
 

Probabilistic analysis of resistance for RC columns with wind-dominated combination 

considering random biaxial eccentricity 

Youbao Jiang1; Junlin Zheng2; Kailin Yang3; Hao Zhou4*; Michael Beer5 

Abstract: For reinforced concrete (RC) column with biaxial eccentricity, the conventional design methods usually 

use the fixed eccentricity criterion to check its resistance, which may underestimate the variations of column 

resistance. Based on the load statistics compatible with the codes, the random properties of biaxial eccentricity are 

analyzed with Monte Carlo simulation (MCS) for representative columns in regular frame structures under both 

vertical load and wind load. Then, the tested capacity results of 103 relevant column specimen are collected from 

literatures. The uncertainty of the resistance model is analyzed for the reciprocal load method in code ACI 318-14. 

Based on the criterion of both random eccentricity and fixed eccentricity, the probability regarding load bearing 

capacity exceedance is analyzed for columns by MCS with different design parameters (e.g., axial compression 

ratio, etc.). The results indicate that based on the prescribed load statistics, the random properties of eccentricities 

along two principal directions are mainly controlled by the stochastic wind load, leading to that the eccentricities 

along two principal directions show an approximate perfect correlation; the random biaxial eccentricity has a 

significant influence on resistance variations and the maximum coefficient of variation is as large as 0.73. 

keywords: RC column; Biaxial bending and axial compression; Wind-dominated combination; Random biaxial 

eccentricity; Resistance Statistics.  
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1. Introduction 

Hurricanes are one of the costliest natural hazards, and it is reported that Hurricane Katrina (2006), one of the 

most destructive hurricanes in the US history, caused about $160 billion losses and destructive damages to 

constructions. Under the attack of hurricanes, RC frames designed with old codes could collapsed due to column 

failures (e.g., Meyer-Kiser Bank Building destroyed by hurricane in Miami, 1926), which indicates that the 

reliability regarding wind-resistance needs to be improved for columns supporting the whole buildings.  

Earlier, many scholars (e.g., Hong and Zhou, 1999; Zou and Hong, 2011) reported the significant studies on 

reliability evaluation of RC columns under uniaxial bending and axial compression. With these developments, the 

RC columns design methods in codes have been mainly established with the fixed eccentricity criterion by 

reliability calibrations. The fixed eccentricity criterion can be applied well for RC columns with less important 

uncertainty of eccentricity (e.g., under vertical load only), and usually leads to an appropriate column reliability 

level (Stewart and Attard, 1999; Mirza, 1996; Breccolotti and Materazzi, 2010). However, it is known that the 

reliability of RC columns could be overestimated with the fixed eccentricity criterion when the uncertainty of the 

eccentricity becomes larger. For example, Frangopol et al. (1996) and Jiang et al. (2015) pointed out that the 

design reliability with consideration of random properties of eccentricity may be much lower than the targeted 

reliability level for columns in the case of tension failure. Moreover, Milner et al. (2001) and Jiang and Yang (2013) 

found that the current fixed criterion in the American code ACI 318-14 and in the Chinese code GB 50010-2010 

would lead to an unsafe design, due to neglecting the randomness of eccentricity. 

Actually, in frame structures with both vertical load and horizontal load (e.g., earthquakes or wind load with a 

certain direction), the RC columns are usually subjected to biaxial bending and axial compression rather than 

uniaxial bending and axial compression. Many methods have been proposed for computing the capacity of RC 

columns with biaxial bending and axial compression. Furlong (1961) proposed the concept of three-dimensional 

failure surface. Bresler (1960) followed the failure surface concept and proposed two methods: the reciprocal load 



 

method and the load contour method, which can approximate the failure surface well and have been generally 

accepted by researchers later. These two methods are also suggested in the corresponding specifications and 

standards for design (e.g., ACI 318-14; AASHTO LRFDUS-2012; ACI SP-17(14)). Subsequently, many scholars 

have made improvements on the basis of Bresler's work and put forward some new design equations. For example, 

Hsu (1998) provided a simplified mathematical equation that can describe both the failure surface and strength 

interaction diagrams for columns under biaxial bending and axial compression. Bonet et al. (2014) presented an 

analytical method to calculate the failure surfaces for columns with rectangular sections and symmetrical 

reinforcements. Furlong (1979), Hartley (1985) and Hong (2000) also improved the form of the equations 

proposing relevant calculation formulas. Galvis et al. (2020) Proposed a design method and corresponding 

simplified calculation formula under biaxial bending for rectangular or circular shallow foundations with or 

without an opening in the middle. Ma et al. (2021) Studied the bearing capacity of concrete-encased concrete-filled 

steel tube (CECFST) stub columns under biaxial eccentric compression through experiments and numerical 

simulation, and evaluated the applicability of American specification ANSI / AISC 360-10 and European Code EN 

1994-1-1 for the design method (load contour method) of biaxial eccentric compression composite section. In 

addition, to calculate the strength of RC columns more accurately, computer-based iterative methods have been 

established with the development of computing techniques (e.g., the computer-aided iterative procedures provided 

byWang, 1988; Furlong, 2004).  

However, it is worth noting that the current practice and codes for column design are less appropriate for 

ensuring reliability of RC columns with biaxial bending and axial compression. The reliability analyses reported 

by Wang and Hong (2002) and Kim and Lee (2017) were still based upon the fixed eccentricity criterion, and the 

loading conditions of columns were considered as simple (e.g., only vertical loads applied) rather than complex 

(e.g., both vertical loads and wind load applied, with random biaxial eccentricity). Although the randomness of 

eccentricity and the sensitivity of the column load carrying capacity to load eccentricity are obvious, the influence 



 

of random biaxial eccentricity on column resistance has not yet been studied.  

In this paper, the calculations of the load carrying capacity according to the reciprocal load method specified 

in the ACI code (ACI 318-14) against experimental results are verified for columns, and the effects of random 

biaxial eccentricity on resistance are analyzed through Monte Carlo Simulation (MCS). Taking columns in three 

typical regular frame structures under both vertical load and wind load as examples, the random properties of 

biaxial eccentricity is analyzed. Then, the probabilistic analysis of column resistance is carried out with different 

related design parameters, specifically, using the moments ratio and the axial compression ratio. The results show 

that the random characteristics of biaxial eccentricity are important for RC frame columns. By comparing the 

resistance variation with random and fixed biaxial eccentricity, the fixed biaxial eccentricity criterion can lead to 

an underestimation for column resistance variation. 

2. Capacity Design Method of Columns  

2.1. Code-based Capacity Model of RC Column 

Biaxial bending of columns occurs when the loading causes bending simultaneously about both principal axes. 

According to the ACI 318-14, Corner and other columns exposed to known moments about each axis 

simultaneously should be designed for biaxial bending and axial load. For a rectangular section which is shown in 

Figure 1, the capacity of RC columns with biaxial bending and axial compression is specified with the reciprocal 

load method as 
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Figure 1. Cross section with biaxial eccentricity 

where Pn denotes the nominal load strength of the section under biaxial eccentricities ex and ey; Pnx (Pny) denotes 

the nominal load strength with only eccentricity ex (ey) presented; and P0 denotes the nominal axial load strength 

without any eccentricities as follows: 
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(2) 

where fc' denotes the specified compressive strength of concrete; Ag denotes the gross area of the section; and Ast 

denotes the total area of the longitudinal reinforcement; fy denotes the specified yield strength of reinforcement. 

Experimental results have shown the Equation (1) to be reasonably accurate when flexure does not govern design. 

The equation should only be used when: 

0.1n c gP f A                                     (3) 

If this condition is not satisfied, it would be more accurate to neglect the axial force entirely and to calculate the 

section for biaxial bending only. To account for the effect of accidental eccentricity, ACI 318-14 Code Section 

22.4.2.1 specifies that the maximum load on a column must not exceed 0.85 times the load from Equation (2) for 

spiral columns and 0.8 times Equation (2) for tied columns. 

In Equation (1), Pnx, Pny can be obtained from capacity formulas of uniaxial bending and axial compression 

by adopting an equivalent rectangular stress block assumption, which are introduced in ACI 318-14, as shown in 

Figure 2. According to the code, tension in concrete is usually neglected, and the formulas are specified as 
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Figure 2. Capacity model of RC columns with uniaxial bending and axial compression: (a) strain distribution; 

(b) capacity model; (c) symmetrical section 
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where Mn and Pn denote the nominal moment and the compressive force, respectively; a denotes the depth of 

equivalent rectangular stress block; b denotes the width of compression face of member; d denotes distance from 

compression face to tension reinforcement; d' denotes Concrete cover to center of reinforcing; As and A's denote 

the area of compressive and tensile reinforcement, respectively; fs denotes tensile stress in reinforcement at service 

loads; fy' denote specified yield strength of compressive reinforcement, and fy=fy' is assumed; Es denotes the elastic 

modulus of steel; and εcu denotes the assumed ultimate strain of concrete, with a value of 0.003; c denotes the 

distance from extreme compression fiber to neutral axis; β1 denotes the depth of rectangular stress distribution to 

the depth to the neutral axis. It is noted that for Pnx, Pny calculation, As and As' in Equations (4) - (5) need to be 

replaced by Asx, Asy and Asx', Asy' respectively. 

2.2. Load resistance factors design of RC Column  

For RC columns under the combination of dead load, live load and wind load, the axial force P and moment 



 

Mx and My along both section principal directions can be expressed as 

 
= + +D L WP P P P

 
(8)  

 
= + +x Dx Lx WxM M M M

 
(9) 

 
= + +y Dy Ly WyM M M M

 
(10) 

Where PD, PL and PW are the axial forces generated by dead load, live load and wind load respectively; MDx, MLx 

and MWx are moments along x direction generated by dead load, live load and wind load respectively; MDy, MLy and 

MWy are moments along y direction generated by dead load, live load and wind load respectively. 

For a basic combination with dead load, live load and wind load, the design axial force Pd and design moment 

Mdx and Mdy can be the sum of factored nominal values, and given by 
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where γD, γL and γW are factors for dead load, live load and wind load, respectively, in the code (ASCE 7-16), γD 

=0.9 or 1.2 or 1.4, and γL = 1.0 or 1.6, and γW =1.0 for different load combinations; PDn, PLn and PWn are the 

nominal axial forces generated by dead load, live load and wind load respectively; MDnx, MLnx and MWnx are the 

nominal moments along x direction generated by dead load, live load and wind load respectively; MDny, MLny and 

MWny are the nominal moments along y direction generated by dead load, live load and wind load respectively. 

The strength design in the code (ACI 318-14) can be expressed by 

 d nR R U= 
 

(14) 

where Rd and Rn denote the design strength and nominal strength, respectively; U denotes the factored load and 

moment applied to the column; and φ denotes the strength reduction factor, and given by 
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Where φt is the strength reduction factor of tension-controlled sections, which is 0.90; φc is the strength reduction 

factor of compression controlled sections, which is 0.75 for column sections with spiral reinforcement, and 0.65 

for column sections with tied reinforcement; εt is net tensile strain in extreme layer of longitudinal tension 

reinforcement at nominal strength; εty is net tensile strain in the extreme layer of longitudinal tension reinforcement 

of compression-controlled section. 

Following the reciprocal load method, the nominal compressive strength Pn with biaxial eccentricities ex and 

ey can be expressed by 
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2.3 Reinforcement Design of Typical RC Frame Columns  

Three typical RC frame structures: models A, B, C are considered as shown in Figure 3, where the directions 

X and Y are set for the applied wind load, and x and y are set for the sectional principal directions. Model A, as 

shown in Figure 3(a), has 8 stories, where the first story height is 4.8 meters, and the other stories are 3.6 meters 

high. Model B, as shown in Figure 3(b), is assumed to have the same story height as Model A. Model C, as shown 

in Figure 3(c), has 5 stories, where the first story height is 4.5 meters, and other story heights are all 3.6 meters . 
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Figure 3. The plane views of RC frame models (unit: mm) 

For these models, assume that the nominal values of dead load and live load are 3kN/m2 and 2kN/m2, and a 

uniformly distributed load of 10 kN/m is applied along the frame beams of each floor to consider the gravity of the 

infill wall. These models are exposed to a wind speed of 54 m/s, and wind load is calculated by ETABS based on 

US code (ASCE 7-16). The other design information is shown in Table 1. Three representative columns are 

selected for each model, as shown in Figure 3. With ETABS software, the internal force and the reinforcement 

information are obtained for these representative columns and shown in Appendix 1 and Table 2, respectively. 

Table 1. The design information of RC frame structure models 

Design Parameters Model A Model B Model C 

Main beam(mm) 300×800 300×700 300×700 

Secondary beam(mm) 250×500 250×500 250×500 

Concrete strength(MPa) 27.58 27.58 27.58 

Rebar grade A615Gr60 A615Gr60 A615Gr60 

Slab thickness(mm) 100 100 100 

 Inner columns size(mm) 500×500 500×500 450×450 

Edge columns size(mm) 500×500 500×500 450×450 

Corner columns size(mm) 450×450 450×450 450×450 

Table 2. The reinforcement information of representative columns 

No Asx/(mm2) Asy/(mm2) As/(mm2) Controlled Combination 

C1 1299 1299 2908 1.2D+1.0L+1.0W 

C2 2226 2226 6331 1.2D+1.0L+1.0W 

C3 675 675 2512  1.2D+1.0L+1.0W 

C4 1136 1136 2713 1.2D+1.0L+1.0W 

C5 1432 1432 4296 1.2D+1.0L+1.0W 

C6 675 675 2029 1.2D+1.0L+1.0W 

C7 995 995 2544  1.2D+1.0L+1.0W 

C8 1186 1186 3945 1.2D+1.0L+1.0W 

C9 675 675 1646 1.2D+1.0L+1.0W 

3. Random Properties of Biaxial Eccentricity for Typical Columns 

3.1. Computational Model of Biaxial Eccentricity 

For a given column, the eccentricity ex and ey in both directions can be expressed by 
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Combining Equation (9) with Equation (10), the following formulas can be obtained further, 
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where eDx and eDy, eLx and eLy, eWx and eWy are the eccentricities caused by dead load, live load and wind load, 

respectively. 

3.2 Random Distributions of Biaxial Eccentricity for Typical Columns 

The dead load, the live load and the wind load are usually random variables and follow different distributions. 

Thus, the associated eccentricities show random characteristics. The statistics of the load variables are derived 

from literatures as shown in Table 3, which are obtained by Nowak and szerszen (2003). Nowak and szerszen 

(2003) summarized the resistance models for calibration of the ACI 318 Code and provided statistical parameters 

of load and material strength. 

Table 3. Statistics of load variables 

Variable Distribution Mean COV Reference 

D/Dn Normal 1.05 0.10 Nowak and Szerszen (2003) 

L/Ln Gamma 0.24 0.65 Nowak and Szerszen (2003) 

W/Wn Type-I-Largest 0.78 0.37 Nowak and Szerszen (2003) 

It is sampled 106 times by MCS for statistical analysis of biaxial eccentricity of Columns C1 to C9. ρxy 

(correlation between ex and ey) of each column is particularly similar, with a value very close to 1. Thus, for 

simplifying, only C1 and C6 are selected as the representative columns. For a given column, the random values of 

internal forces (e.g.axial force and moment) caused by each applied load (e.g. dead load, live load and wind load) 

can be acquired by structural analysis with MCS. Then, the corresponding eccentricities (eDx and eDy, eLx and eLy, 

eWx and eWy) are obtained based on the internal forces values. According to Eq. (19) and Eq. (20), the total random 



 

biaxial eccentricities could be obtained. By collecting the random eccentricities along two principal axis, the 

frequency of these data are calculated and plotted in Figures 4 and 5. 

 

(a) histogram distribution                         (b) correlation 

Figure 4. Frequency statistics of ex and ey for C1 column 

 

(a) histogram distribution                         (b) correlation 

Figure 5. Frequency statistics of ex and ey for C6 column 

It can be seen that ex and ey in Figure 4 and Figure 5 present an approximately perfect correlation. As shown 

in Table 4, ρxy  are both very close to 1. eDx, eDy, eLx, eLy are so small compared with eWx, eWy that they can even be 

neglected as 0, and Equation (19) and Equation (20) can be expressed as Equation (21) and Equation (22). Thus, 

both ex and ey are dominated by wind load, and they present an approximately perfect correlation. 
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Table 4. Eccentricities produced by dead, live and wind load 

Columns eDx (mm) eDy (mm) eLx (mm) eLy (mm) eWx (mm) eWy (mm) ρxy 

C1 0.1 8.1 0 15.6 431.9 572.2 0.999 

C6 14.4 12.9 24.1 20.1 302.1 567.1 1 

4. Parametric Analysis of Resistance  

4.1. Related Design Parameters 

The ultimate load capacity of column section is determined by the ratio of moments in two direction and axial 

force, which are defined as  

 /dy dxM M =  (23) 

 arctan( ) =  (24) 

 /N d crN N =  (25) 

Where λμ denotes the design moment ratio in y direction to x direction, θ denotes the angle of moments in two 

derection, and λN denotes the load ratio of the design force and Ncr, Ncr denotes the design force at balanced strain 

conditions, which is the condition that the concrete in the compression area just reaches the ultimate compressive 

strain while the tensile reinforcement yields, and given by 
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Where εy denotes the yield strain of reinforcement. 

To distinguish the different load effect cases, other ratios are also introduced. They are given by 
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The nominal values of axial force and moment in each direction are obtained as 
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Table 5. Range of normalized design parameters 

Normalized design parameters Value ranges 

ρMx (2.5,20) 

ρMy (2.5,20) 



 

ρN (-0.15,0.15) 

λN (0.5,3.0) 

Table 6. Design parameters for No.1-No.36 

No. ρMx ρMy ρN No. ρMx ρMy ρN No. ρMx ρMy ρN No. ρMx ρMy ρN 

1 2.5 2.5 -0.15 10 2.5 20 -0.05 19 5 5 0.05 28 20 2.5 0.15 

2 2.5 2.5 -0.05 11 2.5 20 0.05 20 5 5 0.15 29 20 5 -0.15 

3 2.5 2.5 0.05 12 2.5 20 0.15 21 5 20 -0.15 30 20 5 -0.05 

4 2.5 2.5 0.15 13 5 2.5 -0.15 22 5 20 -0.05 31 20 5 0.05 

5 2.5 5 -0.15 14 5 2.5 -0.05 23 5 20 0.05 32 20 5 0.15 

6 2.5 5 -0.05 15 5 2.5 0.05 24 5 20 0.15 33 20 20 -0.15 

7 2.5 5 0.05 16 5 2.5 0.15 25 20 2.5 -0.15 34 20 20 -0.05 

8 2.5 5 0.15 17 5 5 -0.15 26 20 2.5 -0.05 35 20 20 0.05 

9 2.5 20 -0.15 18 5 5 -0.05 27 20 2.5 0.05 36 20 20 0.15 

For RC frame structures, a typical value of Ln/Dn is 1.0 (Ellingwood et al., 1980). For simplification, Ln/Dn  

in the following analysis is adopted as 1.0. By analyzing the internal force information of the models A, B and C 

and combining with the research results obtained by Jiang et al. (2017), the common ranges of these normalized 

design parameters are obtained and shown in Table 5.  

In this study, the representative numbers for ρMx, ρMy, and ρN are selected as 3, 3, and 4 respectively, which are 

combined for No.1-No.36, as shown in Table 6. Furthermore, the representative numbers for θ, λN are 3 and 4. 

Thus, 432 cases are considered in total. 

4.2. Uncertainty of Resistance Model 

For columns under biaxial bending and axial compression, both random biaxial eccentricity and fixed biaxial 

eccentricity cases need to be considered. As mentioned earlier, due to complex loading conditions, it is important 

to consider the uncertainty of the resistance model for the reciprocal load method. Let the uncertainty of the 

resistance model be denoted as Ω, which is the ratio of tested resistance to the predicted one, as expressed by 

 
/t pP P =

 
(40) 

where Pt 
is the ultimate loads capacity of test; Pp is the predicted loads capacity by the reciprocal load method. 

Herein, a set of experimental results of 103 specimens is collected from the relevant literatures. In order to 



 

make the collected experimental data more representative, a larger range of values was considered for the design 

parameters. Among them, the concrete strength range from 19MPa to 48MPa, and the reinforcement ratio range 

from 0.89% to 5%. Their capacities are calculated by the reciprocal load method, and the uncertainty of the 

resistance model has been analyzed. The collected data are shown in the Appendix 2. It is shown that the 

uncertainty variable Ω is not constant around a certain value, but scattered within a large range from 0.86 to 1.31. 

Thus, the uncertainty of the variable Ω should not be neglected when assessing the capacity of a column under 

biaxial bending and axial compression by the reciprocal load method.  

In order to find the most appropriate probability model, the experimental results of Ω have been tested with 

conventional probability models (e.g., normal distribution, lognormal distribution, gamma distribution, extreme 

values distribution, etc.) through Kolmogorov-Smirnov test. The p-value of the test result of normal distribution is 

0.76, while the p-values of other distributions are less than 0.05. Thus, the variable Ω is assumed to follow a 

normal distribution. Through statistical calculations, the mean value of the uncertain variable Ω is 1.09 and its 

coefficient of variation (COV) is 0.103, as shown in Appendix 2. 

4.3. Statistics of Resistance with Different Parameters 

For resistance evaluation, the randomness of fc and fy is usually considered. The uncertainty of the variable Ω 

is also considered due to its large COV. By contrast, the uncertainty of the remaining variables (e.g., dimensions of 

column section) can be neglected because their COV is small and has no significant impacts on resistance 

uncertainty. The statistics of resistance variables are given in Table 7. In the table, fcs and fcn are the sampling and 

nominal values of concrete strength respectively; fys and fyn are the sampling and nominal values of steel strength 

respectively. 

Table 7. Statistics of resistance variables 

Variable Distribution Mean COV Reference 



 

fcs/fcn Normal 1.35 0.10 Nowak and Szerszen (2003) 

fys/ fyn Normal 1.145 0.05 Nowak and Szerszen (2003) 

Ω Normal 1.09 0.10 Obtained from collected columns 

The conventional analysis methods for resistance uncertainty quantification usually neglect the effects of the 

randomness of eccentricity. To illustrate the importance of the randomness of eccentricity, the cases with random 

eccentricity and fixed eccentricity are compared under different parameter combinations. Let N denotes the column 

resistance expressed as the axial force strength, which obviously varies with eccentricities ex, ey, concrete strength 

fc and steel strength fy. Herein, a normalized resistance factor R’ is introduced for the cases with random 

eccentricity and fixed eccentricity, which are respectively expressed as: 
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where edx ,edy, ex and ey are respectively defined as: 
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The flowchart for calculation of RC column resistance with random and fixed eccentricity is given in Figure 

6. 



 

 

(a) random eccentricity case         (b) fixed eccentricity case 

Figure 6. Flowchart for calculation of RC column resistance 

Taking the representative column C3 as an example, the normalized resistance factor R’ with both random 

eccentricity and fixed eccentricity under different parameter combinations is obtained with MCS (run 1×105 times), 

and the results are compared in Figure 7-10. 

 

             (a)Mean of R’                                       (b)COV of R’ 

Figure 7. Statistics of resistance with λN=0.5 



 

  

            (a)Mean of R’                                       (b)COV of R’ 

Figure 8. Statistics of resistance with λN=1.0 

      

            (a)Mean of R’                                       (b)COV of R’ 

Figure 9. Statistics of resistance with λN=2.0 

 

            (a)Mean of R’                                       (b)COV of R’ 

Figure 10. Statistics of resistance with λN=3.0 



 

It is shown that the cases with random eccentricity are quite different from the cases with fixed eccentricity. 

The mean values of R’ with fixed eccentricity are higher than those with random eccentricity, and vary little among 

the cases. However, the mean values of R’ with random eccentricity vary largely from 1.05 to 1.32. The COV 

values of R’ with random eccentricity vary largely from 0.15 to 0.73, and those with fixed eccentricity nearly keep 

constant about 0.11. Generally, the mean values of R’ with random eccentricity increase with the increase of λN, but 

the COV with random eccentricity decreases with the increase of λN. 

Table 8. Differences between statistics of R’ with fixed eccentricity and random eccentricity  

Statistics 
R’

R 

(Combination case) 

R’
F 

(Combination case) 

Error 

(SIF-SI R)/ SI R 

Mean 

Max 
1.32 

(λN=3; θ=45º; No.3) 

1.43 

(λN=3; θ=22.5º; No.19) 
8.3% 

Min 
1.05 

(λN=0.5; θ=67.5º; No.13) 

1.29 

(λN=0.5; θ=67.5º; No.9) 
22.9% 

COV 

Max 
0.73 

(λN=0.5; θ=45º; No.33) 

0.13 

(λN=3; θ=67.5º; No.22) 
-82.2% 

Min 
0.15 

(λN=3; θ=45º; No.4) 

0.10 

(λN=0.5;) 
-33.3% 

Note: SI denotes the corresponding statistics item, and items with subscript ‘R’ and ‘F’ denote those with random and fixed 

eccentricity criterion, respectively. The following is the same. 

The comparison of results for fixed eccentricity versus random eccentricity, see Table 8, shows a difference of 

8.3% in the maximum mean values of R’. For the minimum mean values of R’, the difference is 22.9%. Moreover, 

the difference in the maximum COVs of R’ is calculated as large as 82.2% in absolute value. This indicates that the 

conventional methods following the fixed eccentricity concept could cause large errors in probabilistic evaluations 

of resistance. Thus, the random properties of eccentricity cannot be neglected for resistance evaluation and 

reliability calibration. 



 

5. Conclusions 

In this paper, taking typical RC frame columns as examples, the random characteristics of biaxial eccentricity 

were analyzed. With MCS, the column resistance with random biaxial eccentricity and with fixed biaxial 

eccentricity are calculated and compared in detail for a representative range of cases. The main conclusions are 

drawn as follows: 

(1) Based on the prescribed load statistics, the random properties of biaxial eccentricity are found to be 

important for RC frame columns, and the eccentricities along two principal directions show an approximately 

perfect correlation with the bending moment caused by vertical load much smaller than that caused by wind load. 

(2) Based on 103 sets of column results collected in literatures, the uncertainty of the resistance computation 

model is analyzed for the reciprocal load method, and can be assumed as a normal variable with the mean value 

and COV 1.09 and 0.103, respectively. 

(3) The normalized resistance factors of RC columns with random biaxial eccentricity are largely different 

from those with fixed biaxial eccentricity. The mean values of the factors with fixed biaxial eccentricity are larger 

than those with random biaxial eccentricity. However, the COV values of the factors with fixed biaxial eccentricity 

appearing in the range between 0.10 and 0.13 are much smaller than those with random biaxial eccentricity 

spanning from 0.15 to 0.73. 

It should be noted that this paper mainly discusses the influence of random biaxial eccentricity on the 

resistance of RC columns, without considering the load correlation. The influence of load correlation on the 

reliability of RC columns under uniaxial compression and bending has been deeply discussed in references (e.g., 

Frangopol et al. 1996; Hong and Zhou, 1999), but the influence of load correlation on the reliability of RC 

columns under random biaxial eccentricity needs to be further studied. 
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Appendix 1. The internal forces of representative frame columns under different load 

No. Internal Forces Dead  Live WX WY 

C1 

P/kN -1762 -269.2 0 283.8 

Mx/ (kN·m) 0.02 0 0 122.6 

My/ (kN·m) 14.2 4.2 162.4 0 

C2 

P/kN -2652.5 -520.2 0 254.8 

Mx/ (kN·m) 0.02 0 0 180.7 

My/ (kN·m) 1.22 0.05 255.9 0 

C3 

P/kN -1202.7 -143.3 136.8 268.7 

Mx/ (kN·m) 14.3 2.9 1.2 113.5 

My/ (kN·m) 12.5 2.3 168.0 1.5 

C4 

P/kN -1602.0 -255.2 0 -301.6 

Mx/ (kN·m) 0 0 0 103.7 

My/ (kN·m) 16.2 5.0 165.5 0 

C5 

P/kN -1984.5 -401.0 0 242.1 

Mx/ (kN·m) 0 0 0 151.0 

My/ (kN·m) -13.0 -3.2 267.0 0 

C6 

P/kN -1091.9 -135 180.6 314.8 

Mx/ (kN·m) 15.8 3.25 0.7 95.1 

My/ (kN·m) 14.1 2.71 178.5 0.9 

C7 

P/kN -1446.5 -157.9 0 244.4 

Mx/ (kN·m) 0 0 0 67.2 

My/ (kN·m) 26.75 8.1 176.6 0 

C8 

P/kN -1723.9 -216.8 0 191.3 

Mx/ (kN·m) 0 0 0 61.2 

My/ (kN·m) -17.7 -4.0 200.8 0 

C9 

P/kN -895.5 -78.2 80.9 220.6 

Mx/ (kN·m) 18.7 3.0 0.1 61.4 

My/ (kN·m) 18.7 3.0 194.0 0.3 

 



 

Appendix 2. Resistance uncertainty based on collected column tests 

Source 
Specimen 

No. 
Ω Source 

Specimen 

No. 
Ω Source 

Specimen 

No. 
Ω 

Anderson and Lee 

(1951) 

SC-4 0.84  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hsu  

(1975) 

D-1 1.11 

Heimdahl and 

Bianchini 

(1975) 

BR-2 0.98 

SC-9 0.89 D-2 1.18 BR-3 1.02 

Bresler 

(1960) 

B-5 0.96 D-3 1.23 BR-4 0.96 

B-6 1.15 D-4 1.16 BR-5 0.95 

B-7 1.05 D-5 1.18 BR-6 0.90 

B-8 1.12 D-6 1.21 CR-1 1.02 

Ramamurthy 

(1966) 

A-1 0.99 E-1 1.26 CR-2 0.98 

A-2 1.09 E-2 1.12 CR-3 1.02 

A-3 1.05 E-3 1.21 CR-4 1.00 

A-4 1.06 E-4 1.11 CR-5 0.99 

A-5 1.15 F-1 1.08 CR-6 1.00 

A-6 1.02 F-2 0.94 ER-1 1.31 

A-7 1.14 F-3 1.09 ER-2 1.09 

A-8 1.02 F-4 0.88 FR-1 1.23 

A-9 1.12 F-5 1.06 FR-2 1.12 

A-10 0.93 G-1 1.14 

 

 

 

 

 

 

 

Mavichak and 

Furlong 

(1976) 

C-5 0.92 

A-11 0.86 G-2 1.07 C-6 1.18 

A-12 0.97 G-3 1.09 C-7 1.31 

A-13 1.11 G-4 1.01 C-8 1.16 

A-14 1.21 G-5 0.94 C-9 1.14 

A-15 1.10 R-138 1.17 C-10 1.30 

B-1 1.10 R-238 1.18 C-11 1.26 

B-2 1.09 R-338 1.17 C-12 1.22 

B-3 1.10 S-1 1.03 C-13 1.23 

B-4 1.04 S-2 1.04 RC-1 1.28 

B-5 1.04 U-1 1.14 RC-2 1.22 

B-6 1.09 U-2 1.14 RC-3 1.11 

B-7 1.18 U-3 1.12 RC-4 1.26 

B-8 1.07 U-4 1.12 RC-5 1.06 

C-1(a) 1.14 U-5 1.03 RC-6 1.16 

C-2(a) 1.00 U-6 1.06 RC-7 1.14 

C-3 1.11 H-1 1.08 RC-8 1.14 

C-4 1.17 H-2 0.98 RC-9 1.16 

C-5 1.20 H-3 1.08  Mean 1.09 

C-6 1.18 BR-1 0.93  COV 0.13 

 


