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Abstract. We renormalize models with scalar chiral superfields with an odd superpotential to
several orders in perturbation theory. These extensions of the cubic Wess-Zumino model are
renormalizable in spacetime dimensions which are rational. When endowed with an O(N) sym-
metry it is shown that they share the same property as their non-supersymmetric counterparts
in that at a particular fixed point there is an emergent OSp(1|n — 1) symmetry, where n is
the power of the superpotential. This is shown at a loop order beyond that for which it was
established in the parallel non-supersymmetric theory.



1 Introduction.

One of the more interesting developments in quantum field theory in recent years has been that
of emergent symmetries particularly in the case when a model of bosons and fermions develops
a configuration that possesses supersymmetry, [1, 2, 3]. Emergent properties derive from the
critical point analysis of the renormalization group functions of a multicoupling theory when
treated in d-dimensions. Ordinarily in a single coupling theory the S-function has a Wilson-
Fisher fixed point given by the first non-trivial zero of the d-dimensional -function. By contrast
in the multicoupling case even with two coupling constants one can have a rich spectrum of fixed
points in d-dimensions, [2, 3]. These can be stable in the ultraviolet limit or alternatively in
the infrared if the running is in that direction, in addition to the presence of saddle points. At
each critical point the values of critical exponents can be determined in the € expansion where
€ is a measure of the difference between d and the critical dimension of the theory. The concept
of emergence then arises when a fixed point possesses an enlarged or extended symmetry over
and above that of the fields in the original underlying Lagrangian. To illustrate the background
to this, for instance, one well-studied case is that of the Gross-Neveu-Yukawa (GNY) system,
[4, 5], which is important for phase transitions in condensed matter systems. A comprehensive
review can be found for instance in [3].

In these GNY models one has several scalar fields coupled to a multiplet of fermions in a
flavour symmetry group. It transpires that at one particular fixed point and a specific number
of flavours the condition is met for the presence of supersymmetry, [1, 2, 6, 7]. By this we mean
the critical point values of the two originally distinct coupling constants become equal. This
is not sufficient for there to be supersymmetry alone. Instead it is also the observation that
the field anomalous dimensions at this specific fixed point become equal. This occurs in the
GNY related models of the chiral Ising and chiral XY models when the parameter N takes the
respective values of N = % and N = %, [1, 2, 7] and has subsequently been verified up to four
loops, [7, 8, 9, 10]. In addition to the criteria for supersymmetry being satisfied at four loops
at one particular fixed point, the critical properties there have been connected, [11, 12], for
example, to those of the Wess-Zumino model, [13]. This has been demonstrated to three loops,
[12], and more recently at four loops, [14], using the explicit results of the renormalization group
functions in the Wess-Zumino model available in [13, 15, 16, 17, 18]. More recently the Wess-
Zumino model has been renormalized to five loops in various schemes, [14], in preparation for
verifying the emergence in the GNY system to the next order. In other words one can interpret
the emergent supersymmetric theory of the GNY system as that of the Wess-Zumino model.
This is important as it is believed that supersymmetry may be present in some condensed
matter systems, like those on the boundaries of three dimensional topological insulators, [6],
and so may be described by Wess-Zumino models. Interestingly the GNY model has a structure
that is similar to the Standard Model of particle physics where the scalar field is analogous to
the Higgs field. Therefore it has already been noted in, for instance, [9], that such emergence
properties of the relatively simple GNY model could equally hold in the Standard Model. If so
there is the possibility that an emergent supersymmetry could be a route to an extension of the
Standard Model.

It is worth stressing that emergent symmetries do not always lead to supersymmetry. For
instance, in a particular scalar cubic theory, [20, 21, 22, 23], which is renormalizable in six
dimensions, it was shown in [23], that an emergent flavour symmetry is present. In particular
the O(3) symmetry of the original Lagrangian enhanced to an SU(3) one at a particular critical
point. A more recent example of such a flavour symmetry emergence was discussed in [24].
In that work scalar field theories with an O(N) symmetry and potentials with an odd power
were studied. Although they are renormalizable in rational spacetime dimensions, for specific



values of N there is a fixed point with an emergent OSp(1|2M ) symmetry, [24]. The case of the
quintic theory or Blume-Capel theory, [25, 26], was of particular interest, [27, 28, 29, 30], given
that it is the next theory in the sequence after ¢ theory that underlies the Ising and Lee-Yang
universality classes and has a rational critical dimension close to three dimensions. However,
the underlying mechanism of the emergence in this instance was that the anomalous dimensions
of the fields in the O(N) multiplet became equal to that of another scalar field in the theory.
This field was analogous to the o field that arises in the O(/V) nonlinear sigma model. Indeed
the sigma model is the first in the sequence of such odd power potentials for this OSp(1|2M)
emergence to arise. The next model in the sequence after the sigma model is the cubic theory
akin to the one mentioned earlier. Indeed it is structurally similar to the Wess-Zumino model
in its superfield formulation with chiral superfields. Therefore given the parallel nature of the
scalar cubic theory with the Wess-Zumino model a natural question to ask is whether there is an
analogous sequence of supersymmetric models that is parallel to those considered in [24] which
have an emergent OSp(1|2M) symmetry.

This is the main aim of this article. It is possible to formulate these generalized Wess-Zumino
theories given the superspace techniques that allowed the original component field formulation
of the Wess-Zumino model, [13], to be rewritten in terms of chiral superfields, [31]. One con-
sequence was that the Wess-Zumino model was renormalized in an efficient way to very high
loop order, [14, 16, 18]. Therefore we will construct the relevant superspace actions for such a
sequence of chirally supersymmetric theories and then renormalize them to second order which
will be at an order beyond that considered in the scalar case of [24]. This is primarily due
to the chiral property which rules out a substantial number of higher order graphs that would
ordinarily have to be determined for the wave function renormalization. Moreover the underly-
ing supersymmetry Ward identity, [1, 2], means that the S-functions will follow trivially from
the field anomalous dimensions. One concern with following such a superspace approach here
might be its relation with the associated component theory especially in light of the potential
unequal boson and fermion degrees of freedom in a non-integer dimension. A similar issue arises
when one regularizes a supersymmetric component Lagrangian. It is known that while canonical
dimensional regularization does not preserve supersymmetry there is a way to circumvent the
degrees of freedom imbalance that is the underlying reason for this. Instead a modified regu-
larization is used known as dimensional reduction and involves the presence of additional fields
termed € scalars. They inhabitat the subspace of the regularizing spacetime that excludes the
critical dimension spacetime. Such additional fields are absent in the critical dimension of the
theory but their presence preserves the supersymmetry property of that physical space. In the
rational spacetime such fields will naturally also be necessary to preserve the degrees of freedom
in the associated component theory. What would also be the case is that such a component
theory will have a non-supersymmetric associate which has the same Lagrangian but each in-
teraction has a different coupling constant. Indeed it will be of a similar nature to the three
dimensional GNY systems that have an emergent supersymmetry where not only will there be
a fixed point where all the critical couplings are equal but the field anomalous dimensions will
all be the same. In the three dimensional GNY case the underlying supersymmetric theory is
the four dimensional Wess-Zumino model. Indeed it can be formulated in superspace and the €
expansion of its critical exponents agree precisely with the e expansion of the exponents of the
emergent supersymmetric fixed point of the related GNY system. In regard to the generalized
Wess-Zumino theories we take a similar point of view that they in fact represent the emergent
supersymmetric fixed point of the associated non-supersymmetric partner theory. In studying
the fixed point structures in the supersymmetric theories an OSp(1|2M) emergent symmetry
will be present but it arises in a subtle way compared to the scalar case of [24]. Aside from this
main goal we will examine a more mundane aspect of the e expansion in this class of theories



with an odd power potential. For instance, the scalar quintic or Blume-Capel theory has a crit-
ical dimension of 10 which is close to the integer dimension of three. Therefore in d = ? — 2¢
dimensions the Value of € needed to reach that integer dimension is relatively small compared
to a theory with a critical dimension of four for example. In other words the convergence of
the € expansion in a quintic scalar theory should be quick. Unfortunately with the inability to
compute corrections beyond the leading order in that case due to difficult Feynman integrals,
which will be illustrated later, this convergence issue cannot be readily studied. In the super-
symmetric extension however we will be able to proceed to the next order as the corresponding
difficult graphs are excluded by the chiral property. Thus we will examine convergence issues
albeit in a simialar although different class of theories.

The paper is organized as follows. We devote Section 2 to renormalizing the basic chirally
supersymmetric scalar theories with an odd potential to the first few orders. While we will
concentrate on three specific theories some properties of critical exponents are provided for all
models with odd potentials. To examine the emergent symmetry property we construct the
O(N) versions of the specific theories in Section 3 before renormalizing them to allow us to
analyse their fixed point properties in Section 4. In Section 5 we concentrate on establishing
the OSp(1|2M) enhancement at one particular critical point before summarizing our study in
Section 6. An appendix provides explicit expressions for the renormalization group functions of
several of the O(N) theories we focus on.

2 Background.

First we consider the action of the most general superpotential with a chiral superfield which is
given by

Sy = / dz [ / Q20420 B (x, 0)e 20D, (. ) / P26 37 (z, ) / 265" (z 9)}

(2.1)
where 6 and 6 are anti-commuting superspace coordinates and we use type I superfields with
the subscript  denoting bare quantities and ¢ is the coupling constant. The kinetic term follows
that used in the Wess-Zumino model, [16, 18, 31], where the 2 x 2 covariant Pauli matrices
o play the role of the usual Dirac y-matrices and satisfy the same Clifford algebra. We use a
variation on the canonical notation by defining § = o#0,,. At this stage we have not specified
the canonical dimension of the action as n is an arbitrary integer here. However it is a simple
exercise to deduce that the critical dimension D,, of (2.1) is

2(n—1)

= iy

(2.2)
Clearly there are only two cases where D,, is an integer which are D3 = 4 and D4 = 3 with the
former corresponding to the Wess-Zumino model. Subsequent potentials give D5 = %, Dg = %,
D7 = 22 Dy = T and Dy = L8 with lim, o D, = 2. It is worth contrasting (2.2) with the
critical dimension of the corresponding non-supersymmetric theories which is, [27, 32, 33],

2n
(n—2)

D;calar _ (2_3)

In other words for each integer n > 3 this is the dimension where the coupling constant is dimen-
sionless. The origin of the difference with D,, is the integration measure over the dimensionful
anticommuting spacetime coordinates in (2.1). The n = 5 potential shares a similar property to
its non-supersymmetric counterpart in that its critical dimension is close to three dimensions.



The bare quantities in (2.1) are related to their renormalized partners via

(I)o = \/Zq,(I) s (i)O = \/Zcp‘i) , Jo = ,ue gd (2.4)

where we will dimensionally regularize the superspace action in d = D,, — 2¢ dimensions. The
arbitrary mass scale p being introduced to ensure the coupling constant remains dimensionless
in the regularized theory. Like the Wess-Zumino model the suite of n dependent actions each
satisfy a supersymmetry Ward identity which follows simply by generalizing the argument given
in [13, 15, 31]. This means that there is only one independent renormalization constant since
the Ward identity implies

Z,72% = 1. (2.5)

This provides a simple strategy to determine the S-function of (2.1) since Z; can be deduced
from Zg which means we only need to renormalize the 2-point function. In other words vertex
functions are finite and so do not need to be evaluated. A further simplification comes from the
use of superspace techniques. From the action (2.1) the propagator in momentum superspace
is, [18],

exp (20)0)

2

which means that prior to carrying out the integration over the loop momenta the 6 coordinate
integration has to be performed. As these variables are anti-commuting the exponential asso-
ciated with each propagator will truncate after a finite number of terms. Once this has been
implemented the f-integration is carried out. As this effectively equates to differentiating with
respect to the internal anticommuting variables, and is equivalent to the so-called D-algebra, it
results in simple traces over the covariant Pauli matrices. This procedure is based on the ap-
proach used in the four loop renormalization of the Wess-Zumino model, [18], and more recently
at five loops, [14]. In the latter case the 6 coordinate integration for each graph was carried out
automatically through a routine written in the symbolic manipulation language FORM, [34, 35].
We have used that same procedure for each of the three cases we focus on here. These will be
the n = 5, 7 and 9 potentials. Once the 8 integration has been carried out the integration over
the loop momenta remains. For (2.1) this is possible for both the first two orders of graphs that
contribute.

(D(p,0)®(—p,0)) = (2.6)

N

Figure 1: Basic one and two loop topologies for a 2-point function in a scalar cubic theory.

To appreciate this for theories with higher order potentials it is instructive to focus for the
moment on the basic one and two loop topologies that can arise in a scalar ¢3 theory. These
are illustrated in Figure 1. For the Wess-Zumino model, which has a cubic interaction, these
are in principle the only topologies that would determine the S-function. However the Wess-
Zumino model is the n = 3 version of (2.1) and has a chiral symmetry. This implies that the
propagators are directed and in a Feynman diagram have an arrow on each line. Moreover the
chirality means that at a vertex the arrows all point towards the interaction location or away
from it. Simple reasoning indicates that this ordering excludes any topology where there is a
subgraph with an odd number of propagators. So in Figure 1 the second two loop graph is



excluded. The relevance of this to (2.1) for odd values of n > 3 is that for these higher order
potentials the 2-point function graphs will have the same underlying topological structure. This
can be observed at leading order for (2.1) where the only contributing graph is given in Figure 2.
The number beside ellipses between propagators will always indicate the number of propagators
between and including the bounding propagators. In this and subsequent figures lines will be
directed with arrows reflecting the underlying chirality. The relation of the graph of Figure
2 to the first topology of Figure 1 can be seen by notionally deleting the number of internal
lines connecting each vertex to leave vertices with only three lines. By way of example this
observation with the core topologies of Figure 1 at next order can be viewed in the n = 5 case
where the graphs are shown in Figure 3. These and the graphs for all the other theories have
been generated with the QGRAF package, [36]. It is evident that each of the three graphs of
Figure 3 are extensions of the middle topology of Figure 1 where propagators are added to each
vertex in such a way that five propagators intersect there.

Figure 2: Leading order (n — 2) loop graph for ®" 2-point function.

As the structure of the leading two orders of 2-point function graphs is relatively simple the
implementation of the D-algebra resulting from the 6 integration is straightforward. This is in
part due to the simple bubble graphs that comprise each 2-point function for (2.1) when n is odd.
For each of the topologies beyond leading order the only minor complication is that the loop
integrals of each central bubble in the three bubble sequence has a contraction of two internal
loop momenta. This is not a hindrance to evaluating a graph as one simply makes use of the
momentum conservation to rewrite the scalar product in terms of the squares of the momenta of
related propagators. In other words the effect of the D-algebra at this order is the removal of a
propagator from the original topology similar to what was observed in the Wess-Zumino model,
[18]. The consequence of the D-algebra is that all the Feynman integrals at the leading two
orders are quickly reduced to simple scalar bubble integrals which are elementary to evaluate.

If we focus for the moment on the case of n = 5 applying the algorithm to the ®° theory we
find that the anomalous dimension is

 \Brda

6 2
&5 4m°a
7= sy

729T9(2)

— [40v3r® 4+ 8173 (2)] + 0(a®) (2.7)
where here and elsewhere the factor arising from the surface area of the d-dimensional unit
sphere is absorbed in the combination

M (2.8)

(4m) 3"

In (2.7) we have applied the identity
(2.9)

to simplify the expression. While there are three higher order graphs there are only two terms
at O(a?). The second of these two terms arises from the final graph of Figure 3 and this graph
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Figure 3: Six loop graphs for ®° theory 2-point function.

is the insertion of Figure 2 on one of the internal lines of the graph itself when n = 5. The
remaining two graphs correspond to vertex corrections arising from the graph of Figure 4. As
it is clearly finite this means that the first two graphs of Figure 3 are primitives.

Figure 4: Leading order vertex correction for ®° theory.

Having discussed the n = 5 case in detail the procedure to renormalize the other two cases
we consider here, n = 7 and 9, is completely parallel. The main differences, however, rest
in the increase in the number of graphs for each theory which are illustrated respectively in
Figures 5 and 6. Again the final graph of each figure corresponds to the self-energy correction
on a propagator of the leading order 2-point function. This means the remaining graphs are
all primitives as they contain vertex subgraph corrections and the leading order vertex graph is
finite. The resulting anomalous dimensions for both theories are
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Figure 5: Ten loop graphs for ®7 theory 2-point function.
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The appearance of factors of the form I'(p/(n — 2)) where 1 < p < (n — 3) may seem at odds

with expectations but arises from the basic loop bubble integrals. For instance, denoting the

value of the leading order graph of Figure 1 by 1"?27; then

"L (kg = €) T(n = 2)e)
P (= - (= 1e)

in d-dimensions. The divergence clearly arises from the second numerator factor while the

(2.12)

other numerator one and that in the denominator lead to a final factor of ™2 ( (nEQ)) in each
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anomalous dimension at leading order. Clearly for the Wess-Zumino model, which is cubic, no
I'-functions appear in the wave function renormalization at low loop orders for this reason.
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Figure 6: Fourteen loop graphs for ®° theory 2-point function.

With the graphs for both the n = 7 and 9 cases available as well as the explicit anomalous
dimensions for the leading two orders we note that there is one more graph than there are
terms at O(a?) as was the case for n = 5. This is because two graphs for each theory evaluate
to the same I'-function structure. These are the first two graphs in Figure 3, the first and
fourth in Figure 5 and the first and sixth graph of Figure 6. The reason why these graphs have
the same structure derives from the underlying D-algebra. The consequence of rewriting the
resulting scalar products between loop momenta of the fully internal bubble after enacting the
0 integration is to remove or delete a propagator from one of the bubbles immediately adjoining
it. Applying this observation to these specific graphs in the figure produces a pair of graphs
with bubbles which have the same number of propagators in each or a single propagator. Since



all the bubble integrals are scalar integrals they will each evaluate to the same d-dimensional
expression and hence have the same € expansion. As a final part of the renormalization it is
worth providing the numerical values for the anomalous dimensions. We have

¥ (a) = 2.403246a — 809.582836a + O(a®)
+*"(a) = 14.161200a — 416179.106979a> + O(a®)
v’ (a) = 89.612261a — 225108066.08a> + O(a®) . (2.13)

The large coefficients are not to be regarded as indicating a lack of convergence. For instance,
absorbing the factor of F7(%) into a for the n = 9 case the respective one and two loop coefficients
become 0.000173611 and 0.000844912. These are of the same order in much the same way as for
four dimensional theories. Of course in that case the corresponding factor would involve powers
of I'(1) which have no consequence.

Equipped with the anomalous dimensions and the S-functions through the supersymmetry
Ward identities we can determine the critical exponents of each theory at the Wilson-Fisher
fixed point. That associated with the field anomalous dimension, n®" = 4®"(a*), where a* is
the critical coupling, can be determined exactly to all orders in perturbation as

ne = € (2.14)

for each value of n odd with n > 1. This follows trivially from (2.2) and (2.5). In the case of

n = 3 the four dimensional result of [9, 11] emerges. For the other integer dimensions of interest

we find
I e k) (2.15)
d=2 n d=3 n
if one assumes a negative value of € is valid when D, < 3. As n — oo the former vanishes
while the latter tends to (—1). The situation with the other exponent, which is the S-function
slope at criticality, is different in that there is no exact expression for any value of n. Defining

w®" = 282" (a*) we have

5 3 3 8¢? 3
w? = 6e — [40V37w3 +81I3(2 + O(e
o7 . 2/4\3/1 4 2 2/2\72(1 10 3
W= 106 = [63T2(A)T(L) + 1500 (A0 (2) + 17502 (2)0%(L))] O O()
w(I’g = 14e
- [36F2($)F(?)F(%)F3(%) +98T(S)T(2)N()T(3) +441T(DT*(H)T(H)T2(3)
56¢>
+196T2(5)r2(2)r? (L ——— + O(é 2.16
or
w® = 6e — 504.623267¢2 + O(?)
w? = 10e — 14823.54721562 + O(e%)
w® = 14e — 305238.813694¢> + O() (2.17)

numerically. Clearly there are large corrections for each theory which would suggest that it
is not possible to extract anything meaningful by naively substituting even a small value of e.
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However, if we use a [1,1] Padé approximant we find

w® —  0.0688833
d=2

w®’ — 0.00672335
d=2

w?®’ = 0.000642017 (2.18)
d=2

for instance in two dimensions which appear credible. These are significantly smaller than the
canonical term which is 2 for all odd n. Under the same assumptions as before we deduce

w® — 0.0768208
d=3

w®’ — 0.00676123
d=3

w?®’ = 0.000642258 (2.19)
d=3

for the extension to three dimensions.

3 O(N) symmetric theories.

Having considered the renormalization of the core higher order potentials we consider their O(V)
symmetric counterparts in this section. This requires two distinct superfields ®*(z, #) and o(x, 0)
together with their chiral partners. The former field takes values in O(N) where 1 < i < N.
The presence of two sets of superfields means that the action for each core potential is more
involved and moreover the number of interactions increases with the order of the potential. For
instance, when n = 5 we have

Sggm = /d4x {/ d%04°0 [@é(w,é)e_%&éq)é(x,ﬂ) + 5‘0(1‘,9_)6_29&§0'0(17, 9)}
s o
glo/dzé?ao (252i)" + &/cﬂe&o (2537)
920/612902@%1)% gzO/dQQquﬂqﬂ

930 2y 5 930 20
1
120/d9 120/d } (3.1)

for the action in terms of bare quantities where g; = (4m) 4 4 gi here and throughout. Setting
both ®(z,6) and ®(z,f) formally to zero recovers the n = 5 case of (2.1). An equivalent way
of producing this is to put g; = g2 = 0 whence the O(N) multiplet decouples. For the next two
theories in the sequence of odd potentials the respective actions are

SN /d4a: {/ d*0d*0 [(i)é(x,é)e_%&é@é(x,e) + 50($,§)e_29&§00(x, 9)}

™)
+ 9~10/d2900 (@) + 91°/d29 o0 (®8))’

720 720
+ e [ ool (ager)’ + o [ 2o} (8))
n % / 420 o3B! . & / 4205581 i,
Jio o7 940 25
o [ 29 420 3.9
* 5040 %o 5040/ UO] (3:2)

11



and
SO /d4x {/ d?0d*0 [i)é(x,é)e_%&éfbé(x,@) + 5’0(1‘,9_)6_20&§0'0(1', 9)}

©)
4 Yo /d2000(¢g¢g)4 4 o /d29‘50(«i>g<i>g)4

10320 40320
7c . N3 7 _ . _.\3
+ Do [gol(viey)’ + 2o [ @0l (9))
930 20 5 (i i \2 930 27 =5 (ai 5i \ 2
+ 2880/d 003 (®i@)" + 2880/d 055 (98))
+ o | C0oRE, + e [ PO,
9~50 2 9 9~5o 20 =9
20 420 33
* 362880 % T 362880 00} (3.3)

which illustrate the increase in number of interactions with n. Consequently a larger num-
ber of Feynman graphs have to be computed to extract the renormalization group functions.
The precise numbers are given in Table 1 for both sets of 2-point functions. Like previously
the p-functions of the respective coupling constants are determined by a generalization of the
supersymmetry Ward identities. For n = 5 these are

Zng%Zé = Zg2Z¢,ZU% = ngZog =1 (3.4)
Wlth 1 3 5 7
2, 7323 = Z,7323 = ZgZolZd = Zg,Z2 = 1 (3.5)
for n = 7. Finally
1 3 5 7 9
737373 = ZywZ3Z¢ = ZgZ3Z3 = Zg, 2023 = Z4Z3 = 1 (3.6)

for (3.3) by extending (2.5) in the same way.

n| L | (®®7) | (65) | Total
5] 3 3 5
6 34| 40 74
715 3 4 7
10 155 | 174 | 329

9| 7 4 5 9
14 480 | 521 | 1001

Table 1: Number of graphs at each loop order L required to renormalize the ® and o 2-point
functions in the O(N) theories.

For the remainder of this section we focus on the n = 5 case as an example. The procedure to
renormalize (3.1) follows the same as that used for (2.1) with respect to applying the D-algebra
and the evaluation of the 79 2-point graphs. The resulting anomalous dimensions are

D5y 2 2 o] V3
Yo (91) = [4N91 + 891 + 1292] 2709(2)
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— [[128Ngt + 1536 N 20} + 6144Ng{ + 716891 + 2304N2g2g3 + 16128 N g3g3
+ 230409795 + 2304N g1 9393 + 4608g1 9593 + 5760N g5 + 2073695
+ 23049363 | V37°
[3241\73 + 5184N2g% + 16848 N g? + 15552¢% + 8748 N2 g2 g2
+ 33048Ng 202 4 31104g1 9+ 972Ng1 g3 +1944¢2¢2 + 52488Ng§

3
and
5 V33
i (g) = [Nzg% +2Ngi +18Ng5 + 39?%} 2773 (2)
3

— [[328g1 + 384N3g] + 1536N g} + 1792Ng{ + 1536N°g} g3 + 10752N2g1g3
+ 15360N g2 g3 + 3456 N2g1 g5 g3 + 6912N g1 9293 + 8640N2g5 + 31104N g5
+9216N g3g3 + 144003 | V3
- [1296]\73giL + 5184N2g} + 5184Ngi + 2916 N3g2g3 + 21384 N2 g3 g2

+31104Ng2g2 + 972N%g2g2 + 1944N g2 g2 + 52488N2g5 + 34992N g5

+26244Ng2¢2 + 291693} (2)%x° + o)) . (3.8)

1
} 65610 (2)

As a trivial check setting g1 = g2 = 0 in 'yg’s (gi) reproduces (2.7). Consequently using the
supersymmetry Ward identities we can deduce the S-functions which are

V3m3
2713 (2)
— [[328g7 + 896347 + T680N?g] + 26368 N gf + 2867297 + 1536 N g} 3
+ 19968N2g3 g2 + T9872N g3 g2 + 9216045 g3 + 3456 N2 g2 g2g3
+ 16128Ng2g2g; + 18432929295 + 8640N2g1 g + 54144 N g1 g4 + 82944, g
+9216N 16363 + 9216919397 + 14409195 | V37"

B (g) = [N?g}+18Ng}+ 3268 + 18N 163 + 489193 + 39103

[2592N3g + 25920N2%g? + 72576 N g7 + 62208g7 4+ 2916 N3g3 g2

+ 56376N2g1 g5 + 163296Ng§’g§ + 12441643 g3 + 972N g} g3
+ 5832Nglg2 + 777643 g2 + 52488 N2 g1 g5 + 244944N g1 g5 + 466569195

1
+26244N 919393 + 3499291 633 + 2916g1g3| T5(2)7| e
3

+0(g])
5 (g:) = E
2 2703 (2)
4 4 3 4 2 4 4 4
- H%N gig2 + 1408N°gigs + T680N?gl g2 + 17664 N gj g2 + 1433691 go
+ 4608N3g2g3 + 36864N2g2g5 4 78336 N g2 g5 + 4608097 g5
+ 10368N2%g1 g5 g3 + 25344N g1 g5 g3 + 921691 g5 g3 + 25920N2 g5
+ 104832N g5 + 4147295 + 27648 N g3g2 + 4608g545 + 4320929.3‘} V3n®

[3N2g3g> + 14N glg> + 169392 + 54N g3 + 2493 + 9923 |

+ [4536N3glgz + 25920N?g{gs + 49248 N g1 g + 3110447 g2 + 8748N>g7 g5
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+ 81648 N2g? g3 + 159408 N g3 g5 4 62208g% g5 + 2916 N2 g3 g3
+ TTT6N gigag5 + 388893 gag3 + 157464N?g5 4 209952N g5

1
+ 2332805 + T8T32N g3g3 + 174960397 + 87485g3] T°(2)x°] IE]
3
+0(g])
5 \/§7T3
P(9) = [N?glgs+10Ngigs + 90N g3gs + 1503 AIE)
3

— [[160N"gtgs + 1920N3glgs + T630N2g{ g5 + 8960Ngigs + T680N g2 g3gs
+53T60N2g7 393 + T6800N gig3gs + 17280Ng1g3g5 + 34560N g1 9393
+43200N2g3 g5 + 155520N g3 g3 + 46080N g3 g5 + 720093] V3’

+ [6480]\7391‘93 + 25920N2g g5 + 25920N g g3 + 14580N3g2g2gs

+ 106920N2g2g2g3 + 155520N g2 g2 g3 + 4860N2g2 g3 + 9720N g2 g3
+ 262440N2g4 g5 + 174960N g g5 + 131220 N g2g3

+14580g3| 1%(2)] + 0(g)) . (3.9)

1
65611(2)
Clearly B?S (i) and 655 (gi) vanish when g1 = g2 = 0 leaving /3??5 (gi) as five times 73’5 (gi) under
the same condition. This is consistent with the Ward identity of (2.1) at n = 5. Renormal-
ization group functions for n = 7 and 9 are recorded in the Appendices. Expressions for the
renormalization group functions for each of the three theories are provided in electronic format
in the associated data file.

4 Fixed point analysis.

Having established the renormalization group functions we now examine the fixed point proper-
ties of the theories. In the first instance we focus on the n = 5 case for arbitrary N and consider
the Wilson-Fisher fixed point. Setting

xiﬁ — (4.1)
(r (wty))

in general we find that there is a large set of solutions. A significant number are merely various
coupling constant reflections g; — — g¢; of a core subset. Therefore we only record the indepen-
dent ones for n = 5 and other cases in the region of coupling constant space where g; > 0. The
location of those where there is one nonzero critical coupling are

9i =

2V = [6 + [12(N + 16)(N? + 10N + 28)13(1) + 864(N +2)(N +6)] N+ 2)(€N 116)?
+0(e)] \/(N + 2)?N +16) m) =0,z =0;

x?) = 0

Q) = [2 + [6(ON + 4) (5N + 18)T(4) + 54(27N? + 36N + 4)] 3(9N7€+4)2
0]\ [y - o = 0
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4/30

2
2P =0, 2 =0, 2) = V30 + [5T5(2) + 9] bee + 0) (4.2)
with associated anomalous dimensions
o5 12¢ 108N(N — 4)¢? 3
= - 0
e ) (N + 16) Niiop o€
e _  3Ne  432N(N —4)é 3
Te ) T (Nt 16) (N + 16)3 + 0(e) 5
O 6e 486N (3N —2)¢? 3
e T N +4) oNtap T o)
e _ 9Ne  324N(3N —2)é 3
T2 T (9N 14) N yap O
5 5 3
T]g(g)) = 0(63) s T]g)(?)) = 56 + 0(63) . (43)

One interesting feature is that for both solutions 1 and 2 is that 17(‘1135 and 773’5 are equal for a
specific but different value of N. For solution 1 this is N = 4 while it is N = % for solution 2.
The latter case is formal in the sense that NV is non-integer. However in both instances the value
of the exponent is %e. The final solution labelled 3 corresponds to (2.14). The next scenario
is when only one of the couplings vanishes at criticality. Again there are three cases with the

critical couplings given by

(12 9 2 371 L
2y = [5 + [(N +6)(N? + 16N + 4)T*(1) + 90N (N + 2)] 125N (N + 2)
2], [BN=2)
+0(e)] N(N +2)
az _ [1 2 3(1 _c 2 6(4— )
m o= gt [(7N + 54N + 32)T" (3)+180N} seoy T+ Ol )} N
:céw) = 0;
a3 _ [3 2 3(1 _ 3 2} 10
N [(N? 10N + 28)T3(3) + 36(N +2)] svay T OO Ty
a:gls) =0
1
29 = s [5(N —4)T3(L) - 36} % + 0(62)} 30(4 = N) ;
x§23) =0
1
22 = - - (73— 26)T%(3) - 36 5—60 + 0(62)] V30
_2 2
2% = - - [5(N_ 2)T3(1) — 18} 2% + 0(62)} 15(2 — 3N) . (4.4)
In each case the anomalous dimensions are all the same since
5 5 3
7]&{;(12) = 77?(12) = € + O()
5 5 3
N (13) 77?(13) = 5€ + O(¢)
5 5 3
ng(23) = 77?(23) = 56 + 0(63) . (45)
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As a check on these fixed point solutions we note that

lim :Ugu) = lim :Bgl) , lim2 xém) = lim2 x(22)

N—4 N—4 N—2 N—2

lim xglg) = lim a:gl) ,  lim xéQS) = lim a:éQ) (4.6)
N—4 N—4 Na% Na%

and for these cases the anomalous dimensions all equate to %e. These particular values of N
point to a deeper aspect of the latter set of fixed point solutions. For instance for solutions 12
and 13 one critical coupling of the pair becomes complex for N > 4 with a similar observation
for solutions 12 and 23 when N > % In this case there is then no real solution for any positive
integer N. So it appears that the N = 4 represents a watershed in terms of the set of possible
real fixed point solutions. This is especially the case since for that value the solution 1 17%5
and 77?5 are equal but there is only one pair of interaction terms at criticality with ¢ and &
appearing linearly in (3.1). The remaining single coupling solutions equally identify one pair of
interactions but with ¢ and its partner occuring nonlinearly. The final case is when none of the
critical couplings vanish at the Wilson-Fisher fixed point. This will be considered in the next
section as a special case.

For the other two theories we focus on, the properties of the critical points is completely
parallel. By this we mean that there are fixed points both for only one non-zero critical coupling
as well as a set for pairs. To illustrate this we record the explicit forms of the field critical
anomalous dimensions. For n = 7 we have

oy = (N3£€36) - 75%? 3?3)?62 + O(e%)
oy = (N5f;6) + 450?]]\\;&]2(;)?)62 + 0(€)) ;
o = iy — S0 s
PR
o = G - g+ 0
PR X S
By = O, ¥ = 2e + 0E)
77&?7(1';') = nfzij) = %6 + O(e%) (4.7)
for 1 >4 > 7 > 5. While for n = 9 we find
o = e - e+ 0
) = (N7f€64) + 2195(?\,]\[524;38)62 + 0" ;
B = gl S o
- O
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28¢ 34300N (5N — 4)€?

Mo = 25N +16) (BN +167 ()

Mo = (25?\57]1616) + 274?205]\7]\,(1]\;6_)3)62 + O(€) ;

o = (49]1\;11 0 3361(15]\(,2\[4)32)62 + O(e)

By - e OO0 o

sy = O@) iy = g + 06

77&{;9(1']‘) = Wf?ij) = ge + O(e%) (4.8)

for 1 >4 > j > 5. From these it is equally clear that for special values of N the ® and o
exponents equate. Moreover they follow a general pattern which is

77((1137(17’) = 7737(17’) (49)
when ( ) D
n—2r+

for each fixed point labelled by r in the range 1 < r < 1(n — 1). The final single coupling fixed
point denoted by solution 5 corresponds to the single field case of the previous section.

5 OSp(1|2M) enhancement.

We now turn to a special case of when all critical coupling are non-zero and either real or
complex. This is motivated by the observation in the non-supersymmetric case, [24], that there
is a symmetry enhancement for a specific value of N for each n. Briefly for each group O(V)
the enhancement is to the group OSp(1|2M), where n = (2M + 1). In particular the value for
N when this occurs is N = — 2M, [24]. While this was for the case of the non-supersymmetric
model the property should also hold for (3.1), (3.2) and (3.3). To make this manifest in the
Lagrangian formulation will involve the superfields o and ©% and their chiral partners. Unlike
®! of previous sections O is a Grassmann field in order to realize the symplectic aspect of the
group. Similar to [24] this allows one to express the superpotential as a function of both sets of
fields. In particular the OSp(1|2M) action is

SOSPARM) /d4w {/ d?0d%0 [@g(x,é)e_%&é@g(xﬁ) + 5‘0(33‘,5)6_29&90'0(15, 9)}

1
3 o\ tem
+ do / 0 (o3 + ©}0})?
1
3 . N iemt
+ go/d20 (52 + @L8})° ] (5.1)
where the subscript again indicates bare objects. If we define the superpotential by
N E(2MA1)
Vi(0,0) = (0% + 0'0') (5.2)

17



motivated by the construction of [24] then the first few cases are

Va(0,0) = 15 o (e'0)" + §a3ei@i g

Vs(0,0) = :1))2 (o))" + % (e'ef)” + zaf’ei@i + o
Vi(0,0) = i’;z (@Z@’) + % 3(@@@’) + % 5(@@@%)
+ 307@i@i + o (5.3)

due to the Grassmann property of ©/. When M = 1 the OSp(1|1) version of the Wess-Zumino
model results. The relative coefficients of the terms in each of the superpotentials of (5.3) are
instrumental in deducing the emergent OSp(1|2M) symmetry for various values of N. These
will be in the same ratio as discovered in the non-supersymmetric case of [24]. In particular the
vector of critical couplings to the first two orders are

* * * n=5 _ 18 3/1 2 36
(91,95, 93) N L+ |5 =305 e + O()|d S9(0) (3,2,8)

=T TT(HT3(L) | 3BL(A)2() ] 5e
91:95, 935 91 = |1 + [30— —3L 504 5) \5)| 2€
e I NORNE

35¢€
9 == (1 4
+ 0] | 7y (15:6:8,48)
n=9

[+ 9T (BI(IrEIT() - 1260 rENr )

—22050(3)0*(2)L(3)0(3)
+ 49072 (5)T%(2)r?(1

(91,93, 93,94, 95)

N=-8

35,10,8,16,128) . (5.4)

That this emergent symmetry holds for the supersymmetric case is not too surprising given
that it occurs in the non-supersymmetric equivalent theories. However the observation is subtle
here in that the specific value of N = (1 — n) for the emergence has connections with the non-
Grassmann O(N) partner theory if one sets r = 1 in (4.10). It is known that properties of the
Sp(IN) group can be related to those of an orthogonal group O(N) if one maps N — — N. What
is the case for N not equal to the emergent value value of (1 — n) is that the field anomalous
dimensions are not equal. It is only for each value of N = (1 — n) that

ne = ng (5.5)

for the critical couplings (5.4) whence the emergent OSp(1|2M) symmetry is realized in the
supersymmetric theory.

As we are able to go to a higher order in the € expansion compared to the non-supersymmetric
cases it is instructive to determine the critical S-function slope for the emergent OSp(1|2M)
theories. In particular we have

2

w® = 6e + [180F3(§)—216}% + O(e%)

N=—4

w®’ — 10e

N=-6
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+ [35002(1)I(4) — 15001 (4)T(2) — 175002(2)r*(4)] + O(e%)

T(5T(3)
w® = 14e
N=-8
+ [18T2($)T(?)F(%)F3(%) — 140T($)T(3)T(3)T(3) + 3150 ()T ()T(3)T*(3)

196€2
45T ()T ()T (3)0(3)

7

— TO0%(3)T2(2)T2(L)] + O(e*) (5.6)

analytically which equates to

@ Nea 6e + 648.934900€> + 0(63)
WO N g = 10e — 7713.844209¢* + O(c’)
Plyoy = e + TA6LUI0ETE + O() (5.7)

numerically. Clearly the coefficient of the O(e?) term is significantly large and that increases
with n. However this needs to be tempered by the fact that the limit of D,, is 2 as n increases.
Indeed with d = D,, — 2¢ then setting e = ﬁ produces d = 2. However even with this choice of
€ the value of w for the respective theories carries no meaning. One option would be to improve
the convergence by using a Padé approximant to estimate w in d = 2. For n = 5 and 9, however,
the Padé approximant is singular in the range 2 < d < D, since the correction term is positive.
This is not the case for n = 7 when a [1, 1] Padé approximant gives w®’ e = 0.012880 which

is significantly lower than the canonical value. What remains to be clarified is the effect of the
as yet uncalculated subsequent e term would be to this estimate. Indeed a value of the O(e?)
term could produce a non-singular Padé approximant for the other two theories.

Figure 7: Primitive graph contributing to second order S-function in non-supersymmetric ¢°
theory.

6 Discussion.

The main interest in exploring the supersymmetric extension of theories with a potential with an
odd number of fields was to ascertain whether the OSp(1|2M) emergence of the non-supersymm-
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etric case, [24], was maintained. It was not surprising that this is indeed the case, which we
expect to be manifest beyond the three cases studies in depth here, but there are subtle aspects
to the analysis. For instance the lowest order potential with n = 3 has been extensively studied
as it corresponds to the Wess-Zumino model, [13]. In that theory it was known that as a
consequence of the supersymmetry Ward identities the critical exponents of the basic fields of
the theory can be deduced ezactly in the € expansion near the model’s critical dimension. For the
extension to n > 3 with n odd none of these theories have an integer critical dimension. While
this may indicate limited physical interest D, is relatively close to an integer dimension which
is either two or three. Therefore the convergence of critical exponent estimates for the variety of
fixed points we examined in the O(N) theory should be relatively quick. This was an important
exercise for this class of theories with non-integer dimensions. Aside from [24] there have been
other studies of the non-supersymmetric non-integer critical dimension theories, [27, 32, 33], with
that of the Blume-Capel model being just above three dimensions. In that case only the leading
order renormalization group functions are known since the underlying Feynman graphs are
straightforward to evaluate. However the corrections to the coupling constant renormalization
involve a significantly large number of graphs. One of these is illustrated in Figure 7. It is clearly
non-planar as well as being a primitive and has yet to be evaluated. It is likely to have to be
treated in the same way as the analogous graphs of ¢% theory in the third order determination
of its B-function, [37]. Clearly the graph is absent in the supersymmetric extension due to the
chiral property of the interaction which simplified the analysis of this article. Consequently it
has not been possible to ascertain whether the € expansion of critical exponents in the Blume-
Capel case improves let alone obtain more accurate estimates. It is in this context that our
supersymmetric analysis has provided some insight. Even in this case, however, we expect there
to be a calculational hurdle to overcome at the next order to determine the S-function of the
supersymmetric theories which will have an intricacy akin to that of Figure 7.
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A Results for the O(N) &7 theory.

This appendix records the renormalization group functions for the O(/N') symmetric theory based
on an n = 7 potential. These results and those for the other two O(INV) theories are available in
electronic form in the associated data file. First the anomalous dimensions for the fields are

°(3)

1080

— [[27N%g1 + 648N g} + 6588N? g + 32400N2g{ + T4304N g + 622081
+ 1875N* g3 g3 + 33000N3g% g2 4 199500N2 g3 g3 + 498000N gig3
+ 4320009793 + 540N3g2 g2 4 16200N? g7 g3 + 82080N gig3
+ 10368092 g2 + 18000N3g1 g2 g3 + 144000N2g192g3 + 360000N g1 g5 g3
+ 288000919393 + 4050N2g1 gog394 + 24300N g1929394 + 3240091929394
+ 16250 N3 g5 + 265000N2g5 + 925000N g5 + 92000045

8 (9:) = [3N%g}+18Ng} + 2497 + 50N g + 100g3 + 453
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and

7
7:71) (gi)

[N3g + 6N2g2 + 8N g2 + T5N2g2 + 150N g2 + 225N g2 + 1592}

+ 175500N2g3g3 + 904500N g3g3 + 11070009393 + 6750 N g3 g3
+ 1350095 g7 + 27000N g2g3 94 + 54000929394 + 204525N g3

+ 20250095 + 222756393 | T2 (4)T13(1)
+ |75N%gt 4+ 3150N g} + 30900N3g7 4+ 124200N2g;

+ 220800 N g} + 14400097 + 9375N4g1 g + 135000N3g%g§

+ 667500N2 g1 g3 + 1350000N g% 92 + 960000g7 g2 + 22500N3 g% g2
+ 175500]\7291 g5 + 423000]\791 g3 + 3240009193 + 1125N?gig3
+ 6750N g2 g3 4 900097 g3 4 281250N3g3 + 1500000N2 g5

+ 2625000N g5 + 150000095 + 1265625 N2 g3 95 + 2981250N g3 g5
4 900000g2g3 + 56250N g5 g3 + 1125009397 + 1265625N g3

+ 10125093 + 84375303 T(4)T(2)T° (L)
+ [27N5gt + 972N g} + 12204N3g] + 69408N 2 gt

+ 177984 N g} + 16128097 + 2625N4g§g§ - 60000N3g%g§

+ 466500N2g2 g2 + 1434000Ng1 g5+ 144000091 g3 + 2700N3 g3 g2
+ 27000N2g% g% + 86400N g3 g3 + 86400g1 g3 + 18000N3g1 9343

+ 288000N2g; g2 g3 + 1224000N g1 9593 + 144000091 g5 g3

+ 6750N 291929394 + 40500N g1 929394 + 5400091 929394

+ 46250N3g5 + 565000N2g5 4 2245000N g5

+ 260000095 + 337500N2g2g2 + 2362500N g2g2

+ 33750009393 + 3750N g3 g3 + 75009343 + 135000N g2g3 g4

4 270000929294 + 253125N g3 4+ 81000043

1
2 2 2 12
+ 50625939 | T(RT () 116640001 (1)T'(2)
5 5

+ 0(¢f) (A1)

°(3)
2160

- [[3N6gj‘ + T2Ngh 4 732N% g4 + 3600N3 g4 + 8256 N2gt + 6912N g

+ 500N5g2g3 + 8800N g7 g3 4 53200N3 g3 g3 + 132800N2g% g3

+ 115200N g3g3 + 270N *g? g2 4+ 8100N3g% g3 4 41040N?¢? g3

+ 51840N g2 g2 + 9000N* g1 9393 + T2000N3g1 g5 g3 + 180000N2g1 9243

+ 144000N g193 g5 + 3600N? g1 929394 + 21600N>g1 g2 9394

+ 28800N g1 929394 + 8125 N1 g3 + 132500N3 g3 + 462500N2g5 + 460000N g3
+ 156000N3g2g§ + 804000N2g§ g3 + 984000N g2 g2 + 11250N2g§g§

+ 22500N g3g5 + 45000N>g2g394 + 90000N g2g5 94 + 340875 N2 g3

+ 337500N g4 + 89100N 9297 + 4725g4} I2(4Hr3 (1)

+ [300N° gt + 3600N g} 4+ 15600N 3¢ + 28800N2 g}

+ 19200N g{ 4 1250N%g%¢2 4 30000N g7 g3 + 185000N3g? g2
+ 420000N2g%g3 + 320000N g3g3 + 7500N* g3 g3 + 72000N3g%g3
+ 222000N2g2g2 + 216000N g2 g2 + T50N3g2 g2 + 4500N2g3 g2
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+ 6000N g2g3 4+ 93750N g3 + 625000N3g5 4+ 1375000N g5
+ 1000000N g5 + 843750N3g§g§ + 2287500N2g3g2 4 1200000N g3 g3
+ 75000N? g3 g3 + 150000N g3 g3 4 1687500N2g5 + 337500N g3

+ 281250N g3g3 + 1125044 T(1)D(2)1'0(4)
+ [3NSg] + 108N°g} 4+ 1356 Ng! + 7712N3g}

+ 19776 N2g + 17920N g1 + T00N°g3g3 + 16000N4gfg§

+ 124400]\7391 g5 + 382400N?gig3 + 3840001\791 g3 + 1350N1¢3 g2

+ 13500N3g% g2 + 43200N? g2 g3 + 43200N g3 g2 4+ 9000N*g1 9343

+ 144000N3g1 923 + 612000N2g1 g5 g3 4+ 720000N g1 9343

+ 6000N3g1 929394 + 36000N? g1 929394 + 48000N g1 929394 + 23125N4 g5
+ 282500N3g3 + 1122500N2g5 4+ 1300000N g5 + 300000N3g3 g3

+ 2100000N2g3 g§ + 3000000N929§ + 6250N?g5 g7 + 12500N g3 g3

+ 225000N2g292g4 + 450000N gog3 g4 + 421875N2 g5 + 1350000N g5

1
+202500N g3g7 + 131251 T2(2)T"2(1))] 6000 T (D)
5 5

+0(g) . (A:2)

Consequently the supersymmetry Ward identities determine the four S-functions as

P(g) = [N} +42N%g} + 224N g} + 288¢7 + T5N2g163 + T50N g165 + 12009163
IO

2160

- H3N69 + 180NgD + 3324N%g3 + 20952N3¢? + 137856 N2g + 304128N g

+ 248832¢7 + 500N g2 g3 + 16300N1g3 g2 4 185200N3g3 g3

+ 930800N2g3 g2 + 2107200N g3 g2 + 17280009395 + 270N4g§g§

+ 10260N3gP g3 + 105840N2g3 g3 + 380160N g3 g3 + 41472097 g3

+ 9000N g2 g3 g3 + 144000N3 g3 g3 g3 + T56000N?gigs g3 + 1584000N g7 g3gs
+ 115200097 9393 + 3600N> g7 929394 + 37800N2g1 29394

+ 126000 g7 929394 + 12960097 g2g3g4 + 8125N*g1g5 + 197500N g1 g3

+ 1522500N2g1 g5 4+ 4160000N g1 g5 4 36800009195 + 156000N3g; 9393

+ 1506000N2g1 g5 g2 + 4602000N g1 925 + 4428000919595 + 11250N2g, g3 g2
+ 49500N g1g395 + 54000919595 + 45000Ng1g2g3 94 + 198000N 91929594

+ 21600091 929394 + 340875N2 g1 g5 + 1155600N g1 g5 + 81000091 g3

+89100N 19393 + 89100919393 + 47259191 | T2 ()05 (L)

+225Ng13 + 5409163 + 159103

+ [600N?g? + 16200N g} + 139200N3 g7 + 525600N2g? + 902400N g3

+ 57600093 + 1250N° g3 g3 + 67500N4g1 g5 + 725000N3g1 gs

+ 3090000N2g2 g2 4+ 5720000N g3 g2 + 384000043 g2 + 7T500N g3 g2

+ 162000N?g7 g3 + 924000N?g} g3 + 1908000N g7 g3 + 129600097 g3

+ 750N3g3 g3 + 9000N2g3 g3 + 33000N g3 g3 + 3600093 g3

+ 93750N g1 g5 4+ 1750000N3g1 g5 + 7375000N2g1 g3 + 11500000N g1 g5
+ 600000091 g5 + 843750N3g1 953 + 7350000N 2 g1 929>
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+ 13125000N g1 9295 + 360000091 93595 + 75000N2g1 g2 g2
+ 375000N g1 9297 + 450000919293 + 1687500N2 g g3
+ 5400000N g1 g5 + 40500091 g3 + 281250N g1 9593

+ 337500919307 + 11250g16] T()T(2)°(2)
+ |3NSg? + 216N°g) + 5244N*g} + 56528 N> g3 + 297408 N2 g?

+ 729856 N g5 + 64512097 + T00N° g3 g2 + 26500N* g3 g3

+ 364400N° g7 g3 + 2248400N g g3 + 6120000N g3 g5 + 576000097 g5

+ 1350N*g3 g2 + 24300N3g3 g2 4 151200N2g3 g3 + 388800N g3 g3

+ 34560093 g2 + 9000N*g2g2 g3 + 216000N>g2g2g3 + 1764000N g2 g2 g3
+ 5616000N g2 g2 g3 + 576000092 g2 g3 + 6000N> g2 929394

+ 63000N2g2gag394 + 210000N g2gogsga + 21600092 g2g394

+ 23125N4g1 g5 4+ 467500N3g1 g5 + 3382500N2g, g

+ 10280000N g1 g3 + 1040000091 g5 + 300000N3g; g2 g3

+ 3450000N2g1 g2g2 + 12450000 g1 g2 9% 4 1350000091 9292

+ 6250N2g1 9397 + 27500N g1 9597 + 3000091 9293 + 225000N2 g1 9293 g4
4+ 990000 N g1 929394 + 108000091 929394 + 421875N?g1 g5

+ 2362500N g1 g4 + 3240000g1 g5 + 202500N g1 9242

1
+ 202500916397 + 131250194 T2(2)I'2(1)]

5] 77760001 ()T (2)
+0(g)) (A.3)
27(9:) = [3N%gigs +42N%g1gs + 168N gigo + 192795 + 225Ng3 + 850N g3 + 80093
+ 675N 9293 + 3609293 + 459293 I;(G%)

- [[27N6gi*gz + 864N’ glgy + 117T72N*glgs + 85104N3glgs + 333504N 24t g,

+ 656640N g gs + 49766447 g2 + 4500N° g2 g3 + 94200N g3 g3

+ T42800N3 g2 g3 4 2791200N2 g% g5 + 5020800N g3 g3 + 34560009375

+ 2430N*g2g2g2 4+ TT220N3g% gog2 + 498960N2 g2 gog3 + 1123200N g2 g2 g3
+ 829440979295 + 81000N g1 g3 g3 4+ 792000N3g1g5g3 + 2772000N2 g1 g3 g3
+ 4176000N g1 g5 g3 + 230400091 g5 g3 + 32400N3g1 939394

+ 226800N2g1 929394 + 453600N g12g394 + 25920091 929394

+ 73125N%g5 + 1322500N3g5 + 6282500N2g5 + 11540000N g5

+ 736000095 + 1404000N3g3 g2 4 8640000N2g3 g2 + 16092000N g3 g3

+ 88560009592 + 101250N2g3 g3 + 256500N g5 g2 + 10800093 g3

+ 405000N?g393 94 + 1026000N g3 9594 + 432000939394 + 3067875N>g2g5
+ 4673700N gag3 + 16200009293 + 801900N gagags + 178200929593
+425259g1] T2(H)I(2)

+ [33001\7591*92 + 57600N*g gy + 387600N3gtgs + 1252800N2gg,

+ 1939200N g{ g2 + 11520009 g2 + 11250N° g7 g3 + 345000N* g7 g3
+ 2745000N3 g% g3 + 9120000N2g% g5 + 13680000N g1 g3 + 768000097 g5
+ 67500N g% gog2 + 828000N3 g% gog3 + 3402000N2 g2 gog2
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+ 5328000N g% gag2 + 259200097 gag3 + 6750N3g2gag2 + 49500N2 g3 g2
+ 108000N g2 ga2g3 + 7200097 gog3 + 843750N g5 + 78750003 g5
+ 24375000N2g5 + 30000000N g5 + 12000000g§ + 7593750N3g§g§
+ 30712500N2g g3 + 34650000N g5 g2 + 720000095 g3 + 675000N g3 g3
+ 1800000 N g3 g3 + 900000g3 g2 4 15187500N2gog3 + 13162500N gaga

+ 8100009293 + 2531250N g2g2g3 + 675000929393

+ 1012509591 | T()0(2)1 (L)
+ |27NSgt gy + 1188N°g gy + 19980N g1 g2 4+ 167040N3 g1 go

+ 733248N?gl g + 1585152N g go + 129024091 g2 + 6300N5 g1 g5

+ 165000N1g2 g3 + 1599600N3g3gs + 7173600N2g%g§

+ 14928000N ¢? gg + 1152000092 g3 + 121501\7491 9293

+ 143100N3 g2 gag3 + 604800N2 g2 gog3 + 1080000N g3 g3

+ 691200979293 + 81000N* g1 g3 g3 + 1440000N3g1 g3 g3

+ 7812000N2g1 g5 g3 + 16272000N g1 g5 g3 + 1152000091 g5 g3

+ 54000N> g1 g5 9394 + 378000N>g195 9394 + T56000N g1.5 9394

+ 43200091 929394 + 208125N4g5 + 2912500N 3¢5 + 14622500N2 g5

+ 29660000 N g5 + 2080000095 + 2700000N3g§’g§ - 21600000N2g§’g§
+ 45900000N g3 g2 + 270000005 9% + 56250N2g3 g2 + 142500N g3 g2

+ 6000093592 + 2025000N2g2g2g4 + 5130000N g2g2 g4 + 2160000939294
+ 3796875 N2gag3 + 14175000N go g5 + 64800009243 + 1822500 N gaga g3

1
+ 405000920397 + 1181259591 | ()12 (1)

233280000 (4)T'(2)
+ 0(g]) (A4)
T(g) = [5Ngigs+42N2glgs + 112Nglgs + 96g7gs + 3T5N2g3gs + 950N g3gs
+ 4009395 + 125N g3 + 180g3 + T5g347 | 1;51(6%)

- [[45N6gi*93 + 1188N°gtgs + 13572N*gtgs 4 80352N3glgs + 253440N2glgs

+ 400896 N g g3 + 248832¢% g5 + T500N?g2¢2gs5 + 139500N 42 ¢2gs

+ 930000N39%g§gg + 2790000N2g% g2 g3 + 3720000N g3 g3 g3

+ 172800092 g2 g3 + 4050N g% g3 + 123660N>g7g5 + 680400N? gl g3

+ 1105920N g2 g5 + 4147209 293 + 1350001\7491 9295

+ 1152000N3g1 g5 g2 + 3276000N? g1 9293 + 3600000N g1 g3 g3

+ 1152000919593 + 54000N3 g1 gog2gs + 340200N2g1 929594

+ 529200N g1 929394 + 12960091 gog2 g4 + 121875N% g5 g3 4 2052500N3 g5 g3
+ 7997500N g3 g3 + 10600000N g3 g3 + 36800009593 + 2340000N g3 43

+ 12762000N2%g3g3 + 18378000Ng2g3 + 442800092 g5 + 168750N?g3 9393
+ 364500N 39392 + 54000939393 + 675000N2g2g5 g4 + 1458000N gog3 g4
+ 216000929594 + 5113125N? g5 + 5880600N g5 + 81000045

+ 1336500N g3 g3 + 891009397 + 708759393} (4T3
+ [4800N°gig3 + 66600N4gigs + 357600N>glgs + 928800N2g1gs
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+ 1171200N gl g5 + 57600092 g5 + 18750N° g2 g2 g5 + 487500N* g2 g2 g5
+ 3315000N3g2g2g5 + 8970000N2g2¢2gs + 10200000N g2g2gs

+ 384000097 g3 g3 + 112500N*gig3 + 1170000N3g§g§;

+ 4032000N 22 g3 93 + 4932000N g2 93 + 129600042 g5

+ 11250N3g2g3g2 + 72000N?g3g3g2 + 117000N g3 g3

+ 36000929397 + 1406250 N g5 g3 + 105000002 g5 g3

+ 26625000N2gd g5 + 25500000N g gs + 6000000g2 s

+ 12656250]\7392 g3 + 39375000N2g3g3 + 29925000N g3 g5

+ 3600000g3g5 + 1125000N2g3g392 + 2475000N 939397

+ 450000929397 + 25312500N2g5 + 10125000N g5 + 40500093

+ 4218750N g3 9% + 33750095 g7 + 1687509394] D(HrERro@)
+ [45N08gtgs + 1728 N gl gs + 24228 N*glgs + 164496 N3 gt gs

+ 574272N? g1 g3 + 980736 N g1 g3 + 64512091 g3 + 10500N° g7 g3 g5

+ 2505004 g2g2g5 + 2106000N3g%g2gs + T602000N2g2¢2gs

+ 11496000N g2 g2 g3 + 576000097 g2 g3 + 202501\749%93

+ 213300N°gig3 + T56000N?gig3 + 993600N g7 g5 + 34560097 g5

+ 135000N g, 9295 93 + 2232000N3g1 9593 + 10332000N2g1 g3 g3

+ 15696000N g1 9292 4+ 5760000919595 + 90000N3g1 9292 g4

+ 567000N2g1 929294 + 882000N g1 929294 + 21600091 929594

+ 346875 N* g3 g3 + 4422500N° g5 g3 4+ 19097500N2 g5 g3

+ 28480000 g5 g3 + 104000009593 + 4500000N3g2g3 93 + 32850000N2g§g§
- 54450000Ng 295 + 135000009395 + 93750 N2 g3 g393 + 202500N g3 9393
+ 30000939393 + 3375000N?g2g3 g4 + 7290000 g2g5 94 + 10800009295 g4

+ 6328125N2g3 + 21262500N g5 4 324000093 + 3037500N g3 g3
1

+ 202500932 + 196875gggﬂ r2(2)ri(L )}

233280000 (£)I'(2)
+ O(g)) (A.5)
and
Y (0) = [IN®gRgu+42N7g3gs + 56Nghgs + 525N 6304 + 1050N giga
(1)
1575N g2 10543 5

- [[21Nﬁgi‘g4 + 504N glg, + 5124N* gl g4 + 25200N3 gl g, + 57792N2gl g,

+ 48384 N gt gy + 3500N°g2 g3 g4 + 61600N* g2 g2 g4 + 372400N3g2 g2 g4

+ 929600N2g7 g3 g4 + 806400N g7 g3 g4 + 1890N* g3 g3 94 + 567T00N3gig3 4

+ 287280N2g2g2g4 + 362880N g2g2g4 + 63000N*g1 g2 9394

+ 504000N3g1 629394 + 1260000N2g1 629394 + 1008000N g1 929394
+25200N°g1 929393 + 151200N> 91929393 + 201600N g1 929393

+ 56875N* g5 g4 4+ 927500N3 g3 g4 + 3237500N2g3 g4 + 3220000N g3 g4

+ 1092000N3g§g§g4 + 5628000N2g2¢2g4 + 6888000Ng%g§g4 + 78750N2g2g3
+ 157500N g2g3 + 315000N2g292g2 + 630000N gag2g2 + 2386125N2gl g4
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+2362500N gjgs + 623700N g3g7 + 330755 | T2 (4)13(1)
+ [2100N5glg4 + 25200N*g gy + 109200N3 g% g4 + 201600N2g g,

+ 134400N g g4 + 8T50N5g2g2 g4 + 210000N*g2g2 4

+ 1205000N3¢2g2g4 + 2940000N2¢2¢2g4 + 2240000N g2 g2 g4
+52500N4g2g2 g, + 504000N3g2g2gs + 1554000N2g2 g2,

+ 1512000N g1 g3 94 + 5250N>g7 g3 + 31500N?gi g} + 42000N g% g}

+ 656250 N1 g3 g4 + 4375000N3 g3 g4 + 9625000N2g5g4 + 7000000N g3 g4
+ 5906250N3g3g2 g4 + 16012500N2 g2 g5 g4 + 8400000N g5 g2 g4

+ 525000N2g2 g3 + 1050000N g2g3 + 11812500N2g594

+ 2362500N g3g4 + 1968750N g3 g5 + 7875094} D(HT(HTOL)

+ [21N6gi*g4 + 756N’ g gs + 9492N* gl g4 + 53984 N3 gl g4

+138432N2g% g4 + 125440N g g4 + 4900N g2 g2g4 + 112000N* g% g2,
+ 870800N3g2g2g4 + 2676800N2g2¢2g, + 2683000N g2 g2

+ 9450 N4 g2g2 g4 + 94500N3 g2 g2g4 + 302400N2g2g2 g,

+ 302400N g3 9394 + 63000N" g1 g3 394 + 1008000N3 g1 939394

+ 4284000N2g1 g2g394 + 5040000N g1 29394 + 42000N3 g1 gogsg?

+ 252000N2g1 929397 + 336000N g1 929395 + 161875N g5 g4

+ 1977500N3 g4 g4 + 7857500N2ggs + 9100000N glgs

4 2100000N3g3 g2 g4 + 14700000N2 g2 g3 g4 + 21000000N g3 g3 g4

+ 43750N2g2g3 + 87500Ng 203 + 1575000N 2 g2 g2 4>

+ 3150000N g2g292 + 2953125N2 g4 g4 + 9450000N g g4
1

77760001 (1)1'(2)
+0(g]) - (A.6)

+ 1417500N g2 g3 +91875g;ﬂ r2(2)r'2(L )]

B Renormalization group functions for the ®° theory with O(—8)
symmetry.

For completeness we present renormalization group functions for the ®9 structure. In particular
we focus on the enhanced case of the O(N) theory when N = — 8. The field anomalous
dimensions are

I'(3)

25200

H122880gl — 79027204292 + 8736009292 + 3161088041 9293
— 1975680091 929394 + 37632091 929495 — 110638080g3
— 691488009393 + 579532809397 — 49392093 g2 + 2765952009292 g4
— 493920092939495 + 61081440045 — 5136768009297 + 205800093 g2

+ 24696009393 g5 -+ 4909800097 — 3234009495] C2OTET(E)T(L)

9
78 (9) = [-1697 + 39293 — 49043 + 3563 ]

N=-38

+ [368793609%95 — 180633647 + 4609920092 g% — 177811209343
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+ 8232097 g2 + 126496204895 — 9487215360923 + 171028032095 g3
— 60505209392 + 1327080720093 — 4154690400923 + 1260525042 g2

+ 28091700097 — 12605259495} T(S)D(2)0(2)T(2)
+ [8601691 + 2107392923 — 790272093 g3 + 6322176091 9393

+ 1317120091929394 + 329280091 g5 g5 — 6638284875 + 9219840093 g2
+ 1659571209392 — 1843968009292 g4 — 6914880092939495
+ 87588480093 — 1261965600939 + 43218009292 + 864360009392 g5

4 12389160093 — 28812009495} INOIEINE IR
+ [14676480g1 g3 — 17203291 — 280985647 g3 — 47040092 g3

— 9483264091 9593 + 6585600919293g4 + 87808091929495

+ 14997606495 + 1767136009593 — 491724809593 — 3841609342

+ 1014182400929394 — 34574400g2939495 — 3111696009§

— 107180640093 g3 + 480200095 g2 + 2881200093935 + 1238916009
F14( 1 )

106686720000 ($)T'(3)T(2)1(2)

— 14406009392 | 2(2)0%(2)12(4)]

+ O(g7)

(1)

201600

+ [[63221760g§g§ — 245760g% — 11182080¢%¢% — 252887040¢; 25

+ 25288704091 929394 — 752640091 929495 + 88510464()g§l

+ 8851046409293 11590656009294 + 158054409295

— 553190400092g3g4 + 15805440092939495 — 122162880009§
+ 16437657600g3g4 — 1152480009395 — 13829760093gig5

— 274948800097 + 4139520093 g% — 13230095} IOINEINEINE

9

e (gi)

= [128¢7 — 125443 + 3920093 — 784003 + 3543]

N=-8

+ [481689691 — 354041856295 + 14751744093 g3 + 136980480¢% g3

— 1317120¢3 g2 — 28913418249;1 + 7951190016()ggg§
— 2633186304092¢2 + 1613472009292 — 203297472000g53
+ 1090707072003 g% — 60505200093 g% — 133918176009

+ 1411788009392 — 360150g§] L(OTE)N(E)r(2)
+ [6322176Og%g§ — 17203297 — 96337929795 — 50577408091 g5 g3

— 16859136091 929394 — 658560004, g§g5 + 53106278493

— 118013952092 92 — 3319142400927 + 3687936000293 g4
+ 221276160092939495 — 1751769600095 + 4038289920093 g3
— 2420208009392 — 4840416000g392 g5 — 69379296004

+ 3687936009395 — 16206759?} [T (2)T(L)
+ [3440645;;1 + 128450569795 — 117411840¢1 g5 + 602112047 g3

+ 758661120glg§gg — 8429568091 929394 — 1756160091 929495
— 11998085129% — 226193408095 g;f + 9834496009294
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+ 122931209392 — 20283648000g292 g4 + 110638080092939495
+ 622339200095 + 34297804800g395 — 26891200043 93
— 1613472000g393 95 — 693792960091 + 1843968004393
€D
213373440000 ($)T(2)T(2)T'(2)
+0(g7) - (B.1)

The corresponding S-functions are

*(9:)

— 720300g3)| T2(2)1%(2)2(4)]

— [1792 2 _ 198¢2 4+ 112042 — 800¢2 + 5 2} I"(2)g1

+ [[24576091 — 9031680g%¢2 4 39936092 g2 + 361267209192 g3
— 903168091 929394 — 21504091 929495 — 12644352093 — 316108809593
— 331161609297 + 1128960g5 g2 — 1580544009292 4
+ 1128960092939495 — 34903680093 4 117411840093 g3
— 1176000095 g2 — 141120009393 g5 — 28056000094 + 517440093 g2
— 18900g3 | P2(©)N(2)N(2)13(4)

N=—8

[33718272;;1 g5 — 344064097 + 12644352093 g3 — 2107392092 g3

+ 247829299292 — 1032622080093 43 + 147517440g§g2
+ 9219840¢2¢2 4 129077760095 + 608509440092 g3

— 576240009292 — 1271020800g; + 17287200922

— 5145093 D($)T(I()T(2)

7 7 7
+ [172032g% + 34406407 g2 — 90316809792 + 7225344091 9243

+ 602112091929394 — 188160091 g3g5 — 7586611295

+ 421478409292 — 948326409297 + 1053696009295 94

+ 15805440092939495 — 50050560093 + 2884492800937
— 2469600093 g2 — 4939200009392 g5 — 7079520009

+ 460992009367 — 231525g3| T'($)T($)T(2)T*(2)

+ [16773120g1 g3 — 34406447 — 458752097 g3 — 21504093 g3

— 108380160919393 + 301056091 929394 — 50176091 929495
+ 17140121645 + 8078336093 g3 + 2809856093 g5 + 87808093 g2
— 5795328009292 g4 + 79027200g2g394g5 + 17781120045
+ 244984320092 g7 — 274400009392 — 1646400009393 95
— 70795200094 + 2304960093 g2

I'($)g
30481920000T (S)T(2)T(2)T'(2)

— 10290093‘;} r2(3)r*(2)r (%)}
+ 0(g)

2 (9:)

= [3136093 — 128¢7 — 627293 — 728003 + 3503 I(3)g2
N ST 92 947 2995] “7900

+ [[245760g;1 + 31610880g2¢2 — T68768092¢% — 12644352091 g2g3
+ 17385984091 29394 — 602112091 g2gags + 44255232095

N=-8
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ford
3

(9i)

N=-8

[128g% — 5017693 + 18032093 — 3808097 + 175g§]

+ 6085094409292 — 9272524809292 + 138297609342
— 4425523200292 94 + 138297600g2939495 — 977303040043
+ 1438295040093 g7 — 1070160009392 — 1284192009393 95

— 255309600097 + 401016009797 — 13230093‘;} M2OTE)rE)r k)
[33191424og%g§ — 2408448¢1 — 20652441647 g2 + 6585600097 g2

— 98784097 g2 + 216850636875 + 4156303872092 93
— 1949074176043 gz + 137145120932 95 — 15021424320093
+ 9245194560092 g3 — 5546310009392 — 122681496004

+ 13613670093 g2 — 36015095} INGINEWEINE)

+ [1720329% — 120422497 g5 + 31610880g7 g2 — 252887040g1 9593

— 1159065604, gzggg4 — 52684800g1 g2 g5 + 26553139295

— 8113459209393 — 265531392095 9% + 29503488009292 4

+ 1936166400g2939495 — 1401415680093 + 3533503680092 7
— 2247336009392 — 4494672000g393g5 — 64423632004

+ 3572688009392 — 1620675g§} T(HT3(T(2)T2(L)

+ [1605632g%g2 34406497 — 587059209% g2 + 413952097 g3

+ 37933056091 9293 — 57953280g1 929394 — 1404928041 929475
— 59990425695 — 1555079680935 + 7867596809342

+ 1075648095 g2 — 16226918400g292 g4 + 96808320092939495
+ 497871360093 4 30010579200g3g2 — 24970400093 g2

— 1498224000937 g5 — 6442363200g; + 17863440093 g2
(1) ga

— 72030005 T (AT )| 71124480000 ($)T(3)T(3)T'(2)

+ O(g])

F7(%)g3
201600

+ [[2528870409%93 — 24576091 — 4892160097 g% — 101154816091 933

+ 1106380800¢; 929394 — 3462144091 929495 + 35404185609
+ 387233280095 93 — 5331701760933 4 75075840932 g2

— 25446758400g293 g4 + 75075840092939495 — 5619492480093
+ 7807887360093g5 — 5597760009392 — 6717312009397 95

— 133546560004; + 2043888009392 — 661500g5} T2(9T(2)(2)T3(L)

[9633792g1 — 14751744007 g3 + 110638080097 g2 + 54265344097 g3
— 592704047 g2 — 433701273695 + 321661777920g3 g5

— 11797707264093 g7 + 7583318409392 — 9103209024009

+ 512116012800g2 g3 — 2924418000g2g2 — 647117520009

+ 69580980093 g2 — 180075og§] INEINEINEINEY

7 7 7

+ [2528870409%93, — 172032¢7 — 3130982442 g2 — 202309632091 9393
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— 737587200¢, gzggg4 — 30293760091 g3g5 + 212425113645

— 516311040093 9% — 1526805504095 g3 + 1696450560099 g4
+10510617600g2939495 — 8058140160093 + 19181877120093 7
— 117552960093 g% — 23510592000g3g795 — 3369851520093

+ 1820918400g7 g2 — 8103375g§} T2(OT()T(2)T(L)
+ [34406491l + 4174643297 g3 — 46964736097 g3 + 2634240097 g3

+ 303464448091 g5 g3 — 36879360091 929394 — 8078336091 929495
— 47992340485 — 989596160093 g5 + 452386816093 g3
+ 583923209392 — 933047808009293 94 + 525530880092939495
+ 2862760320093 + 16291457280095 97 — 1306144ooog§g§
— 7836864000g393 g5 — 3369851520097 + 91045920043 g2
FM(?)
2133734400000 ($)T(2)T'(2)0(2))

— 3601500g3] T2(2)r%(2)T2(})]

+ 0(g{)
F7(%)94
201600
+ [[4109414409%93, — 1228800g] — 747801609797 — 1643765760g1 9593
+ 1691182080g192ggg4 — 5117952091929495 + 575318016043
+ 591913728093 g3 — 7881646080939 + 10866240093 g2
— 37616947200g292 g4 + 108662400092939495 — 8307075840093
4 113008896000g2 g3 — 798504000922 — 9582048009393 gs
— 19050024000¢; + 288472800g3 g% — 92610095} ICINEINENREY

2 (9:)

= [640g% — 8153693 + 26656093 — 5432097 + 245g§]
N=-8

[26492928g1 — 2330775552922 + 1217018880922 + 887738880924

— 889056092 g2 — 1517954457695 + 51863443968092 g2
— 177481920000g3 9% + 110522832093 g2 — 136999907520045
+ 746876188800g5 g3 — 418494300092g2 — 926190552009

+ 9832095009363 — 252105093 | ()M (2)M(2)1(2)
+ [4109414409%93 — 860160g{ — 5900697692 g2 — 328753152091 9393

— 1127454720¢, 929394 — 4478208009 g§g5 + 345190809693L

— 789218304095 95 — 22570168320g34g7 + 25077964800g292 4

+ 15212736000g2939495 — 119120332800g5 4 2776324320003 g3
— 167685840093 g% — 33537168000g392 g5 — 480699408004

+ 257003040093 g% — 113447258] T2($)T($)T(2)T2(2)

+ [172032091 + 786759684793 — 763176960973 + 4026624093 g2

+ 4931297280919393 — 56372736091ggggg4 — 11941888091 929495
— 779875532892 — 1512668416093 g3 + 668745728095 g3

+ 84515200922 — 137928806400g29294 + 7606368000g2939495
+ 4231906560093 + 23579740800093g5 — 186317600092 g2
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— 111790560009393 g5 — 48069940800g; + 128501520092 g2
I'(1)gs
2133734400000 ($)T(2)T(2)1(2)

— 504210093))| T2(3)02(2)12(4)]

+ 0(g])
F7(%)95
22400
+ [[632217609%93 — 24576097 — 111820809293 — 252887040g1 95 g3

+ 25288704091 g2g394 — 752640091 g2g4gs + 88510464045

+ 8851046409392 — 1159065600933 + 1580544095 g2

— 5531904000292 g4 + 158054400g2939495 — 1221628800093
+ 16437657600g3g5 — 1152480009397 — 1382976009397 95

— 274948800091 + 4139520097 g7 — 13230093‘;] T2OT(T()T(L)

L)

= [128¢7 — 1254493 + 3920093 — 784003 + 3542]
N=-8

+ [4816896g% — 35404185697 g5 + 14751744093 g5 + 13698048097 g3

— 131712097 g2 — 289134182445 4 7951190016093 g2
— 2633186304093 g3 + 1613472009292 — 203297472000g3
+ 109070707200g5 g3 — 60505200092 g2 — 133918176004

+ 14117880047 g2 — 360150931} T(ST(2)I(E)0(2)

+ [6322176093 g5 — 172032¢71 — 963379297 g5 — 50577408091 9593

— 16859136091 929394 — 6585600091 9295 + 53106278445

— 118013952093 9% — 331914240092 43 + 3687936000293 94
+ 2212761600g2939495 — 1751769600095 + 4038289920093 97
— 242020800932 — 4840416000g3g7 g5 — 69379296004

+ 3687936009397 — 162()6759‘51} INCHENES )
+ [+3440649§1 + 1284505649793 — 117411840g3 g2 + 60211209347

+ 758661120glg%gg — 84295680¢91929394 — 1756160091 929495
— 119980851295 — 226193408093 95 + 98344960095 g3
+ 1229312093 g2 — 20283648000929294 + 110638080092939495
+ 622339200095 + 34297804800g39% — 26891200093 g2
— 1613472000937 g5 — 6937929600g; + 18439680093 g2
IﬂA(%)gs
237081600001 ($)T'(2)I'(2)T(2)
+0(g]) - (B.2)

~ 72030094))| T2 (T2 (4)]
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