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Abstract17

This contribution focuses on reliability-based design and optimum design sensitivity of linear18

dynamical structural systems subject to Gaussian excitation. Directional Importance Sampling19

(DIS) is implemented for reliability assessment, which allows to obtain first-order derivatives of20

the failure probabilities as a byproduct of the sampling process. Thus, gradient-based solution21

schemes can be adopted by virtue of this feature. In particular, a class of feasible-direction22

interior point algorithms are implemented to obtain optimum designs, while a direction-finding23

approach is considered to obtain optimum design sensitivity measures as a post-processing step of24

the optimization results. To show the usefulness of the approach, an example involving a building25

structure is studied. Overall, the reliability sensitivity analysis framework enabled by DIS provides26

a potentially useful tool to address a practical class of design optimization problems.27
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1. Introduction30

The design of safe and cost-effective structures to satisfy public and private needs is one of the31

most classical tasks in civil engineering. In this regard, structural systems are usually required32

to be optimum with respect to a given criterion while complying with a set of design conditions33



[1]. Moreover, appropriate design procedures must take into account all relevant uncertainties34

about the system under consideration, as they can significantly affect the expected structural35

performance of final designs [2]. Especially relevant are uncertainties in environmental dynami-36

cal excitations, such as wind effects or earthquakes, which are commonly modeled by means of37

stochastic processes [3, 4, 5, 6, 7, 8, 9, 10, 11]. In this setting, reliability-based optimization (RBO)38

provides a realistic and rational framework for structural design which explicitly accounts for the39

uncertainties during the design process [12, 13].40

RBO problems are usually formulated as the minimization of an objective function subject41

to both standard design requirements and reliability constraints. In structural dynamics appli-42

cations, reliability is measured by means of first-passage probabilities. Some reliability analysis43

techniques that have been used in this context include, e.g., the Wiener path integral [14], statis-44

tical linearization [15], and advanced simulation techniques [16, 17, 18, 19, 20, 21]. In general, the45

choice of a solution method depends on the particular characteristics of the problem at hand. The46

reader is referred to [22] for a recent overview on RBO methods for structural dynamical systems47

under stochastic excitation.48

Special attention is directed to the optimal design of linear structures subject to Gaussian ex-49

citation under constraints on first-passage probabilities. This type of problems arises, e.g., when50

requirements on serviceability conditions are considered [23, 24]. Several specialized approaches51

have been reported to address this particular class of problems. A stochastic search method is52

proposed in [18], which relies on the nested implementation of advanced simulation techniques to53

explore the design space and evaluate the reliability constraints. An adaptive scheme to allocate54

computational efforts is integrated for improved numerical efficiency. Alternatively, a sequential55

optimization approach is presented in [19], where failure probability functions are locally ap-56

proximated using sensitivity information. It is noted that the previous methods use simulation57

techniques to evaluate the reliability constraints in a direct manner, without any approxima-58

tion at the stochastic response level. On the other hand, the sequential optimization approaches59

presented in [25, 26, 27, 28] mainly rely on approximation schemes for (i) peak responses, (ii)60

failure probability functions, and (iii) the second-order statistics of the different responses of in-61

terest. These methods have proved effective in applications involving uncertain linear systems62

and high-dimensional design spaces. Approximations of the peak responses are formulated ei-63

ther using peak factors [25], the so-called auxiliary variable vector approach [26], or parametrized64
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distributions [28]. In addition, for demand functions involving more than one response, relia-65

bility constraints are approximated with kriging metamodels for the so-called inverse reliability66

constraints [27], or by assuming the failure probability as proportional to the sum of its corre-67

sponding individual component-level failure probabilities [28]. Usually, the computation of the68

mean values and standard deviations of all responses of interest at any given design is required69

by these formulations. To this end, surrogates based on direct Monte Carlo simulation results70

from the previous candidate design are used. Even though all previous approaches have proved71

effective in a variety of applications, it is believed that there is still room for further developments72

in this area, particularly in the effective and efficient integration of specialized sampling methods73

in RBO procedures.74

Several stochastic simulation techniques especially tailored to the reliability assessment of lin-75

ear structures under Gaussian loading have been proposed. These include Efficient Importance76

Sampling [29], Domain Decomposition Method [30], Multidomain Line Sampling [31], and Direc-77

tional Importance Sampling (DIS) [32]. These methods exploit the linear relationship between78

the structural responses and the set of basic random variables [33] to reduce the variability of79

failure probability estimates. In this work, DIS [32] is adopted to evaluate the reliability con-80

straints. Further, this method also provides estimates of the first-order derivatives of the failure81

probability by reusing the sampling results [34]. As a result, sensitivities with respect to design82

variables and general model parameters can be obtained as a post-processing step of reliability83

assessment. This feature is particularly advantageous for the treatment of RBO problems, since84

suitable gradient-based solution schemes can be adopted.85

It is the objective of this work to implement DIS as a general reliability and sensitivity as-86

sessment framework to treat RBO problems involving linear structural systems under Gaussian87

excitation. First-order solution schemes are adopted not only to identify optimal designs, but also88

to assess their sensitivity. On the one hand, a sequential optimization method based on a class89

of feasible-direction interior point algorithms [35, 36] is adopted to solve the RBO problem. This90

scheme provides a sequence of feasible designs with improving objective values, which is advan-91

tageous for practical purposes. Further, full reliability assessment at only few designs is usually92

required by this method. On the other hand, a direction-finding technique [37] is implemented93

to evaluate the sensitivity of optimum designs with respect to model parameter perturbations.94

This analysis is performed as a post-process of the optimization results, which allows to obtain95
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a deeper understanding of final solutions with reduced computational efforts. Numerical results96

suggest that DIS represents a potentially useful tool for the treatment of a class of RBO problems.97

The structure of this contribution is as follows. Section 2 formulates the problems of interest.98

The main ideas of Directional Importance Sampling are summarized in Section 3, whereas Section 499

discusses the enabled reliability sensitivity assessment framework. Section 5 describes the first-100

order solution schemes adopted for RBO and optimum design sensitivity assessment. A numerical101

example is presented in Section 6 to illustrate the applicability of the proposed framework. The102

paper closes with some conclusions and final remarks.103

2. Formulation of the problem104

The class of reliability-based design optimization problems of interest can be stated as105

min
x

f(x)

s.t. rj(x) ≤ 0, j = 1, . . . , nr

gj(x) ≤ 0, j = 1, . . . , ng

(1)

where x ∈ Rnx denotes a vector of continuous design variables, f(x) is the objective function,106

rj(x) ≤ 0, j = 1, . . . , nr characterize nr constraints on structural reliability, and gj(x) ≤ 0, j =107

1, . . . , ng represent ng standard constraints. Typical objective functions include construction or108

maintenance costs, total weight, etc. Reliability constraints represent design conditions formulated109

in terms of reliability measures, such as the verification of serviceability limit states. On the other110

hand, standard constraints are requirements that do not involve structural reliability assessment,111

including geometric design needs, material availability, etc. Note that the side constraints on the112

design variables, i.e., xLi ≤ xi ≤ xUi , i = 1, . . . , nx with xLi and xUi the lower and upper bounds113

on xi, respectively, are contained in the set of ng standard constraints. Finally, in the context of114

this contribution, the objective function does not involve reliability assessment and, therefore, it115

is assumed that the objective and standard constraint functions are computationally inexpensive116

to evaluate.117

2.1. Mechanical modeling118

The structural dynamical systems of interest are characterized by means of linear, elastic and119

classically damped multi-degree-of-freedom models, which satisfy the equation of motion120
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M(x)ÿ(t,x,θ) + C(x)ẏ(t,x,θ) + K(x)y(t,x,θ) = q(x)p(t,θ) (2)

where ÿ, ẏ, and y are, respectively, the acceleration, velocity, and displacement vectors of dimen-121

sion ny; the matrices M, C, and K characterize the mass, damping and stiffness properties of the122

structure; q is a vector coupling the excitation p with the structural degrees of freedom; and θ is123

the vector of basic random variables.124

2.2. Stochastic Gaussian excitation125

The dynamic load p of duration T is characterized as a discrete Gaussian process. This class of126

stochastic processes can be used to represent uncertain environmental excitations in structural en-127

gineering applications; see, e.g., [5, 38, 39, 40, 41, 42]. By applying the Karhunen-Loève expansion128

[43, 44], the discrete Gaussian load can be represented as129

p(tk,θ) = µk +ψT
k θ, k = 1, . . . , nT (3)

where p(tk,θ) is the loading at time tk = (k − 1)∆t, k = 1, . . . , nT , ∆t is the time step, nT =130

T/∆t+1 is the number of time instants; θ is a realization of a standard Gaussian random variable131

vector of dimension nθ; µk is the expected value of the stochastic process p at time tk; and ψk is132

a vector of dimension nθ associated with time instant tk. The set of vectors Ψ = [ψ1, . . . ,ψnT ]133

is given by Ψ = Λ1/2ΞT , where Λ and Ξ comprise, respectively, the nθ largest eigenvalues and134

corresponding eigenvectors of the covariance matrix Σ of the stochastic load, i.e., ΣΞ = ΞΛ.135

Without loss of generality, a zero-mean stochastic process is assumed as µk = 0, k = 1, . . . , nT .136

Finally, it is noted that the characterization of the stochastic load by means of Eq. (3) generally137

involves a large number of basic random variables, i.e., nθ is usually in the order of hundreds or138

thousands [33].139

2.3. Reliability constraints140

Requirements on system reliability are usually established using failure probability measures.141

In this contribution, the reliability constraints are expressed in the form142

rj(x) = ln
(
PFj(x)

)
− ln(P ∗Fj) ≤ 0, j = 1, . . . , nr (4)
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where ln(·) denotes natural logarithm, PFj(x) is the probability of failure event Fj evaluated at143

design x, and P ∗Fj is the corresponding maximum allowable value. In the context of structural144

dynamical systems under stochastic excitation, the probability that certain requirements are not145

fulfilled within the load duration T is a useful measure of structural performance. Thus, reliability146

requirements are expressed by means of first-passage failure events [45, 46]147

Fj = {dj(x,θ) > 1} , j = 1, . . . , nr (5)

where dj(x,θ) is the normalized demand function of event Fj given by148

dj(x,θ) = max
t∈[0,T ]

max
m=1,...,nj,h

|hj,m(t,x,θ)|
h∗j,m

(6)

where hj,m(t,x,θ),m = 1, . . . , nj,h are the response functions of interest associated with failure149

event Fj with corresponding threshold levels h∗j,m > 0. The response functions are taken as linear150

combinations of the structural displacements, velocities and/or accelerations. As a result, they151

are time-dependent and also depend on the design and random variables. Finally, the first-passage152

failure probability associated with the jth reliability constraint is given by153

PFj(x) =

∫
θ∈Rnθ

IFj(x,θ)fΘ(θ)dθ (7)

where IFj(x,θ) is the indicator function with IFj(x,θ) = 1 if dj(x,θ) > 1 and IFj(x,θ) = 0 other-154

wise, and fΘ(θ) is the standard multivariate Gaussian probability density function of dimension155

nθ. As already pointed out, θ may comprise hundreds or thousands of random variables. There-156

fore, the evaluation of the integral in Eq. (7) at each design represents a high-dimensional problem157

which is extremely demanding from the numerical viewpoint [45, 46]. As already pointed out, DIS158

[32, 34] is implemented to evaluate the reliability constraints and their first-order derivatives.159

2.4. Optimum design sensitivity160

The formulation of a RBO problem depends a number of parameters to characterize the objec-161

tive and constraint functions and, therefore, changes in these quantities can affect the final solution162

[47]. Of particular importance are those involved in the definition of reliability constraints, e.g.,163

excitation model parameters or response thresholds. For a given model parameter, ζ, the rates of164

change of the optimum objective value, df∗

dζ
, and of the optimum values for the design variables,165
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∂x∗i
∂ζ

, i = 1, . . . , nx, represent suitable sensitivity measures. These derivatives are associated with166

the greatest feasible improvement of the final solution for small changes in ζ. A direction-finding167

approach [37] is adopted in this contribution to compute such sensitivities.168

3. Directional Importance Sampling169

Directional Importance Sampling is a stochastic simulation method tailored to linear structural170

systems subject to Gaussian excitation [32, 34]. Consider a first-passage failure event F = {d(θ) >171

1} with normalized demand function d(θ) = maxk=1,...,nT maxm=1,...,nh |hm(tk,θ)|/h∗m. For notation172

simplicity, the explicit dependence of the different quantities on x has been dropped. Given the173

system linearity, the mth response of interest evaluated at time tk can be written as [48]174

hm(tk,θ) = aTm,kθ, am,k =
k∑
q=1

εq∆tηm(tk − tq)ψq (8)

where εq depends on the time integration rule [49] and ηm(t) is the unit impulse response function175

computed using modal superposition.176

The fundamental ideas of DIS can be summarized as follows. First, the concept of directional177

sampling [50, 51, 52] is considered. Instead of using full Cartesian coordinates, the reliability178

problem is expressed in terms of unit directions u ∼ fU(u) uniformly distributed over the unit179

hypersphere ΩU ⊂ Rnθ . Second, an importance sampling density fDIS
U (u) is introduced for the180

unit directions following some of the ideas presented in [29]. Third, the linearity of the responses181

of interest is exploited to obtain closed-form solutions for the probability of failure conditioned on182

each sampled direction. As a result, the failure probability can be written as183

PF =

∫
Ωu

[
1− F nθ

χ2

(
c(u)2

)]( fU(u)

fDIS
U (u)

)
fDIS

U (u)du (9)

where F nθ
χ2 (·) is the cumulative distribution function of the Chi-square distribution of nθ degrees184

of freedom, and185

c(u) = min
m=1,...,nh
k=1,...,nT

cm,k(u) = min
m=1,...,nh
k=1,...,nT

h∗m
|aTm,ku|

(10)

represents the minimum capacity-to-demand ratio across all responses of interest and time instants186

for the fixed unit vector u. Equivalently, this quantity can be interpreted as the minimum factor187
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by which u must be amplified to generate failure. Finally, a failure probability estimate is obtained188

by drawing samples u(`) ∼ fDIS
U (u), ` = 1, . . . , N , which gives189

PF ≈ P̃DIS
F =

1

N

N∑
`=1

P̂F

[
1− F nθ

χ2

(
c(u(`))2

)]
∑nh

m=1

∑nT
k=1

[
1− F nθ

χ2 (cm,k(u(`))2)
] (11)

where P̂F = 2
∑nh

m=1

∑nT
k=1 Φ(−h∗m/‖am,k‖) with Φ(·) the standard Gaussian cumulative distribu-190

tion function. In general, relatively small sample sizes are required to obtain sufficiently accurate191

reliability estimates [32]. Further, the sample generation process is highly efficient and paralleliz-192

able [30]. A detailed description of DIS can be found in [32].193

4. Reliability sensitivity assessment framework194

4.1. First-order derivatives with respect to general model parameters195

Consider a general model parameter, ν, involved in the definition of the normalized demand196

function such that F = {d(ν,θ) > 1}. Note that ν can affect the structural properties, the excita-197

tion model, or the response thresholds. Following the ideas presented in [34], direct differentiation198

of the integral in Eq. (9) with respect to ν yields199

∂PF
∂ν

= −
∫

ΩU

[
2c(ν,u)

∂c(ν,u)

∂ν
fnθχ2

(
c(ν,u)2)]( fU(u)

fDIS
U (u)

)
fDIS

U (u)du (12)

where fnθχ2 is the probability density function of the Chi-squared distribution of nθ degrees of200

freedom. Then, the same set of samples generated to evaluate Eq. (11) can be used to estimate201

the first-order derivatives as202

∂PF
∂ν
≈ ∂P̃DIS

F

∂ν
= − 1

N

N∑
`=1

2P̂F (ν)c(ν,u(`))∂c(ν,u
(`))

∂ν
fnθχ2

(
c(ν,u(`))2

)
∑nh

m=1

∑nT
k=1

[
1− F nθ

χ2 (cm,k(ν,u(`))2)
] (13)

In the previous equation, the only additional terms that need to be computed are ∂c(ν,u(`))
∂ν

,203

` = 1, . . . , N . To this end, assume that c(ν,u) = cM,K(ν,u), where (M,K) are the indices that204

provide the minimum in Eq. (10). Then, the sought partial derivative is205

∂c(ν,u)

∂ν
=
∂cM,K(ν,u)

∂ν
=

∂

∂ν

(
h∗M
|aTM,Ku|

)
(14)
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Three different scenarios in terms of the type of model parameter can be identified. First, if ν206

affects structural properties, then the evaluation of Eq. (14) simply requires the sensitivities of the207

spectral properties [53]. Second, when ν represents an excitation model parameter, the derivatives208

of the vectors associated with the Karhunen-Loève expansion (see Eq. (3)) are needed. This can be209

carried out using any suitable method [54]. Finally, in case ν corresponds to a response threshold,210

sensitivity evaluation can be performed with marginal computational efforts. For completeness,211

Appendix A provides explicit formulas for the three different scenarios in terms of ν.212

4.2. Practical advantages213

From the practical viewpoint, the adopted reliability sensitivity assessment framework presents214

two main advantageous features. On the one hand, the formulation presented in this section is215

quite general in the sense that it can be used to estimate sensitivities with respect to both design216

variables (ν = xi) and alternative model parameters (ν = ζ). On the other hand, the comparison of217

Eqs. (11) and (13) reveals that all the information retrieved during reliability assessment is reused218

to compute the corresponding first-order derivatives. Thus, first-order derivatives of reliability219

measures can be obtained as a byproduct of reliability assessment. These features are quite220

beneficial in the context of RBO problems, as they enable effective gradient-based solution schemes221

to obtain optimum solutions and to evaluate the sensitivity of final designs.222

5. Implementation of first-order solution methods223

5.1. Sequential optimization strategy224

In order to solve the RBO problem in Eq. (1), a first-order sequential optimization approach225

based on a class of feasible-direction interior point algorithms [35, 36] is adopted. In essence,226

each optimization cycle requires to identify a feasible-descent direction and to solve a line search227

problem to find a new candidate along such direction. Several advantages are provided by the228

adopted optimization strategy. First, the method produces a sequence of feasible designs with229

consecutively lower objective function values. Hence, the optimization process can be stopped230

at any iteration to retrieve a feasible solution that is better than the initial one. Second, one-231

dimensional surrogates for the reliability constraints, instead of multi-dimensional surrogates, can232

be adaptively generated during each optimization cycle for improved computational efficiency.233

Finally, relatively few reliability analyses are usually required to reach convergence. The reader is234

referred to [35] for a detailed description of the optimization strategy.235
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5.2. Direction-finding approach for optimum design sensitivity236

In this contribution, the framework proposed in [37] is adopted to compute optimum design237

sensitivities. Consider the augmented design space 〈x1, . . . , xnx , ζ〉 of dimension nx + 1, where238

ζ represents a given model parameter. Then, sensitivity computation can be viewed as finding239

the constrained steepest-descent direction in such augmented space, s = [s1, . . . , snx+1]T , which240

provides the greatest improvement of the objective value while satisfying the problem constraints.241

This direction is the solution to [37, 55]242

min
s
∇fT s

s.t. ∇rTj s ≤ 0, j ∈ Jr
∇gTj s ≤ 0, j ∈ Jg
sT s− 1 ≤ 0

(15)

where ∇FT =
[
∂F(x,ζ)
∂x1

, . . . , ∂F(x,ζ)
∂xnx

, ∂F(x,ζ)
∂ζ

]∣∣∣
x∗,ζ0

, with F representing f , rj, j ∈ Jr, or gj, j ∈ Jg;243

ζ0 is the nominal or actual value of ζ; and Jr and Jg denote the sets of reliability and standard244

constraints, respectively, that are active at the final design x∗. It is seen that the framework only245

requires the first-order derivatives of the objective and active constraint functions with respect246

to xi, i = 1, . . . , nx, and ζ. Furthermore, the previous optimization problem can be solved very247

efficiently, as it involves a linear objective function, linear constraints and a single quadratic248

constraint [56]. Based on the direction s, the rate of change of the optimum objective is [37]249

df ∗

dζ
=
∇f(x∗, ζ0)T s

|snx+1|
(16)

and the rates of change of the optimum values for the design variables are computed as [37]250

∂x∗i
∂ζ

=
si

|snx+1|
, i = 1, . . . , nx (17)

If snx+1 is positive (negative), the previous results are associated with an increase (decrease)251

in ζ. In case snx+1 = 0, the optimum solution remains unaffected by changes in ζ. If the sign of252

the change in ζ is specified beforehand, a similar technique can be adopted [37].253

Note that all the derivatives of the problem functions with respect to the design variables are254

readily available from the final optimization cycle. Therefore, only the sensitivities with respect to255

ζ remain to be evaluated, which is performed by reusing the DIS results at the final design. In other256
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words, optimum design sensitivities are obtained as an effective post-process of the optimization257

results, which is advantageous for practical purposes.258

5.3. Remarks259

As already pointed out, DIS provides efficient estimation of failure probabilities and their260

sensitivities for linear structural systems subject to Gaussian excitation. This, in turn, enables261

first-order solution methods for RBO and optimum design sensitivity analysis. The specific strate-262

gies adopted in this work have proved quite effective, as illustrated in Section 6. Nonetheless, the263

use of DIS in RBO problems is not necessarily limited to these particular solution methods. In264

principle, any suitable method that requires only the gradients of failure probability functions can265

be integrated with the sensitivity analysis framework described in this contribution. Hence, DIS266

can be interpreted as a potentially useful and numerically efficient tool to aid informed decision-267

making processes under uncertainty. Furthermore, this suggests that exploiting particular features268

of specialized simulation techniques can be quite advantageous for RBO schemes.269

6. Example problem270

In order to illustrate the applicability of the proposed framework, a numerical example in-271

volving a realistic building model subject to stochastic loading is presented in this section. The272

goal of this example is to determine the thicknesses of the core shear walls that minimize struc-273

tural weight, subject to constraints on serviceability reliability and geometric conditions. Two274

scenarios in terms of the number of design variables and the number of reliability constraints are275

addressed. In addition, the sensitivity of the optimum design with respect to response thresholds276

and excitation model parameters is studied.277

6.1. Building structure278

A three-dimensional finite element model of a 16-story reinforced concrete (RC) building, which279

has been borrowed from [34], is considered in this section. For illustration purposes, Fig. 1 shows280

a three-dimensional representation of the structural model. The interstory height is equal to 3.25281

m, which gives a total height of 52.0 m. In addition, the building is 30 m by 35 m in plan. A282

perimeter of RC rectangular columns and shear walls plus a core of RC shear walls are considered283

for the horizontal resistant system. The corresponding material properties are given by Young284

modulus E = 2.5× 1010 N/m2, Poisson ratio equal to 0.3, and mass density equal to 2500 kg/m3.285
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Shell elements of different thicknesses are considered to model the shear walls and floor slabs.286

In addition, beam and column elements are also included in the system. As a result, the finite287

element model involves 29466 degrees of freedom. Since the system is studied for small vibrations,288

linear elastic behavior is assumed. Finally, 20 modes are kept for dynamic analysis purposes and289

a 5% of critical damping is considered for all modes.290

Figure 1: Perspective view of a 16-story reinforced concrete structure under ground excitation.

6.2. Stochastic ground excitation291

As illustrated in Fig. 1, the building is subject to a ground excitation applied at 45° with292

respect to the x axis. Such loading is modeled as a non-stationary filtered white noise process293

with duration T = 10 s and time step ∆t = 0.01 s. Specifically, a modulated white noise signal294

passing through a Clough-Penzien filter [57] is considered. Hence, the ground acceleration is given295

by üg(t) = Ω2
1w1(t) + 2ξ1Ω1ẇ1(t)−Ω2

2w2(t)− 2ξ2Ω2ẇ2(t), where Ω1 = 15.6 rad/s, Ω2 = 1.0 rad/s,296

ξ1 = 0.6 and ξ2 = 0.9 are the filter parameters, and the variables wi(t), i = 1, 2, satisfy the set of297

coupled differential equations298

ẅ1(t) + 2ξ1Ω1ẇ1(t) + Ω2
1w1(t) = w(t)h(t)

ẅ2(t) + 2ξ2Ω2ẇ2(t) + Ω2
2w2(t) = Ω2

1w1(t) + 2ξ1Ω1ẇ1(t)
(18)

where w(t) is a white noise process with spectral intensity S = 1.5 × 10−3 m2/s3, and h(t) is a299

time envelope function defined as300
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h(t) =


(t/5)2 0 ≤ t ≤ 5 s

1 5 < t ≤ 6 s

e−(t−6)2 t > 6 s

(19)

Finally, for illustration purposes, all the eigenvalues of the covariance matrix of the stochastic301

process are retained to construct the Karhunen-Lòeve expansion and, as a result, the number of302

basic random variables is given by nθ = nT = 1001. Therefore, the discrete representation of the303

stochastic ground acceleration involves a large number of basic random variables for this case.304

6.3. Scenario I: Design problem305

For illustration purposes, nx = 2 design variables and a single reliability constraint are consid-306

ered in this scenario. The thicknesses of the core shear walls of the eight lower stories are linked307

to the first design variable as tw,s = t̄wx1, s = 1, . . . , 8, whereas that of the remaining stories is308

linked to the second design variable as tw,s = t̄wx2, s = 9, . . . , 16, with t̄w = 0.4 m the reference309

thickness value. The constrained RBO problem is given by310

min
x=[x1,x2]T

f(x) = (x1 + x2)/2

s.t. r(x) = ln(PF (x))− ln(10−3) ≤ 0

g(x) = x2 − x1 ≤ 0

0.5 ≤ xi ≤ 2.0, i = 1, 2

(20)

where f(x) is associated with the weight of the core shear walls, PF (x) is a failure probability311

function with maximum allowable value P ∗F = 10−3, and g(x) ≥ 0 is a geometric constraint. Note312

that this formulation imposes x2 ≤ x1, i.e., walls of lower floors must be thicker than of upper313

floors. This is a usual consideration in the context of structural design procedures. In addition,314

the constraints 0.5 ≤ xi ≤ 2.0, i = 1, 2, indicate that the core wall thicknesses lie between 0.2 m315

and 0.8 m. The failure event F is associated with serviceability conditions, and it is defined as316

F =

{
max

m=1,...,16
max

k=1,...,1001

(
|hm,x(tk,x,θ)|

h∗m
,
|hm,y(tk,x,θ)|

h∗m

)
> 1

}
(21)

where hm,x(tk,x,θ) and hm,y(tk,x,θ) are the interstory drifts, expressed as a percentage of the317

floor height, between floors m and m−1 along the x and y directions, respectively, and h∗m = 0.1%,318

m = 1, . . . , 16, represent the corresponding maximum allowable values. It is assumed that m = 0319
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Figure 2: Contours of the failure probability function PF (x). Scenario I.

represents the ground floor. In this setting, failure is defined when any interstory drift along the320

x or y axes exceeds 0.1% of its corresponding floor height. Such failure criterion can be related,321

for instance, to the violation of a serviceability limit state of the RC core walls [58]. Finally, it322

is noted that the evaluation of the failure probability at any given design, PF (x), represents a323

challenging problem as it involves a high-dimensional integration domain, a finite element model324

with thousands of degrees of freedom, and more than 30000 elementary failure domains.325

To obtain insight about the design problem, Fig. 2 shows the contours of PF (x). These326

iso-probability curves have been obtained by considering a set of DIS-based failure probability327

estimates distributed over the design space. The resulting curves, which are somewhat rugged328

due to the inherent variability of the estimates, have been smoothed for presentation purposes.329

From the figure, it is seen that the failure probability seems to be minimized by increasing the330

core wall thicknesses as much as possible, as expected. In general, the failure probability function331

depends mainly on x1 when x2 > x1, i.e., when the upper core walls are thicker than the lower332

ones. Meanwhile, a stronger interaction between x1 and x2 is observed for x2 < x1. In this case,333

an increase in the thickness of the lower core walls can be compensated by a decrease in the334

thickness of the upper walls to maintain the same reliability level. These results are reasonable335

from a structural viewpoint. For comparison and reference purposes, Fig. 3 shows a sketch of336

the feasible design set. Some contours of the objective function and a reference location for the337

optimum design are also presented in the figure. Note that only the reliability constraint is active338

at the optimum solution.339
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Figure 3: Sketch of the feasible design space, objective contours and optimum design (∗). Scenario I.

6.4. Scenario I: Results340

6.4.1. Reliability sensitivity estimates341

First-order information on the problem functions is used by the adopted optimization strategy342

to explore the design space efficiently. Typically, candidate design trajectories tend to move along343

boundaries of the feasible design set until reaching the optimum region [36]. In this context, poor344

quality information about the sensitivity of the active constraints can lead to spurious behav-345

ior of the optimization process, since identified search directions might not be actually feasible.346

Therefore, it is particularly important for the convergence of the algorithm to obtain sufficiently347

accurate estimates of the gradients of the active reliability constraint functions. For this example,348

the gradient of the reliability constraint function in Eq. (20) is estimated as ∂r(x)
∂xi
≈ 1

P̃DIS
F (x)

∂P̃DIS
F (x)

∂xi
,349

i = 1, 2. In this regard, the choice of an inadequately small sample size can affect the optimization350

procedure as such sensitivity estimates might have an unacceptable level of variability. Validation351

calculations have shown that N = 2000 samples provide a reasonable tradeoff between computa-352

tional cost and quality of the DIS results in this example. For illustration purposes, Fig. 4 presents353

the estimates of ∇r(x) obtained across 20 independent DIS runs with N = 2000 samples. These354

estimates are evaluated at the design x = [1.18, 0.93]T , which verifies PF (x) ≈ 10−3. It is seen355

that the gradient estimates point in a similar direction and, overall, their quality is acceptable in356

the context of RBO problems involving structural dynamical systems under stochastic excitation.357
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Figure 4: Estimates of the reliability constraint gradient obtained in 20 independent DIS runs. Scenario I.

6.4.2. Optimization process358

The sequential optimization strategy presented in Section 5.1 is implemented to solve problem359

(20). As already pointed out, this optimization strategy uses sensitivity information provided360

by DIS to produce a sequence of feasible designs with decreasing objective function values. The361

recommendations provided in [35, 36] are considered for numerical implementation. Additionally,362

a sample size equal to N = 2000 is considered for DIS. Furthermore, the customary technique363

of using common random number streams is implemented, which means that the same sequence364

of pseudorandom numbers is considered for reliability assessment at each design. Numerical365

experience indicates that this strategy is quite effective in reducing the effect of the variability366

of the estimators on RBO procedures [59]. Three different cases in terms of the starting point367

are studied to evaluate the performance of the optimization scheme. In particular, cases A, B368

and C correspond to initial designs xA = [1.95, 1.90]T , xB = [1.95, 0.80]T and xC = [1.75, 1.00]T ,369

respectively. It is noted that the method requires an initial design that is feasible, which can be370

usually identified using engineering judgment. However, in involved cases where a feasible design371

is difficult to identify a priori, systematic methods can be implemented to find a starting point372

[47].373

The sequences of candidate designs obtained for the three different starting points under con-374

sideration are presented in Fig. 5, where the corresponding final solutions are highlighted using375

dark markers. For reference purposes, some contours of the objective function f(x) are also shown376

in the figure. In general, the method reaches the active feasible boundary in few optimization cy-377

cles. Then, candidate solutions tend to move along that boundary, which in this case is associated378
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with the reliability constraint. Additionally, the three final designs are very similar between each379

other and they seem to lie along a contour of f(x). To obtain further insight about the opti-380

mization process, the objective function values obtained during the different optimization cycles381

are presented in Fig. 6. Note that eight iterations are required in all cases to verify the stopping382

criterion. From the figure, it is clear that significant improvements in the objective function values383

are obtained during the initial algorithm iterations, which is beneficial for the type of problems384

under consideration. In case A, for instance, a relative improvement of approximately 45% is385

attained after the four initial optimization cycles for case. This behavior is consistent with the386

large initial displacements in the search space observed in Fig. 5. Finally, Table 1 presents the387

optimum designs obtained by the optimization scheme for the three different starting points. For388

comparison purposes, a reference solution obtained from a direct double-loop implementation is389

also presented in the table. This design has been obtained using direct Monte Carlo simulation and390

genetic algorithms [59] with a population size of 50 individuals. Very similar objective function391

values are observed for all cases. In fact, the maximum relative difference between the objective392

values of all the reported solutions is less than 0.5%. Thus, the integration of DIS and suitable393

gradient-based methods provides optimum designs in an effective manner. Finally, the reliability394

constraint can be regarded as active while the geometric constraint remains inactive for all the395

designs reported in the table, as expected.396

Figure 5: Trajectories of candidate designs corresponding to three different starting points. Scenario I.
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Figure 6: Evolution of candidate objective function values for three different starting points. Scenario I.

Case A Case B Case C Reference

x∗1 1.217 1.268 1.175 1.177
x∗2 0.889 0.848 0.932 0.928
PF (x∗)/10−3 0.999 0.999 0.995 0.999
g(x∗) −0.327 −0.421 −0.242 −0.249
f(x∗) 1.0529 1.0580 1.0536 1.0525

Table 1: Final designs corresponding to three different starting points and reference solution. Scenario I.

6.4.3. Comparison with a finite difference implementation397

As discussed in Section 4, the sensitivity assessment framework enabled by DIS provides first-398

order derivatives by post-processing the sampling results. In principle, an alternative means of399

computing such derivatives is to use finite differences and DIS. To compare the performance of400

both sensitivity assessment methods, they are integrated with the optimization strategy presented401

in Section 5.1 to solve the RBO problem in Eq. (20). Central differences are considered and,402

therefore, a total of five DIS estimates are required to evaluate the reliability constraint function403

and its gradient at each design. Validation calculations indicate that a total of N = 2000 samples404

are adequate for both sensitivity assessment techniques.405

Table 2 summarizes the results obtained by both approaches in terms of the final design,406

number of optimization cycles (Ncycles), and total number of reliability analyses (Nrel). For con-407

ciseness, only case A is presented in the table. However, validation calculations indicate that408

similar results are obtained for alternative starting points. Several observations can be made from409
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this table. First, both approaches provide very similar final designs in terms of the objective410

value. Second, the use of finite differences requires to define an appropriate perturbation step,411

whereas the framework described in Section 4 circumvents this need. This is an advantage from412

the practical viewpoint. Third, the proposed approach needs only eight optimization cycles (see413

Fig. 6) whereas the implementation with finite differences requires 12 iterations. Fourth, the num-414

ber of reliability analyses required by the finite difference implementation is significantly higher415

than by the proposed approach. In fact, the proposed approach requires 35 reliability analyses,416

which are associated with the full evaluation of approximately four designs per optimization cy-417

cle. Meanwhile, the finite difference implementation requires a total of 640 DIS runs, which is418

roughly equivalent to the full evaluation of 10 designs per optimization cycle. This behavior can419

be attributed to the higher variability of sensitivity estimates obtained with finite differences,420

which tends to reduce the performance of gradient-based optimization methods. For this case, not421

only such variability affects the choice of the feasible-descent direction in each optimization cycle,422

but is also detrimental to the convergence of the subsequent line search procedure. Finally, the423

previous observations indicate that the computational burden of the proposed approach is signifi-424

cantly lower than of using finite differences and, in addition, it provides additional advantages for425

practical implementation purposes.426

Proposed approach Finite differences

x∗1 1.217 1.269
x∗2 0.889 0.847
PF (x∗)/10−3 0.999 0.998
g(x∗) −0.327 −0.422
f(x∗) 1.0529 1.0580
Ncycles 8 12
Nrel 35 640

Table 2: Optimization results obtained with the proposed approach and an implementation based on finite differ-
ences. Case A. Scenario I.

6.4.4. Sensitivity of the optimum design with respect to response thresholds427

Optimum design sensitivity assessment provides information on how optimum solutions can428

change under model parameter perturbations. As described in Section 5.2, this is achieved by429

integrating a direction-finding approach for optimum design sensitivity analysis with the general430

sensitivity assessment framework enabled by DIS. For illustration purposes and to show the type431
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of results that can be obtained by the proposed scheme, the sensitivities of the optimum design432

with respect to the different response thresholds are considered here. Explicit formulas for the433

computation of these sensitivity measures can be found in Appendix A. Note that, in this case,434

reliability sensitivity assessment involves negligible computational efforts.435

To evaluate the quality of the estimates obtained by the adopted framework, Fig. 7 shows the436

evolution, in terms of the number of samples, of the DIS-based estimates of ∂PF
∂h∗s

, s = 7, 9, 10, 11,437

evaluated at the final design of case A (see Table 1). The rest of the sensitivities are almost438

zero. From the figure, it is noted that all derivatives are negative. In other words, the failure439

probability tends to decrease when the maximum allowable values for the different interstory drifts440

are increased. This is reasonable from an engineering perspective, since higher threshold values441

correspond to more permissive performance requirements and, as a result, failure becomes less442

likely in such cases. In addition, it is noted that the estimates become rather stable for N ≥ 2000443

samples. Thus, obtaining first-order derivatives of the failure probability with respect to the444

response thresholds as a byproduct of the reliability assessment step at the final design, which445

involves N = 2000 samples, is adequate in the context of this example.446

Figure 7: Evolution of the estimator of the partial derivative of the failure probability with respect to different
response thresholds (h∗

s) in terms of the number of samples. Scenario I.

Once the first-order derivative of the reliability constraint with respect to each threshold h∗s447

is obtained, the approach presented in Section 5.2 is implemented to obtain the sought optimum448

design sensitivity measures. Table 3 reports the results corresponding to the final design obtained449

in case A. However, validation calculations show that similar results are obtained for all final450
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solutions reported in Table 1. For presentation purposes, all quantities in the table are normalized451

by a factor that ensures that the maximum absolute value of the optimum objective sensitivities452

is equal to one. Several observations can be made from these results. First, the final design is only453

sensitive to the response thresholds corresponding to stories 7, 9, 10 and 11, which are associated454

with the non-zero sensitivities reported in Fig. 7. Hence, perturbations of the maximum allowable455

drift values associated with lower and upper stories do not affect the optimum solution in this456

case. Second, all values presented in the table are negative, i.e., the greatest improvement in the457

optimum design is obtained by reducing the values of the design variables. Further, the solution458

of the direction-finding problem in Eq. (15) indicates that the results in the table correspond to459

increases of the different thresholds (δh∗s > 0). Note that this behavior is reasonable from the460

engineering viewpoint since, as already pointed out, higher allowable values for the responses of461

interest lead to less restrictive design conditions. This highlights one of the advantages of the462

chosen method for optimum design sensitivity analysis, as it can identify the sign of the perturba-463

tion (increase or decrease) that is most beneficial toward improving the final solution. Third, the464

direction in which the optimum design tends to move is identical for all thresholds and is opposite465

to the objective function gradient. Fourth, the relative importance of the different parameters466

with respect to the final solution can be established from the optimum design sensitivity results.467

In this regard, Table 3 indicates that h∗9 and h∗10 are the most relevant parameters, h∗7 and h∗11468

are less important, and the rest of thresholds do not affect the final design. Finally, the previous469

results illustrate that the implementation of DIS allows to obtain non-trivial information about470

final designs and their sensitivities.471

Story (s) df/dh∗s ∂x∗1/∂h
∗
s ∂x∗2/∂h

∗
s

1–6 0 0 0
7 −0.12 −0.12 −0.12
8 0 0 0
9 −1.00 −1.00 −1.00
10 −0.91 −0.91 −0.91
11 −0.28 −0.28 −0.28

12–16 0 0 0

Table 3: Normalized sensitivities of the optimum objective value and of the optimum values for the design variables
with respect to the maximum allowable interstory drifts. Scenario I.
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6.5. Scenario II: Design problem472

In this scenario, a more complex optimization problem in terms of the number of design473

variables and the number of constraints is studied. In particular, a total of nx = 8 intermediate474

design variables are considered. Each design variable is linked to the thickness of the core walls475

of two consecutive floors as tw,2i−1 = tw,2i = t̄wxi, i = 1, . . . , 8 (see Table 4). In addition,476

seven geometric constraints and 16 reliability constraints are imposed. The resulting optimization477

problem is stated as478

min
x

f(x) =
∑8

i=1 xi
/

8

s.t. rj(x) = ln(PFj(x))− ln(5× 10−4) ≤ 0, j = 1, . . . , 16

gj(x) = xj+1 − xj ≤ 0, j = 1, . . . , 7

0.5 ≤ xi ≤ 2.0, i = 1, . . . , 8

(22)

Design variable x1 x2 x3 x4 x5 x6 x7 x8

Core walls (floors) 1–2 3–4 5–6 7–8 9–10 11–12 13–14 15–16

Table 4: Linking detail of intermediate design variables. Scenario II.

where the constraints gj(x) ≤ 0, j = 1, . . . , 7, ensure that walls of lower floors are thicker than479

of upper floors, and PFj(x), j = 1, . . . , 16 are failure probability functions with maximum value480

P ∗F = 5 × 10−4. Note that this value is smaller than the one considered in the previous scenario.481

The failure events are defined in terms of the normalized interstory drifts as482

Fj =

{
max

k=1,...,1001

(
|hj,x(tk,x,θ)|

h∗j
,
|hj,y(tk,x,θ)|

h∗j

)
> 1

}
(23)

with h∗j = 0.1%, j = 1, . . . , 16. Hence, the jth failure probability function is associated with the483

drift responses, along the x and y directions, of the jth story.484

6.6. Scenario II: Results485

6.6.1. Optimization results486

The sequential optimization strategy presented in Section 5.1 is implemented, and a total of487

N = 3000 samples are considered for reliability assessment. To illustrate the effectiveness of the488

optimization scheme in terms of the starting point, three different initial designs are considered,489

which are presented in Table 5.490
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x1 x2 x3 x4 x5 x6 x7 x8

Case A 1.98 1.97 1.96 1.95 1.94 1.93 1.92 1.91
Case B 1.75 1.74 1.73 1.72 1.50 1.49 1.48 1.47
Case C 1.60 1.50 1.40 1.30 1.20 1.10 1.05 1.00

Table 5: Initial designs corresponding to different cases. Scenario II.

Figure 8 shows the candidate objective values obtained throughout the optimization process491

for the different starting points. From the figure, it is seen that cases A, B and C require 11, 14492

and 12 optimization cycles, respectively, to verify the stopping criterion. However, in all cases it is493

possible to obtain a design that is very similar to the final solution after roughly 10 optimization494

cycles. This behavior is consistent with the results observed in the previous scenario, since the495

method is able to reduce significantly the objective values after few optimization cycles. Moreover,496

the final objective function values obtained in the different cases are very similar between each497

other. Regarding computational cost, it is noted that each optimization cycle requires the full498

reliability assessment of a number of designs associated with the identification of the step size along499

the search direction [36]. In this context, an average of three designs must be evaluated during each500

optimization cycle, leading to a total of less than 50 reliability analyses in all cases. This number is501

relatively small in the context of RBO problems. This highlights some of the benefits of adopting502

DIS as sensitivity assessment framework, since the use of gradient-based optimization strategies503

provides greatly improved designs with relatively few reliability analyses. Such a feature represents504

a significant advantage when compared, e.g., with stochastic search-based methods [22, 30].505

Figure 8: Evolution of candidate objective function values for three different initial designs. Scenario II.
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Table 6 shows the final designs obtained for the three starting points under consideration.506

In addition, Table 7 reports the corresponding values of the active constraint functions that are507

regarded as active at the final designs. These correspond to the normalized failure probabilities508

PFj(x)/P ∗F , j = 9, 10, 11, with P ∗F = 5×10−4, and gj(x), j = 2, 3, 4, 7. The results indicate that all509

final designs are quite similar from the objective and constraint viewpoints. In fact, the maximum510

relative difference between the optimum objective values is about 0.2%. Thus, the first-order511

method enabled by DIS allows an effective exploration of the design space for this scenario. To512

gain further insight into the optimization process, Fig. 9 presents the evolution of the values of513

the constraint functions that are active at the final solution for case A. It is seen that the method514

requires about nine optimization cycles to reach a boundary of the feasible design set where all515

constraints under consideration are practically active. Such constraints tend to remain active516

during the rest of the optimization process. In other words, the search directions identified during517

the next iterations tend to follow such feasible boundary, which is consistent with the behavior518

observed in the previous scenario.519

Figure 9: Evolution of active geometric constraints (left) and active failure probability functions (right). Case A.
Scenario II.

6.6.2. Optimum design sensitivity with respect to excitation model parameters520

Once a final solution is identified, its sensitivity with respect to the parameters Ω1 and Ω2521

involved in the definition of the excitation model (see Section 6.2) is investigated. The approach522

described in Section 5.2 is implemented, which requires the first-order derivatives of the active523
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Case A Case B Case C

x∗1 1.528 1.500 1.498
x∗2 1.141 1.141 1.141
x∗3 1.126 1.132 1.130
x∗4 1.122 1.128 1.129
x∗5 1.118 1.123 1.125
x∗6 0.962 0.961 0.959
x∗7 0.507 0.509 0.507
x∗8 0.504 0.505 0.504
f(x∗) 1.001 0.999 0.999

Table 6: Final designs corresponding to three different starting points. Scenario II.

Case A Case B Case C

PF9(x
∗)/P ∗F 0.994 0.998 0.995

PF10(x
∗)/P ∗F 0.968 0.968 0.968

PF11(x
∗)/P ∗F 0.953 0.952 0.961

g2(x∗) −0.015 −0.009 −0.011
g3(x∗) −0.004 −0.004 −0.001
g4(x∗) −0.004 −0.005 −0.004
g7(x∗) −0.003 −0.004 −0.003

Table 7: Active constraint functions corresponding to three different starting points. Scenario II.

reliability constraint functions with respect to these parameters. As previously pointed out, such524

quantities can be computed by post-processing the DIS results. In this context, since Ω1 and525

Ω2 affect the properties of the excitation model, the only additional computations are associated526

with the sensitivities of the vectors involved in the representation of the stochastic load (see527

Appendix A). Further, since the same excitation model is considered for all reliability constraints,528

this analysis needs to be performed once to evaluate the sensitivities of all active constraints.529

For conciseness, only the results corresponding to the final design of case A are presented here.530

However, additional calculations indicate that similar results are obtained for cases B and C.531

For reference purposes, Figure 10 presents the evolution, in terms of the number of samples,532

of the estimates of
∂PF10
∂Ω1

and
∂PF10
∂Ω2

evaluated at the final design of Case A (see Table 6). Rather533

stable estimates are obtained for N ≥ 3000, with
∂PF10
∂Ω1
≈ −1.70× 10−2 and

∂PF10
∂Ω2
≈ −0.03× 10−2.534

Thus, in this case PF10(x) is much more sensitive to Ω1 than to Ω2. Moreover, increasing the535

values of Ω1 or Ω2 tends to decrease the likelihood of exceeding the maximum allowable threshold536

in the 10th story. Validation calculations indicate that a similar behavior is also observed for the537

failure probability functions PF9(x) and PF11(x), which are associated with the active reliability538
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constraints.539

Figure 10: Sensitivity estimates of PF10
with respect to Ω1 and Ω2 in terms of the number of samples. Scenario II.

Table 8 presents the optimum design sensitivity measures corresponding to perturbations in540

ζ = Ω1 and ζ = Ω2, i.e., the sensitivities of the optimum values for the design variable,
∂x∗i
∂ζ

,541

i = 1, . . . , 8, and of the optimum objective value, df∗

dζ
. For convenience, all these quantities have542

been normalized in such a way that the maximum magnitude of the sensitivities of the optimum543

objective values equals one. From the table, it is seen that the final solution is more sensitive to544

Ω1 than to Ω2, since
∣∣∣ df∗dΩ1

∣∣∣ > ∣∣∣ df∗dΩ2

∣∣∣. Such behavior, in turn, can be associated with the higher545

sensitivity of the active reliability constraint functions with respect to this parameter (see Fig. 10).546

Furthermore, the previous results, which are obtained from the solution of Eq. (15), correspond to547

perturbations δΩ1 > 0 and δΩ2 > 0. In other words, improved designs can be obtained for larger548

values of the filter parameters Ω1 or Ω2. This agrees with the results presented in Fig. 10. Finally,549

regarding the rates of change of the optimum values for the design variables with respect to both550

excitation model parameters, all values in the table are negative. For small changes in Ω1, the551

optimum design tends to move almost parallel to the steepest descent direction of the objective552

function. Meanwhile, a different behavior is observed for perturbations in Ω2, where core wall553

thicknesses of upper floors are decreased to a greater extent than the rest. This can be related to554

the smaller influence of these structural properties on the responses involved in the definition of555

the active constraint functions, i.e., the drifts of stories 9 to 11.556

Based on the previous discussion, it is seen that the optimum design sensitivity approach557

adopted in this contribution can provide non-trivial information about the effect of model pa-558
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ζ = Ω1 ζ = Ω2

∂x∗1/∂ζ −0.999 −0.038
∂x∗2/∂ζ −0.999 −0.042
∂x∗3/∂ζ −1.000 −0.052
∂x∗4/∂ζ −1.001 −0.052
∂x∗5/∂ζ −1.001 −0.052
∂x∗6/∂ζ −0.997 −0.022
∂x∗7/∂ζ −1.001 −0.170
∂x∗8/∂ζ −1.003 −0.188
df ∗/dζ −1.000 −0.077

Table 8: Normalized sensitivities of the optimum solution with respect to the excitation model parameters Ω1 and
Ω2. Case A. Scenario II.

rameter perturbations on final designs. As already pointed out, the required sensitivity measures559

can be computed as a byproduct of the optimization process by virtue of the reliability sensitivity560

analysis framework enabled by DIS. Thus, valuable insight for decision-making processes involving561

linear structural systems subject to Gaussian excitation can be obtained with reduced numerical562

costs. Overall, the results indicate that the use of DIS allows the implementation of potentially563

useful tools for a practical and real type of RBO problems.564

7. Conclusions565

This contribution implements Directional Importance Sampling (DIS) as a general reliabil-566

ity and sensitivity assessment framework for reliability-based optimization (RBO) and optimum567

design sensitivity analysis of linear structural systems under Gaussian excitation. First-order568

derivatives of the failure probability, with respect to design variables or general model parame-569

ters, can be obtained as a byproduct of the sampling process. This enables effective first-order570

solution methods for the two types of problems under consideration. On the one hand, a first-order571

sequential optimization strategy based on an efficient feasible-direction interior-point algorithm572

is adopted to solve RBO problems. The scheme generates a sequence of feasible designs with573

improving objective values and, moreover, relatively few optimization cycles are required to ob-574

tain greatly improved designs. On the other hand, a direction-finding approach is considered for575

optimum design sensitivity analysis. In this setting, the rates of change of the optimum objective576

value and of the optimum values for the design variables with respect to model parameters are577

computed as a byproduct of the DIS results at the final design. Thus, valuable information on578

final designs and their sensitivities can be obtained with reduced numerical efforts.579
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An application example involving a 16-story reinforced concrete building structure subject580

to ground acceleration modeled as a non-stationary filtered white noise process is addressed to581

assess the performance of the proposed framework. Structural weight minimization subject to582

reliability and geometric constraints is studied. In particular, reliability requirements involving583

serviceability conditions for the interstory drifts are considered. Two alternative scenarios in584

terms of the number of design variables and reliability constraints are presented. In both cases,585

the optimization strategy enabled by DIS provides optimum designs in an effective manner. Addi-586

tionally, significant improvements in the objective values are attained after the initial optimization587

cycles. Furthermore, numerical results also illustrate the advantages of the adopted framework588

with respect to a direct finite difference implementation, both in terms of numerical efforts and589

optimization results. These features are beneficial from a practical viewpoint and highlight the590

capabilities of DIS in the context of RBO problems. As a byproduct of the optimization results,591

the sensitivities of the optimum design with respect to response thresholds and excitation model592

parameters are evaluated. Non-trivial information on how final designs can change under small593

increases or decreases of model parameters is obtained and, in addition, their relative importance594

with respect to final solutions can be established. Overall, the results indicate that the general595

sensitivity analysis framework enabled by DIS provides potentially useful tools for decision-making596

processes involving linear structural systems subject to Gaussian excitation.597

Future research efforts involve the assessment of the framework in more complex structural598

systems. In these cases, the computational cost of a single structural analysis can be significant599

and, therefore, parametric reduced-order model techniques can be integrated to reduce the numer-600

ical efforts. Another research direction corresponds to the evaluation of different RBO methods, in601

terms of efficiency and robustness, for the class of problems addressed in this contribution. Some602

of these topics are currently under consideration.603
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A. Sensitivity of minimum demand-to-capacity ratio610

A.1. Derivatives with respect to structural parameters611

In case ν affects the properties of the structural model, the M th impulse response function in612

Eq. (8) verifies ηM(t) = ηM(t, ν) and aM,K = aM,K(ν). Then, from Eq. (14) it is seen that613

∂c(ν,u)

∂ν
= − h∗M

(aM,K(ν)Tu) |aM,K(ν)Tu|
×

((
∂aM,K(ν)

∂ν

)T
u

)
(24)

with614

∂aM,K(ν)

∂ν
=

K∑
q=1

εq∆t
∂ηM(tK − tq, ν)

∂ν
ψψψq (25)

where ∂ηM
∂ν

can be obtained applying the chain rule due to the use of modal superposition. This615

requires the derivatives of the mode shapes and natural frequencies, which are computed using616

the method presented in [53].617

A.2. Derivatives with respect to excitation model parameters618

Assume that ν is involved in the definition of the stochastic excitation model. Hence, aM,K =619

aM,K(ν) and, therefore, Eq. (24) is also valid. However, in this case the first-order derivative of620

the linear map aM,K becomes621

∂aM,K(ν)

∂ν
=

K∑
q=1

εq∆tηM(tK − tq)
∂ψψψq(ν)

∂ν
(26)

which requires, in turn, the first-order derivatives of the set of vectors Ψ(ν) = [ψ1(ν), . . . ,ψnT (ν)]622

with respect to ν. From Section 2.2, such sensitivities can be computed as623

∂Ψ(ν)

∂ν
=

1

2
Λ(ν)−1/2

[
∂Λ(ν)

∂ν
Ξ(ν)T + 2λ(ν)

∂Ξ(ν)

∂ν

T
]

(27)

The derivatives of the eigenvalues Λ(ν) and eigenvectors Ξ(ν) of the covariance matrix of the624

stochastic load, Σ(ν), can be computed using any suitable method; see, e.g., [54, 60].625

A.3. Derivatives with respect to response thresholds626

Assume that ν corresponds to the sth response threshold, that is, c(ν,u) = c(h∗s,u). Hence,627

the derivative in Eq. (14) can be computed as628

29



∂c(h∗s,u)

∂h∗s
=


cM,K(u)

h∗s
, if s = M

0, otherwise

(28)

This means that the required derivative is non-zero only if the sth failure response determines629

the closest failure boundary along the direction u. Finally, it is noted that Eq. (28) involves a630

single arithmetic operation. Thus, marginal computational efforts are required to evaluate the631

first-order derivative of the failure probability in this case.632
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