For the Wess-Zumino model, which has a cubic interaction, these
are in principle the only topologies that would determine the β-function. However the Wess-
Zumino model is the n = 3 version of (2.1) and has a chiral symmetry. This implies that the
propagators are directed and in a Feynman diagram have an arrow on each line. Moreover the
chirality means that at a vertex the arrows all point towards the interaction location or away
from it. Simple reasoning indicates that this ordering excludes any topology where there is a
subgraph with an odd number of propagators. So in Figure 1 the second two loop graph is
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excluded. The relevance of this to (2.1) for odd values of n > 3 is that for these higher order
potentials the 2-point function graphs will have the same underlying topological structure. This
can be observed at leading order for (2.1) where the only contributing graph is given in Figure 2.
The number beside ellipses between propagators will always indicate the number of propagators
between and including the bounding propagators. In this and subsequent figures lines will be
directed with arrows reflecting the underlying chirality. The relation of the graph of Figure
2 to the first topology of Figure 1 can be seen by notionally deleting the number of internal
lines connecting each vertex to leave vertices with only three lines. By way of example this
observation with the core topologies of Figure 1 at next order can be viewed in the n = 5 case
where the graphs are shown in Figure 3. These and the graphs for all the other theories have
been generated with the Qgraf package, [36]. It is evident that each of the three graphs of
Figure 3 are extensions of the middle topology of Figure 1 where propagators are added to each
vertex in such a way that five propagators intersect there.

n− 1··
·

Figure 2: Leading order (n− 2) loop graph for Φn 2-point function.

As the structure of the leading two orders of 2-point function graphs is relatively simple the
implementation of the D-algebra resulting from the θ integration is straightforward. This is in
part due to the simple bubble graphs that comprise each 2-point function for (2.1) when n is odd.
For each of the topologies beyond leading order the only minor complication is that the loop
integrals of each central bubble in the three bubble sequence has a contraction of two internal
loop momenta. This is not a hindrance to evaluating a graph as one simply makes use of the
momentum conservation to rewrite the scalar product in terms of the squares of the momenta of
related propagators. In other words the effect of the D-algebra at this order is the removal of a
propagator from the original topology similar to what was observed in the Wess-Zumino model,
[18]. The consequence of the D-algebra is that all the Feynman integrals at the leading two
orders are quickly reduced to simple scalar bubble integrals which are elementary to evaluate.

If we focus for the moment on the case of n = 5 applying the algorithm to the Φ5 theory we
find that the anomalous dimension is

γΦ
5
(a) =

√
3π3a

9Γ3( 23)
−

[
40
√
3π3 + 81Γ3( 23)

] 4π6a2

729Γ9( 23)
+ O(a3) (2.7)

where here and elsewhere the factor arising from the surface area of the d-dimensional unit
sphere is absorbed in the combination

a =
g2

(4π)
Dn

2

. (2.8)

In (2.7) we have applied the identity

Γ( 13) =
2π√
3Γ( 23)

(2.9)

to simplify the expression. While there are three higher order graphs there are only two terms
at O(a2). The second of these two terms arises from the final graph of Figure 3 and this graph
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3···

4···

Figure 3: Six loop graphs for Φ5 theory 2-point function.

is the insertion of Figure 2 on one of the internal lines of the graph itself when n = 5. The
remaining two graphs correspond to vertex corrections arising from the graph of Figure 4. As
it is clearly finite this means that the first two graphs of Figure 3 are primitives.

Figure 4: Leading order vertex correction for Φ5 theory.

Having discussed the n = 5 case in detail the procedure to renormalize the other two cases
we consider here, n = 7 and 9, is completely parallel. The main differences, however, rest
in the increase in the number of graphs for each theory which are illustrated respectively in
Figures 5 and 6. Again the final graph of each figure corresponds to the self-energy correction
on a propagator of the leading order 2-point function. This means the remaining graphs are
all primitives as they contain vertex subgraph corrections and the leading order vertex graph is
finite. The resulting anomalous dimensions for both theories are

γΦ
7
(a) =

Γ5( 15)a

144
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5··· 5··· 4··· 4···

3···

4···

4···

5···

5···

6···

Figure 5: Ten loop graphs for Φ7 theory 2-point function.

−
[
63Γ2( 45)Γ

3( 15) + 150Γ( 45)Γ(
2
5) + 175Γ2( 25)Γ

2( 15)
] Γ10( 15)a

2

103680Γ( 45)Γ(
2
5)

+ O(a3) (2.10)

and

γΦ
9
(a) =

Γ7( 17)a

5760

−
[
36Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17) + 98Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7) + 441Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

+ 196Γ2( 57)Γ
2( 27)Γ

2( 17)
] Γ14( 17)a

2

58060800Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7)

+ O(a3) . (2.11)

The appearance of factors of the form Γ(p/(n − 2)) where 1 ≤ p ≤ (n − 3) may seem at odds
with expectations but arises from the basic loop bubble integrals. For instance, denoting the
value of the leading order graph of Figure 1 by ΓΦn

(2) then

Γn−1
(

1
(n−2) − ϵ

)
Γ((n− 2)ϵ)

Γ
(
(n−1)
(n−2) − (n− 1)ϵ

) (2.12)

in d-dimensions. The divergence clearly arises from the second numerator factor while the

other numerator one and that in the denominator lead to a final factor of Γn−2
(

1
(n−2)

)
in each
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anomalous dimension at leading order. Clearly for the Wess-Zumino model, which is cubic, no
Γ-functions appear in the wave function renormalization at low loop orders for this reason.

7··· 7··· 6··· 6···

3···

5··· 4··· 5···

4···

4··· 5··· 4···

5···

6···

6···

7···

7···

8···

Figure 6: Fourteen loop graphs for Φ9 theory 2-point function.

With the graphs for both the n = 7 and 9 cases available as well as the explicit anomalous
dimensions for the leading two orders we note that there is one more graph than there are
terms at O(a2) as was the case for n = 5. This is because two graphs for each theory evaluate
to the same Γ-function structure. These are the first two graphs in Figure 3, the first and
fourth in Figure 5 and the first and sixth graph of Figure 6. The reason why these graphs have
the same structure derives from the underlying D-algebra. The consequence of rewriting the
resulting scalar products between loop momenta of the fully internal bubble after enacting the
θ integration is to remove or delete a propagator from one of the bubbles immediately adjoining
it. Applying this observation to these specific graphs in the figure produces a pair of graphs
with bubbles which have the same number of propagators in each or a single propagator. Since
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all the bubble integrals are scalar integrals they will each evaluate to the same d-dimensional
expression and hence have the same ϵ expansion. As a final part of the renormalization it is
worth providing the numerical values for the anomalous dimensions. We have

γΦ
5
(a) = 2.403246a − 809.582836a2 + O(a3)

γΦ
7
(a) = 14.161200a − 416179.106979a2 + O(a3)

γΦ
9
(a) = 89.612261a − 225108066.08a2 + O(a3) . (2.13)

The large coefficients are not to be regarded as indicating a lack of convergence. For instance,
absorbing the factor of Γ7( 17) into a for the n = 9 case the respective one and two loop coefficients
become 0.000173611 and 0.000844912. These are of the same order in much the same way as for
four dimensional theories. Of course in that case the corresponding factor would involve powers
of Γ(1) which have no consequence.

Equipped with the anomalous dimensions and the β-functions through the supersymmetry
Ward identities we can determine the critical exponents of each theory at the Wilson-Fisher
fixed point. That associated with the field anomalous dimension, ηΦ

n
= γΦ

n
(a∗), where a∗ is

the critical coupling, can be determined exactly to all orders in perturbation as

ηΦ
n

=
(n− 2)

n
ϵ (2.14)

for each value of n odd with n > 1. This follows trivially from (2.2) and (2.5). In the case of
n = 3 the four dimensional result of [9, 11] emerges. For the other integer dimensions of interest
we find

ηΦ
n
∣∣∣∣
d=2

=
1

n
, ηΦ

n
∣∣∣∣
d=3

= − (n− 4)

n
(2.15)

if one assumes a negative value of ϵ is valid when Dn < 3. As n → ∞ the former vanishes
while the latter tends to (−1). The situation with the other exponent, which is the β-function
slope at criticality, is different in that there is no exact expression for any value of n. Defining
ωΦn

= 2βΦn ′
(a∗) we have

ωΦ5
= 6ϵ −

[
40
√
3π3 + 81Γ3( 23)

] 8ϵ2

15Γ3( 23)
+ O(ϵ3)

ωΦ7
= 10ϵ −

[
63Γ2( 45)Γ

3( 15) + 150Γ( 45)Γ(
2
5) + 175Γ2( 25)Γ

2( 15)
] 10ϵ2

7Γ( 45)Γ(
2
5)

+ O(ϵ3)

ωΦ9
= 14ϵ

−
[
36Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17) + 98Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7) + 441Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

+196Γ2( 57)Γ
2( 27)Γ

2( 17)
] 56ϵ2

9Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7)

+ O(ϵ3) (2.16)

or

ωΦ5
= 6ϵ − 504.623267ϵ2 + O(ϵ3)

ωΦ7
= 10ϵ − 14823.547215ϵ2 + O(ϵ3)

ωΦ9
= 14ϵ − 305238.813694ϵ2 + O(ϵ3) (2.17)

numerically. Clearly there are large corrections for each theory which would suggest that it
is not possible to extract anything meaningful by naively substituting even a small value of ϵ.
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However, if we use a [1, 1] Padé approximant we find

ωΦ5
∣∣∣∣
d=2

= 0.0688833

ωΦ7
∣∣∣∣
d=2

= 0.00672335

ωΦ9
∣∣∣∣
d=2

= 0.000642017 (2.18)

for instance in two dimensions which appear credible. These are significantly smaller than the
canonical term which is 2 for all odd n. Under the same assumptions as before we deduce

ωΦ5
∣∣∣∣
d=3

= 0.0768208

ωΦ7
∣∣∣∣
d=3

= 0.00676123

ωΦ9
∣∣∣∣
d=3

= 0.000642258 (2.19)

for the extension to three dimensions.

3 O(N) symmetric theories.

Having considered the renormalization of the core higher order potentials we consider their O(N)
symmetric counterparts in this section. This requires two distinct superfields Φi(x, θ) and σ(x, θ)
together with their chiral partners. The former field takes values in O(N) where 1 ≤ i ≤ N .
The presence of two sets of superfields means that the action for each core potential is more
involved and moreover the number of interactions increases with the order of the potential. For
instance, when n = 5 we have

S
O(N)
(5) =

∫
d4x

[∫
d2θd2θ̄

[
Φ̄i
o(x, θ̄)e

−2θ∂\θ̄Φi
o(x, θ) + σ̄o(x, θ̄)e

−2θ∂\θ̄σo(x, θ)
]

+
g̃1o
24

∫
d2θ σo

(
Φi
oΦ

i
o

)2
+

g̃1o
24

∫
d2θ̄ σ̄o

(
Φ̄i
oΦ̄

i
o

)2
+

g̃2o
12

∫
d2θ σ3

oΦ
i
oΦ

i
o +

g̃2o
12

∫
d2θ̄ σ̄3

oΦ̄
i
oΦ̄

i
o

+
g̃3o
120

∫
d2θ σ5

o +
g̃3o
120

∫
d2θ̄ σ̄5

o

]
(3.1)

for the action in terms of bare quantities where g̃i = (4π)
Dn

4 gi here and throughout. Setting
both Φi(x, θ) and Φ̄i(x, θ̄) formally to zero recovers the n = 5 case of (2.1). An equivalent way
of producing this is to put g1 = g2 = 0 whence the O(N) multiplet decouples. For the next two
theories in the sequence of odd potentials the respective actions are

S
O(N)
(7) =

∫
d4x

[∫
d2θd2θ̄

[
Φ̄i
o(x, θ̄)e

−2θ∂\θ̄Φi
o(x, θ) + σ̄o(x, θ̄)e

−2θ∂\θ̄σo(x, θ)
]

+
g̃1o
720

∫
d2θ σo

(
Φi
oΦ

i
o

)3
+

g̃1o
720

∫
d2θ̄ σ̄o

(
Φ̄i
oΦ̄

i
o

)3
+

g̃2o
144

∫
d2θ σ3

o

(
Φi
oΦ

i
o

)2
+

g̃2o
144

∫
d2θ̄ σ̄3

o

(
Φ̄i
oΦ̄

i
o

)2
+

g̃3o
240

∫
d2θ σ5

oΦ
i
oΦ

i
o +

g̃3o
240

∫
d2θ̄ σ̄5

oΦ̄
i
oΦ̄

i
o

+
g̃4o
5040

∫
d2θ σ7

o +
g̃4o
5040

∫
d2θ̄ σ̄7

o

]
(3.2)
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and

S
O(N)
(9) =

∫
d4x

[∫
d2θd2θ̄

[
Φ̄i
o(x, θ̄)e

−2θ∂\θ̄Φi
o(x, θ) + σ̄o(x, θ̄)e

−2θ∂\θ̄σo(x, θ)
]

+
g̃1o

40320

∫
d2θ σo

(
Φi
oΦ

i
o

)4
+

g̃1o
40320

∫
d2θ̄ σ̄o

(
Φ̄i
oΦ̄

i
o

)4
+

g̃2o
4320

∫
d2θ σ3

o

(
Φi
oΦ

i
o

)3
+

g̃2o
4320

∫
d2θ̄ σ̄3

o

(
Φ̄i
oΦ̄

i
o

)3
+

g̃3o
2880

∫
d2θ σ5

o

(
Φi
oΦ

i
o

)2
+

g̃3o
2880

∫
d2θ̄ σ̄5

o

(
Φ̄i
oΦ̄

i
o

)2
+

g̃4o
10080

∫
d2θ σ7

oΦ
i
oΦ

i
o +

g̃4o
10080

∫
d2θ̄ σ̄7

oΦ̄
i
oΦ̄

i
o

+
g̃5o

362880

∫
d2θ σ9

o +
g̃5o

362880

∫
d2θ̄ σ̄9

o

]
(3.3)

which illustrate the increase in number of interactions with n. Consequently a larger num-
ber of Feynman graphs have to be computed to extract the renormalization group functions.
The precise numbers are given in Table 1 for both sets of 2-point functions. Like previously
the β-functions of the respective coupling constants are determined by a generalization of the
supersymmetry Ward identities. For n = 5 these are

Zg1Z
2
ΦZ

1
2
σ = Zg2ZΦZ

3
2
σ = Zg3Z

5
2
σ = 1 (3.4)

with

Zg1Z
3
ΦZ

1
2
σ = Zg2Z

2
ΦZ

3
2
σ = Zg3ZΦZ

5
2
σ = Zg4Z

7
2
σ = 1 (3.5)

for n = 7. Finally

Zg1Z
4
ΦZ

1
2
σ = Zg2Z

3
ΦZ

3
2
σ = Zg3Z

2
ΦZ

5
2
σ = Zg4ZΦZ

7
2
σ = Zg5Z

9
2
σ = 1 (3.6)

for (3.3) by extending (2.5) in the same way.

n L ⟨ΦiΦ̄j⟩ ⟨σσ̄⟩ Total

5 3 2 3 5
6 34 40 74

7 5 3 4 7
10 155 174 329

9 7 4 5 9
14 480 521 1001

Table 1: Number of graphs at each loop order L required to renormalize the Φi and σ 2-point
functions in the O(N) theories.

For the remainder of this section we focus on the n = 5 case as an example. The procedure to
renormalize (3.1) follows the same as that used for (2.1) with respect to applying the D-algebra
and the evaluation of the 79 2-point graphs. The resulting anomalous dimensions are

γΦ
5

Φ (gi) =
[
4Ng21 + 8g21 + 12g22

] √
3π3

27Γ3( 23)
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−
[[
128N3g41 + 1536N2g41 + 6144Ng41 + 7168g41 + 2304N2g21g

2
2 + 16128Ng21g

2
2

+ 23040g21g
2
2 + 2304Ng1g

2
2g3 + 4608g1g

2
2g3 + 5760Ng42 + 20736g42

+ 2304g22g
2
3

]√
3π9

+
[
324N3g41 + 5184N2g41 + 16848Ng41 + 15552g41 + 8748N2g21g

2
2

+ 33048Ng21g
2
2 + 31104g21g

2
2 + 972Ng21g

2
3 + 1944g21g

2
3 + 52488Ng42

+ 11664g42 + 8748g22g
2
3

]
Γ3( 23)π

6
] 1

6561Γ9( 23)
+ O(g7i ) (3.7)

and

γΦ
5

σ (gi) =
[
N2g21 + 2Ng21 + 18Ng22 + 3g23

] √
3π3

27Γ3( 23)

−
[[
32N4g41 + 384N3g41 + 1536N2g41 + 1792Ng41 + 1536N3g21g

2
2 + 10752N2g21g

2
2

+ 15360Ng21g
2
2 + 3456N2g1g

2
2g3 + 6912Ng1g

2
2g3 + 8640N2g42 + 31104Ng42

+ 9216Ng22g
2
3 + 1440g43

]√
3π9

+
[
1296N3g41 + 5184N2g41 + 5184Ng41 + 2916N3g21g

2
2 + 21384N2g21g

2
2

+ 31104Ng21g
2
2 + 972N2g21g

2
3 + 1944Ng21g

2
3 + 52488N2g42 + 34992Ng42

+ 26244Ng22g
2
3 + 2916g43

]
Γ( 23)

3π6
] 1

6561Γ9( 23)
+ O(g7i ) . (3.8)

As a trivial check setting g1 = g2 = 0 in γΦ
5

σ (gi) reproduces (2.7). Consequently using the
supersymmetry Ward identities we can deduce the β-functions which are

βΦ5

1 (gi) =
[
N2g31 + 18Ng31 + 32g31 + 18Ng1g

2
2 + 48g1g

2
2 + 3g1g

2
3

] √
3π3

27Γ3( 23)

−
[[
32N4g51 + 896N3g51 + 7680N2g51 + 26368Ng51 + 28672g51 + 1536N3g31g

2
2

+ 19968N2g31g
2
2 + 79872Ng31g

2
2 + 92160g31g

2
2 + 3456N2g21g

2
2g3

+ 16128Ng21g
2
2g3 + 18432g21g

2
2g3 + 8640N2g1g

4
2 + 54144Ng1g

4
2 + 82944g1g

4
2

+ 9216Ng1g
2
2g

2
3 + 9216g1g

2
2g

2
3 + 1440g1g

4
3

]√
3π9

+
[
2592N3g51 + 25920N2g51 + 72576Ng51 + 62208g51 + 2916N3g31g

2
2

+ 56376N2g31g
2
2 + 163296Ng31g

2
2 + 124416g31g

2
2 + 972N2g31g

2
3

+ 5832Ng31g
2
3 + 7776g31g

2
3 + 52488N2g1g

4
2 + 244944Ng1g

4
2 + 46656g1g

4
2

+ 26244Ng1g
2
2g

2
3 + 34992g1g

2
2g

2
3 + 2916g1g

4
3

]
Γ3( 23)π

6
] 1

6561Γ9( 23)

+ O(g7i )

βΦ5

2 (gi) =

√
3π3

27Γ3( 23)

[
3N2g21g2 + 14Ng21g2 + 16g21g2 + 54Ng32 + 24g32 + 9g2g

2
3

]
−

[[
96N4g41g2 + 1408N3g41g2 + 7680N2g41g2 + 17664Ng41g2 + 14336g41g2

+ 4608N3g21g
3
2 + 36864N2g21g

3
2 + 78336Ng21g

3
2 + 46080g21g

3
2

+ 10368N2g1g
3
2g3 + 25344Ng1g

3
2g3 + 9216g1g

3
2g3 + 25920N2g52

+ 104832Ng52 + 41472g52 + 27648Ng32g
2
3 + 4608g32g

2
3 + 4320g2g

4
3

]√
3π9

+
[
4536N3g41g2 + 25920N2g41g2 + 49248Ng41g2 + 31104g41g2 + 8748N3g21g

3
2
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+ 81648N2g21g
3
2 + 159408Ng21g

3
2 + 62208g21g

3
2 + 2916N2g21g2g

2
3

+ 7776Ng21g2g
2
3 + 3888g21g2g

2
3 + 157464N2g52 + 209952Ng52

+ 23328g52 + 78732Ng32g
2
3 + 17496g32g

2
3 + 8748g2g

4
3

]
Γ3( 23)π

6
] 1

6561Γ9( 23)

+ O(g7i )

βΦ5

3 (gi) =
[
N2g21g3 + 10Ng21g3 + 90Ng22g3 + 15g33

] √
3π3

27Γ3( 23)

−
[[
160N4g41g3 + 1920N3g41g3 + 7680N2g41g3 + 8960Ng41g3 + 7680N3g21g

2
2g3

+ 53760N2g21g
2
2g3 + 76800Ng21g

2
2g3 + 17280N2g1g

2
2g

2
3 + 34560Ng1g

2
2g

2
3

+ 43200N2g42g3 + 155520Ng42g3 + 46080Ng22g
3
3 + 7200g53

]√
3π9

+
[
6480N3g41g3 + 25920N2g41g3 + 25920Ng41g3 + 14580N3g21g

2
2g3

+ 106920N2g21g
2
2g3 + 155520Ng21g

2
2g3 + 4860N2g21g

3
3 + 9720Ng21g

3
3

+ 262440N2g42g3 + 174960Ng42g3 + 131220Ng22g
3
3

+ 14580g53

]
Γ3( 23)π

6
] 1

6561Γ9( 23)
+ O(g7i ) . (3.9)

Clearly βΦ5

1 (gi) and βΦ5

2 (gi) vanish when g1 = g2 = 0 leaving βΦ5

3 (gi) as five times γΦ
5

σ (gi) under
the same condition. This is consistent with the Ward identity of (2.1) at n = 5. Renormal-
ization group functions for n = 7 and 9 are recorded in the Appendices. Expressions for the
renormalization group functions for each of the three theories are provided in electronic format
in the associated data file.

4 Fixed point analysis.

Having established the renormalization group functions we now examine the fixed point proper-
ties of the theories. In the first instance we focus on the n = 5 case for arbitrary N and consider
the Wilson-Fisher fixed point. Setting

gi =
xi
√
ϵ(

Γ
(

1
(n−2)

))n−2 (4.1)

in general we find that there is a large set of solutions. A significant number are merely various
coupling constant reflections gi → − gi of a core subset. Therefore we only record the indepen-
dent ones for n = 5 and other cases in the region of coupling constant space where gi ≥ 0. The
location of those where there is one nonzero critical coupling are

x
(1)
1 =

[
6 +

[
12(N + 16)(N2 + 10N + 28)Γ3( 13) + 864(N + 2)(N + 6)

] ϵ

(N + 2)(N + 16)2

+O(ϵ2)
]√ 2

(N + 2)(N + 16)
, x

(1)
2 = 0 , x

(1)
3 = 0 ;

x
(2)
1 = 0

x
(2)
2 =

[
2 +

[
6(9N + 4)(5N + 18)Γ3( 13) + 54(27N2 + 36N + 4)

] ϵ

3(9N + 4)2

+O(ϵ2)
]√ 3

(9N + 4)
, x

(2)
3 = 0 ;
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x
(3)
1 = 0 , x

(3)
2 = 0 , x

(3)
3 =

2

5

√
30 +

[
5Γ3( 13) + 9

] 4√30

25
ϵ + O(ϵ2) (4.2)

with associated anomalous dimensions

ηΦ
5

Φ(1) =
12ϵ

(N + 16)
− 108N(N − 4)ϵ2

(N + 16)3
+ O(ϵ3)

ηΦ
5

σ (1) =
3Nϵ

(N + 16)
− 432N(N − 4)ϵ2

(N + 16)3
+ O(ϵ3) ;

ηΦ
5

Φ(2) =
6ϵ

(9N + 4)
− 486N(3N − 2)ϵ2

(9N + 4)3
+ O(ϵ3)

ηΦ
5

σ (2) =
9Nϵ

(9N + 4)
− 324N(3N − 2)ϵ2

(9N + 4)3
+ O(ϵ3) ;

ηΦ
5

Φ(3) = O(ϵ3) , ηΦ
5

σ (3) =
3

5
ϵ + O(ϵ3) . (4.3)

One interesting feature is that for both solutions 1 and 2 is that ηΦ
5

Φ and ηΦ
5

σ are equal for a
specific but different value of N . For solution 1 this is N = 4 while it is N = 3

2 for solution 2.
The latter case is formal in the sense that N is non-integer. However in both instances the value
of the exponent is 3

5ϵ. The final solution labelled 3 corresponds to (2.14). The next scenario
is when only one of the couplings vanishes at criticality. Again there are three cases with the
critical couplings given by

x
(12)
1 =

[
6

5
+

[
(N + 6)(N2 + 16N + 4)Γ3( 13) + 90N(N + 2)

] 6ϵ

125N(N + 2)

+O(ϵ2)
]√ (3N − 2)

N(N + 2)

x
(12)
2 =

[
1

5
+

[
(7N2 + 54N + 32)Γ3( 13) + 180N

] ϵ

250N
+ O(ϵ2)

]√
6(4−N)

N

x
(12)
3 = 0 ;

x
(13)
1 =

[
3

5
+

[
(N2 + 10N + 28)Γ3( 13) + 36(N + 2)

] 3ϵ

50(N + 2)
+ O(ϵ2)

]√
10

(N + 2)

x
(13)
2 = 0

x
(13)
3 =

[
1

5
−

[
5(N − 4)Γ3( 13)− 36

] ϵ

50
+ O(ϵ2)

]√
30(4−N) ;

x
(23)
1 = 0

x
(23)
2 =

[
1

5
−

[
(7N − 26)Γ3( 13)− 36

] ϵ

50
+ O(ϵ2)

]√
30

x
(23)
3 =

[
2

5
−

[
5(N − 2)Γ3( 13)− 18

] 2ϵ

25
+ O(ϵ2)

]√
15(2− 3N) . (4.4)

In each case the anomalous dimensions are all the same since

ηΦ
5

Φ(12) = ηΦ
5

σ (12) =
3

5
ϵ + O(ϵ3)

ηΦ
5

Φ(13) = ηΦ
5

σ (13) =
3

5
ϵ + O(ϵ3)

ηΦ
5

Φ(23) = ηΦ
5

σ (23) =
3

5
ϵ + O(ϵ3) . (4.5)
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As a check on these fixed point solutions we note that

lim
N→4

x
(12)
1 = lim

N→4
x
(1)
1 , lim

N→ 2
3

x
(12)
2 = lim

N→ 2
3

x
(2)
2

lim
N→4

x
(13)
1 = lim

N→4
x
(1)
1 , lim

N→ 2
3

x
(23)
2 = lim

N→ 2
3

x
(2)
2 (4.6)

and for these cases the anomalous dimensions all equate to 3
5ϵ. These particular values of N

point to a deeper aspect of the latter set of fixed point solutions. For instance for solutions 12
and 13 one critical coupling of the pair becomes complex for N > 4 with a similar observation
for solutions 12 and 23 when N > 2

3 . In this case there is then no real solution for any positive
integer N . So it appears that the N = 4 represents a watershed in terms of the set of possible
real fixed point solutions. This is especially the case since for that value the solution 1 ηΦ

5

Φ

and ηΦ
5

σ are equal but there is only one pair of interaction terms at criticality with σ and σ̄
appearing linearly in (3.1). The remaining single coupling solutions equally identify one pair of
interactions but with σ and its partner occuring nonlinearly. The final case is when none of the
critical couplings vanish at the Wilson-Fisher fixed point. This will be considered in the next
section as a special case.

For the other two theories we focus on, the properties of the critical points is completely
parallel. By this we mean that there are fixed points both for only one non-zero critical coupling
as well as a set for pairs. To illustrate this we record the explicit forms of the field critical
anomalous dimensions. For n = 7 we have

ηΦ
7

Φ(1) =
30ϵ

(N + 36)
− 750N(N − 6)ϵ2

(N + 36)3
+ O(ϵ3)

ηΦ
7

σ (1) =
5Nϵ

(N + 36)
+

4500N(N − 6)ϵ2

(N + 36)3
+ O(ϵ3) ;

ηΦ
7

Φ(2) =
20ϵ

(9N + 16)
− 4500N(3N − 4)ϵ2

(9N + 16)3
+ O(ϵ3)

ηΦ
7

σ (2) =
15Nϵ

(9N + 16)
+

6000N(3N − 4)ϵ2

(9N + 16)3
+ O(ϵ3) ;

ηΦ
7

Φ(3) =
10ϵ

(25N + 4)
− 6250N(5N − 2)ϵ2

(25N + 4)3
+ O(ϵ3)

ηΦ
7

σ (3) =
25Nϵ

(25N + 4)
+

2500N(5N − 2)ϵ2

(25N + 4)3
+ O(ϵ3) ;

ηΦ
7

Φ(4) = O(ϵ3) , ηΦ
7

σ (4) =
5

7
ϵ + O(ϵ3) ;

ηΦ
7

Φ(ij) = ηΦ
7

σ (ij) =
5

7
ϵ + O(ϵ3) (4.7)

for 1 ≥ i > j ≥ 5. While for n = 9 we find

ηΦ
9

Φ(1) =
56ϵ

(N + 64)
− 2744N(N − 8)ϵ2

(N + 64)3
+ O(ϵ3)

ηΦ
9

σ (1) =
7Nϵ

(N + 64)
+

21952N(N − 8)ϵ2

(N + 64)3
+ O(ϵ3) ;

ηΦ
9

Φ(2) =
14ϵ

3(N + 4)
− 686N(N − 2)ϵ2

9(N + 4)3
+ O(ϵ3)

ηΦ
9

σ (2) =
7Nϵ

(N + 4)
+

1372N(N − 2)ϵ2

9(N + 4)3
+ O(ϵ3) ;
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ηΦ
9

Φ(3) =
28ϵ

(25N + 16)
− 34300N(5N − 4)ϵ2

(25N + 16)3
+ O(ϵ3)

ηΦ
9

σ (3) =
35Nϵ

(25N + 16)
+

27440N(5N − 4)ϵ2

(25N + 16)3
+ O(ϵ3) ;

ηΦ
9

Φ(4) =
14ϵ

(49N + 4)
− 33614N(7N − 2)ϵ2

(49N + 4)3
+ O(ϵ3)

ηΦ
9

σ (4) =
49Nϵ

(49N + 4)
+

9604N(7N − 2)ϵ2

(49N + 4)3
+ O(ϵ3) ;

ηΦ
9

Φ(5) = O(ϵ3) , ηΦ
9

σ (5) =
7

9
ϵ + O(ϵ3) ;

ηΦ
9

Φ(ij) = ηΦ
9

σ (ij) =
7

9
ϵ + O(ϵ3) (4.8)

for 1 ≥ i > j ≥ 5. From these it is equally clear that for special values of N the Φi and σ
exponents equate. Moreover they follow a general pattern which is

ηΦ
n

Φ(r) = ηΦ
n

σ (r) (4.9)

when

N =
(n− 2r + 1)

(2r − 1)
(4.10)

for each fixed point labelled by r in the range 1 ≤ r ≤ 1
2(n− 1). The final single coupling fixed

point denoted by solution 5 corresponds to the single field case of the previous section.

5 OSp(1|2M) enhancement.

We now turn to a special case of when all critical coupling are non-zero and either real or
complex. This is motivated by the observation in the non-supersymmetric case, [24], that there
is a symmetry enhancement for a specific value of N for each n. Briefly for each group O(N)
the enhancement is to the group OSp(1|2M), where n = (2M + 1). In particular the value for
N when this occurs is N = − 2M , [24]. While this was for the case of the non-supersymmetric
model the property should also hold for (3.1), (3.2) and (3.3). To make this manifest in the
Lagrangian formulation will involve the superfields σ and Θi and their chiral partners. Unlike
Φi of previous sections Θi is a Grassmann field in order to realize the symplectic aspect of the
group. Similar to [24] this allows one to express the superpotential as a function of both sets of
fields. In particular the OSp(1|2M) action is

SOSp(1|2M) =

∫
d4x

[∫
d2θd2θ̄

[
Φ̄i
o(x, θ̄)e

−2θ∂\θ̄Φi
o(x, θ) + σ̄o(x, θ̄)e

−2θ∂\θ̄σo(x, θ)
]

+ g̃o

∫
d2θ

(
σ2
o + Θi

oΘ
i
o

) 1
2 (2M+1)

+ g̃o

∫
d2θ̄

(
σ̄2
o + Θ̄i

oΘ̄
i
o

) 1
2 (2M+1)

]
(5.1)

where the subscript again indicates bare objects. If we define the superpotential by

VM (σ,Θ) =
(
σ2 + ΘiΘi

) 1
2 (2M+1)

(5.2)
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motivated by the construction of [24] then the first few cases are

V2(σ,Θ) =
15

8
σ
(
ΘiΘi

)2
+

5

2
σ3ΘiΘi + σ5

V3(σ,Θ) =
35

16
σ
(
ΘiΘi

)3
+

35

8
σ3

(
ΘiΘi

)2
+

7

2
σ5ΘiΘi + σ7

V4(σ,Θ) =
315

128
σ
(
ΘiΘi

)4
+

105

16
σ3

(
ΘiΘi

)3
+

63

8
σ5

(
ΘiΘi

)2
+

9

2
σ7ΘiΘi + σ9 (5.3)

due to the Grassmann property of Θi. When M = 1 the OSp(1|1) version of the Wess-Zumino
model results. The relative coefficients of the terms in each of the superpotentials of (5.3) are
instrumental in deducing the emergent OSp(1|2M) symmetry for various values of N . These
will be in the same ratio as discovered in the non-supersymmetric case of [24]. In particular the
vector of critical couplings to the first two orders are

(g∗1, g
∗
2, g

∗
3)

∣∣∣∣n=5

N=−4
=

[
1 +

[
18

5
− 3Γ3( 13)

]
ϵ + O(ϵ2)

]
i

√
3ϵ

5Γ3( 13)
(3, 2, 8)

(g∗1, g
∗
2, g

∗
3, g

∗
4)

∣∣∣∣n=7

N=−6
=

[
1 +

[
30−

7Γ( 45)Γ
3( 15)

Γ( 25)
+

35Γ( 25)Γ
2( 15)

Γ( 45)

]
5ϵ

14

+ O(ϵ2)
]√ 35ϵ

7Γ5( 15)
(15, 6, 8, 48)

(g∗1, g
∗
2, g

∗
3, g

∗
4, g

∗
5)

∣∣∣∣n=9

N=−8
=

[
1 +

[
980Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)− 126Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

− 2205Γ( 67)Γ
2( 37)Γ(

2
7)Γ

2( 17)

+ 490Γ2( 57)Γ
2( 27)Γ

2( 17)
] ϵ

45Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7)

+ O(ϵ2)
]
i

√
7ϵ

Γ7( 17)
(35, 10, 8, 16, 128) . (5.4)

That this emergent symmetry holds for the supersymmetric case is not too surprising given
that it occurs in the non-supersymmetric equivalent theories. However the observation is subtle
here in that the specific value of N = (1− n) for the emergence has connections with the non-
Grassmann O(N) partner theory if one sets r = 1 in (4.10). It is known that properties of the
Sp(N) group can be related to those of an orthogonal group O(N) if one maps N → − N . What
is the case for N not equal to the emergent value value of (1 − n) is that the field anomalous
dimensions are not equal. It is only for each value of N = (1− n) that

ηΦ
n

Φ = ηΦ
n

σ (5.5)

for the critical couplings (5.4) whence the emergent OSp(1|2M) symmetry is realized in the
supersymmetric theory.

As we are able to go to a higher order in the ϵ expansion compared to the non-supersymmetric
cases it is instructive to determine the critical β-function slope for the emergent OSp(1|2M)
theories. In particular we have

ωΦ5
∣∣∣
N=−4

= 6ϵ +
[
180Γ3( 13)− 216

] ϵ2
5

+ O(ϵ3)

ωΦ7
∣∣∣
N=−6

= 10ϵ
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+
[
350Γ2( 45)Γ

3( 15)− 1500Γ( 45)Γ(
2
5)− 1750Γ2( 25)Γ

2( 15)
] ϵ2

7Γ( 45)Γ(
2
5)

+ O(ϵ3)

ωΦ9
∣∣∣
N=−8

= 14ϵ

+
[
18Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)− 140Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7) + 315Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

− 70Γ2( 57)Γ
2( 27)Γ

2( 17)
] 196ϵ2

45Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7)

+ O(ϵ3) (5.6)

analytically which equates to

ωΦ5
∣∣∣
N=−4

= 6ϵ + 648.934900ϵ2 + O(ϵ3)

ωΦ7
∣∣∣
N=−6

= 10ϵ − 7713.844209ϵ2 + O(ϵ3)

ωΦ9
∣∣∣
N=−8

= 14ϵ + 79461.413957ϵ2 + O(ϵ3) (5.7)

numerically. Clearly the coefficient of the O(ϵ2) term is significantly large and that increases
with n. However this needs to be tempered by the fact that the limit of Dn is 2 as n increases.
Indeed with d = Dn − 2ϵ then setting ϵ = 1

(n−2) produces d = 2. However even with this choice of
ϵ the value of ω for the respective theories carries no meaning. One option would be to improve
the convergence by using a Padé approximant to estimate ω in d = 2. For n = 5 and 9, however,
the Padé approximant is singular in the range 2 < d < Dn since the correction term is positive.

This is not the case for n = 7 when a [1, 1] Padé approximant gives ωΦ7
∣∣∣
N=−6

= 0.012880 which

is significantly lower than the canonical value. What remains to be clarified is the effect of the
as yet uncalculated subsequent ϵ term would be to this estimate. Indeed a value of the O(ϵ2)
term could produce a non-singular Padé approximant for the other two theories.

Figure 7: Primitive graph contributing to second order β-function in non-supersymmetric ϕ5

theory.

6 Discussion.

The main interest in exploring the supersymmetric extension of theories with a potential with an
odd number of fields was to ascertain whether the OSp(1|2M) emergence of the non-supersymm-

19



etric case, [24], was maintained. It was not surprising that this is indeed the case, which we
expect to be manifest beyond the three cases studies in depth here, but there are subtle aspects
to the analysis. For instance the lowest order potential with n = 3 has been extensively studied
as it corresponds to the Wess-Zumino model, [13]. In that theory it was known that as a
consequence of the supersymmetry Ward identities the critical exponents of the basic fields of
the theory can be deduced exactly in the ϵ expansion near the model’s critical dimension. For the
extension to n > 3 with n odd none of these theories have an integer critical dimension. While
this may indicate limited physical interest Dn is relatively close to an integer dimension which
is either two or three. Therefore the convergence of critical exponent estimates for the variety of
fixed points we examined in the O(N) theory should be relatively quick. This was an important
exercise for this class of theories with non-integer dimensions. Aside from [24] there have been
other studies of the non-supersymmetric non-integer critical dimension theories, [27, 32, 33], with
that of the Blume-Capel model being just above three dimensions. In that case only the leading
order renormalization group functions are known since the underlying Feynman graphs are
straightforward to evaluate. However the corrections to the coupling constant renormalization
involve a significantly large number of graphs. One of these is illustrated in Figure 7. It is clearly
non-planar as well as being a primitive and has yet to be evaluated. It is likely to have to be
treated in the same way as the analogous graphs of ϕ6 theory in the third order determination
of its β-function, [37]. Clearly the graph is absent in the supersymmetric extension due to the
chiral property of the interaction which simplified the analysis of this article. Consequently it
has not been possible to ascertain whether the ϵ expansion of critical exponents in the Blume-
Capel case improves let alone obtain more accurate estimates. It is in this context that our
supersymmetric analysis has provided some insight. Even in this case, however, we expect there
to be a calculational hurdle to overcome at the next order to determine the β-function of the
supersymmetric theories which will have an intricacy akin to that of Figure 7.
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A Results for the O(N) Φ7 theory.

This appendix records the renormalization group functions for the O(N) symmetric theory based
on an n = 7 potential. These results and those for the other two O(N) theories are available in
electronic form in the associated data file. First the anomalous dimensions for the fields are

γΦ
7

Φ (gi) =
[
3N2g21 + 18Ng21 + 24g21 + 50Ng22 + 100g22 + 45g23

] Γ5( 15)
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−
[[
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2

+ 432000g21g
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2
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2
3
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2
3 + 18000N3g1g

2
2g3 + 144000N2g1g

2
2g3 + 360000Ng1g

2
2g3

+ 288000g1g
2
2g3 + 4050N2g1g2g3g4 + 24300Ng1g2g3g4 + 32400g1g2g3g4

+ 16250N3g42 + 265000N2g42 + 925000Ng42 + 920000g42
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+ 175500N2g22g
2
3 + 904500Ng22g

2
3 + 1107000g22g

2
3 + 6750Ng22g

2
4

+ 13500g22g
2
4 + 27000Ng2g

2
3g4 + 54000g2g

2
3g4 + 204525Ng43

+ 202500g43 + 22275g23g
2
4

]
Γ2( 45)Γ
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+
[
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2
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2
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2
2 + 960000g21g

2
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2
3
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2
3 + 423000Ng21g

2
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2
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2
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2
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Γ2( 25)Γ

12( 15)
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2
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+ O(g6i ) (A.1)

and

γΦ
7

σ (gi) =
[
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Consequently the supersymmetry Ward identities determine the four β-functions as
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+ 733248N2g41g2 + 1585152Ng41g2 + 1290240g41g2 + 6300N5g21g
3
2

+ 165000N4g21g
3
2 + 1599600N3g21g

3
2 + 7173600N2g21g

3
2

+ 14928000Ng21g
3
2 + 11520000g21g

3
2 + 12150N4g21g2g

2
3

+ 143100N3g21g2g
2
3 + 604800N2g21g2g

2
3 + 1080000Ng21g2g

2
3

+ 691200g21g2g
2
3 + 81000N4g1g

3
2g3 + 1440000N3g1g

3
2g3

+ 7812000N2g1g
3
2g3 + 16272000Ng1g

3
2g3 + 11520000g1g

3
2g3

+ 54000N3g1g
2
2g3g4 + 378000N2g1g

2
2g3g4 + 756000Ng1g

2
2g3g4

+ 432000g1g
2
2g3g4 + 208125N4g52 + 2912500N3g52 + 14622500N2g52

+ 29660000Ng52 + 20800000g52 + 2700000N3g32g
2
3 + 21600000N2g32g

2
3

+ 45900000Ng32g
2
3 + 27000000g32g

2
3 + 56250N2g32g

2
4 + 142500Ng32g

2
4

+ 60000g32g
2
4 + 2025000N2g22g

2
3g4 + 5130000Ng22g

2
3g4 + 2160000g22g

2
3g4

+ 3796875N2g2g
4
3 + 14175000Ng2g

4
3 + 6480000g2g

4
3 + 1822500Ng2g

2
3g

2
4

+ 405000g2g
2
3g

2
4 + 118125g2g

4
4

]
Γ2( 25)Γ

12( 15)
] 1

23328000Γ( 45)Γ(
2
5)

+ O(g7i ) (A.4)

βΦ7

3 (gi) =
[
5N3g21g3 + 42N2g21g3 + 112Ng21g3 + 96g21g3 + 375N2g22g3 + 950Ng22g3

+ 400g22g3 + 1125Ng33 + 180g33 + 75g3g
2
4

] Γ5( 15)

2160

−
[[
45N6g41g3 + 1188N5g41g3 + 13572N4g41g3 + 80352N3g41g3 + 253440N2g41g3

+ 400896Ng41g3 + 248832g41g3 + 7500N5g21g
2
2g3 + 139500N4g21g

2
2g3

+ 930000N3g21g
2
2g3 + 2790000N2g21g

2
2g3 + 3720000Ng21g

2
2g3

+ 1728000g21g
2
2g3 + 4050N4g21g

3
3 + 123660N3g21g

3
3 + 680400N2g21g

3
3

+ 1105920Ng21g
3
3 + 414720g21g

3
3 + 135000N4g1g

2
2g

2
3

+ 1152000N3g1g
2
2g

2
3 + 3276000N2g1g

2
2g

2
3 + 3600000Ng1g

2
2g

2
3

+ 1152000g1g
2
2g

2
3 + 54000N3g1g2g

2
3g4 + 340200N2g1g2g

2
3g4

+ 529200Ng1g2g
2
3g4 + 129600g1g2g

2
3g4 + 121875N4g42g3 + 2052500N3g42g3

+ 7997500N2g42g3 + 10600000Ng42g3 + 3680000g42g3 + 2340000N3g22g
3
3

+ 12762000N2g22g
3
3 + 18378000Ng22g

3
3 + 4428000g22g

3
3 + 168750N2g22g3g

2
4

+ 364500Ng22g3g
2
4 + 54000g22g3g

2
4 + 675000N2g2g

3
3g4 + 1458000Ng2g

3
3g4

+ 216000g2g
3
3g4 + 5113125N2g53 + 5880600Ng53 + 810000g53

+ 1336500Ng33g
2
4 + 89100g33g

2
4 + 70875g3g

4
4

]
Γ2( 45)Γ

13( 15)

+
[
4800N5g41g3 + 66600N4g41g3 + 357600N3g41g3 + 928800N2g41g3

24



+ 1171200Ng41g3 + 576000g41g3 + 18750N5g21g
2
2g3 + 487500N4g21g

2
2g3

+ 3315000N3g21g
2
2g3 + 8970000N2g21g

2
2g3 + 10200000Ng21g

2
2g3

+ 3840000g21g
2
2g3 + 112500N4g21g

3
3 + 1170000N3g21g

3
3

+ 4032000N2g21g
3
3 + 4932000Ng21g

3
3 + 1296000g21g

3
3

+ 11250N3g21g3g
2
4 + 72000N2g21g3g

2
4 + 117000Ng21g3g

2
4

+ 36000g21g3g
2
4 + 1406250N4g42g3 + 10500000N3g42g3

+ 26625000N2g42g3 + 25500000Ng42g3 + 6000000g42g3

+ 12656250N3g22g
3
3 + 39375000N2g22g

3
3 + 29925000Ng22g

3
3

+ 3600000g22g
3
3 + 1125000N2g22g3g

2
4 + 2475000Ng22g3g

2
4

+ 450000g22g3g
2
4 + 25312500N2g53 + 10125000Ng53 + 405000g53

+ 4218750Ng33g
2
4 + 337500g33g

2
4 + 168750g3g

4
4

]
Γ( 45)Γ(

2
5)Γ

10( 15)

+
[
45N6g41g3 + 1728N5g41g3 + 24228N4g41g3 + 164496N3g41g3

+ 574272N2g41g3 + 980736Ng41g3 + 645120g41g3 + 10500N5g21g
2
2g3

+ 250500N4g21g
2
2g3 + 2106000N3g21g

2
2g3 + 7602000N2g21g

2
2g3

+ 11496000Ng21g
2
2g3 + 5760000g21g

2
2g3 + 20250N4g21g

3
3

+ 213300N3g21g
3
3 + 756000N2g21g

3
3 + 993600Ng21g

3
3 + 345600g21g

3
3

+ 135000N4g1g
2
2g

2
3 + 2232000N3g1g

2
2g

2
3 + 10332000N2g1g

2
2g

2
3

+ 15696000Ng1g
2
2g

2
3 + 5760000g1g

2
2g

2
3 + 90000N3g1g2g

2
3g4

+ 567000N2g1g2g
2
3g4 + 882000Ng1g2g

2
3g4 + 216000g1g2g

2
3g4

+ 346875N4g42g3 + 4422500N3g42g3 + 19097500N2g42g3

+ 28480000Ng42g3 + 10400000g42g3 + 4500000N3g22g
3
3 + 32850000N2g22g

3
3

+ 54450000Ng22g
3
3 + 13500000g22g

3
3 + 93750N2g22g3g

2
4 + 202500Ng22g3g

2
4

+ 30000g22g3g
2
4 + 3375000N2g2g

3
3g4 + 7290000Ng2g

3
3g4 + 1080000g2g

3
3g4

+ 6328125N2g53 + 21262500Ng53 + 3240000g53 + 3037500Ng33g
2
4

+ 202500g33g
2
4 + 196875g3g

4
4

]
Γ2( 25)Γ

12( 15)
] 1

23328000Γ( 45)Γ(
2
5)

+ O(g7i ) (A.5)

and

βΦ7

4 (gi) =
[
7N3g21g4 + 42N2g21g4 + 56Ng21g4 + 525N2g22g4 + 1050Ng22g4

+ 1575Ng23g4 + 105g34

] Γ5( 15)

2160

−
[[
21N6g41g4 + 504N5g41g4 + 5124N4g41g4 + 25200N3g41g4 + 57792N2g41g4

+ 48384Ng41g4 + 3500N5g21g
2
2g4 + 61600N4g21g

2
2g4 + 372400N3g21g

2
2g4

+ 929600N2g21g
2
2g4 + 806400Ng21g

2
2g4 + 1890N4g21g

2
3g4 + 56700N3g21g

2
3g4

+ 287280N2g21g
2
3g4 + 362880Ng21g

2
3g4 + 63000N4g1g

2
2g3g4

+ 504000N3g1g
2
2g3g4 + 1260000N2g1g

2
2g3g4 + 1008000Ng1g

2
2g3g4

+ 25200N3g1g2g3g
2
4 + 151200N2g1g2g3g

2
4 + 201600Ng1g2g3g

2
4

+ 56875N4g42g4 + 927500N3g42g4 + 3237500N2g42g4 + 3220000Ng42g4

+ 1092000N3g22g
2
3g4 + 5628000N2g22g

2
3g4 + 6888000Ng22g

2
3g4 + 78750N2g22g

3
4

+ 157500Ng22g
3
4 + 315000N2g2g

2
3g

2
4 + 630000Ng2g

2
3g

2
4 + 2386125N2g43g4
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+ 2362500Ng43g4 + 623700Ng23g
3
4 + 33075g54

]
Γ2( 45)Γ

13( 15)

+
[
2100N5g41g4 + 25200N4g41g4 + 109200N3g41g4 + 201600N2g41g4

+ 134400Ng41g4 + 8750N5g21g
2
2g4 + 210000N4g21g

2
2g4

+ 1295000N3g21g
2
2g4 + 2940000N2g21g

2
2g4 + 2240000Ng21g

2
2g4

+ 52500N4g21g
2
3g4 + 504000N3g21g

2
3g4 + 1554000N2g21g

2
3g4

+ 1512000Ng21g
2
3g4 + 5250N3g21g

3
4 + 31500N2g21g

3
4 + 42000Ng21g

3
4

+ 656250N4g42g4 + 4375000N3g42g4 + 9625000N2g42g4 + 7000000Ng42g4

+ 5906250N3g22g
2
3g4 + 16012500N2g22g

2
3g4 + 8400000Ng22g

2
3g4

+ 525000N2g22g
3
4 + 1050000Ng22g

3
4 + 11812500N2g43g4

+ 2362500Ng43g4 + 1968750Ng23g
3
4 + 78750g54

]
Γ( 45)Γ(

2
5)Γ

10( 15)

+
[
21N6g41g4 + 756N5g41g4 + 9492N4g41g4 + 53984N3g41g4

+ 138432N2g41g4 + 125440Ng41g4 + 4900N5g21g
2
2g4 + 112000N4g21g

2
2g4

+ 870800N3g21g
2
2g4 + 2676800N2g21g

2
2g4 + 2688000Ng21g

2
2g4

+ 9450N4g21g
2
3g4 + 94500N3g21g

2
3g4 + 302400N2g21g

2
3g4

+ 302400Ng21g
2
3g4 + 63000N4g1g

2
2g3g4 + 1008000N3g1g

2
2g3g4

+ 4284000N2g1g
2
2g3g4 + 5040000Ng1g

2
2g3g4 + 42000N3g1g2g3g

2
4

+ 252000N2g1g2g3g
2
4 + 336000Ng1g2g3g

2
4 + 161875N4g42g4

+ 1977500N3g42g4 + 7857500N2g42g4 + 9100000Ng42g4

+ 2100000N3g22g
2
3g4 + 14700000N2g22g

2
3g4 + 21000000Ng22g

2
3g4

+ 43750N2g22g
3
4 + 87500Ng22g

3
4 + 1575000N2g2g

2
3g

2
4

+ 3150000Ng2g
2
3g

2
4 + 2953125N2g43g4 + 9450000Ng43g4

+ 1417500Ng23g
3
4 + 91875g54

]
Γ2( 25)Γ

12( 15)
] 1

7776000Γ( 45)Γ(
2
5)

+ O(g7i ) . (A.6)

B Renormalization group functions for the Φ9 theory with O(−8)
symmetry.

For completeness we present renormalization group functions for the Φ9 structure. In particular
we focus on the enhanced case of the O(N) theory when N = − 8. The field anomalous
dimensions are

γΦ
9

Φ (gi)

∣∣∣∣
N=−8

=
[
−16g21 + 392g22 − 490g23 + 35g24

] Γ7( 17)

25200

+
[[
122880g41 − 7902720g21g

2
3 + 873600g21g

2
4 + 31610880g1g

2
2g3

− 19756800g1g2g3g4 + 376320g1g2g4g5 − 110638080g42

− 69148800g22g
2
3 + 57953280g22g

2
4 − 493920g22g

2
5 + 276595200g2g

2
3g4

− 4939200g2g3g4g5 + 610814400g43 − 513676800g23g
2
4 + 2058000g23g

2
5

+ 2469600g3g
2
4g5 + 49098000g44 − 323400g24g

2
5

]
Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

+
[
36879360g21g

2
2 − 1806336g41 + 46099200g21g

2
3 − 17781120g21g

2
4

26



+ 82320g21g
2
5 + 1264962048g42 − 9487215360g22g

2
3 + 1710280320g22g

2
4

− 6050520g22g
2
5 + 13270807200g43 − 4154690400g23g

2
4 + 12605250g23g

2
5

+ 280917000g44 − 1260525g24g
2
5

]
Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+
[
86016g41 + 2107392g21g

2
2 − 7902720g21g

2
3 + 63221760g1g

2
2g3

+ 13171200g1g2g3g4 + 3292800g1g
2
3g5 − 66382848g42 + 92198400g22g

2
3

+ 165957120g22g
2
4 − 184396800g2g

2
3g4 − 69148800g2g3g4g5

+ 875884800g43 − 1261965600g23g
2
4 + 4321800g23g

2
5 + 86436000g3g

2
4g5

+ 123891600g44 − 2881200g24g
2
5

]
Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

+
[
14676480g21g

2
3 − 172032g41 − 2809856g21g

2
2 − 470400g21g

2
4

− 94832640g1g
2
2g3 + 6585600g1g2g3g4 + 878080g1g2g4g5

+ 149976064g42 + 176713600g22g
2
3 − 49172480g22g

2
4 − 384160g22g

2
5

+ 1014182400g2g
2
3g4 − 34574400g2g3g4g5 − 311169600g43

− 1071806400g23g
2
4 + 4802000g23g

2
5 + 28812000g3g

2
4g5 + 123891600g44

− 1440600g24g
2
5

]
Γ2( 57)Γ

2( 27)Γ
2( 17)

] Γ14( 17)

106686720000Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7)

+ O(g6i )

γΦ
9

σ (gi)

∣∣∣∣
N=−8

=
[
128g21 − 12544g22 + 39200g23 − 7840g24 + 35g25

] Γ7( 17)

201600

+
[[
63221760g21g

2
3 − 245760g41 − 11182080g21g

2
4 − 252887040g1g

2
2g3

+ 252887040g1g2g3g4 − 7526400g1g2g4g5 + 885104640g42

+ 885104640g22g
2
3 − 1159065600g22g

2
4 + 15805440g22g

2
5

− 5531904000g2g
2
3g4 + 158054400g2g3g4g5 − 12216288000g43

+ 16437657600g23g
2
4 − 115248000g23g

2
5 − 138297600g3g

2
4g5

− 2749488000g44 + 41395200g24g
2
5 − 132300g45

]
Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

+
[
4816896g41 − 354041856g21g

2
2 + 147517440g21g

2
3 + 136980480g21g

2
4

− 1317120g21g
2
5 − 2891341824g42 + 79511900160g22g

2
3

− 26331863040g22g
2
4 + 161347200g22g

2
5 − 203297472000g43

+ 109070707200g23g
2
4 − 605052000g23g

2
5 − 13391817600g44

+ 141178800g24g
2
5 − 360150g45

]
Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+
[
63221760g21g

2
3 − 172032g41 − 9633792g21g

2
2 − 505774080g1g

2
2g3

− 168591360g1g2g3g4 − 65856000g1g
2
3g5 + 531062784g42

− 1180139520g22g
2
3 − 3319142400g22g

2
4 + 3687936000g2g

2
3g4

+ 2212761600g2g3g4g5 − 17517696000g43 + 40382899200g23g
2
4

− 242020800g23g
2
5 − 4840416000g3g

2
4g5 − 6937929600g44

+ 368793600g24g
2
5 − 1620675g45

]
Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

+
[
344064g41 + 12845056g21g

2
2 − 117411840g21g

2
3 + 6021120g21g

2
4

+ 758661120g1g
2
2g3 − 84295680g1g2g3g4 − 17561600g1g2g4g5

− 1199808512g42 − 2261934080g22g
2
3 + 983449600g22g

2
4

27



+ 12293120g22g
2
5 − 20283648000g2g

2
3g4 + 1106380800g2g3g4g5

+ 6223392000g43 + 34297804800g23g
2
4 − 268912000g23g

2
5

− 1613472000g3g
2
4g5 − 6937929600g44 + 184396800g24g

2
5

− 720300g45)
]
Γ2( 57)Γ

2( 27)Γ
2( 17)

] Γ14( 17)

213373440000Γ( 67)Γ(
5
7)Γ(

3
7)Γ(

2
7)

+ O(g6i ) . (B.1)

The corresponding β-functions are

βΦ9

1 (gi)

∣∣∣∣
N=−8

=
[
1792g22 − 128g21 + 1120g23 − 800g24 + 5g25

] Γ7( 17)g1
28800

+
[[
245760g41 − 9031680g21g

2
3 + 399360g21g

2
4 + 36126720g1g

2
2g3

− 9031680g1g2g3g4 − 215040g1g2g4g5 − 126443520g42 − 31610880g22g
2
3

− 33116160g22g
2
4 + 1128960g22g

2
5 − 158054400g2g

2
3g4

+ 11289600g2g3g4g5 − 349036800g43 + 1174118400g23g
2
4

− 11760000g23g
2
5 − 14112000g3g

2
4g5 − 280560000g44 + 5174400g24g

2
5

− 18900g45

]
Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

+
[
33718272g21g

2
2 − 3440640g41 + 126443520g21g

2
3 − 21073920g21g

2
4

+ 2478292992g42 − 10326220800g22g
2
3 + 147517440g22g

2
4

+ 9219840g22g
2
5 + 1290777600g43 + 6085094400g23g

2
4

− 57624000g23g
2
5 − 1271020800g44 + 17287200g24g

2
5

− 51450g45

]
Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+
[
172032g41 + 3440640g21g

2
2 − 9031680g21g

2
3 + 72253440g1g

2
2g3

+ 6021120g1g2g3g4 − 1881600g1g
2
3g5 − 75866112g42

+ 42147840g22g
2
3 − 94832640g22g

2
4 + 105369600g2g

2
3g4

+ 158054400g2g3g4g5 − 500505600g43 + 2884492800g23g
2
4

− 24696000g23g
2
5 − 493920000g3g

2
4g5 − 707952000g44

+ 46099200g24g
2
5 − 231525g45

]
Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

+
[
16773120g21g

2
3 − 344064g41 − 4587520g21g

2
2 − 215040g21g

2
4

− 108380160g1g
2
2g3 + 3010560g1g2g3g4 − 501760g1g2g4g5

+ 171401216g42 + 80783360g22g
2
3 + 28098560g22g

2
4 + 878080g22g

2
5

− 579532800g2g
2
3g4 + 79027200g2g3g4g5 + 177811200g43

+ 2449843200g23g
2
4 − 27440000g23g

2
5 − 164640000g3g

2
4g5

− 707952000g44 + 23049600g24g
2
5

− 102900g45

]
Γ2( 57)Γ

2( 27)Γ
2( 17)

] Γ14( 17)g1
30481920000Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+ O(g7i )

βΦ9

2 (gi)

∣∣∣∣
N=−8

=
[
31360g23 − 128g21 − 6272g22 − 7280g24 + 35g25

] Γ7( 17)g2
67200

+
[[
245760g41 + 31610880g21g

2
3 − 7687680g21g

2
4 − 126443520g1g

2
2g3

+ 173859840g1g2g3g4 − 6021120g1g2g4g5 + 442552320g42

28



+ 608509440g22g
2
3 − 927252480g22g

2
4 + 13829760g22g

2
5

− 4425523200g2g
2
3g4 + 138297600g2g3g4g5 − 9773030400g43

+ 14382950400g23g
2
4 − 107016000g23g

2
5 − 128419200g3g

2
4g5

− 2553096000g44 + 40101600g24g
2
5 − 132300g45

]
Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

+
[
331914240g21g

2
3 − 2408448g41 − 206524416g21g

2
2 + 65856000g21g

2
4

− 987840g21g
2
5 + 2168506368g42 + 41563038720g22g

2
3

− 19490741760g22g
2
4 + 137145120g22g

2
5 − 150214243200g43

+ 92451945600g23g
2
4 − 554631000g23g

2
5 − 12268149600g44

+ 136136700g24g
2
5 − 360150g45

]
Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+
[
172032g41 − 1204224g21g

2
2 + 31610880g21g

2
3 − 252887040g1g

2
2g3

− 115906560g1g2g3g4 − 52684800g1g
2
3g5 + 265531392g42

− 811345920g22g
2
3 − 2655313920g22g

2
4 + 2950348800g2g

2
3g4

+ 1936166400g2g3g4g5 − 14014156800g43 + 35335036800g23g
2
4

− 224733600g23g
2
5 − 4494672000g3g

2
4g5 − 6442363200g44

+ 357268800g24g
2
5 − 1620675g45

]
Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

+
[
1605632g21g

2
2 − 344064g41 − 58705920g21g

2
3 + 4139520g21g

2
4

+ 379330560g1g
2
2g3 − 57953280g1g2g3g4 − 14049280g1g2g4g5

− 599904256g42 − 1555079680g22g
2
3 + 786759680g22g

2
4

+ 10756480g22g
2
5 − 16226918400g2g

2
3g4 + 968083200g2g3g4g5

+ 4978713600g43 + 30010579200g23g
2
4 − 249704000g23g

2
5

− 1498224000g3g
2
4g5 − 6442363200g44 + 178634400g24g

2
5

− 720300g45

]
Γ2( 57)Γ

2( 27)Γ
2( 17)

] Γ14( 17)g2
71124480000Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+ O(g7i )

βΦ9

3 (gi)

∣∣∣∣
N=−8

=
[
128g21 − 50176g22 + 180320g23 − 38080g24 + 175g25

] Γ7( 17)g3
201600

+
[[
252887040g21g

2
3 − 245760g41 − 48921600g21g

2
4 − 1011548160g1g

2
2g3

+ 1106380800g1g2g3g4 − 34621440g1g2g4g5 + 3540418560g42

+ 3872332800g22g
2
3 − 5331701760g22g

2
4 + 75075840g22g

2
5

− 25446758400g2g
2
3g4 + 750758400g2g3g4g5 − 56194924800g43

+ 78078873600g23g
2
4 − 559776000g23g

2
5 − 671731200g3g

2
4g5

− 13354656000g44 + 204388800g24g
2
5 − 661500g45

]
Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

+
[
9633792g41 − 1475174400g21g

2
2 + 1106380800g21g

2
3 + 542653440g21g

2
4

− 5927040g21g
2
5 − 4337012736g42 + 321661777920g22g

2
3

− 117977072640g22g
2
4 + 758331840g22g

2
5 − 910320902400g43

+ 512116012800g23g
2
4 − 2924418000g23g

2
5 − 64711752000g44

+ 695809800g24g
2
5 − 1800750g45

]
Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+
[
252887040g21g

2
3 − 172032g41 − 31309824g21g

2
2 − 2023096320g1g

2
2g3
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− 737587200g1g2g3g4 − 302937600g1g
2
3g5 + 2124251136g42

− 5163110400g22g
2
3 − 15268055040g22g

2
4 + 16964505600g2g

2
3g4

+ 10510617600g2g3g4g5 − 80581401600g43 + 191818771200g23g
2
4

− 1175529600g23g
2
5 − 23510592000g3g

2
4g5 − 33698515200g44

+ 1820918400g24g
2
5 − 8103375g45

]
Γ2( 67)Γ(

3
7)Γ(

2
7)Γ

2( 17)

+
[
344064g41 + 41746432g21g

2
2 − 469647360g21g

2
3 + 26342400g21g

2
4

+ 3034644480g1g
2
2g3 − 368793600g1g2g3g4 − 80783360g1g2g4g5

− 4799234048g42 − 9895961600g22g
2
3 + 4523868160g22g

2
4

+ 58392320g22g
2
5 − 93304780800g2g

2
3g4 + 5255308800g2g3g4g5

+ 28627603200g43 + 162914572800g23g
2
4 − 1306144000g23g

2
5

− 7836864000g3g
2
4g5 − 33698515200g44 + 910459200g24g

2
5

− 3601500g45

]
Γ2( 57)Γ

2( 27)Γ
2( 17)

] Γ14( 17)g3
213373440000Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7))

+ O(g7i )

βΦ9

4 (gi)

∣∣∣∣
N=−8

=
[
640g21 − 81536g22 + 266560g23 − 54320g24 + 245g25

] Γ7( 17)g4
201600

+
[[
410941440g21g

2
3 − 1228800g41 − 74780160g21g

2
4 − 1643765760g1g

2
2g3

+ 1691182080g1g2g3g4 − 51179520g1g2g4g5 + 5753180160g42

+ 5919137280g22g
2
3 − 7881646080g22g

2
4 + 108662400g22g

2
5

− 37616947200g2g
2
3g4 + 1086624000g2g3g4g5 − 83070758400g43

+ 113008896000g23g
2
4 − 798504000g23g

2
5 − 958204800g3g

2
4g5

− 19050024000g44 + 288472800g24g
2
5 − 926100g45

]
Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

+
[
26492928g41 − 2330775552g21g

2
2 + 1217018880g21g

2
3 + 887738880g21g

2
4

− 8890560g21g
2
5 − 15179544576g42 + 518634439680g22g

2
3

− 177481920000g22g
2
4 + 1105228320g22g

2
5 − 1369999075200g43

+ 746876188800g23g
2
4 − 4184943000g23g

2
5 − 92619055200g44

+ 983209500g24g
2
5 − 2521050g45

]
Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+
[
410941440g21g

2
3 − 860160g41 − 59006976g21g

2
2 − 3287531520g1g

2
2g3

− 1127454720g1g2g3g4 − 447820800g1g
2
3g5 + 3451908096g42

− 7892183040g22g
2
3 − 22570168320g22g

2
4 + 25077964800g2g

2
3g4

+ 15212736000g2g3g4g5 − 119120332800g43 + 277632432000g23g
2
4

− 1676858400g23g
2
5 − 33537168000g3g

2
4g5 − 48069940800g44

+ 2570030400g24g
2
5 − 11344725g45

]
Γ2( 67)Γ(

3
7)Γ(

2
7)Γ

2( 17)

+
[
1720320g41 + 78675968g21g

2
2 − 763176960g21g

2
3 + 40266240g21g

2
4

+ 4931297280g1g
2
2g3 − 563727360g1g2g3g4 − 119418880g1g2g4g5

− 7798755328g42 − 15126684160g22g
2
3 + 6687457280g22g

2
4

+ 84515200g22g
2
5 − 137928806400g2g

2
3g4 + 7606368000g2g3g4g5

+ 42319065600g43 + 235797408000g23g
2
4 − 1863176000g23g

2
5
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− 11179056000g3g
2
4g5 − 48069940800g44 + 1285015200g24g

2
5

− 5042100g45))
]
Γ2( 57)Γ

2( 27)Γ
2( 17)

] Γ14( 17)g4
213373440000Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+ O(g7i )

βΦ9

5 (gi)

∣∣∣∣
N=−8

=
[
128g21 − 12544g22 + 39200g23 − 7840g24 + 35g25

] Γ7( 17)g5
22400

+
[[
63221760g21g

2
3 − 245760g41 − 11182080g21g

2
4 − 252887040g1g

2
2g3

+ 252887040g1g2g3g4 − 7526400g1g2g4g5 + 885104640g42

+ 885104640g22g
2
3 − 1159065600g22g

2
4 + 15805440g22g

2
5

− 5531904000g2g
2
3g4 + 158054400g2g3g4g5 − 12216288000g43

+ 16437657600g23g
2
4 − 115248000g23g

2
5 − 138297600g3g

2
4g5

− 2749488000g44 + 41395200g24g
2
5 − 132300g45

]
Γ2( 67)Γ(

5
7)Γ(

3
7)Γ

3( 17)

+
[
4816896g41 − 354041856g21g

2
2 + 147517440g21g

2
3 + 136980480g21g

2
4

− 1317120g21g
2
5 − 2891341824g42 + 79511900160g22g

2
3

− 26331863040g22g
2
4 + 161347200g22g

2
5 − 203297472000g43

+ 109070707200g23g
2
4 − 605052000g23g

2
5 − 13391817600g44

+ 141178800g24g
2
5 − 360150g45

]
Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+
[
63221760g21g

2
3 − 172032g41 − 9633792g21g

2
2 − 505774080g1g

2
2g3

− 168591360g1g2g3g4 − 65856000g1g
2
3g5 + 531062784g42

− 1180139520g22g
2
3 − 3319142400g22g

2
4 + 3687936000g2g

2
3g4

+ 2212761600g2g3g4g5 − 17517696000g43 + 40382899200g23g
2
4

− 242020800g23g
2
5 − 4840416000g3g

2
4g5 − 6937929600g44

+ 368793600g24g
2
5 − 1620675g45

]
Γ( 67)Γ

2( 37)Γ(
2
7)Γ

2( 17)

+
[
+344064g41 + 12845056g21g

2
2 − 117411840g21g

2
3 + 6021120g21g

2
4

+ 758661120g1g
2
2g3 − 84295680g1g2g3g4 − 17561600g1g2g4g5

− 1199808512g42 − 2261934080g22g
2
3 + 983449600g22g

2
4

+ 12293120g22g
2
5 − 20283648000g2g

2
3g4 + 1106380800g2g3g4g5

+ 6223392000g43 + 34297804800g23g
2
4 − 268912000g23g

2
5

− 1613472000g3g
2
4g5 − 6937929600g44 + 184396800g24g

2
5

− 720300g45))
]
Γ2( 57)Γ

2( 27)Γ
2( 17)

] Γ14( 17)g5
23708160000Γ( 67)Γ(

5
7)Γ(

3
7)Γ(

2
7)

+ O(g7i ) . (B.2)
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[2] B. Roy, V. Juric̆ić & I.F. Herbut, Phys. Rev. B87 (2013), 041401(R).

[3] L. Fei, S. Giombi, I.R. Klebanov & G. Tarnopolsky, Prog. Theor. Exp. Phys. (2016) 12C105.

31



[4] D. Gross & A. Neveu, Phys. Rev. D10 (1974), 3235.

[5] J. Zinn-Justin, Nucl. Phys. B367 (1991), 105.

[6] T. Grover, D.N. Sheng & A. Vishwanath, Science 344 (2014), 280.

[7] N. Zerf, C.-H. Lin & J. Maciejko, Phys. Rev. B94 (2016), 205106.

[8] L.N. Mihaila, N. Zerf, B. Ihrig, I.F. Herbut & M.M. Scherer, Phys. Rev. B96 (2017),
165133.

[9] N. Zerf, L.N. Mihaila, P. Marquard, I.F. Herbut & M.M. Scherer, Phys. Rev. D96 (2017),
096010.

[10] B. Ihrig, L.N. Mihaila & M.M. Scherer, Phys. Rev. B98 (2018), 125109.

[11] N. Bobev, S. El-Showk, D. Mazác̆ & M.F. Paulos, Phys. Rev. Lett. 115 (2015), 051601.

[12] M. Baggio, N. Bobev, S.M. Chester, E. Lauria & S.S. Pufu, JHEP 02 (2018), 062.

[13] J. Wess & B. Zumino, Phys. Lett. B49 (1974), 52.

[14] J.A. Gracey, Phys. Rev. D105 (2022), 025004.

[15] P.K. Townsend & P. van Nieuwenhuizen, Phys. Rev. D20 (1979), 1832.

[16] L. Abbott & M.T. Grisaru, Nucl. Phys. B169 (1980), 415.

[17] A. Sen & M.K. Sundaresan, Phys. Lett. B101 (1981), 61.

[18] L.V. Avdeev, S.G. Gorishny, A.Yu. Kamenshchik & S.A. Larin, Phys. Lett. B117 (1982),
321.

[19] L. Janssen & I.F. Herbut, Phys. Rev. B89 (2014), 205403.

[20] L. Fei, S. Giombi & I.R. Klebanov, Phys. Rev. D90 (2014), 025018.

[21] I.F. Herbut & L. Janssen, Phys. Rev. D93 (2016), 085005.

[22] D. Roscher & I.F. Herbut, Phys. Rev. D97 (2018), 116019.

[23] J.A. Gracey, I.F. Herbut & D. Roscher, Phys. Rev. D98 (2018), 096014.

[24] I.R. Klebanov, Phys. Rev. Lett. 128 (2022), 061601.

[25] M. Blume, Phys. Rev. 141 (1966), 517.

[26] W. Capel, Physica 32 (1966), 966.

[27] L. Zambelli & O. Zanusso, Phys. Rev. D95 (2017), 085001.

[28] A. Codello, N. Defenu & G. D’Odorico, Phys. Rev. D91 (2015), 105003.

[29] A. Codello, M. Safari, G.P. Vacca & O. Zanusso, Phys. Rev. D96 (2017), 081701.

[30] R. Ben Al̀ı Zinati & A. Codello, J. Stat. Mech. 1801 (2018), 013206.

[31] K. Fujikawa & W. Lang, Nucl. Phys. B88 (1975), 61.

[32] A. Codello, M. Safari, G.P. Vacca & O. Zanusso, JHEP 1704 (2017), 127.

32



[33] J.A. Gracey, Eur. Phys. J. C80 (2020), 604.

[34] J.A.M. Vermaseren, math-ph/0010025.

[35] M. Tentyukov & J.A.M. Vermaseren, Comput. Phys. Commun. 181 (2010), 1419.

[36] P. Nogueira, J. Comput. Phys. 105 (1993), 279.

[37] J.S. Hager, J. Phys. A35 (2002), 2703.

[38] J.C. Collins & J.A.M. Vermaseren, arXiv:1606.01177 [cs.OH].

33


