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ABSTRACT
Place names embedded in online natural language text present a useful source of
geographic information. Despite this, many methods for the extraction of place
names from text use pre-trained models that were not explicitly designed for this
task. Our paper builds five custom-built Named Entity Recognition (NER) models,
and evaluates them against three popular pre-built models for place name extraction.
The models are evaluated using a set of manually annotated Wikipedia articles with
reference to the F1 score metric. Our best performing model achieves an F1 score
of 0.939 compared with 0.730 for the best performing pre-built model. Our model
is then used to extract all place names from Wikipedia articles in Great Britain,
demonstrating the ability to more accurately capture unknown place names from
volunteered sources of online geographic information.

KEYWORDS
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1. Introduction

Place names are frequently encountered in natural language and provide an additional
geographic dimension to much of the textual information present online, when as-
sociated with spatial coordinates and geographic locations. Despite this, research in
place name extraction primarily concentrates on entities as described by annotation
schemes that do not explicitly consider geographic place names (Karimzadeh et al.
2019; Halterman 2017; Hu, Mao, and McKenzie 2019). Pre-built named entity recog-
nition (NER) models based on these schemes are also not task specific; trained on
data unrelated to the task they are used for, despite language involving place names
varying significantly depending on the context (Purves et al. 2018). When identifying
place names in text, research typically only considers known administrative names
and their associated strict boundaries, despite natural language often containing place
names that either do not exist formally, are hyper-localised e.g. street names, or are
alternative names that may be absent from administrative databases, which often only
consider a single formal name.
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The training corpora used by pre-built NER models typically identifies a number of
entities that have no relevance to geographic place names, e.g. persons, and those that
have some relevance in specific contexts; locations, geopolitical entities or facilities
(Weischedel et al. 2013; Tjong Kim Sang and De Meulder 2003). Notably, they do not
specifically target a ‘place name’ entity, meaning, while often these three related entity
types may often refer to a place name, this is not always the case. Additionally, these
corpora consist of text that often differs in structure, compared with the text being
processed by models trained using them; for example social media text is typically
more informal compared with the news articles used to build the popular dataset,
CoNLL03 (Tjong Kim Sang and De Meulder 2003).

New forms of geographic information online present an opportunity to train and
evaluate models on texts that contain a large volume of place names (Goodchild 2011),
building models from the ground up, and using annotation schemes that are explicitly
designed for the extraction of place names from text. Results from these models are
expected to outperform existing pre-built models which use unrelated training data,
and do not include a ‘place name’ entity type.

Our paper presents five NER models, trained on manually labelled Wikipedia data
and used to identify and extract any span of text considered to be a place name, from
articles relating to geographic locations in the United Kingdom. Our model is evaluated
against pre-built solutions that are commonly used for this task, demonstrating the
importance of model training with task specific data, and the consideration that named
entity recognition as a task is not appropriate for place name extraction, due to the
exclusion of a ‘place name’ entity type, and the inclusion of a number of unrelated
entities. New developments in natural language processing (NLP) are utilised, outlining
the benefit of selecting modern architectures that are not yet implemented by off the
shelf models. Our paper considers the ability to extract place names from Wikipedia
articles for the United Kingdom that do not appear in the GeoNames Gazetteer, with
the goal of identifying the additional geographic information that may be effectively
extracted from unstructured sources of online text.

Section 2 outlines the research and concepts associated with geography in NLP,
considering its relation to the new forms of geographic data present online, the tech-
niques in natural language processing that explicitly deal with geography, and the
developments in NLP that have enabled higher accuracy with limited labelled data.
Section 3 presents the workflow undertaken for the models constructed in this paper,
as well as the data collection and analysis of the entities extracted.

The performance of each NER model is then presented in Section 4 and evalu-
ated against pre-built solutions using a corpus of labelled test data. Place names are
extracted using the model for the entire Wikipedia corpus, and compared against
GeoNames, identifying names that are not present, discussing the reasons they may
be found within Wikipedia articles, but not in an explicitly geographic gazetteer.

2. Literature review

Natural language often describes places using imprecise referents, non-administrative
names, and an understanding of place footprints that does not conform with the formal
administrative boundaries given to them (Gao et al. 2017; Goodchild 2011). Despite
this, regions and place names in computational geography are usually formally defined
by administrative datasets, meaning any informal place names are unable to be iden-
tified, or associated with a position in space. This distinction has given rise to a focus
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on place based GIS, rather than space based, which considers the ability to capture
place references that may not appear in administrative datasets (Gao et al. 2013).

Since the advent of Web 2.0, increased access to mobile devices which include passive
GPS and open-access mapping information, several scientific disciplines have developed
to take advantage of the data being produced, including crowdsourcing, and user-
generated content (See et al. 2016). With geographically referenced content through
social media, mapping platforms and Wikipedia there is now a wealth of information
that Goodchild (2007) terms ‘Volunteered Geographic Information’ (VGI). These data
sources present a large collection of continually updated references to places, often
providing informal and unstructured geographic information.

Much of the past work using VGI has concentrated either on explicitly geographic
crowd-sourced mapping platforms like Open Street Map (Antoniou, Morley, and Hak-
lay 2010), or ‘geotagged’ content which enables, often passively contributed, user-
generated data through sites like Twitter or Flickr, used to extract geographic infor-
mation. Gao et al. (2017) for example present an approach for the construction of
cognitive regions from various VGI sources, querying place names found in tags with
associated geotags to create vague boundaries. A similar approach is taken by Hol-
lenstein and Purves (2010) who identified tags containing vague spatial concepts like
‘downtown’ and ‘citycentre’, deriving regions from geotags. These methods demon-
strate the ability to derive informal geographic information from VGI, while giving
similar results to that of manually collected questionnaire data (Twaroch et al. 2019;
Gao et al. 2017).

While this work concentrates solely on the use of geotags and short single phrase
tags associated with social media documents to analyse ‘place’ focussed geographies,
another source of online information that is less frequently considered to have geo-
graphic properties is unstructured text, which has the potential to provide an even
larger source of geographically focussed information. Good results have been reported
using basic semantic rules to identify places names found in unstructured text (Mon-
cla et al. 2014), however, these methods have relied on this text almost solely con-
taining place names as entities. Alternatively to rule-based approaches, Hu, Mao, and
McKenzie (2019) demonstrate the use of four pre-trained NER models to extract local,
informal place names from housing advertisements descriptions with associated coor-
dinates, to enrich existing gazetteers with place names not normally present, alongside
derived boundaries. The results of this paper show the promising ability for NER mod-
els to extract informal place names directly from text, also demonstrating a bottom-up
approach to gazetteer construction, enabling informal place definitions to be captured
from VGI, that may be absent from administrative datasets. Model evaluation however
showed low precision and recall when evaluating against a labelled dataset, reflecting
issues with the use of pre-built NER models for this task. Similar evaluation results
are observed by Karimzadeh et al. (2019) when considering various pre-built NER
models for use in the GeoTxt geoparsing system, which uses either SpaCy or Stanza
pre-built models (Qi et al. 2018; Honnibal and Montani 2017). While the precision
of these pre-built NER models can be relatively high for more sophisticated models,
they all suffer from low recall. Karimzadeh et al. (2019) note particularly that while
improved results would be expected by training a model from the ground up, the
amount of labelled training data required to create a suitable model would be very
large. To improve the accuracy of systems that rely on place name extraction, NER
models should be constructed with more suitable training data, and with annotations
tailored for this specific task.

While large, open-access, text-based sources of semantic geographic information are
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scarce, Wikipedia provides a large collection of articles about almost any subject, many
of which relate to geographic locations. This presents an alternative data source for use
in geographically focussed NLP applications, with place names, their semantic con-
text, and article geotags providing geographic information. Various studies have used
Wikipedia as a data source for the extraction of place names, DeLozier, Baldridge, and
London (2015) for example, identify place names in Wikipedia articles and use a clus-
tering technique using document contexts to disambiguate their geographic locations.
Speriosu and Baldridge (2013) use geotagged Wikipedia articles to provide contextual
information regarding a range of place names for disambiguation. Both these works
first use a pre-built Named Entity Recognition (NER) model to identify place names
found in text, before further analysis. Improvements made to these NER models for
place name extraction present a stronger foundation, leading to both better recall, and
precision of place names being identified, before they are resolved to coordinates (Lei-
dner 2008; Purves et al. 2018). Our paper selects Wikipedia articles to demonstrate
the geographic information that may be extracted from unstructured text, presenting
a first-stage baseline approach for tasks that rely on accurate place name extraction.

2.1. Named entity recognition in the geographic domain

Natural language processing techniques involving geography typically focus around
geoparsing; the automated extraction of place names from text, followed by the reso-
lution of the identified place names to geographic coordinates (Gritta, Pilehvar, and
Collier 2020; Leidner 2008; Buscaldi 2011). Modern place name extraction techniques
primarily rely on named entity recognition (NER) to identify place names as entities
within text (Kumar and Singh 2019; Purves et al. 2018). While most pre-built NER
systems are able to identify ‘geopolitical entities’ and ‘locations’ as defined by popular
annotation schemes1, these only act as a proxy for place names in text. The majority
of entities recognised by these systems are unrelated to place names, and as such sim-
ply contribute to lower overall recall when other entities are preferred by models over
geographic place names. For example, a model may consider a named organisational
headquarters as an ‘organisation’ entity, rather than a ‘location’, even when used as a
locational reference.

The concept of a place name as an entity defined by the labelled corpora NERmodels
were trained on hinders place name extraction, identifying only (and any) administra-
tive place names in text (Gritta et al. 2017). The geoparser Mordecai2 for example,
uses an NER tagger provided through the SpaCy Python library, which provides a vari-
ety of entities including those unrelated to place names (e.g. PER: persons), and three
entities that may be considered related, GPE (Geopolitical Entity), LOC (Location),
and FAC (Facility). While these categories often do relate to place names, they do not
consider whether the entity could be contextually considered a place name that could
be geo-located. For example, geopolitical entities are often used in a metonymic sense;
a figure of speech where a concept is substituted by a related concept. In the phrase
‘Madrid plays Kiev today’ for example, sports teams are replaced by their associated
place name (Gritta, Pilehvar, and Collier 2020). As place name based metonyms do
not explicitly relate to geographic locations, and instead a related entity, we are un-
interested in their extraction. Due to the reliance on large labelled corpora for NER

1CoNLL03: https://www.clips.uantwerpen.be/conll2003/ner/, OntoNotes 5: https://catalog.ldc.

upenn.edu/LDC2013T19
2https://github.com/openeventdata/mordecai
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training, and limited source of geography specific data (Karimzadeh et al. 2019), little
work has considered explicitly targeting place names through new data, as it is often
time-consuming to produce.

While at present pre-built NER models identify entities as defined by widely used
annotated corpora, some work has considered the need to identify spatial entities. Spa-
tialML is a natural language annotation scheme that presents the PLACE tag for any
mention of a location (Mani et al. 2010). Tasks identified by the Semantic Evaluation
Workshop built on this annotation scheme and defined several entities relating to spa-
tial language (SemEval-2015 Task 8: SpaceEval, Pustejovsky et al. 2015), described by
the ISO-Space annotation specification (Pustejovsky 2017). In order to more appro-
priately consider geography when parsing unstructured text for place related entities,
models should be built from the ground up, taking into account an alternative anno-
tation scheme that identifies place names, excluding unrelated entities.

Recent progress in NLP and the use of GPU accelerated training has brought with
it the ability to process large quantities of unlabelled text. This development has
recently led to the creation of general purpose ‘language models’ that implement the
‘transformer’ architecture, using semi-supervised learning to train using very large
corpora (Vaswani et al. 2017). For example, Google’s pioneering BERT model was
trained using the entirety of English Wikipedia, and over 11,000 books (Devlin et al.
2019). This development has led to models which perform well for many given tasks,
even with relatively limited additional labelled training data.

Our paper proposes fine-tuning transformer-based language models for place name
extraction using named entity recognition, to extract all place names from UK ‘place’
classed articles on Wikipedia. 200 of these articles are annotated, labelling place names
to train and evaluate model performance. We train and compare the performance of
three popular transformer-based NER models; BERT - a large, popular transformer
model, RoBERTa - similar to BERT, using a different pre-training procedure, which
has had better results on some tasks, and DistilBERT - a much smaller and less
complex transformer model based on RoBERTa. In addition to these transformer
models, two simpler Bidirectional LSTM (BiLSTM) models are compared, one using
pre-trained GloVe embeddings, representing an equivalent complexity model used by
Stanza or SpaCy pre-built NER solutions, and another showing a baseline model
without any pre-trained word embeddings. These models are then evaluated against
three pre-built NER systems that are popular for place name extraction, and used in
existing geoparsing systems including GeoTxt and Mordecai.

3. Methodology

Figure 1 gives an overview of the model and data processing pipeline used in our paper.
This section first outlines the computational infrastructure used. The data collection
and data processing is then described, obtaining a corpus of Wikipedia articles for
locations in Great Britain with place names labelled.

This dataset was then used to train custom NER models of various architectures,
which were evaluated using separate test data against each other and popular pre-
built NER models. We then selected our DistilBERT transformer model to extract all
place names from the full corpus of Wikipedia articles, as this model performed well
as indicated by its test F1 score, despite its smaller size.
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Figure 1. Overview of the model processing pipeline

3.1. Software & hardware infrastructure

Models used in our paper were written in Python using the AllenNLP library for deep
learning in natural language processing (Gardner et al. 2018). AllenNLP is built on top
of PyTorch (Paszke et al. 2019), providing abstractions to commonly used operations
for working with state-of-the-art deep neural networks in natural language processing.

Model training was GPU accelerated using a single NVIDIA GeForce RTX 2070
SUPER with 8192MB memory paired with a Ryzen 3700x CPU with 8 physical and
16 logical cores. Python version 3.8.5 was used with AllenNLP version 1.5.0.

3.2. Annotation & data collection

3.2.1. Wikipedia data collection

Wikipedia presents a large collection of well-formatted text contributed by a variety of
users, with frequent instances of place names, a consistent written style and without
misspellings. Existing NER models are trained on either CoNLL-03 or OntoNotes 5,
both of which are well-formatted text datasets, consisting primarily of news articles.
As such, it was considered appropriate to select Wikipedia for a comparison between
these models and ours, compared with other sources of VGI that are of lower overall
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quality.
The Wikipedia text data used in our paper was accessed through DBpedia (Auer

et al. 2007), a community gathered database of information from Wikipedia, presented
as an open knowledge graph, with ontologies that link and define information in ar-
ticles. A query was built to obtain English Wikipedia abstracts for each DBpedia
article with the Place class in Great Britain, using the DBpedia SPARQL endpoint.
Querying just for Place articles within Great Britain ensured that articles extracted
contained a large number of place names and language indicative of place names,
without additional, unnecessary information.

These abstracts are the text provided at the top of each article, before any headings,
sometimes called the summary. As an example, the Wikipedia abstract for Rowlatts
Hill, a suburb of Leicester, UK is as follows, with hyperlinks indicated in bold:

Rowlatts Hill (also known as Rowlatts Hill Estate, or R.H.E.) is an eastern, residential
suburb of the English city of Leicester. It contains mostly council-owned housing.

The suburb is roughly bordered by Spencefield Lane to the east and Whitehall Road to
the south, which separates it from neighbouring Evington. A second boundary within
the estate consists of Coleman Road to Ambassador Road through to Green Lane Road;
Rowlatts Hill borders Crown Hills to the west. To the north, at the bottom of Rowlatts
Hill is Humberstone Park which is located within Green Lane Road, Ambassador Road
and also leads on to Uppingham Road (the A47), which is also Rowlatts Hill.

Using DBpedia enabled a fast executing query which, when combined with the
Place class from the DBpedia ontology, returned a complete dataset of Wikipedia
pages for many geographic locations in Great Britain. A total 42,222 article abstracts
were extracted.

3.2.2. Input format

For use in the models, a random subset of 200 articles were annotated using the
CoNLL-03 NER format, which uses line delimitation to separate tokens, with enti-
ties associated with each token sharing the same line, separated by a space. Articles
were first cleaned using regular expressions to remove quotation marks, text inside
parentheses, and non-ascii characters. The SpaCy large web-based pre-trained model
pipeline (en core web lg) was used for further processing, using a non-monotonic arc-
eager transition-system for sentence segmentation (Honnibal and Johnson 2015), and
tokenisation using a rule-based algorithm. Each sentence-length sequence of tokens
was treated as a separate instance to be fed as batches into models for training. Each
token in every sequence was annotated as being a place name or not, assisted through
the open source annotation tool Doccano (Nakayama et al. 2018).

For place names that span multiple tokens, the BIOUL tagging scheme was used,
which stands for the ‘Beginning, Inside and Last tokens of multi-token chunks’; for
place names that span more than one token (e.g. B-Place: New, L-Place: York). ‘Unit-
length chunks and Outside’, place names of only a single token, and outside for any
token that isn’t a place name. This scheme was used over the simpler BIO scheme which
is more difficult for models to learn (Ratinov and Roth 2009). During annotation it
became clear that the length of certain multi-token place names could be considered
ambiguous. For example, it may not be clear when a cardinal direction is part of a place
name, ‘northern Ireland’ may refer to a northern region in Ireland, while ‘Northern
Ireland’ refers to the constituent country in the United Kingdom. To unify labelling
decisions we chose to consider capitalisation as an indication of multi-token noun
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Table 1. Overview of the models trained through our paper, detailing the architecture used. Integers in { }
indicate the vector dimensions

Name Embeddings Intermediate Output Optimiser

BiLSTM-CRF (Basic) Token {50} 2-layer BiLSTM {200} CRF Adam

BiLSTM-CRF
GloVe Token {50}
Character {16} 2-layer BiLSTM {200} CRF Adam

BERT BERT {768} 12-layer Transformer {768} CRF AdamW
RoBERTa RoBERTa {768} 12-layer Transformer {768} CRF AdamW
DistilBERT DistilBERT {768} 6-layer Transformer {768} CRF AdamW

phrases that constituted a single place name. The following sentence shows a sequence
of tokens with their corresponding tags, demonstrating the annotation scheme with
BIOUL information prepending each tag:

Kingston upon Hull is usually abbreviated to Hull

B-PLACE I-PLACE L-PLACE O O O O U-PLACE

From these 200 labelled Wikipedia abstracts, 10% were kept for both validation
and testing, leading to a training set of 21,080 labelled tokens, a validation dataset of
2,907 labelled tokens, and a testing dataset of 3,347 labelled tokens.

3.3. Building the entity recognition models

Named entity recognition is a subset of token classification where a sequence of
tokens x = {x0, x1 . . . xn} are taken as input, and the most likely sequence tags
y = {y0, y1, . . . yn} are predicted. The models constructed in our paper may be di-
vided into three main components, outlined on Figure 1:

• Embedding Layer: Each token in a sequence represented as high dimension
numerical space, they may be either:

◦ Randomly initialised
◦ Pre-trained: GloVe, transformer

• Intermediate Layers: A deep neural network that input embeddings propagate
through, either:

◦ Bidirectional LSTM
◦ Transformer

• Classification layer: The final layer of the model that takes a high dimen-
sional output from the previous layers, and projects them to the classification
dimension. The argmax from this layer corresponds to the label selected for each
token. Each model uses a Conditional Random Field (CRF) to classify tokens
which are popular in NER tasks, as they consider tagging decisions between all
input tokens (Lample et al. 2016). This is necessary given the inside tag for a
place (I-PLACE), cannot directly follow a unit tag (U-PLACE) for example.

Table 1 gives an overview of the model architectures built through our paper. First a
simplistic model was constructed as a baseline, using untrained randomly initialised 50
dimension token embeddings, fed into a two-layer Bidirectional LSTM (BiLSTM) with
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200 hidden dimensions. The output from the BiLSTM was input into a conditional
random field classifier. A second BiLSTM model was also created based on the archi-
tecture described in Peters et al. (2018), adding pre-trained GloVe token embeddings
(Pennington, Socher, and Manning 2014) with 50 dimensions and 16 dimension char-
acter embeddings. Both models used the Adam optimizer which makes use of stochastic
gradient descent for weight optimisation (Kingma and Ba 2017).

Three BERT-based transformer models were also created, using BERT (Devlin et al.
2019), RoBERTa which attempts to optimise the training process of BERT (Liu et al.
2019), and DistilBERT, which distils the data used in pre-training to create a smaller,
faster model (Sanh et al. 2020). The primary architecture of transformers is ‘atten-
tion’ which enables them to consider and weight each word in a sequence against
each other word simultaneously. This allows them to be highly parallel, providing sig-
nificant improvements to computational speed with GPUs which can handle highly
parallel tasks, and benefits over traditional architectures like Long Short-Term Mem-
ory (LSTM) which are only able to consider sequences sequentially (Vaswani et al.
2017). These models were pre-trained on very large general text corpora, enabling
‘transfer learning’, where a pre-trained model like BERT is used as a base and fine-
tuned to be task specific. Conceptually, these pre-trained models learn deep embedded
weights for words based on comprehensive contextual information extracted from the
large general text corpora, these then only require smaller adjustments in fine-tuning
to achieve good task-specific results. Fine-tuning these pre-trained models in NLP has
produced results that often outperform models using traditional architectures that
include manually trained word embeddings (Word2Vec, Mikolov et al. 2013), which
are limited by the volume of data provided to them and pre-trained embeddings like
GloVe (Pennington, Socher, and Manning 2014).

Pre-trained transformer models replace both the BiLSTM layers of the previous
models and token embeddings, taking encoded sequences, associating each token with
a 768 dimension vector representation from a vocabulary, feeding them into sequential
transformer layers and outputting into a CRF classifier. Each model was initialised
with pre-trained weights provided by the transformers Python library (Wolf et al.
2020), these weights are initialised in both the embedding layers and intermediate
layers. For weight optimisation, these models used the weight decay Adam algorithm
(AdamW, Loshchilov and Hutter 2019). Every layer of the transformer models was up-
dated during training, which enabled the pre-trained weights to adjust and learn for
the specific task. Hyper-parameters selected for each model were largely based on the
values as suggested for token classification by their respective implementation papers.

For every model, weights were adjusted each epoch to minimise the training loss.
Following the final intermediate layer of a model, a token representation C ∈ RH feeds
into the classification layer weights W ∈ RK×H , where K is the number of unique
labels. Classification loss is then calculated using log(softmax(CW T )).

Early stopping was used in each model, stopping training early if no improvement
was made to the validation F1 score in eight subsequent epochs. Automatic Mixed
Precision (AMP) was used throughout training to use half-precision (16 bit) floating
point numbers in some operations which reduced the memory overhead and increased
computation speed. For transformers, the learning rate was optimised towards the end
of training, using a reduce on plateau learning rate scheduler, reducing the learning
rate by 1/10th once the overall F1 validation metric had stopped improving after two
epochs, this only increased training time on the BiLSTM models with no improvement,
so was excluded. Following training, the weights from the best performing epoch were
automatically chosen for the final model.

9



Table 2. Pre-built NER models

Name Training Data Architecture Reported NER F1

SpaCy (small) OntoNotes 5 CNN 0.84a

SpaCy (large) OntoNotes 5 CNN 0.85a

Stanza OntoNotes 5 BiLSTM CRF 0.89b

a https://spacy.io/models/en

b https://stanfordnlp.github.io/stanza/performance.html

3.4. Evaluation against pre-built models

Following the training of each model, their accuracy, precision, recall and F1 score was
evaluated using a corpus of test data, against three popular modern pre-built NER
models provided through the SpaCy and Stanza Python packages. A SpaCy model is
used in the Mordecai geoparser and optionally in the GeoTxt geoparser, while the
Stanza model is a more recent implementation of the Stanford NLP model used by
the GeoTxt geoparser.

As these pre-built models were not trained to recognise ‘place names’, their tags were
adjusted so that anything labelled as ‘GPE’ (Geopolitical Entity), ‘LOC’ (Location),
or ‘FAC’ (facility) was considered to be a ‘place name’, mirroring the process used to
discard unrelated entities by geoparsing systems that use these models3. The default
Stanza NER model, and two SpaCy models (en core web sm, en core web lg) were
evaluated on the labelled test data. Table 2 gives an overview of these pre-built models.

Each model was evaluated on 3 separate subsets of the annotated test dataset,
giving a range of scores for each model. Significance testing was then performed using
paired t-tests to test the null hypothesis:

H0: There will be no statistically significant difference between the mean F1 score of
each custom built model against the best performing pre-built model (Stanza).

Significant results that reject this null hypothesis were indicated by p < 0.05 and
are shown on Table 3.

The best performing model trained on the annotated Wikipedia data was also eval-
uated using paired t-tests against each other model trained on the same data, to test
the null hypothesis:

H0: There will be no statistically significant difference between the mean F1 score of
the best performing custom built model trained on annotated Wikipedia data and each
other model trained on this data.

Significant results that reject this null hypothesis were also indicated by p < 0.05.
It should be noted that significance testing is not common in deep learning research

(Dror and Reichart 2018), but papers that do report the significance of mean scores
between models tend to use paired t-tests, despite potentially violating the parametric
assumptions made. Dror and Reichart (2018) suggest that while normality may be
assumed due to the Central Limit Theorem, it is likely that future progress in this
field will present more appropriate statistical significance testing.

3These entities are chosen by Mordecai
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Table 3. Geographic entity recognition mean (±SD) performance metrics over 3 runs of annotated Wikipedia

test data subsets. Pre-built NER models are shown in italics. Bold values indicate statistically significant F1
scores of fine-tuned models in relation to ‘Stanza‘ (Paired t-tests p < 0.05).

Accuracy Precision Recall F1

BERT 0.985 ±0.0050 0.947 ±0.0241 0.932 ±0.038 0.939 ±0.0256
DistilBERT 0.980 ±0.0015 0.930 ±0.0065 0.918 ±0.015 0.924 ±0.0065
RoBERTa 0.982 ±0.0055 0.916 ±0.0069 0.931 ±0.015 0.923 ±0.0086
CRF biLSTM 0.967 ±0.0068 0.909 ±0.0104 0.813 ±0.017 0.859 ±0.0124
CRF biLSTM (basic) 0.947 ±0.0040 0.836 ±0.0546 0.698 ±0.023 0.760 ±0.0135

Stanza 0.941 ±0.0259 0.757 ±0.0542 0.705 ±0.068 0.730 ±0.0586
SpaCy (Large) 0.910 ±0.0191 0.724 ±0.0422 0.451 ±0.050 0.554 ±0.0382
SpaCy (small) 0.900 ±0.0225 0.720 ±0.0594 0.345 ±0.082 0.464 ±0.0835

3.5. Output processing

A predictor was created from the DistilBERT model to run inference over the total
corpus of Wikipedia articles. Place names extracted from the Wikipedia articles by
this model were saved to a CSV file with the context sentence, the associated article,
and coordinate information for the article that contained the place.

Place names were compared against a full corpus of British place names from the
GeoNames gazetteer, to examine which names are excluded from the gazetteer, but
identified within Wikipedia articles.

4. Results & discussion

This section first evaluates the results of the models presented against each other,
and in relation to existing pre-built NER solutions. The place names extracted by our
best performing model are compared with pre-built models, showing how our method
improves on those used in existing place name extraction methods. Following this,
examples from the corpus of place names extracted from Wikipedia articles are noted,
demonstrating use-cases for the method presented that wouldn’t be possible or as
effective, through pre-built NER solutions.

4.1. Model performance

Table 3 shows three popular pre-built NER models, evaluated on the labelled
Wikipedia test data, compared with the models produced through our paper. The
BiLSTM-CRF (basic) model gives a baseline reference for a typical NER model with a
simple architecture. Out of the pre-built models, Stanza performs the best, achieving
precision and accuracy just below the trained baseline model, with an F1 score which
isn’t significantly worse (paired t-test p > 0.05), both SpaCy models however show
notably worse results compared with Stanza. The primary issue with the pre-built
models is recall, which is far below any of the custom-built models, reflecting a high
number of false negatives.

It is worth noting that due to class imbalances, i.e. many more ‘other’ (O) entities
relative to the small number of PLACE entities, accuracy should be considered a poor
metric, and is only included for completeness. This class imbalance means that as
only approximately 15% of tokens are labelled as entities, it is possible to achieve 85%
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accuracy and high precision by labelling all tokens as not entities. F1 score is often
used to compensate for these issues in multiple classification tasks, but it should be
known that it is not itself a perfect metric. With respect to the best performing pre-
built model Stanza, all transformer models fine-tuned on the Wikipedia annotated
data, have significantly higher F1 scores (paired t-test p < 0.05).

The DistilBERT transformer model is less complex than both the BERT and
RoBERTa model, with a total of 260 MB in model weights, compared with 433 MB
and 498 MB respectively. Despite this, the DistilBERT model achieves similar results
to RoBERTa on test data (Table 3). While all transformer models perform signifi-
cantly better than the best performing pre-built model, Stanza, both CRF models do
not give significantly better F1 scores (paired t-test p > 0.05). BERT performs best
overall, with an F1 score of 0.939 on the test data, a result that is only significantly
better than the two CRF models (paired t-test p < 0.05).

Figure 2 shows the output of the chosen fine-tuned NER model DistilBERT along-
side SpaCy (large) and Stanza, applied to a simple Wikipedia article summary. Fig-
ure 2 (A) gives promising results for DistilBERT, with the summary for the Wikipedia
page ‘Rowlatts Hill’, correctly identifying all place names.

While evaluation metrics indicate that Stanza performs reasonably well, it primar-
ily suffers from the annotation scheme used, some place names are misidentified as
‘Person’, or ‘Organisation’, meaning a standard geoparsing system would miss several
place names here, given they are not otherwise identifiable (Figure 2).

Figure 3 demonstrates the ability for our DistilBERT transformer model to accu-
rately ignore entities that do not relate to place names. This example paragraph only
refers to a single geographic location in text, the location of the 1952 Summer Games,
in Helsinki, Finland. While Stanza identifies a large number of GPE tags, they ei-
ther relate to China used in a metynomic sense, meaning the Chinese Olympic team
(‘China competed’), or as a related geopolitical noun (‘delegation of ROC’), which is
not considered to be a place name referring to a geographic location in this context.
Our model correctly infers the single mention of a geographic place name based on the
contextual information, meaning a large amount of unrelated information is excluded.
Particularly, recognising and ignoring these nouns related to place names is something
that is noted as an issue in current geoparsing systems (Gritta, Pilehvar, and Collier
2020). This figure also demonstrates the importance of using a pre-trained model base
for this task, as the BiLSTM CRF performs poorly. It is likely that this issue stems
from the limited training data used, as the model is unable to learn more complex
cases where place names are less obvious (Figure 3 (B)). Using a pre-trained trans-
former enables the model to correctly identify instances where proper nouns do not
relate to place names, taking information learned through its pre-training procedure.

4.2. Identified place names from Wikipedia

Table 4 gives an overview of the most common place names identified by the Distil-
BERT model and the SpaCy model. Notably, the SpaCy model appears to struggle
with correctly aligning entities, including ‘the’ with ‘United Kingdom’, and partially
missing place names containing ‘Tyne’ (e.g. ‘Tyne and Wear’ or ‘River Tyne’). The
DistilBERT model also extracts around 6 times the number of place names compared
with SpaCy, reflected by the low recall noted above. One example where the Dis-
tilBERT model appears confused is by giving the place name ‘Church of England’,
this problem relates to the language used in Wikipedia articles, when churches are
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Figure 2. Comparison of outputs between the best performing fine-tuned transformer model and the two
best performing pre-built NER models.

described as a ‘Church of England church’, a nominal mention of a place rather than
specific.

The total number of place names extracted from the Wikipedia summaries by the
DistilBERTmodel was 614,672, with 99,697 unique place names. In total 62,178 unique
place names were extracted that are not found within the GeoNames gazetteer. These
entities primarily exist as granular names mentioned in single instances (e.g. road
names: Shady Lane, Chapeltown Road), organisational names used in a place related
context (e.g. describing locations along the Great Western Railway route), and al-
ternative names that are not captured by GeoNames. For example, ‘M1’ appears in
GeoNames as ‘M1 Motorway’4. While the ‘M1 motorway’ is used in Wikipedia articles,
it is often also referred to as just the ‘M1’.

5. Conclusion

Our paper demonstrates a new approach towards the extraction of place names from
text by building an NER model using data annotated with geographic place names.
This work aims to direct geographic NLP research towards the use of models which
move away from the generalisable annotation schemes of pre-built NER solutions, to

4https://www.geonames.org/8714914/m1-motorway.html
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Figure 3. Ability for trained model to distinguish between metonymic usage of place names.

include task-specific, relevant training data. Notably this differs from the perceived
generalisability of pre-built models used for general geoparsing. We believe this is an
important approach for geographic place name extraction given geographic language
differs greatly based on context (Purves et al. 2018), with contexts varying greatly
based on the corpora used for inference. This is demonstrated by the poor results
observed in previous work when applying pre-built NER solutions, which use training
data unrelated to the task-specific data they are being applied to (Hu, Mao, and
McKenzie 2019; Karimzadeh et al. 2019). Wallgrün et al. (2018) recognise this problem,
developing GeoCorpora, a task-specific training dataset for micro-blog geoparsing,
notably describing increased issues with annotation ambiguity compared with more
traditional text-sources. Additionally, recent work with transformer models, typically
only built to be generalisable, have considered moving from fully generalised self-
supervised training towards more dataset-specific models (e.g. TweetEval; Barbieri
et al. (2020)), with results that outperform generalisable transformer models (Nguyen,
Vu, and Nguyen 2020).

Ultimately, the decision to produce a model explicitly designed to be non-
generalisable to other corpora may be considered a limitation of the scope of this
paper. We have demonstrated a best-case scenario where time-frames allow for man-
ual annotation of task-specific data. Future research may consider the construction
of a more generalisable place name extraction model, which takes inspiration from
the alternative annotation scheme employed by our paper, allowing for use in general
purpose geoparsers.

Additionally, while our paper selects Wikipedia for place name extraction, due to its
large volume, ease of validation and data retrieval, future work may consider the ability
to apply our methodology to other text sources. With suitable models constructed,
using annotated training data that is relevant to the corpus being considered, we
expect future work applied to other data sources may present the opportunity to
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Table 4. Top and bottom named places by frequency, excluding any present in the GeoNames gazetter or

mentioned less than 100 times.

IDX Place (DistilBERT) Count

70 Great Western Railway 236
77 Ceredigion 220
78 West Riding of Yorkshire 217
79 East Lindsey 217
83 Midland Railway 212
87 London Underground 195
... ... ...
176 M4 108
180 North Norfolk 106
181 M1 106
182 Church of England 106
191 Hull 104
199 Great Northern Railway 101

IDX Place (SpaCy) Count

3 the United Kingdom 458
4 Tyne 353
5 Ceredigion 282
6 the City of London 211
7 Methodist 205
8 the Metropolitan Borough of 200
... ... ...
14 France 129
15 Baptist 127
16 Sutherland 119
17 the City of 116
18 Richmondshire 109
19 Thameslink 102

further contribute to place names that are absent from gazetteers, as vernacular place
names. We believe that given a suitable combination of data sources, our methodology
is the first step towards the construction gazetteers from the bottom-up, directly taking
place names from passive contributions, without relying on pre-built datasets.

The recent development of pre-trained language models and their suitability for
fine-tuning in many tasks, including NER, presents a method for the construction of
accurate models that are task specific, using relatively small labelled corpora5 that
defines entities more suited to the task of place name extraction. The architecture in
our paper is more simplistic to implement than other attempts at similar tasks (e.g.
Weissenbacher et al. 2019), with most of the complexity hidden within the transformer
layers. This, combined with libraries that abstract and implement state of the art
models, provides a more accessible approach for research in place name extraction,
without requiring a deep understanding of semantic rules, or the construction of deep
multi-layered models from the ground up.

Evaluation against pre-built NER models on Table 3 shows that performance for
place name extraction is greatly improved, particularly with respect to recall, a no-
table issue with past studies (Hu, Mao, and McKenzie 2019; Karimzadeh et al. 2019).
The construction of an NER model for the task specific extraction of place names
moves towards systems that appropriately consider the geographic elements present
in natural language. The large number of place names that are absent from the GeoN-
ames gazetteer suggests that geoparsing and related work likely misses a substantial
amount of geographic information present in text. The dataset produced through this
work aims to assist with filling these gaps, while the methodology described enables
an approach that may be mirrored and applied to further work on other data sources.

Finally, both ‘place’ focussed annotation schemes describe the use of ‘nominal’ place
related entities (Mani et al. 2010; Pustejovsky 2017). While out of the scope of our
work, we would like to encourage the focus on extracting this additional geographic
information from text. Often in language the use of these non-specific terms are used,
for example ‘I visited the shops’, ‘York is a city’, provide geographically specific infor-
mation. ‘The shops’ with enough context may provide a specific geographic location,
and similarly the link between ‘York’ -> ‘city’ could be explored (Couclelis 2010).

5Compared with the Reuters corpus used for CoNLL03 for example
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The data and codes that support the findings of this study are available at the public
FigShare link (https://doi.org/10.6084/m9.figshare.13415255.v1). Instructions
for using the data and code are provided as a README within the FigShare repository.
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