
An α-No-Regret Algorithm For Graphical Bilinear
Bandits

Geovani Rizk
PSL - Université Paris Dauphine,
CNRS, LAMSADE, Paris, France
geovani.rizk@dauphine.psl.eu

Igor Colin
Huawei Noah’s Ark Lab,

Paris, France
igor.colin@huawei.com

Albert Thomas
Huawei Noah’s Ark Lab,

Paris, France
albert.thomas@huawei.com

Rida Laraki
PSL - Université Paris Dauphine,
CNRS, LAMSADE, Paris, France

rida.laraki@lamsade.dauphine.fr

Yann Chevaleyre
PSL - Université Paris Dauphine,
CNRS, LAMSADE, Paris, France

yann.chevaleyre@lamsade.dauphine.fr

Abstract

We propose the first regret-based approach to the Graphical Bilinear Bandits
problem, where n agents in a graph play a stochastic bilinear bandit game with
each of their neighbors. This setting reveals a combinatorial NP-hard problem
that prevents the use of any existing regret-based algorithm in the (bi-)linear
bandit literature. In this paper, we fill this gap and present the first regret-based
algorithm for graphical bilinear bandits using the principle of optimism in the face
of uncertainty. Theoretical analysis of this new method yields an upper bound of
Õ(
√
T) on the α-regret and evidences the impact of the graph structure on the rate

of convergence. Finally, we show through various experiments the validity of our
approach.

1 Introduction

In this paper, we are interested in solving centralized multi-agent problems that involve interactions
between agents. For instance, consider the problem of the configuration of antennas in a wireless
cellular network [Siomina et al., 2006] or the adjustment of turbine blades in a wind farm [van Dijk
et al., 2016, Bargiacchi et al., 2018]. Choosing a parameter for an antenna (respectively adjusting a
turbine blade) has an impact on its signal quality (respectively its energy collection efficiency) but
also on the one of its neighboring antennas due to signal interference (respectively its neighboring
turbine blade due to wind turbulence). By considering each antenna or turbine blade as an agent,
these problems can be modeled as a multi-agent multi-armed bandit problem [Bargiacchi et al., 2018]
with the knowledge of a coordination graph [Guestrin et al., 2002] where each node represents an
agent and each edge represents an interaction between two agents. As a natural extension of the
well-studied linear bandit to this multi-agent setting we focus on the graphical bilinear bandit setting
introduced in Rizk et al. [2021]: at each round, a central entity chooses an action for each agent and
observes a bilinear reward for each couple of neighbors in the graph that is function of the actions
chosen by the two neighboring agents.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
6.

00
46

6v
2

 [
cs

.L
G

]
 1

2
O

ct
 2

02
2

The objective of the learner can either be to maximize the cumulative reward, which requires a
trade-off between exploration and exploitation, or to identify the best action without being concerned
about suboptimal rewards obtained during the learning process, known as the pure exploration setting
[Bubeck et al., 2009, Audibert and Bubeck, 2010]. For graphical bilinear bandits, while the latter has
already been addressed in Rizk et al. [2021], maximizing the cumulative reward (and thus minimizing
the associated regret) remains an open question that we address in this paper.

Contribution. Given the NP-Hardness property of the problem and the impossibility of designing
an algorithm that has sublinear regret with respect to the horizon T , we propose the first regret-based
algorithm for the graphical bilinear bandit problem that gives a guarantee on the α-regret of Õ(

√
T)

where α (greater than 1/2) is a problem-dependent parameter and Õ hides the logarithmic factors.
The problem as well as the notion of α-regret are introduced in Section 2. We provide a first algorithm
and establish theoretical guarantees in Section 3. In Section 4, we identify the problem-dependent
parameters that one could use to improve both theoretical guarantees and empirical performances of
the algorithm. Accordingly, we state a refined bound that significantly improves α. Finally, Section 5
gives an experimental overview of the various theoretical bounds established for the regret.

Related work. Centralized multi-agent bandit problems where the learner has to choose the actions
of all the agents at each round implies to deal with parallelizing the learning process on the agents. In
the context of linear rewards where all the agents share the same reward function, Chan et al. [2021]
give a detailed analysis of the problem and show that a sublinear regret in T can be reached but with
an additional cost specific to the parallelization. The main difference with their work is that they
consider independent agents, whereas we assume interactions between the agents.

Choosing an action for each node of a graph to then observe a global reward over the graph is a
combinatorial bandit problem [Cesa-Bianchi and Lugosi, 2012], the number of joint arms scaling
exponentially with the number of nodes. This has been studied in the regret-based context [Chen et al.,
2013, Perrault et al., 2020] where the notion of α-regret is introduced to cope with the NP-Hardness
of the problem. Most papers assume the availability of an oracle to solve the inner combinatorial
optimization problem at each round. In this paper, we do not make this assumption and we present
an algorithm that takes into account the graph structure, which has not been considered in the
combinatorial framework.

Bandit problems in graphs have been studied from several angles. For instance, on the one hand, in
Valko et al. [2014], Mannor and Shamir [2011], each node of the graph is an arm of the bandit problem,
which, if pulled, gives information on its neighboring arms. On the other hand, in Cesa-Bianchi et al.
[2013] each node is an instance of a linear bandit and the neighboring nodes are assumed to have
similar unknown regression coefficients. In this setting, the reward observed for each agent only
depends on its chosen action which does not take into consideration agent interactions.

The graphical bilinear bandit setting has been first established in Rizk et al. [2021] where they tackle
the problem of identifying the 1/2-best joint arm (which has an associated global reward equal to at
least 1/2 of the optimal one). They study the pure exploration setting while we tackle the regret-based
one. To the best of our knowledge, our paper is the first one to provide regret-based algorithms for
the graphical bilinear bandits setting.

2 Problem setting

Let G = (V,E) be the directed graph defined by V the finite set of nodes representing the agents and
E the set of edges representing the agent interactions. We assume that if (i, j) ∈ E then (j, i) ∈ E.1
The Graphical Bilinear Bandit with a graph G consists in the following sequential problem [Rizk
et al., 2021]: at each round t, each agent i ∈ V chooses an arm x

(i)
t in a finite arm set X and receives

for each of its neighbors j a bilinear reward

y
(i,j)
t = x

(i)>
t M?x

(j)
t + η

(i,j)
t , (1)

1One could define an undirected graph instead. However, we consider that interactions between two neighbors
are not necessarily symmetrical, with respect to the obtained rewards, so we choose to keep the directed graph to
emphasize this asymmetry.

2

where M? ∈ Rd×d is an unknown matrix, and η(i,j)t a zero-mean σ-sub-Gaussian random variable.2

For all agent i ∈ V , we denote Ni the set of its neighboring agents. Let n = Card (V) denote
the number of nodes, m = Card (E) the number of edges and K = Card (X) the number of
arms. We assume that for all x ∈ X , ‖x‖2 ≤ L. Let ‖M?‖F be the Frobenius norm of M? with
‖M?‖F≤ S. We assume that the expected reward of each edge is positive which gives for all
(x, x′) ∈ X 2, 0 ≤ x>M?x

′ ≤ LS.

For each round t, we define the global reward yt =
∑

(i,j)∈E y
(i,j)
t as the sum

of the local rewards obtained over the graph at round t, and
(
x
(1)
? , . . . , x

(n)
?

)
=

arg max(x(1),...,x(n))
∑

(i,j)∈E x
(i)>M?x

(j) as the optimal joint arm that maximizes the expected
global reward. The corresponding global pseudo-regret over T rounds is then defined as follows:

R(T) =

T∑
t=1

 ∑
(i,j)∈E

x
(i)>
? M?x

(j)
? −

∑
(i,j)∈E

x
(i)>
t M?x

(j)
t

 .

We know from Rizk et al. [2021] that finding
(
x
(1)
? , . . . , x

(n)
?

)
is NP-Hard with respect to the number

of agents n.

Proposition 2.1 (Rizk et al. [2021] Theorem 4.1). Consider a given matrix M? ∈ Rd×d and a finite
arm set X ⊂ Rd. Unless P=NP, there is no polynomial time algorithm guaranteed to find the optimal
solution of

max
(x(1),...,x(n))∈Xn

∑
(i,j)∈E

x(i)>M? x
(j) .

Hence, the objective of designing an algorithm with a sublinear regret in T is not feasible in
polynomial time with respect to n. However, some NP-hard problems are α-approximable (for
some α ∈ (0, 1]), which means that there exists a polynomial-time algorithm guaranteed to produce
solutions whose values are at least α times the value of the optimal solution. For these problems,
it makes sense to consider the α-pseudo-regret as in [Chen et al., 2013] which is defined for all
α ∈ (0, 1] as follows

Rα(T) ,
T∑
t=1

 ∑
(i,j)∈E

αx
(i)>
? M?x

(j)
? −

∑
(i,j)∈E

x
(i)>
t M?x

(j)
t

 ,

and set the objective of designing an algorithm with a sublinear α-regret.

The linear form. The reward can either be viewed as a bilinear reward as shown in (1) or as a linear
reward in higher dimension [Jun et al., 2019] with y(i,j)t =

〈
vec
(
x
(i)
t x

(j)>
t

)
, vec (M?)

〉
+ η

(i,j)
t

where for any matrix A ∈ Rd×d, vec (A) denotes the vector in Rd2 which is the concatenation of all
the columns of A, and 〈·, ·〉 refers to the dot product between two vectors.

To simplify the notation, let us refer to any x ∈ X as a node-arm and define the arm set Z =

{vec (xx′>)|(x, x′) ∈ X} where any z ∈ Z will be referred as an edge-arm. If the arm x
(i)
t ∈ X

represents the node-arm allocated to the node i ∈ V at time t, for each edge (i, j) ∈ E we will denote
the associated edge-arm by z(i,j)t := vec

(
x
(i)
t x

(j)>
t

)
∈ Z and define θ? = vec (M?) the vectorized

2One may wish that the agent’s reward i also takes into account the quality of its chosen arm alone (i.e., not
compared to the one chosen by its neighbors). We discuss this case in the appendix and show that if we add a
linear term as a function of x(i)t to the bilinear reward, the new reward can still be reduced to a simple bilinear
reward with an unknown matrix M? ∈ R(d+1)×(d+1).

3

version of the unknown matrix M? with ‖θ?‖2≤ S. With those notations, the (now) linear reward
can be rewritten as follows:

y
(i,j)
t =

〈
z
(i,j)
t , θ?

〉
+ η

(i,j)
t . (2)

When needed, for any node-arms (x, x′) ∈ X 2 we use the abbreviation zxx′ , vec(xx′>). Finally for
any vector x ∈ Rd and a symmetric positive-definite matrix A ∈ Rd×d, we define ‖x‖A,

√
x>Ax.

3 Optimism in the face of uncertainty for Graphical Bilinear Bandit

Let us first notice that given the linear reward (2) that can be observed for each of the m edges
(i, j) ∈ E, the central entity is trying to solve m parallel and dependent linear bandit problems. The
parallel aspect comes from the fact that at each round t the learner has to allocate all the m edge-arms
of the graph (one for each edge (i, j) in E) before receiving the corresponding m linear rewards. The
dependent aspect comes from the fact that the choice of most of the edge-arms are depending on
other edge-arms. Indeed, two adjacency edges (i, j) and (j, k) share the node j, hence their allocated
edge-arms must share the node-arm x

(j)
t .

In this paper, we choose to design an algorithm based on the principle of optimism in the face of
uncertainty Auer et al. [2002], and in the case of a linear reward Li et al. [2010], Abbasi-Yadkori
et al. [2011], we need to maintain an estimator of the true parameter θ?. To do so, let us define for all
rounds t ∈ {1, . . . , T} the OLS estimator of θ? as follows:

θ̂t = A−1t bt , (3)

where,

At = λId2 +

t∑
s=1

∑
(i,j)∈E

z(i,j)s z(i,j)>s ,

with λ > 0 a regularization parameter and

bt =

t∑
s=1

∑
(i,j)∈E

z(i,j)s y(i,j)s .

We define also the confidence set

Ct(δ) =

{
θ : ‖θ − θ̂t‖A−1

t
≤ σ

√
d2 log

(
1 + tmL2/λ

δ

)
+
√
λS

}
,

where with probability 1− δ, we have that θ? ∈ Ct(δ) for all t ∈ {1, . . . , T}, and δ ∈ (0, 1].

Since the graphical bilinear bandit can be seen as a linear bandit in dimension d2 and withKn possible
arms,3 the idea of our method is to overcome the NP-Hard optimization problem that one would have
to solve at each round when directly applying the OFUL algorithm as defined in Abbasi-Yadkori et al.
[2011]. Indeed, at each round, instead of looking for the best optimistic joint arm

(x
(1)
t , . . . , x

(n)
t) = arg max

(x(1),...,x(n))∈Xn
max

θ∈Ct−1(δ)

〈 ∑
(i,j)∈E

zx(i)x(j) , θ

〉
,

3It can be seen as a linear bandit problem because the goal of the central entity is to maximize at each round
t the expected global reward

∑
(i,j)∈E x

(i)>
t M?x

(j)
t =

∑
(i,j)∈E z

(i,j)>
t θ? =

〈∑
(i,j)∈E z

(i,j)
t , θ?

〉
4

Algorithm 1: Adaptation of OFUL algorithm for Graphical Bilinear Bandit
Input :graph G = (V,E), node-arm set X
(V1, V2) = Approx-MAX-CUT(G)
for t = 1 to T do

// Find the optimistic best couple of node-arms(
xt, x

′
t, θ̃t−1

)
= arg max(x,x′,θ)∈X 2×Ct−1

〈zxx′ + zx′x, θ〉;
// Allocate xt and x′t in the graph
x
(i)
t = xt for all i in V1; x

(i)
t = x′t for all i in V2;

Obtain for all (i, j) in E the rewards y(i,j)t ;
Compute θ̂t as in (3)

end
return θ̂t

Algorithm 2: Approx-MAX-CUT
Input :G = (V,E)
Set V1 = ∅, V2 = ∅
for i in V do

n1 = Card ({(i, j) ∈ E | j ∈ V1});
n2 = Card ({(i, j) ∈ E | j ∈ V2});
if n1 > n2 then V2 ← V2 ∪ {i} else V1 ← V1 ∪ {i};

end
return (V1, V2)

we consider the couple of node-arms (x?, x
′
?) = arg max(x,x′)∈X 2〈zxx′ + zx′x, θ?〉 maximizing the

reward along one edge.4 Given the optimal joint arm (x
(1)
? , . . . , x

(n)
?) and the associated optimal

edge-arms z(i,j)? = vec (x
(i)
? x

(j)
?) for all (i, j) ∈ E, we have

〈z(i,j)? + z
(j,i)
? , θ?〉 ≤ 〈zx?x′? + zx′?x? , θ?〉 . (4)

Hence, an alternative objective is to construct as many edge-arms zx?x′? and zx′?x? as possible in the
graph. Naturally, we do not have access to θ?, so we use the principle of optimism in the face of
uncertainty, which is to find the couple (xt, x

′
t) such that

(xt, x
′
t) = arg max

(x,x′)∈X 2

max
θ∈Ct−1(δ)

〈zxx′ + zx′x, θ〉 ,

and then allocate the node-arms to maximize the number of locally-optimal edge-arms zxtx′t and
zx′txt . The motivation of this alternative goal can be understood thanks to (4) where we know that
the associated expected reward is better than the one obtained with the edge-arms created with the
optimal joint arms. Of course, one can also easily understand that for a general type of graph it is not
possible to allocate those edge-arms everywhere (i.e., to all the edges). For example take a complete
graph of three nodes, allocating the edge-arms zxtx′t and zx′txt is equivalent to allocate xt and x′t
to the nodes. By doing so, two nodes will pull xt and the third one will pull x′t, which makes it
inevitable to allocate sub-optimal and unwanted edge-arms of the form zxtxt .

The main concern with this method is to control how many unwanted edge-arms are drawn in each
round (relative to the total number m of edges) in order to minimize their impact on the resulting
regret. Assigning xt to a subset of nodes and x′t to the complementary is equivalent to cutting the
graph into two pieces and creating two distinct sets of nodes V1 and V2 such that V = V1 ∪ V2 and
V1 ∩ V2 = ∅. Pulling the maximum amount of optimal edge-arms thus boils down to finding a cut
passing through the maximum number of edges.

4The reward of an edge here denotes the sum of the rewards of the two corresponding directed edges in E.

5

This problem is known as the Max-Cut problem, which is also NP-Hard. However, the extensive
attention this problem has received allows us to use one of the many approximation algorithms (see,
e.g., Algorithm 2) which are guaranteed to yield a cut passing through at least a given fraction of the
edges in the graph.5

Proposition 3.1. Given a graph G = (V,E), Algorithm 2 returns a couple (V1, V2) such that

Card ({(i, j) ∈ E | (i ∈ V1 ∧ j ∈ V2) ∨ (i ∈ V2 ∧ j ∈ V1)}) ≥ m

2
.

Using Algorithm 2 we can thus divide the set of nodes V into two subsets V1 and V2 with the
guarantee that at least m/2 edges connect the two subsets. Combining this algorithm with the
principle of optimism in the face of uncertainty for linear bandits Abbasi-Yadkori et al. [2011] we
obtain Algorithm 1 for which we can state the following guarantees on the α-regret.
Theorem 3.2. Given the Graphical Bilinear Bandit problem defined in Section 2, let 0 ≤ γ ≤ 1 be a
problem-dependent parameter defined by

γ = min
x∈X

〈zxx, θ?〉
1
m

∑
(i,j)∈E

〈
z
(i,j)
? , θ?

〉 ≥ 0 ,

and set α = 1+γ
2 , then the α-regret of Algorithm 1 satisfies

Rα(T) ≤ Õ
((
σd2 + S

√
λ
)√

Tmmax (2, (LS)2)
)

+ LSm

⌈
d2 log2

(
TmL2/λ

δ

)⌉
,

where Õ hides the logarithmic factors.

One can notice that the first term of the regret-bound matches the one of a standard linear bandit
that pulls sequentially Tm edge-arms. The second term captures the cost of parallelizing m draws
of edge-arms per round. Indeed, the intuition behind this term is that the couple (xt, x

′
t) chosen at

round t (and thus after having already pulled tm edge-arms and received tm rewards) is relevant
to pull the (tm+ 1)-th edge-arm but not necessarily the (m− 1) edge-arms that follows (from the
(tm+ 2)-th to the (tm+m)-th one) since the reward associated to the (tm+ 1)-th edge-arms could
have led to change the central entity choice if it had been done sequentially. In Chan et al. [2021],
they characterize this phenomenon and show that this potential change in choice occurs less and less
often as we pull arms and get rewards, hence the dependence in O(log(Tm))).

What is γ and what value can we expect? This parameter measures what minimum gain with respect
to the optimal reward one could get by constructing the edge-arms of the form zxx. For example,
if there exists x0 ∈ X such that 〈zx0x0

, θ?〉 = 0, then γ = 0 as well and we are in the worst case
scenario where we can only have a guarantee on an α-regret with α = 1/2. In practice, having γ = 0
is reached when given the couple (x?, x

′
?) = arg max(x,x′)∈X 2〈zxx′ + zx′x, θ?〉, this x0 is either

x? or x′?. In other words, if the unwanted edge-arms associated to the couple (x?, x
′
?) gives low

rewards, then the guarantee on the regret will be badly impacted. Hence we can wonder how we can
prevent this phenomenon. We answer this question in the next section by taking into account both the
proportion of undesirable edge arms allocated and their potential rewards at the selection of the pair
(xt, x

′
t) in order to improve in practice but also theoretically the performance of the algorithm.

4 Improved Algorithm for Graphical Bilinear Bandits

In this section, we want to capitalize on Algorithm 1 and its 1+γ
2 -no-regret property to optimize the

allocation of the arms xt and x′t such that the unwanted and suboptimal arms zxtxt and zx′tx′t penalize
as less as possible the reward.

5Most of the guarantees for the approximation of the Max-Cut problem are stated with respect to the optimal
Max-Cut solution, which is not exactly the guarantee we are looking for: we need a guarantee as a proportion of
the total number of edges. We thus have to be careful on the algorithm we choose.

6

Indeed, in Algorithm 1, the choice of the couple (xt, x
′
t) is driven by the optimistic reward of the

edge-arms zxtx′t and zxtx′t but not on the one of the unwanted arms zxtxt and zx′tx′t . Here, the first
improvement that we can provide is to include them in the selection of the couple (xt, x

′
t) as follows

(xt, x
′
t) = arg max

(x,x′)∈X 2

max
θ∈Ct−1(δ)

〈zxx′ + zx′x + zxx + zx′x′ , θ〉 .

However, this selection suggests that the number of unwanted edge-arms zxtxt and zx′tx′t will be
equal to the number of optimal edge-arm zxtx′t and zx′txt (in the sense of optimism), which is in
general not true.6 Hence, one has to take into consideration the proportion of edges that will be
allocated by suboptimal and unwanted edge-arms or by optimistically optimal edge-arms.

To do so, let us define m1 (respectively m2) the number of edges that goes from nodes in V1
(respectively V2) to nodes in V1 as well (respectively V2) and m1→2 (respectively m2→1) the number
of edges that goes from nodes in V1 (respectively V2) to nodes in V2 (respectively V1). One can notice
that by definition of the edge set E, we have m1→2 = m2→1 and that the total number of edges
m = m1→2 +m2→1 +m1 +m2. By choosing the couple (xt, x

′
t) as follows

(xt, x
′
t) = arg max

(x,x′)∈X 2

max
θ∈Ct−1(δ)

〈m1→2 · zxx′ +m2→1 · zx′x +m1 · zxx +m2 · zx′x′ , θ〉 ,

we are optimizing the total optimistic reward that one would obtain when allocating only two arms
(x, x′) ∈ X 2 in the graph. This strategy is described in Algorithm 3.

Algorithm 3: Improved OFUL for Graphical Bilinear Bandits
Input :graph G = (V,E), node-arm set X
(V1, V2) = Approx-MAX-CUT(G);
m1→2 = m2→1 = Card ({(i, j) ∈ E|i ∈ V1 ∧ j ∈ V2});
m1 = Card ({(i, j) ∈ E|i ∈ V1 ∧ j ∈ V1}); m2 = Card ({(i, j) ∈ E|i ∈ V2 ∧ j ∈ V2});
for t = 1 to T do(

xt, x
′
t, θ̃t−1

)
=

arg max(x,x′,θ)∈X 2×Ct−1
〈m1→2 · zxx′ +m2→1 · zx′x +m1 · zxx +m2 · zx′x′ , θ〉;

x
(i)
t = xt for all i in V1; x

(i)
t = x′t for all i in V2;

Obtain for all (i, j) in E the rewards y(i,j)t ;
Compute θ̂t as in (3)

end
return θ̂t

Before stating the guarantees on the α-regret of this improved algorithm, let us recall that we defined
(x?, x

′
?) = arg max(x,x′)∈X 〈zxx′ + zx′x, θ?〉 and let us define the couple (x̃?, x̃

′
?) such that

(x̃?, x̃
′
?) = arg max

(x,x′)∈X
〈m1→2 · zxx′ +m2→1 · zx′x +m1 · zxx +m2 · zx′x′ , θ?〉 .

We define ∆ ≥ 0 to be the expected reward difference of allocating (x̃?, x̃
′
?) instead of (x?, x

′
?),

∆ = 〈m1→2

(
zx̃?x̃′? − zx?x′?

)
+m2→1

(
zx̃′?x̃? − zx′?x?

)
+m1 (zx̃?x̃? − zx?x?) +m2

(
zx̃′?x̃′? − zx′?x′?

)
, θ?〉 .

The new guarantees that we get on the α-regret of Algorithm 3 are stated in the following theorem.
6It is for instance true in complete graphs with an even number of nodes n but it is already false when the

number of nodes become odd.

7

Table 1: Value of several parameters with respect to the type of graph. Experiments were performed
on graphs of n = 100 nodes, and results for the random graph are averaged over 100 draws.

Graph types

Complete Random Circle Star Matching
m1+m2

m
0.495 0.453 0.01 0 0

α1 0.5 + 0.5γ

α2 0.505 + 0.495γ + ε 0.547 + 0.453γ + ε 0.99 + 0.01γ + ε 1 1

Theorem 4.1. Given the Graphical Bilinear Bandit problem defined as in Section 2, let γ be defined
as in Theorem 3.2, let 0 ≤ ε ≤ 1

2 be a problem dependent parameter that measures the gain of
optimizing on the suboptimal and unwanted arms defined as:

ε =
∆∑

(i,j)∈E〈z
(i,j)
? , θ?〉

,

and set α = 1 −
[
m1+m2

m (1− γ)− ε
]

where α ≥ 1/2 by construction, then the α-regret of
Algorithm 3 satisfies

Rα(T) ≤Õ
((
σd2 + S

√
λ
)√

Tmmax (2, (LS)2)
)

+ LSm

⌈
d2 log2

(
TmL2/λ

δ

)⌉
,

where Õ hides the logarithmic factors.

Here one can see that the improvement happens in the α of the α-regret. Let us analyze more precisely
this term. First of all, notice that in a complete graph (which is the worst case scenario in terms of
graph type and guarantees of the cut), we get α ≥ 1+γ

2 + ε which shows that optimizing over the
suboptimal arms already improves our bound by ε. On the contrary, in the most favorable graphs,
which are bipartite graphs (i.e., graphs where all the m edges goes from nodes in V1 to nodes in V2
or vice versa), we have m2 +m1 = 0 and ε = 0 which gives α = 1 and makes the Algorithm 3 a
no-regret algorithm. What may also be of interest is to understand how α varies with respect to γ, ε
and the quantity m1 and m2 for graphs that are between a complete graph and a bipartite graph. We
investigate experimentally this dependency in Section 5.

5 Experiments - Influence of the problem parameters on the regret

In this section, we give some insights on the problem-dependent parameters γ and ε and the corre-
sponding α. Let α1 and α2 be the α stated respectively in Theorem 3.2 and Theorem 4.1. In the first
experiment, we show the dependence of α1 and α2 on the graph type and the chosen approximation
algorithm for the max-cut problem with respect to γ and ε. We also highlight the differences between
the two parameters α1 and α2 and the significant improvement in guarantees that one can obtain
using Algorithm 3 depending on the type of the graph. The results are presented in Table 1.

One can notice that the complete graph seems to be the one that gives the worst guarantee on the
α-regret with respect to ε and γ. Thus, we conducted a second experiment where we consider the
worst case scenario in terms of the graph type –e.g., the complete graph– and where there is n = 10
agents. The second experiment studies the variation of ε and γ with respect to the unknown parameter
matrix M?. To design such experiments, we consider the arm-set X as the vectors (e1, . . . , ed)
of canonical base in Rd, which implies by construction that the arm-set Z contains the vectors
(e1, . . . , ed2) of the canonical base in Rd2 . We generate the matrix M? randomly in the following
way: first, all elements of the matrix are drawn i.i.d. from a standard normal distribution, and then
we take the absolute value of each of these elements to ensure that the matrix only contains positive
numbers. The choice of the vectors of the canonical base as the arm-set allows us to modify the
matrix M? and to illustrate in a simple way the dependence on γ and ε. Consider the best couple
(i?, j?) = arg max(i,j)∈{1,...,d}2〈zeiej + zejei , θ?〉, we want to see how the reward of the suboptimal

8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1

2

Figure 1: Variation of ε, γ, α1 and α2 with re-
spect to the parameter ζ. The closer ζ is to 0 the
lower the reward of the unwanted arms zei?ei?
and zei?ei? , the closer ζ is to 1 the higher the
reward of the unwanted arms. The dimension d
of the arm-set is 10 (which gives linear reward
with unknown parameter θ? of dimension 100).
The plotted curve represents the average value of
the parameters over 100 different matrices M?

initiated randomly with positive values.

0 2500 5000 7500 10000 12500 15000 17500 20000
T

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fra
ct

io
n

of
 th

e
op

tim
al

 g
lo

ba
l r

ew
ar

d

1
2

OFUL for GBB
Improved OFUL for GBB
GBB-BAI

Figure 2: Fraction of the global reward obtained
at each round by applying the Algorithm 1, Algo-
rithm 3 and the Explore-Then-commit algorithm
(here named GBB-BAI) using the exploration
strategy in Rizk et al. [2021]. We use a complete
graph of 5 nodes, we run the experiment on 5 dif-
ferent matrices as in Figure 1 with ζ = 0 and run
it 10 different times to plot the average fraction
of the global reward

edge-arms zei?ei? and zej?ej? impact the value of γ, ε and thus α. Notice that the reward associated
to the edge-arm zei?ei? (respectively zej?ej?) is M?i?i? (respectively M?j?j?). Hence we define
0 ≤ ζ < 1 and set M?i?i? = M?j?j? = ζ × 1

2 (M?i?j? + M?j?i?). We study the variation of γ,
ε, α1 and α2 with respect to ζ. The results are presented in Figure 1. One can see that when the
associated rewards of zei?ei? and zej?ej? are low (thus γ is low and ε high), Algorithm 3 gives a
much better guarantees than Algorithm 1 since it will focus on other node-arms than ei? and ej? that
will give a higher global reward. Moreover, even when the unwanted edge-arm gives a high reward,
the guarantees on the regret of Algorithm 3 are still stronger because it takes into consideration the
quantities m1 and m2 of the constructed suboptimal edge-arms.

Finally, we design a last experiment that compares in practice the performance of Algorithm 1 and
Algorithm 3 with the Explore-Then-Commit algorithm by using the exploration strategy designed in
Rizk et al. [2021] during the exploration phase, and by allocating the nodes in V1 and V2 with the
best estimated couple (x, x′) = arg max(x,x′)〈zxx′ + zx′x, θ̂t〉 during the commit phase.

6 Conclusion & discussions

In this paper, we presented the first regret-based algorithm for the stochastic graphical bilinear bandit
problem with guarantees on the α-regret. We showed that by exploiting the graph structure and
the typology of the problem, one can both improve the performance in practice and have a better
theoretical guarantee on its α-regret. Also, we showed experimentally that our algorithm achieves
a better performance than Explore-Then-Exploit on our synthetic datasets. The method presented
in this article can be extended in many ways. First, one can consider cutting the graph into 3 or
more pieces, which is equivalent to approximating the problem of a Max-k-Cut [Frieze and Jerrum,
1997] with k ≥ 3. With the knowledge of such a partition of nodes V1, . . . , Vk, one may want
to look for a k-tuple of node-arms maximizing the optimistic allocated reward rather than a pair,
therefore introducing an elegant tradeoff between the optimality of the solution and the computational
complexity of the arms allocation. One could also study this problem in the adversarial setting, in
particular adapting adversarial linear bandit algorithms to our case. Finally, our setting could be
extended to the case where each agent has its own reward matrix.

9

References
Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. In

Advances in Neural Information Processing Systems, pages 2312–2320, 2011.

J.-Y. Audibert and S. Bubeck. Best arm identification in multi-armed bandits. In Proceedings of the
23th Annual Conference on Learning Theory, pages 41–53, 2010.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

E. Bargiacchi, T. Verstraeten, D. Roijers, A. Nowé, and H. Hasselt. Learning to coordinate with
coordination graphs in repeated single-stage multi-agent decision problems. In International
conference on machine learning, pages 482–490, 2018.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits problems. In Interna-
tional conference on Algorithmic learning theory, pages 23–37. Springer, 2009.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and System Sciences,
78(5):1404 – 1422, 2012.

N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang of bandits. In Advances in Neural Information
Processing Systems, pages 737–745, 2013.

J. Chan, A. Pacchiano, N. Tripuraneni, Y. S. Song, P. Bartlett, and M. I. Jordan. Parallelizing
contextual linear bandits. arXiv preprint arXiv:2105.10590, 2021.

W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework and
applications. In International Conference on Machine Learning, pages 151–159, 2013.

A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut and max bisection.
Algorithmica, 18(1):67–81, 1997.

C. Guestrin, M. G. Lagoudakis, and R. Parr. Coordinated reinforcement learning. In Proceedings of
the Nineteenth International Conference on Machine Learning, page 227–234, 2002.

K.-S. Jun, R. Willett, S. Wright, and R. Nowak. Bilinear bandits with low-rank structure. In
International Conference on Machine Learning, pages 3163–3172, 2019.

T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2018.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news
article recommendation. In Proceedings of the 19th international conference on World wide web,
pages 661–670, 2010.

S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations. In Advances
in Neural Information Processing Systems, pages 684–692, 2011.

P. Perrault, E. Boursier, M. Valko, and V. Perchet. Statistical efficiency of thompson sampling for
combinatorial semi-bandits. In Advances in Neural Information Processing Systems, 2020.

G. Rizk, A. Thomas, I. Colin, R. Laraki, and Y. Chevaleyre. Best arm identification in graphical
bilinear bandits. In International Conference on Machine Learning, pages 9010–9019. PMLR,
2021.

I. Siomina, P. Varbrand, and D. Yuan. Automated optimization of service coverage and base station
antenna configuration in UMTS networks. IEEE Wireless Communications, 13(6):16–25, 2006.

M. Valko, R. Munos, B. Kveton, and T. Kocák. Spectral bandits for smooth graph functions. In
E. P. Xing and T. Jebara, editors, International conference on machine learning, volume 32 of
Proceedings of Machine Learning Research, pages 46–54, 2014.

M. T. van Dijk, J.-W. van Wingerden, T. Ashuri, Y. Li, and M. A. Rotea. Yaw-misalignment and its
impact on wind turbine loads and wind farm power output. In Journal of Physics: Conference
Series, volume 753, page 062013. IOP Publishing, 2016.

10

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In the appendix section

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] The code will
be released if the paper is accepted to the conference

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All the details are explained again in the supplementary
material

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Also in the appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [No]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [No]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No]

11

A Proof of Proposition 3.1

Proof. Let consider the subgraph G(i) containing all the nodes that have been assigned to V1 or V2 at
the end of iteration i of Algorithm 2. Let us denote m(i) the number of edges in the graph G(i).
At the first iteration, the algorithm chooses the node 1, computes n1 = 0 and n2 = 0, and then
assigns node 1 to V1. With only one node in G(1), we have m(1) = 0. By denoting c(i) the number of
additional cut edges induces by the assignment of node i at iteration i, we have

1∑
i=1

c(i) = c(1) = 0 ≥ m(1)

2
(5)

Indeed, at the end of iteration 1, there is only one node assigned, hence the number of cut edges
induced by this assignment is c(1) = 0.

Suppose that
∑p
i=1 c

(i) ≥ m(p)

2 for a certain p ∈ {1, . . . , n − 1}, let us prove that
∑p+1
i=1 c

(i) ≥
m(p+1)/2.

Indeed, at the iteration p+ 1, the algorithm chooses the node (p+ 1) and computes n1 and n2. Since
n1 represents the number of neighbors of the node (p+ 1) in V1, if the node p+ 1 is added to V2,
then 2 × n1 edges would be cut (the factor 2 comes from the fact that between two nodes i and j,
there are the edges (i, j) and (j, i)). Similarly, since n2 represents the number of neighbors of the
node (p+ 1) in V2, if the node (p+ 1) is added to V1, then 2× n2 edges would be cut. Notice also
that there is a total of 2× n1 + 2× n2 edges between the node (p+ 1) and the nodes in G(p). In the
algorithm, the node (p+ 1) is added to V1 or V2 such that we cut the most edges, indeed one has

c(p+1) = max (2n1, 2n2) ≥ 2n1 + 2n2
2

= n1 + n2 .

Hence,

p+1∑
i=1

c(i) =

p∑
i=1

c(i) + c(p+1) ≥ m(p)

2
+ c(p+1) ≥ m(p)

2
+ n1 + n2 (6)

The number of edges that is added to the subgraph G(p) when adding the node (p + 1) is equal to
2n1 + 2n2 = m(p+1) −m(p), hence,

m(p)

2
+ n1 + n2 =

m(p)

2
+
m(p+1) −m(p)

2
=
m(p+1)

2
(7)

We have shown that
∑1
i=1 c

(i) ≥ m(1)

2 and that if
∑p
i=1 c

(i) ≥ m(p)

2 for a certain p ∈ {1, . . . , n− 1},
then

∑p+1
i=1 c

(i) ≥ m(p+1)

2 . Thus,
∑p
i=1 c

(i) ≥ m(p)

2 for any p ∈ {1, . . . , n}, especially for p = n

where G(n) = G. By definition
∑n
i=1 c

(i) is the total number of edges that are cut which also means
that

n∑
i=1

c(i) = Card {(i, j) ∈ E | (i ∈ V1 ∧ j ∈ V2) ∨ (i ∈ V2 ∧ j ∈ V1)}) .

B Proof of Theorem 3.2 and Theorem 4.1

To properly derive the regret bounds, we will have to make connections between our setting and a
standard linear bandit that chooses sequentially Tm arms. For that matter, let us consider an arbitrary

12

order on the set of edges E and denote E[i] the i-th edge according to this order with i ∈ {1, . . . ,m}.
We define for all t ∈ {1, . . . , T} and p ∈ {1, . . . ,m} the OLS estimator

θ̂t,p = A−1t,pbt,p ,

where

At,p = λId2 +

t−1∑
s=1

m∑
b=1

zE[b]
s zE[b]>

s +

p∑
k=1

z
E[k]
t z

E[k]>
t ,

with λ a regularization parameter and

bt,p =

t−1∑
s=1

m∑
b=1

zE[b]
s yE[b]

s +

p∑
k=1

z
E[k]
t y

E[k]
t . (8)

We define also the confidence set

Ct,p(δ) =

{
θ : ‖θ − θ̂t,p‖A−1

t,p
≤ σ

√
d2 log

(
1 + tmL2/λ

δ

)
+
√
λS

}
, (9)

where with probability 1− δ, we have that θ? ∈ Ct,p(δ) for all t ∈ {1, . . . , T}, p ∈ {1, . . . ,m} and
δ ∈ (0, 1].

Notice that the confidence set Ct(δ) defined in Section 3 is exactly the confidence set Ct,m(δ) defined
here. The definitions of the matrix At,m and the vector bt,m follow the same reasoning.

B.1 Proof of Theorem 3.2

Proof. Recall that (x
(1)
? , . . . , x

(n)
?) = arg max(x(1),...,x(n))

∑
(i,j)∈E x

(i)>M?x
(j) is the optimal

joint arm, and we define for each edge (i, j) ∈ E the optimal edge arm z
(i,j)
? = vec (x

(i)
? x

(j)>
?).

We recall that the α-pseudo-regret is

Rα(T) ,
T∑
t=1

∑
(i,j)∈E

α〈z(i,j)? , θ?〉 − 〈z(i,j)t , θ?〉 (10)

= R(T)−
T∑
t=1

∑
(i,j)∈E

(1− α)〈z(i,j)? , θ?〉 , (11)

where the pseudo-regret R(T) is defined by

R(T) =

T∑
t=1

∑
(i,j)∈E

〈z(i,j)? , θ?〉 − 〈z(i,j)t , θ?〉 .

Let us borrow the notion of Critical Covariance Inequality introduced in [Chan et al., 2021], that is
for a given round t ∈ {1, . . . , T} and p ∈ {1, . . . ,m}, the expected covariance matrix At,p satisfies
the critical covariance inequality if

At−1,m 4 At,p 4 2At−1,m . (12)

Let us now define the event Dt as the event where at a given round t, for all p ∈ {1, . . . ,m}, At,p

satisfies the critical covariance inequality (CCI).

We can write the pseudo-regret as follows:

13

R(T) =

T∑
t=1

1[Dt]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 −
〈
z
(i,j)
t , θ?

〉
+ 1[Dc

t]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 −
〈
z
(i,j)
t , θ?

〉

≤
T∑
t=1

1[Dt]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 −
〈
z
(i,j)
t , θ?

〉
︸ ︷︷ ︸

(a)

+LSm

T∑
t=1

1[Dc
t]︸ ︷︷ ︸

(b)

.

We know that the approximation Max-CUT algorithm returns two subsets of nodes V1 and V2 such
that there are at least m/2 edges between V1 and V2, and to be more precise: at least m/4 edges from
V1 to V2 and at least m/4 edges from V2 to V1. Hence at each time t, if all the nodes of V1 pull the
node-arm xt and all the nodes of V2 pull the node-arm x′t, we can derive the term (a) as follows:

(a) =

T∑
t=1

1[Dt]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 − 〈z(i,j)t , θ?〉

=

T∑
t=1

1[Dt]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 − 1 [i ∈ V1 ∧ j ∈ V2] 〈z(i,j)t , θ?〉

− 1 [i ∈ V2 ∧ j ∈ V1] 〈z(i,j)t , θ?〉

− 1 [i ∈ V1 ∧ j ∈ V1] 〈z(i,j)t , θ?〉

− 1 [i ∈ V2 ∧ j ∈ V2] 〈z(i,j)t , θ?〉 .

Notice that
∑

(i,j)∈E z
(i,j)
? =

∑
(i,j)∈E

1
m

∑
(k,l)∈E z

(k,l)
? , so one has

(a) =

T∑
t=1

1[Dt]
∑

(i,j)∈E

1 [i ∈ V1 ∧ j ∈ V2]

〈 1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
− 〈z(i,j)t , θ?〉


︸ ︷︷ ︸

(a1)

+

T∑
t=1

1[Dt]
∑

(i,j)∈E

1 [i ∈ V2 ∧ j ∈ V1]

〈 1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
− 〈z(i,j)t , θ?〉


︸ ︷︷ ︸

(a2)

+

T∑
t=1

1[Dt]
∑

(i,j)∈E

1 [i ∈ V1 ∧ j ∈ V1]

〈 1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
− 〈z(i,j)t , θ?〉


︸ ︷︷ ︸

(a3)

+

T∑
t=1

1[Dt]
∑

(i,j)∈E

1 [i ∈ V2 ∧ j ∈ V2]

〈 1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
− 〈z(i,j)t , θ?〉


︸ ︷︷ ︸

(a4)

.

Let us analyse the first term:

(a1) =

T∑
t=1

1[Dt]

n∑
i=1

∑
j∈Ni
j>i

1 [i ∈ V1 ∧ j ∈ V2]

〈
2

m

∑
(k,l)∈E

z
(k,l)
? −

(
z
(i,j)
t + z

(j,i)
t

)
, θ?

〉
. (13)

14

By defining (x?, x
′
?) = arg max(x,x′)∈X 2〈zxx′ + zx′x, θ?〉, and noticing that in the case where a

node i is in V1 and a neighbouring node j in is V2, then z(i,j)t = zxtx′t , we have,

2

m

∑
(k,l)∈E

〈
z
(k,l)
? , θ?

〉
=

2

m

n∑
k=1

∑
j∈Nk
j>k

〈
z
(k,l)
? + z

(l,k)
? , θ?

〉

≤ 2

m

n∑
k=1

∑
j∈Nk
j>k

〈
zx?x′? + zx′?x? , θ?

〉
= 〈zx?x′? + zx′?x? , θ?〉
≤ 〈zxtx′t + zx′txt , θ̃t−1,m〉 w.p 1− δ

= 〈z(i,j)t + z
(j,i)
t , θ̃t−1,m〉 .

Plugging this last inequality in (13) yields, with probability 1− δ,

(a1) ≤
T∑
t=1

1[Dt]

n∑
i=1

∑
j∈Ni
j>i

1 [i ∈ V1 ∧ j ∈ V2]
〈
z
(i,j)
t + z

(j,i)
t , θ̃t−1,m − θ?

〉

=

T∑
t=1

1[Dt]
∑

(i,j)∈E

1 [i ∈ V1 ∧ j ∈ V2]
〈
z
(i,j)
t , θ̃t−1,m − θ?

〉
.

We define, as in Algorithm 1, 1
[
z
(i,j)
t = zxtx′t

]
, 1 [i ∈ V1 ∧ j ∈ V2]. Then, one has, with proba-

bility 1− δ,

(a1) ≤
T∑
t=1

1[Dt]
∑

(i,j)∈E

1
[
z
(i,j)
t = zxtx′t

] 〈
z
(i,j)
t , θ̃t−1,m − θ?

〉

=

T∑
t=1

1[Dt]

m∑
k=1

1
[
z
E[k]
t = zxtx′t

] 〈
z
E[k]
t , θ̃t−1,m − θ?

〉
=

T∑
t=1

1[Dt]

m∑
k=1

1
[
z
E[k]
t = zxtx′t

] 〈
z
E[k]
t , θ̃t−1,m − θ̂t−1,m

〉
+
〈
z
E[k]
t , θ̂t−1,m − θ?

〉
≤

T∑
t=1

1[Dt]

m∑
k=1

1
[
z
E[k]
t = zxtx′t

]
‖zE[k]
t ‖A−1

t,k−1
‖θ̃t−1,m − θ̂t−1,m‖At,k−1

+ 1
[
z
E[k]
t = zxtx′t

]
‖zE[k]
t ‖A−1

t,k−1
‖θ̂t−1,m − θ?‖At,k−1

≤
T∑
t=1

1[Dt]

m∑
k=1

1
[
z
E[k]
t = zxtx′t

]
‖zE[k]
t ‖A−1

t,k−1

√
2‖θ̃t−1,m − θ̂t−1,m‖At−1,m

(14)

+ 1
[
z
E[k]
t = zxtx′t

]
‖zE[k]
t ‖A−1

t,k−1

√
2‖θ̂t−1,m − θ?‖At−1,m

≤
T∑
t=1

m∑
k=1

1
[
z
E[k]
t = zxtx′t

]
2
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1
(15)

≤
T∑
t=1

m∑
k=1

2
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1
, (16)

15

with
√
βt(δ) ≤ σ

√
d2 log

(
1+tmL2/λ

δ

)
+
√
λS and where (14) uses the critical covariance inequality

(12), (15) comes from the definition of the confidence set Ct−1,m(δ) (9) and (16) upper bounds the
indicator functions by 1.

Using a similar reasoning, we obtain the same bound for (a2):

(a2) ≤
T∑
t=1

m∑
k=1

2
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1
. (17)

Let us bound the terms (a3) and (a4).

(a3) =

T∑
t=1

1[Dt]
∑

(i,j)∈E

1
[
z
(i,j)
t = zxtxt

]〈 1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
− 〈z(i,j)t , θ?〉

 (18)

For all x ∈ X , let γx be the following ratio

γx =
〈zxx, θ?〉〈

1
m

∑
(k,l)∈E z

(k,l)
? , θ?

〉 , (19)

and let γ be the worst ratio

γ = min
x∈X

〈zxx, θ?〉〈
1
m

∑
(k,l)∈E z

(k,l)
? , θ?

〉 . (20)

We have

(a3) =

T∑
t=1

1[Dt]
∑

(i,j)∈E

1
[
z
(i,j)
t = zxtxt

]〈 1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
− γxt

〈
1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
≤

T∑
t=1

1[Dt]
∑

(i,j)∈E

1
[
z
(i,j)
t = zxtxt

]〈 1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
− γ

〈
1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
=

T∑
t=1

1[Dt]
∑

(i,j)∈E

1
[
z
(i,j)
t = zxtxt

]
(1− γ)

〈
1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉

≤ T m
4

(1− γ)

〈
1

m

∑
(k,l)∈E

z
(k,l)
? , θ?

〉
(21)

=

T∑
t=1

∑
(i,j)∈E

1

4
(1− γ)

〈
z
(i,j)
? , θ?

〉
,

where (21) comes from the fact that there is at most m/4 edges that goes from node in V1 to other
nodes in V1 and that 1[Dt] ≤ 1 for all t.

The derivation of this bound for (a3) gives the same one for (a4)

(a4) ≤
T∑
t=1

∑
(i,j)∈E

1

4
(1− γ)

〈
z
(i,j)
? , θ?

〉
. (22)

16

By rewriting (a), we have :

(a) ≤
T∑
t=1

m∑
k=1

4
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1
+

1

2
(1− γ)〈z(i,j)? , θ?〉 .

In [Chan et al., 2021], they bounded the term (b) as follows

LSm

T∑
t=1

1[Dc
t] ≤ LSm

⌈
d2 log2

(
TmL2/λ

δ

)⌉
. (23)

We thus have the regret bounded by

R(T) ≤
T∑
t=1

m∑
k=1

4
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1
+

1

2
(1− γ)〈z(i,j)? , θ?〉+ LSm

⌈
d2 log2

(
TmL2/λ

δ

)⌉
,

which gives us

R 1+γ
2

(T) ≤
T∑
t=1

m∑
k=1

4
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1
+LSm

⌈
d2 log2

(
TmL2/λ

δ

)⌉
.

Let us bound the first term with the double sum as it is done in [Abbasi-Yadkori et al., 2011, Chan
et al., 2021]:

T∑
t=1

m∑
k=1

4
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1

≤
T∑
t=1

m∑
k=1

min
(

2LS, 4
√

2βt(δ)‖zE[k]
t ‖A−1

t,k−1

)
≤

T∑
t=1

m∑
k=1

4
√

2βt(δ) min
(
LS, ‖zE[k]

t ‖A−1
t,k−1

)

≤

√√√√Tm× 32βT (δ)

T∑
t=1

m∑
k=1

min

(
(LS)2, ‖zE[k]

t ‖2
A−1
t,k−1

)

≤

√√√√32TmβT (δ)

T∑
t=1

m∑
k=1

max (2, (LS)2) log

(
1 + ‖zE[k]

t ‖2
A−1
t,k−1

)
(24)

=

√√√√32TmβT (δ) max (2, (LS)2)

T∑
t=1

m∑
k=1

log

(
1 + ‖zE[k]

t ‖2
A−1
t,k−1

)

≤

√
32TmβT (δ) max (2, (LS)2) d2 log

(
1 +

TmL2/λ

d2

)
(25)

≤

√
32Tmd2 max (2, (LS)2) log

(
1 +

TmL2/λ

d2

)(
σ

√
d2 log

(
1 + TmL2/λ

δ

)
+
√
λS

)

17

where (24) uses the fact that for all a, x ≥ 0, min(a, x) ≤ max(2, a) log(1 + x), (25) uses the fact

that
∑T
t=1

∑m
k=1 log

(
1 + ‖zE[k]

t ‖2
A−1
t,k−1

)
≤ d2 log

(
1 + TmL2/λ

d2

)
from Lemma 19.4 in Lattimore

and Szepesvári [2018].

The final bound for the 1+γ
2 -regret is

R 1+γ
2

(T) ≤

√
32Tmd2 max (2, (LS)2) log

(
1 +

TmL2/λ

d2

)(
σ

√
d2 log

(
1 + TmL2/λ

δ

)
+
√
λS

)

+ LSm

⌈
d2 log2

(
TmL2/λ

δ

)⌉

B.2 Proof of Theorem 4.1

Proof. For the sake of completeness in the proof we recall that we defined the couples (x?, x
′
?) and

(x̃?, x̃
′
?) and the quantity ∆ as follows:

(x?, x
′
?) = arg max

(x,x′)∈X 2

〈zxx′ + zx′x, θ?〉

(x̃?, x̃
′
?) = arg max

(x,x′)∈X
〈m1→2 · zxx′ +m2→1 · zx′x +m1 · zxx +m2 · zx′x′ , θ?〉 .

and
∆ = 〈m1→2

(
zx̃?x̃′? − zx?x′?

)
+m2→1

(
zx̃′?x̃? − zx′?x?

)
+m1 (zx̃?x̃? − zx?x?) +m2

(
zx̃′?x̃′? − zx′?x′?

)
, θ?〉 .

And we recall that in Algorithm 3, the tuple (xt, x
′
t, θ̃t−1,m) is obtained as follows:

(
xt, x

′
t, θ̃t−1,m

)
= arg max

(x,x′,θ)∈X 2×Ct−1

〈m1→2 · zxx′ +m2→1 · zx′x +m1 · zxx +m2 · zx′x′ , θ〉

We can write the regret R(T) as in the proof of Theorem 3.2:

R(T) =

T∑
t=1

1[Dt]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 −
〈
z
(i,j)
t , θ?

〉
+ 1[Dc

t]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 −
〈
z
(i,j)
t , θ?

〉

≤
T∑
t=1

1[Dt]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 −
〈
z
(i,j)
t , θ?

〉
︸ ︷︷ ︸

(a)

+LSm

T∑
t=1

1[Dc
t]︸ ︷︷ ︸

(b)

Here, (b) doesn’t change, we thus only focus on deriving (a).

(a) =

T∑
t=1

1[Dt]
∑

(i,j)∈E

〈z(i,j)? , θ?〉 − 〈z(i,j)t , θ?〉

≤
T∑
t=1

∑
(i,j)∈E

〈z(i,j)? , θ?〉 − 〈z(i,j)t , θ?〉 (where 1[Dt] ≤ 1)

=

T∑
t=1

∑
(i,j)∈E

m1→2 +m2→1

m
〈z(i,j)? , θ?〉︸ ︷︷ ︸

(a1)

+

T∑
t=1

∑
(i,j)∈E

m1 +m2

m
〈z(i,j)? , θ?〉 −

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ?〉

18

We have

(a1) =

T∑
t=1

∑
(i,j)∈E

2m1→2

m
〈z(i,j)? , θ?〉

=

T∑
t=1

n∑
i=1

∑
j∈Ni
j>i

2m1→2

m
〈z(i,j)? + z

(j,i)
? , θ?〉

≤
T∑
t=1

n∑
i=1

∑
j∈Ni
j>i

2m1→2

m
〈zx?x′? + zx′?x? , θ?〉

=
T∑
t=1

n∑
i=1

∑
j∈Ni
j>i

2

m
〈m1→2 · zx?x′? +m2→1 · zx′?x? , θ?〉

=

T∑
t=1

n∑
i=1

∑
j∈Ni
j>i

2

m
〈m1→2 · zx?x′? +m2→1 · zx′?x? +m1 · zx?x? +m2 · zx′?x′? , θ?〉

−
T∑
t=1

n∑
i=1

∑
j∈Ni
j>i

2

m
〈m1 · zx?x? +m2 · zx′?x′? , θ?〉

=

T∑
t=1

n∑
i=1

∑
j∈Ni
j>i

2

m
〈m1→2 · zx̃?x̃′? +m2→1 · zx̃′?x̃? +m1 · zx̃?x̃? +m2 · zx̃′?x̃′? , θ?〉 −

2

m
∆

−
T∑
t=1

n∑
i=1

∑
j∈Ni
j>i

2

m
〈m1 · zx?x? +m2 · zx′?x′? , θ?〉

=

T∑
t=1

〈m1→2 · zx̃?x̃′? +m2→1 · zx̃′?x̃? +m1 · zx̃?x̃? +m2 · zx̃′?x̃′? , θ?〉 −∆

−
T∑
t=1

〈m1 · zx?x? +m2 · zx′?x′? , θ?〉

≤
T∑
t=1

〈
m1→2 · zxtx′t +m2→1 · zx′txt +m1 · zxtxt +m2 · zx′tx′t , θ̃t−1,m

〉
−∆ w.p 1− δ

−
T∑
t=1

〈m1 · zx?x? +m2 · zx′?x′? , θ?〉

=

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m〉 −
T∑
t=1

∆−
T∑
t=1

〈m1 · zx?x? +m2 · zx′?x′? , θ?〉

By plugging the last upper bound in (a) and with probability 1− δ, we have,

19

(a) ≤
T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m〉 −
T∑
t=1

∆−
T∑
t=1

〈m1 · zx?x? +m2 · zx′?x′? , θ?〉

+

T∑
t=1

∑
(i,j)∈E

m1 +m2

m
〈z(i,j)? , θ?〉 −

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ?〉

=

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉 −
T∑
t=1

∆−
T∑
t=1

〈m1 · zx?x? +m2 · zx′?x′? , θ?〉

+

T∑
t=1

∑
(i,j)∈E

m1 +m2

m
〈z(i,j)? , θ?〉

=

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉 −
T∑
t=1

∆−
T∑
t=1

∑
(i,j)∈E

m1

m
γx?〈z

(i,j)
? , θ?〉+

m2

m
γx′?〈z

(i,j)
? , θ?〉

+

T∑
t=1

∑
(i,j)∈E

m1 +m2

m
〈z(i,j)? , θ?〉

≤
T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉 −
T∑
t=1

∆−
T∑
t=1

∑
(i,j)∈E

m1 +m2

m
γ〈z(i,j)? , θ?〉+

T∑
t=1

∑
(i,j)∈E

m1 +m2

m
〈z(i,j)? , θ?〉

=

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉 −
T∑
t=1

∆ +

T∑
t=1

∑
(i,j)∈E

m1 +m2

m
(1− γ)〈z(i,j)? , θ?〉

=

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉 −
T∑
t=1

∑
(i,j)∈E

ε〈z(i,j)? , θ?〉+

T∑
t=1

∑
(i,j)∈E

m1 +m2

m
(1− γ)〈z(i,j)? , θ?〉

=

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉+

T∑
t=1

∑
(i,j)∈E

[
m1 +m2

m
(1− γ)− ε

]
〈z(i,j)? , θ?〉

By plugging (a) in the regret and with probability 1− δ, we have,

R(T) ≤
T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉+

T∑
t=1

∑
(i,j)∈E

[
m1 +m2

m
(1− γ)− ε

]
〈z(i,j)? , θ?〉+ LSm

T∑
t=1

1[Dc
t]

which gives,

R(T)−
T∑
t=1

∑
(i,j)∈E

[
m1 +m2

m
(1− γ)− ε

]
〈z(i,j)? , θ?〉 ≤

T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉+ LSm

T∑
t=1

1[Dc
t]

R
1−[m1+m2

m (1−γ)−ε](T) ≤
T∑
t=1

∑
(i,j)∈E

〈z(i,j)t , θ̃t−1,m − θ?〉+ LSm

T∑
t=1

1[Dc
t]

The upper bound of the right hand term follows exactly what we have already done for Theorem 3.2
by applying the upper bounds (16) and (23)

20

C Additional information on the experiments

C.1 Table 1

The number of nodes in each graph is equal to 100. The random graph corresponds to a graph where
for two nodes i and j in V , the probability that (i, j) and (j, i) is in E is equal to 0.6. The results for
the random graph are averaged over 100 draws. The matching graph represents the graph where each
node i ∈ V has only one neighbour: Card(Ni) = 1.

C.2 Figure 1

The graph used in this experiment is a complete graph of 10 nodes. The arm set X = {e1, . . . , ed}
which gives Z = {e1, . . . , ed2}. The matrix M? is randomly initialized such that all elements of
the matrix are drawn i.i.d. from a standard normal distribution, and then we take the absolute value
of each of these elements to ensure that the matrix only contains positive numbers. We plotted the
results by varying ζ from 0 to 1 with a step of 0.01. We conducted the experiment on 100 different
matrices M? randomly initialized as explained above and plotted the average value of the obtained γ,
ε, α1 and α2.

C.3 Figure 2

For the last experiment, we used a complete graph of 5 nodes. The arm set X = {e1, . . . , ed}
which gives Z = {e1, . . . , ed2}. The matrix M? is randomly initialized as explained in the previous
experiment. We fixed ζ = 0 and the horizon T = 20000. We ran the experiment 10 times and plotted
the average values (shaded curve) and the moving average curve with a window of 100 steps for more
clarity.

The Explore-Then-Commit algorithm has an exploration phase of T/3 rounds and then exploits by
pulling the couple (xt, x

′
t) = arg max(x,x′)〈zxx′ + zx′x, θ̂t〉. Note that we set the exploration phase

to T/3 because most of the time, it was sufficient for the learner to have the estimated optimal pair
(xt, x

′
t) equal to the real optimal pair (x?, x

′
?).

Machine used for all the experiments : Macbook Pro, Apple M1 chip, 8-core CPU

The code is available here.

21

https://github.com/MILES-PSL/An-Alpha-No-Regret-Algorithm-for-Graphical-Bilinear-Bandits

	1 Introduction
	2 Problem setting
	3 Optimism in the face of uncertainty for Graphical Bilinear Bandit
	4 Improved Algorithm for Graphical Bilinear Bandits
	5 Experiments - Influence of the problem parameters on the regret
	6 Conclusion & discussions
	A Proof of Proposition 3.1
	B Proof of Theorem 3.2 and Theorem 4.1
	B.1 Proof of Theorem 3.2
	B.2 Proof of Theorem 4.1

	C Additional information on the experiments
	C.1 Table 1
	C.2 Figure 1
	C.3 Figure 2

