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Abstract13

Spatial uncertainty of soil parameters has a significant impact on the analysis of slope stability. Interval14

field analysis is emerging as a complementary tool of the conventional random field method that can take15

spatial uncertainty into account, which, however, has not been investigated in slope stability analysis. The16

present paper proposes a new method, named the interval field limit equilibrium method (IFLEM), for17

assessing the stability of slope in the presence of the interval field. In this method, the modified exponential18

function is introduced to characterize the spatial uncertainty of the interval field and the Karhunen-Loève-19

like decomposition is employed to generate the interval field. Then, in a single calculation, the deterministic20

slope stability analyzed by the Morgenstern-Price approach is implemented in order to estimate the safety21

factor. Subsequently, the upper and lower bounds of the interval of safety factor are efficiently evaluated22

by a kind of surrogate-assisted global optimization algorithms, such as Bayesian global optimization used23

in this study. Finally, the effectiveness of the proposed method is verified by three numerical examples.24

The results indicate that the proposed method can provide reasonable accuracy and efficiency, which is25

potentially applicable to a number of geotechnical systems.26

Keywords: Spatial uncertainty, Interval field, Spatial dependency function, Karhunen-Loève like27

expansion, Slope stability28



1. Introduction29

Slope failure is a major threat to people’s lives and property in mountainous areas. Due to the com-30

plex material composition and various deposition conditions, there is considerable spatial uncertainty in the31

properties of geotechnical materials (Phoon and Kulhawy, 1999a). Previous studies have indicated that the32

spatial uncertainty usually has a great impact on the design and analysis of geotechnical structures, hence33

it should be properly taken into account (Länsivaara et al., 2021). The random field theory as one of the34

feasible techniques to characterize the spatial uncertainty (Phoon and Kulhawy, 1999b; Griffiths and Fenton,35

2004). A series of progresses have been emerged in recent decades, particularly a comprehensive overview is36

given (Jiang et al., 2022). Although the random field theory can address the spatial uncertainties, it requires37

a large number of samples to obtain statistical characteristics, such as mean value, coefficient of variation,38

and correlation function. However, it is difficult to estimate these parameters in the presence of sparse mea-39

surement data, particularly the correlation length and correlation function (Cami et al., 2020). To address40

the challenges connected to the statistical inference of the properties of autocorrelation functions, Wang et al.41

(2019) proposed a bootstrap method for statistically inferring the autocorrelation coefficients as well other42

parameters of a random field. However, for sparsely sampled random fields, extra statistical uncertainties43

are introduced when estimating the sampling distribution of the random field parameters (Montoya-Noguera44

et al., 2019).45

Alternatively to random fields, the interval field method proposed by Moens et al. (2011) only requires46

the upper and lower bounds of material parameters, as well as a description of the spatial dependence for47

modelling the spatial information. As a possibilistic method, the interval field method has rapidly developed48

in recent years, and a large number of studies have been conducted to compare it with probabilistic random49

fields. For instance, Chen et al. (2020) made an objective comparison between the interval and random field50

methods for the modelling of spatial uncertainty in the case of sparse data. The researchers have shown51

that the interval field method and the random field method are not competing but complementary. This52

complementarity was earlier illustrated by Elishakoff et al. (1994), who compared structural models with53

initial imperfections via stochastic and nonstochastic models and concluded that if probabilistic information54
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is available, one has to use a probabilistic approach and if the probabilistic information is unavailable, one55

should use nonstochastic approach for uncertainty quantification. The characteristics of interval fields are56

particularly desirable in cases where statistical data are lacking (Beer et al., 2013; Faes and Moens, 2019).57

This method represents the uncertainty of bounded parameters that vary in time or space as a series of58

deterministic basis functions multiplied by a superposition of interval factors. So far, a number of scholars59

have promoted the interval field method in different fields. Faes and Moens (2017, 2020a) presented a novel60

methodology for the identification and quantification of spatial uncertainty modelled as an interval field,61

including potential cross-dependence. Sofi et al. (2015, 2019) introduced an interval finite element method62

which incorporates the interval field representation of uncertainties by applying an interval extension in63

conjunction with the standard energy approach. Ni and Jiang (2020) proposed an interval field model to64

represent spatial uncertainties with insufficient information, in which the variation of the parameters at each65

location is quantified by an interval with upper and lower bounds. Callens et al. (2021) presented a method66

to model local explicit interval fields, which are less computationally demanding and less conservative than67

global explicit interval fields. From the preceeding discussion, it can be seen that the interval field method68

is receiving growing attention, but its application in geotechnical engineering is rarely reported. Therefore,69

the present study expands its scope on characterizing the spatial uncertainty in geotechnical engineering.70

In practical terms, an interval field can be regarded as a family of dependent interval variables indexed71

by location. When considering this interpretation, the methods developed for propagating interval variables72

could also be applicable to the propagation of interval fields. Over the past several decades, a plethora of73

methods have been developed for interval uncertainty propagation, such as the interval arithmetic (Moens74

and Hanss, 2011), the interval perturbation methods (Wang et al., 2014) and the global optimization ap-75

proach (Deng et al., 2017), etc. It is recommended to refer to (Faes and Moens, 2020b) for a comprehensive76

review on the related computational methods. Among these algorithms, global optimization approaches are77

the standard technique for solving interval problems. The main downside is the computational effort of these78

approaches. To reduce the computational efforts required by heuristic global optimization algorithms (e.g.,79

genetic algorithm), Kriging-assisted global optimization techniques have been investigated in the context of80
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interval uncertainty propagation (Catallo, 2004). In this direction, a Bayesian global optimization is also81

presented to obtain the lower and upper response bounds of a computationally expansive model subject to82

multiple interval variables (Dang et al., 2022).83

In this paper, the stability analysis of slopes is analyzed when the spatial uncertainty affecting the slopes84

is modeled by interval fields. The main contributions of this work are summarized as follows: first, the85

interval field is introduced to characterize the spatial uncertainty of slopes. This is a modelling strategy86

complementary to the conventionally used random fields, and it is, to the authors’ best knowledge, applied87

to slope stability for the first time. In this representation, an expansion over an orthogonal basis, similar88

to the Karhunen-Loève-like decomposition in random field analysis, is used to represent the interval field89

by employing multiple interval variables. Second, a general methodology, called the interval field limit equi-90

librium method (IFLEM), is proposed to propagate interval fields in slopes. This approach estimates the91

resulting lower and upper bounds of the safety factor of the slope stability. Additionally, the Bayesian global92

optimization algorithm is applied to find the lower and upper bounds of the safety factor of a slope char-93

acterized by multiple interval variables, where the Morgenstern-Price method is employed for deterministic94

analysis.95

The rest of this paper is arranged as follows: section 2 introduces the basic knowledge of the interval96

field, and section 3 incorporates the methodology that will be used in this paper. Section 4 illustrates the97

procedure of the interval field limit equilibrium method. Three numerical examples are given to demonstrate98

the effectiveness of the interval field limit equilibrium method in section 5, and conclusions are drawn in99

section 6.100

2. Interval field theory101

An interval field can be understood as a set of dependent intervals indexed by the location through-102

out the model domain and/or time. The interval field model solves the problems of changing mechanical103

parameters with spatial location from a non-probabilistic perspective by measuring the spatial uncertainty104

of the parameters in the form of upper and lower bounds (Sofi et al., 2019). Specifically, the represent105
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interval fields are based on spatial dependence functions and Karhunen-Loéve (K-L) like expansions. The106

spatial dependence function is adopted to represent the dependence of interval variables in different spatial107

positions. In addition, the specific expansion form of the interval fields can be obtained through the K-L108

like series expansion.109

2.1. Interval field expansion110

In probability theory, random fields are generally used to quantify the uncertainty of a spatially uncertain111

parameter, in which the quantity at arbitrary location x ∈ Ω ⊂ Rnd is considered as a random variable with112

a probability distribution, where x is the spatial coordinate in nd dimensions in the physical model domain113

Ω. Different from the random field model, the interval field model employs bounds, namely a pair of upper114

and lower bounds, to describe the spatial uncertainty, which can efficiently perform uncertainty analysis115

based on limited information (Chen et al., 2020). For specific problems, how to represent the interval field116

is the basis of simulation calculations. In this paper, the K-L like expansion is used to represent the interval117

field ψI(x) : Ω× IR 7→ IR, with IR the space of interval valued real numbers. The expansion of an interval118

field is written as:119

ψI(x) = ψI
o(1 + ψI

n(x)), (1)

120

ψI
n(x) =

∞∑
j=1

√
λjfj(x)ζj , (2)

where ψI
o is the center value of the interval field, ψI

n(x) is a dimensionless interval field with unit range,121

λm ∈ [ 0,∞) is them-th eigenvalue of the spatial dependency function, fm : Ω 7→ R is them-th eigenfunction122

of the spatial dependency function, and ζj ∈ IR is the j-th extra unitary interval (Sofi, 2015).123

The extra unitary interval is quite different from the classical unitary interval. It relies on the rules of124

the classical interval analysis. The specific details about the classical interval analysis can be found in (Sofi,125

2015). The extra unitary interval is given by126

ζj ∈ [−1, 1], j = 1, 2, · · · , l. (3)
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Besides, the uncertain flexibility of the spatial dependency condition is described by a single interval127

variable constant over the whole range (Sofi, 2015). For that, the following equality holds128

ζj × ζj = [0, 1]. (4)

For numerical implementation, the interval field is represented by l-term expansions. To be specific, the129

l-term expansions of the interval field reads130

ψI(x) = ψI
o(1 +

l∑
j=1

√
λjfj(x)ζj). (5)

For details of the method, the reader is referred to the work of Sofi et al. (2019). In this process, the131

error of the l-term expansions of the interval field can be represented as:132

εt(ψ
I(x)) = 1−

∑l
j=1 λj∑∞
j=1 λj

, (6)

where εt ∈ [ 0,∞) is the error of the l-term expansions of the interval field, λj is j-th eigenvalue.133

2.2. Spatial dependency function134

In essence, each realization of an interval field may vary arbitrarily within the upper and lower bounds,135

due to the by-definition orthogonality of intervals. This might lead to spurious, non-physical results. To136

overcome this shortcoming, a dependency function needs to be introduced to provide a set of basis functions137

upon which the orthogonal intervals can be projected. The key idea behind the interval field model is to138

describe the spatial dependency of the uncertain property by introducing a real, deterministic, symmet-139

ric, non-negative function γ(µ, υ). This function is known as the spatial dependency function Sofi et al.140

(2019). Specifically, the spatial dependence function provides a method to measure the dependence be-141

tween dimensionless interval functions at different locations, effectively providing us with a tool to model142

spatially dependent intervals. In analogy with the auto-correlation function characterizing a random field,143

the analytic expression of γ(µ, υ) needs to be assumed in a consistent way with the engineering information144

(Sofi, 2015). Alternatively, it can also be fitted onto data, for instance using the methodologies reported145

in Faes and Moens (2017) or Ni and Jiang (2020). Application of a dependency function ensures that the146
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realisations of the interval field, as sketched in Fig. 1, are physically realistic. In this figure, we assumed147

for simplicity that the upper and lower bounds are constant. The function γ(µ, υ) reflects the dependency148

between values of the interval field at different locations.149

In this paper, the γ(µ, υ) is used to characterize spatial uncertainty and has a number of formulations,150

such as the single exponential model, squared exponential model, etc (Cami et al., 2020). Among them, the151

modified exponential model is differentiable at the origin, such that the K-L expansion itself exhibits higher152

computational efficiency (Spanos et al., 2007; Faes et al., 2022). Thus, in this paper, we assumed that the153

spatial dependency function, γ(µ, µ′, υ, υ′), has the following modified exponential form:154

γ(µ, µ′, υ, υ′) = exp

(
−|µ− µ′|

lh
− |υ − υ′|

lv

)
(1 +

|µ− µ′|
lh

)(1 +
|υ − υ′|
lv

), (7)

where γ(µ, µ′, υ, υ′) is the spatial dependency function, (µ, υ) and (µ′, υ′) denote two points in a 2-D space,155

exp (·) is the exponential function, lh is the horizontal spatial dependency length which is similar to the156

horizontal correlation distance, lv is the vertical spatial dependency length which is similar to the vertical157

correlation distance, |µ− µ′| and |υ − υ′| respectively denote the horizontal and vertical distances between158

the two points.159

Fig. 1. Sketch of the interval field

In this paper, an assumed spatial dependency function, the modified exponential function is used for160
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illustrative purpose. After the spatial dependency function γ(µ, µ′, υ, υ′) : Ω × Ω 7→ R is determined, the161

spatial uncertainty can then be characterized (Faes et al., 2022). Specifically, the Fredholm integral equation162

of the second kind is solved to obtain the eigenvalues and eigenfunctions of the γ(µ, µ′, υ, υ′) (Atkinson and163

Han, 2009). The Fredholm integral equation of the second kind takes the form:164 ∫
Ω

γ(µ, µ′, υ, υ′)fj(µ
′, υ′)dµ′dυ′ = λjfj(µ, υ), (8)

where λj is the j-th eigenvalue of the spatial dependency function, and fj(·) is the j-th eigenfunction of165

the spatial dependency function. In order to numerically solve the Fredholm integral equation of the second166

kind, the interval field is first discretized into a series of points, and the integral Eq. (8) is solved by167

determining the eigenvalues and eigenvectors of the covariance matrix.168

3. Interval field limit equilibrium method169

In this section, the fundamental knowledge and computational formula of the proposed interval field170

limit equilibrium method are introduced. First, a limit equilibrium method, namely the Morgenstern-Price171

method, is introduced to calculate the safety factor of the slope with the interval field of cohesion and172

internal friction angle. Then, the Bayesian global optimization is elaborated to calculate the upper and173

lower bounds of the safety factor of this slope.174

3.1. Limit equilibrium method and its extension to interval field175

Soil slope stability analysis refers to the analysis of the mutual balance between sliding factors and176

resistance factors on the sliding surface of a soil slope. Soil slope has the tendency to move downward and177

outward under the action of gravity and other external forces, if the soil inside the slope can resist this178

tendency, then the slope is stable, otherwise sliding will occur (Liu et al., 2015).179

The limit equilibrium method (LEM) used in this paper is the Morgenstern-Price method. The Morgenstern-180

Price method is similar to the Spencer method, but it allows for various user-specified interslice force func-181

tions (Morgenstern and Price, 1965). In the Morgenstern-Price method, it is assumed that182

χl/el = tanβ = λf(u), (9)
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Fig. 2. Schematic diagram of limit equilibrium method

where χl is inter-slice vertical force, el is inter-slice horizontal force, λ is a constant, and f is an inter-slice183

function. In particular, the inter-slice functions in the present implementation is half-sine function.184

According to Fig. 2, the equilibrium equations of the forces in the horizontal and vertical directions are185

derived respectively. In the process, cohesion and internal friction angle are expressed in the form of interval186

fields. The obtained equations are shown as follows:187

t sinα+ n cosα = ∆w +∆v −∆χ, (10)

188

t cosα− n sinα = ∆q −∆e, (11)

189

t cosα = ψI
c∆p secα+ n tanψI

φ, (12)

where t is tangential force at the bottom of the soil strip, n is the normal force at the bottom of the soil190

strip, α is the angle between the tangent line at the bottom of the soil strip and the horizontal direction,191

∆w is the gravity of the soil strip, ∆v is the external force on the soil strip in the vertical direction, ∆χ is192

9



the difference in vertical force between strips on both sides of the soil strip, ∆q is the horizontal component193

of the soil strip, ∆e is the difference in horizontal force between strips on both sides of the soil strip, ψI
c is194

the interval field of c, and ψI
φ is the interval field of φ.195

In addition, the equilibrium equation of the moment is derived as follows196

(χ+∆χ)
∆p

2
+χ

∆p

2
+ (e+∆e)∆q − e∆r −∆q∆s = 0, (13)

where χ is the lower soil bar which is subjected to the inter-slice vertical force of the upper soil bar, ∆p is197

the width of the soil strip, e is the lower soil strip is subjected to the horizontal force between the strips of198

the upper soil strip, ∆q is the distance between the position of the force of the lower soil strip on the upper199

soil strip and the center point of the bottom of the strip, ∆r is the distance between the position of the200

force of the upper soil strip on the lower soil strip and the center point of the bottom of the strip, and ∆s is201

the distance between the position of the horizontal component of the soil strip and the center of the bottom202

of the strip.203

Based on the theory of the limiting equilibrium method, the safety factor (fs) of the slope can be obtained204

by equilibrium conditions (Zhu et al., 2005). The fs of the slope can be calculated from Eqs. (14) and (15)205

by combining Eqs. (10)-(13) according to the equilibrium condition of force and moment, that is,206

−de

dp
(1 + tanψI

φ tanα) +
dχ

dp
(tanψI

φ − tanα) = ψI
c sec

2 α+ (
dw

dp
+

dv

dp
)

(tanψI
φ − tanα)− dq

dp
(1 + tanψI

φ tanα),

(14)

∫ b

a

[λf(p)e− e tanα] dp =

∫ b

a

dq

dp
∆s dp. (15)

3.2. Estimate the safety factor bounds by Bayesian global optimization207

An essential task of the interval field limit equilibrium method is the propagation of the interval, and208

optimization is the most common way to deal with this problem. With the development of optimization209

methods, surrogate models have evolved into methods that incorporate new data points based on historical210

data and approximate the global optimal solution, i.e., Bayesian global optimization (Jones et al., 1998; Han211

and Görtz, 2012). In this paper, we use an improved Bayesian global method to determine the upper and212
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lower bounds of the interval, i.e., the maximum and minimum values (Dang et al., 2022). In this problem,213

the optimization problem, including the maximum and minimum values, can be formulated as214 

max fs(ζ)

min fs(ζ)

s.t. ζj × ζj = [0, 1],

(16)

where ζ = (ζ1, ζ2, · · · , ζl)T is the l-dimensional vector of interval variables, fs(ζ) : IRl 7→ IR is the objective215

function, and ζj × ζj = [0, 1] is the constraint conditions.216

Bayesian global optimization is a black-box optimization algorithm for solving optimization problems217

for functions with unknown expressions. The algorithm predicts the probability distribution of the function218

values at any point based on the function values at a set of sampled points, which is achieved by Gaussian219

process regression. In this subsection, a Bayesian global optimization method that can simultaneously find220

the minimum and maximum values of the objective function is introduced (Dang et al., 2022). The formula221

for calculating the minimum value is exhibited in this section. The maximum value is calculated in a similar222

way after the minimum value is obtained. From the results of the Gaussian process regression, an acquisition223

function is constructed to measure whether another point is needed to be added, and the extreme value of224

the acquisition function is solved to determine the next sampling point. In the paper, Bayesian global225

optimization is used to obtain the intervals of fs.226

3.2.1. Initial sample selection227

The first step of the optimization algorithm is to select the initial sample points. In the present imple-228

mentation, the initial samples are uniform random samples inside the unit hyper-sphere (Rubinstein and229

Kroese, 2016). Then, the initial surrogate model is built based on the initial samples and the associated230

function values. The Gaussian process regression N [γ̂(ζ), s(ζ)] is used as a surrogate model, in which N [·, ·]231

is a normal distribution, γ̂(ζ) and s(ζ) are mean value and standard value of predict model respectively.232

It’s performed using the fitrgp function in MATLAB.233
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3.2.2. Training dataset enrichment234

For the minimization problem, the objective function improvement θ(ζ) is defined as235

θ(ζ) = max{γmin − γ̂(ζ), 0}, (17)

where γmin is the current optimal objective function value, and γ̂(ζ) is the set of parameters that obey236

normal distribution.237

The expectation value of θ(ζ) is given by (Jones et al., 1998)238

E[θ(ζ)] =


(γmin − γ̂(ζ))Φ

(γmin − γ̂(ζ)

s(ζ)

)
+ s(ζ)ϕ

(γmin − γ̂(ζ)

s(ζ)

)
, s > 0

0, s = 0,

(18)

where E[·] is the expectation operator, Φ is the standard normal cumulative distribution function, ϕ is239

the standard normal distribution probability density function, γ̂(ζ) and s(ζ) are the mean and standard240

deviation of the normal distribution of the Kriging model predictions, respectively.241

The new sample points are found by solving the following suboptimization problem which maximize the242

value of E[θ(ζ)]:243 
max

ζ
E[θ(ζ)]

s.t. ζj × ζj = [0, 1].

(19)

3.2.3. Convergence criterion for Bayesian global optimization244

The convergence criterion is an essential element for the optimization algorithm. It is determined by245

controlling the ratio of the maximum expected value of θ(ζ) to the current optimal objective function value.246

The convergence criterion of the present paper is defined as247

|max E[θ(ζ)]|
|γmin|+ δ

≤ ϵ, (20)

where max E[θ(ζ)] represents the maximum value of E[θ(ζ)], γmin represents the minimum value of γ248

observed so far, δ is an infinitesimal value, ϵ is the threshold value. In this case, δ is 1e-6 and ϵ is 0.001. The249

optimization process is terminated when the ratio of the maximum expected value of θ(ζ) to the current250

optimal objective function value is less than ϵ for three successive iterations.251
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4. Implementation procedure of IFLEM252

By combining the limit equilibrium method, the interval field model, and Bayesian global optimization253

method, IFLEM is proposed to efficiently estimate the upper and lower bounds of the fs of a slope. The254

basic procedure for the numerical implementation of the proposed method (shown in Fig. 3) includes the255

following five steps:256

Fig. 3. Flowchart of the proposed IFLEM method

1. An initial sample points are first generated as a scattering set of samples by the method in Section257

3.2. The interval field is generated from Eq. (1) based on the selected interval vector.258

2. The parameters of the interval field are input into the slope model. The fs of the slope is evaluated259

by Eq. (14) according to the interval fields of c and φ.260

3. Select the vector samples required for the next calculation according to the optimal additive point261

criterion by Eq. (17).262

4. Determine the termination condition of the optimization by Eq. (20). If the condition is satisfied, the263

upper and lower bounds of the fs are obtained according to the calculation. Otherwise, additional264
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points are required and steps (2) to (4) are repeated until the condition is satisfied.265

5. After calculating the fs, the stability of the slope is evaluated. If the minimum value of the fs is266

greater than 1, the slope is in a totally safe state. If the maximum value of the fs is less than 1, the267

slope is in a high risk state. The stability of the slope is unsure when the interval of the fs includes268

1. Within the theoretical framework of interval analysis, there is no information on the probability269

distribution within the interval. Therefore, the interval field method applied for sparse data cannot270

obtain the probabilities inside the interval.271

5. Illustrative examples272

In order to demonstrate the accuracy and effectiveness of the proposed method, three examples are shown273

in this section. The first case is a one-stage slope to show the accuracy and efficiency of this approach. The274

second case is a two-stage to demonstrate the broader applicability of the method. The third case is a275

real slope to show that this method applies to complex problems and makes the proposed method more276

meaningful.277

5.1. Example 1: Interval field analysis of a single-stage slope278

5.1.1. Description of the problem279

To illustrate, a single-stage slope is used to demonstrate the generation of the interval field, and then280

the interval of the fs is calculated according to the proposed method. This slope has a height of 28 m and281

an angle of 36.9°, in which the height of the lower floor is 4 m and the height of the upper floor is 24 m,282

as shown in Fig. 4. In order to generate interval fields for the slope, 489 elements are discrete in the slope.283

In the process, the c and φ are spatially variable described by the interval fields which are generated by284

the method mentioned in Section 2. And we use the parameter of midpoint of the element on behalf of the285

whole element.286

It is crucial to determine the upper and lower boundaries of the interval field and the parameters of the287

spatial dependence function when establishing the interval field. This is because interval estimation captures288
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the uncertainty of the parameters through an upper bound with a lower bound. The initial estimation of289

interval boundaries can be based on the analyst’s expertise and experimental data. However, the expert290

knowledge that is available in most practical engineering design cases is sparse, ambiguous, or subjective.291

In such cases, it is wise to collect more data to refine the interval. A Bayesian inference scheme can in292

this context be used to determine interval bounds on small data sets. It is based on considering a complete293

set of parameterized probability density functions to determine the likelihood function, which can then be294

used in a Bayesian framework to assess the extreme value distributions on the bounds of the interval, given295

the available data. The robustness of the final result is increased by including many possible PDFs in its296

computation (Imholz et al., 2020). The parameters of the interval field of the slope are shown in Table 1.297

The minimum value of c is 15 kPa and the maximum value is 21 kPa, and the minimum value of φ is 16°298

and the maximum value is 24°. The horizontal spatial dependency length lh is set to 30 m, and the vertical299

spatial dependency length lv is 4 m.300

Table 1

Material parameters of the single-stage slope in Example 1

Parameters Maximum value Minimum value lh lv

c(kPa) 21 15 30 4

φ(°) 24 16 30 4

Fig. 4. The geometry model of the single-stage slope
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5.1.2. Interval field analysis results and discussion301

First, the interval field of the single-stage slope is generated and the error of the K-L like expansion level302

is analyzed. In this example, the error of the K-L like expansion is controlled within 5% and the K-L like303

expansion term is six (Huang et al., 2001). Then, the eigenfunctions and eigenvalues are solved according304

to the spatial dependency function in Section 2. The eigenfunctions are shown in Fig. 5 and the eigenvalues305

are shown in Fig. 6.306

Fig. 5. The first six eigenfunctions of interval fields

The single-stage slope with interval field is calculated and its sliding surfaces (SS) are obtained as shown307

in Fig. 7. To calculate the fs, the sliding surfaces should be selected first. For illustration purposes, three308

typical sliding surfaces are considered. In this figure, three special sliding surfaces are marked according to309

the range of the fs. The red sliding surface in the diagram represents the most dangerous sliding surface,310

while the green sliding surface represents the safest sliding surface. Each sliding surface was analyzed311

respectively. The safety factor bounds of the upper and lower of the single-stage slope with interval field312

are calculated by the Bayesian global optimization method. The interval of fs was obtained as [0.83, 0.994]313
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Fig. 6. Eigenvalues of interval fields

for the sliding surfaces 1, [0.946, 1.132] for the sliding surfaces 2, and [1.107, 1.415] for the sliding surfaces314

3. The calculated interval of fs is represented in Fig. 8. The optimization of the sliding surface 1 to obtain315

the interval of fs required 19 deterministic analyses, the sliding surface 2 required 20 times, and the sliding316

surface 3 required 21 times. In Table 2, the results of the Bayesian global optimization are compared with the317

surrogate optimization method. It can be found that Bayesian global optimization shows great advantages318

in terms of both computational accuracy and efficiency. For the sliding surface 2 of interval field analysis,319

the interval of fs is [0.946, 1.132]. Since fs = 1 is included in the interval of the fs, the stability of the320

slope in this state is unsure, and essentially no fixed statement can be made. This is because there is no321

information available on the probability distribution of the c and φ within the bounds of the interval. In322

the analysis by the interval method, only the information of the upper and lower boundaries of c and φ323

are predicted. Since an interval in essence represents a p-box, bounded by two Heavyside functions, the324

probability of obtaining a certain value within the interval is bounded by the interval [0, 1] (Faes and Moens,325

2020b), which is completely uninformative. Nonetheless, to be conservative and ensure safety, it is necessary326

to increase the lower bound of the fs though decreasing the angle of the designed slope or enhancing the327

slope for this case.328

For the same c and φ intervals, the interval field with consideration of spatial uncertainty is compared329

with the interval analysis method for homogeneous materials. The intervals of fs were calculated for the330
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Fig. 7. Three typical sliding surfaces for the single-stage slope failure

Fig. 8. Results of interval field and interval analysis in the single stage slope analysis

interval field and interval analysis, respectively. It can be found in Fig. 8. It can be noticed that the interval331

field method can reduce the interval of fs in comparison with the interval analysis method. Moreover, it is332

more consistent with the real situation after considering the spatial uncertainty.333

In order to study the influence of interval field parameters on the calculation results, the influence of334

spatial dependency length on the calculation results of the interval field is analyzed. It’s shown in Figs. 9335

and 10. The interval fields were calculated for the horizontal spatial dependency lengths of 5 m, 10 m, 15 ,336

20 m, 25 m, and 30 m, respectively. The interval fields were calculated for the vertical spatial dependency337

lengths of 2 m, 4 m, 6 , 8 m, and 10 m, respectively. When the horizontal spatial dependency length is 5338

m, the interval of the calculated results is [1.198, 1.341]. And the interval of the calculated results is [1.107,339
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Table 2

Results of the efficiency comparison

Method Result N

Bayesian optimization [1.107, 1.415] 21

Surrogate optimization [1.011, 1.412] 505 + 368

1.415] when the horizontal spatial dependency length is 30 m. With the expansion of the input parameter340

interval, the interval of the calculated fs increases rapidly. When the spatial dependency length is greater341

than 25m, the percentage of the interval increase of the fs becomes larger. Therefore, more attention should342

be paid to the selection of the spatial dependency length.343

Fig. 9. Influence of the horizontal spatial dependency length on interval field results

In order to explore the influence factors of the interval field, the effect of interval radius is investigated,344

as shown in Figs. 11 and 12. Fig. 11 shows the effect of c interval radius on the interval field results, and345

Fig. 12 shows the effect of φ interval radius on the interval field results. For the interval radius of c, the346

interval field was calculated when it was 1, 2 and 3, respectively. The interval of the calculated results is347

[1.127, 1.33] when the c interval radius is 1 kPa. When the radius of the c interval is 3 kPa, the interval348

of the calculated results is [1.107, 1.415]. It is noted that when the radius of the c interval increases, the349
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Fig. 10. Influence of the vertical spatial dependency length on interval field results

interval of the fs also increases. However, the percentage of its increase is small. For the interval radius350

of φ, the interval field was calculated for its 1, 2, 3, and 4, respectively. When the φ interval radius is 1°,351

the calculated interval is [1.215, 1.314]. And the interval of the calculated results is [1.107, 1.415] when the352

radius of the φ interval is 4°. It can be seen that when the radius of the φ interval increases, the interval353

of the fs also increases. And the percentage of its increase is larger than the radius of the c interval. It354

indicates that the φ interval radius has a greater effect on the interval results of the fs than the c interval355

radius. Therefore, it can be seen that more attention should be paid to the selection interval radius of the356

φ. More detailed results can be obtained using interval sensitivity analysis (Moens and Vandepitte, 2007).357

5.2. Example 2: Interval field analysis of a two-stage slope358

5.2.1. Description of the problem359

For illustration, a two-stage slope is used to demonstrate the generation of the interval field, and then360

the interval of fs is calculated according to the proposed method. This slope has a lower layer height of 10361

m and an upper layer height of 19 m, as shown in Fig. 13. The height of the first slope is 9 m and the angle362

is 42°. The height of the second slope is 10 m and the angle is 40°. The c interval of the lower layer is [4,363

6], the φ interval is [28, 30], and the spatial dependency length is 5 m. The c interval of the upper layer is364
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Fig. 11. Influence of cohesive interval radius on interval field results

[10, 12], the φ interval is [28, 36], and both horizontal and vertical spatial dependency lengths are both 5365

m. The material parameters are shown in Table 3.366

Table 3

Material parameters of the two-stage slope in Example 2

Layers c(kPa) φ(°) lh lv

Lower level [4, 6] [24, 26] 5 5

Upper level [6, 10] [24, 30] 5 5

5.2.2. Interval field analysis results367

First, the interval field of the two-stage slope is generated, as shown in Fig. 14. This figure is a one-time368

realization of the sample values of the interval field. For this two-stage slope, the generated interval fields369

are calculated separately for the upper and lower layers. The two-stage slope with interval field is calculated370

and its slip surface is obtained as shown in Fig. 15. In this figure, three special sliding surfaces are marked.371

Each type of sliding surface represents a typical picture of the minimum fs in that region. And each sliding372

surfaces is analyzed. The interval of fs was obtained as [1.113, 1.440] for the sliding surface 1, [1.069, 1.117]373

for the sliding surface 2, and [1.505, 1.529] for the sliding surface 3. The calculated interval of the fs is374
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Fig. 12. Influence of the interval radius of the φ on the interval field results

Fig. 13. The geometry model of the two-stage slope

represented in Fig. 16.375

The intervals of fs were calculated for the interval field and interval analysis, respectively. The results376

of the interval limit equilibrium method are compared with those of the interval field limit equilibrium377

method, as shown in Table 4. It can be noticed that the interval field method can reduce the interval of378

fs in comparison with the interval analysis method. And it is obvious that the result of the interval field379

is larger than 1 so the slope is safe definitely. But the interval analysis lower bound of the fs at sliding380

surfaces 1 and 2 is less than 1 down to it is unsure in safety state. From this it can be seen that the result of381

the interval analysis method is more conservative. However, the result of the interval field method is more382
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Fig. 14. Sample values realization for the interval field of the two-stage slope

Fig. 15. Three typical sliding surfaces for the two-stage slope failure

realistic since it can reflect the spatial uncertainty.383

Table 4

Results of interval field in the two-stage slope analysis

Type Sliding surface 1 Sliding surface 2 Sliding surface 3

Interval field [1.113, 1.140] [1.069, 1.117] [1.505, 1.529]

Interval analysis [0.953, 1.342] [0.939, 1.306] [1.291, 1.719]
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Fig. 16. Results of interval field in the two-stage slope analysis
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5.3. Example 3: Interval field analysis of the Majiagou landslide384

5.3.1. Description of the Majiagou landslide385

The Majiagou landslide is on the left bank of the Zhaxi River, a tributary of the Yangtze River in386

Zigui County, Hubei Province, as shown in Fig. 17 (a) (Zhang et al., 2021). According to the field survey,387

the Majiagou landslide is a slope with an east-west distribution of alternating gentle and steep with an388

average slope of 15°. The landslide extends 538 m horizontally, of which the elevation of the toe of the389

slope is 135 m, and the elevation of the crown is 280 m. The geometric model is shown in Fig. 17 (b).390

The Majiagou landslide is mainly composed of surface deposits and sedimentary bedrock. The sedimentary391

bedrock consists of Jurassic Suining Formation grey sandstone interbedded with purple-red mudstone. The392

surface deposits are mainly composed of silty clay mixed with gravelly soil. The silty mudstone is easily393

softened and highly fractured and is one of the most common slip-prone strata in the Three Gorges reservoir394

area. The soil-rock interface composed of weathered silty mudstone was identified as the main sliding surface395

combining geological investigation and drilling technology (Liao et al., 2021). Table. 5 lists the properties396

of the landslide material (Ma et al., 2017).397

Table 5

Material parameters of the real-slope in Example 3

Materials Unit weight(kN/m3) c(kPa) φ(°) lh(m) lv(m)

Sliding mass 21.14 [13, 23] [15, 23] 50 10

Sliding zone 19.40 [13, 23] [13, 21] 50 10

5.3.2. Interval field analysis results398

First, the interval field of the Majiagou landslide is generated. In this process, the interval field is399

established separately in two parts: the sliding zone and the sliding mass. The error in the interval field400

discretisation remains within 5%. Then, the generated interval field parameters of c and φ are assigned401

to the numerical model of the Majiagou landslide. A deterministic analysis of this Majiagou landslide is402

performed according to the interval field limit equilibrium method formula. Finally, the interval of the fs of403
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Fig. 17. The geometry model of the Majiagou landslide

the Majiagou landslide is calculated using the Bayesian global optimization method. The interval of fs was404

obtained as [1.186, 1.215] for the determined sliding surface. The propagation of the interval field requires405

only 22 deterministic calculations. This shows the high applicability of the method for complex problems.406

Then, the effect of Bayesian global optimization initial points on the results of fs intervals is investigated.407

The Bayesian global optimization was performed 20 times for the Majiagou landslide with an interval field,408

based on different starting points. Based on these 20 runs, the variance of the interval’s maximum and409

minimum values is assessed to estimate the robustness of the method with respect to the selection of the410

initial points. The variance of the maximum and minimum values was obtained as 1.085e-5 and 3.654e-6,411
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respectively. The fs results are very stable, indicating the method’s robustness.412

6. Concluding remarks413

The main contribution of this work is the proposal of a new interval field limit equilibrium method,414

IFLEM, for efficiently estimating the interval of the fs of a slope in the presence of spatial uncertainty.415

For our purpose, the IFLEM method first characterizes the interval field by using the Karhunen-Loève416

like expansion. Further, based on the Morgenstern-Price method and the generated interval field (IF),417

a computational method for calculating the fs of slopes is proposed. Then, to efficiently and accurately418

solve the optimization problem for the upper and lower bounds of the fs, a dedicated iterative algorithm419

is developed based on Bayesian global optimization (BGO). Finally, the IFLEM is formed by an elegant420

combination of IF and LEM. The main feature of IFLEM is the ability to obtain the interval of the fs,421

resulting from uncertainties in model parameters and their spatial uncertainty. Three numerical examples422

are presented to illustrate the availability and effectiveness of the proposed approach. The main concluding423

remarks includes:424

1. The numerical results indicate that the proposed method allows to perform the uncertainty analysis of425

slopes in the presence of sparse data. Noting that the upper and lower bounds of the fs are obtained426

with a small number of deterministic analyses, the proposed method seems to be effective and efficient427

for quantitative analysis of slopes with scarce data.428

2. The influences of the spatial dependency length and the interval radius are investigated. The results429

shows that different values of spatial dependency length can result in a large variation of the interval430

of fs. Besides, compared to the interval radius of c, the interval of fs is more sensitive to the interval431

radius of φ. Hence, it is of great significance to reasonably determine the spatial dependency length432

and the interval radius of φ in the interval field analysis of slopes.433

3. The comparison between interval field analysis and interval analysis with homogeneous materials is434

also performed. Evident differences are observed in the results of the two methods, which implies that435
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the consideration of spatial uncertainty is necessary in the uncertainty quantification of geotechnical436

engineering structures.437

4. Since the deterministic analysis participate the interval field analysis in a decoupled manner, any438

existing solvers can be easily incorporated into the computational procedure, which makes the method439

quite general.440

5. Due to the high efficiency and generality of the IFLEM, it shows a great potential for the uncertainty441

quantification of large-scale problems with complicated boundary conditions or practical engineering442

problems in real world.443

Despite the encouraging results of the present study, many further works need to be carried out. In444

the follow-up study, it is hoped that some advanced slope analysis methods can be incorporated into the445

proposed method. The consideration of interval reliability analysis methods and interval field expansion446

methods is another future research effort.447
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