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Abstract—Wi-Fi sensing can classify human activities because each activity causes unique changes to the channel state information
(CSI). Existing WiFi sensing suffers from limited scalability as the system needs to be retrained whenever new classes are added,
which causes overheads of data collection and retraining. Cross-domain sensing may fail because the mapping between activities and
CSl variations is destroyed when a different environment or user (domain) is involved. This paper proposed a few-shot learning-based
WiFi sensing system, named FewSense, which can recognise novel classes in unseen domains with only a few samples. Specifically, a

feature extractor was pre-trained offline using the source domain data. When the system was applied in the target domain, a few
samples were used to fine-tune the feature extractor for domain adaptation. Inference was made by computing the cosine similarity.
FewSense can further boost the classification accuracy by collaboratively fusing inference from multiple receivers. We evaluated the
performance of FewSense using three public datasets, i.e., SignFi, Widar, and Wiar. The results show that FewSense with five-shot
learning recognised novel classes in unseen domains with an accuracy of 93.9%, 96.5%, and 82.7% on the SignFi, Widar, and Wiar
datasets, respectively. Our collaborative sensing model improved system performance by an average of 29.2%.

Index Terms—Wi-Fi sensing, few-shot learning, cross-domain sensing

1 INTRODUCTION

1.1

W I-FI sensing systems has recently received extensive
research interests [1], [2]. Wi-Fi is widely available
because it is built into many consumer electronics, including
laptops, smartphones, tablets, wearable devices such as
Fitbits, and smart home appliances, to name a few. Various
interesting applications have been inspired, including large-
scale movements such as human activity recognition [3]-[5],
fall detection [6], [7], and gait recognition [8], [9], as well
as small-scale movements such as gesture recognition [10],
[11], sign language recognition [12], [13], and vital sign
detection [14], [15]. These applications are very useful for
our everyday life. For example, gesture recognition can be
applied in human-computer interaction and smart home to
enable smooth control of devices.

Wi-Fi transmissions experience line-of-sight propaga-
tion, reflection, refraction, and scattering, which are affected
by the environment and the objects within it [16]. When
a person performs an activity, e.g., walking or hand mov-
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ing, the activity will cause unique changes to the radio
propagation, which can be measured via the channel state
information (CSI). Deep learning can be adopted to learn the
unique mapping between the CSI patterns and activity types
thanks to its effective feature extraction and classification
capability [17]. A deep learning-based sensing approach
involves two stages. In the training stage, a training dataset
should be constructed and a deep learning model is trained
offline. Specifically, when an activity is performed, the Wi-Fi
signals will get perturbed. The receiver will estimate the CSI,
whose variation is affected by the activity. Many CSI records
are collected for each activity. The process is repeated for
all the activities, and the training dataset is established. A
deep learning model can then be trained offline, which only
needs to be done once. During the testing stage, based on
the captured CSI, the derived deep learning model will be
utilised to infer the activity type.

1.2 Limitations of Existing Systems

Although the above deep learning-based sensing systems
can recognise human activities with reasonable accuracy,
there are still limitations that restrict practical applications.

1.2.1 Limited Scalability

A classic deep learning-based sensing system explores the
uniqueness of the mapping between the CSI variations and
activities. A common limitation of such systems is that they
can only handle the same classes/activities as those used
during the training process. Whenever a new class needs
to be added to or an existing class needs to be removed
from the well-trained model, the model should be retrained
using data from the existing classes and the new classes. The
retraining results in three types of overhead:



o The storage of the existing training data, which occu-
pies hard disk space and requires extra maintenance.

o The collection of the new data is time-consuming and
labour-intensive.

e The computational overhead for retraining is quite
high when there is a large amount of data, which
cannot be completed in real time.

However, adjusting, including adding and deleting, classes
is common in practical applications, e.g., a new sign gesture
may need to be enrolled. The lack of scalability in the current
approach and design makes it difficult to be deployed in
real-world scenarios.

1.2.2 Domain Shift

The radio signal experiences multipath propagation whose
characteristics are determined by the environment and the
sensing activity. The same activity performed in different
environments will cause deviated CSI variations. In addi-
tion, the same activity performed by different users may
also have deviated CSI variations because the users may
perform the same activity in a slightly different way or
their heights/body shapes are different. The parameters
independent to the activity can be denoted as a domain [18],
e.g., the environment and/or the user. Source and target
domains refer to the domains of the training and testing
stages, respectively.

When the source and target domains are different, do-
main shifting happens. The obtained CSI will differ, and
the recognition performance will suffer as a result. How-
ever, it is very common to apply Wi-Fi sensing systems in
different environments and/or for different users. Existing
solutions can be classified into three categories, namely do-
main adversarial training-based [18], [19], transfer learning-
based [20], and domain-independent feature-based [21] ap-
proaches. However, these approaches are subject to the
following limitations:

e The domain adversarial training-based approach re-
quires the training dataset to cover data from many
domains, but there are numerous possible domains.

o The transfer learning-based approach needs exten-
sive data from the target domain, which sometimes
may not be possible. For example, the work in [20]
requires 500 samples for transfer learning to achieve
comparable accuracy with models trained without
transfer learning. While the required samples for
transfer learning are only one quarter of the amount
required by training without transfer learning, trans-
fer learning still requires quite extensive data, which
may pose a big challenge.

e The domain-independent feature-based method re-
lies on special knowledge to design unique fea-
tures and may also need extra receivers, e.g., body-
coordinate velocity profile (BVP) in [21]. In addition,
it may suffer from high computational costs, which
would make it impossible for practical use.

Hence, a lightweight cross-domain sensing approach is ur-
gently required to reduce the overhead of collecting data
from source or target domains as well as eliminate the
constraints of extra hardware and computational resources.

1.3 Few-Shot Learning

Few-shot learning (FSL) has been widely investigated in
computer vision for image classification [22]. A classic deep
learning model aims to learn the unique features of each
class and predict the label based on the feature mapping.
In contrast, FSL is a meta-learning technique. Instead of
learning unique features, it makes predictions based on the
similarity of the feature sets. Specifically, a feature extractor
will be pre-trained using the base set. Then, a support set
will be constructed with a few pairs of data and labels.
Finally, a query set contains data whose label is to be
inferred. The prediction is made by comparing the similarity
between the features of the support and query sets.

FSL has recently been applied to Wi-Fi sensing as
well [23] to address the scalability and cross-domain issues.
The support set can be flexibly adjusted because very few
samples are required for each class, and no cumbersome
training is needed. The performance of FSL relies on the
generalisation capability of the feature extractor, which
however requires an extensive base set. Hence, the work
in [23] designed a virtual gesture generation algorithm to
transform existing gestures into virtual gestures. The base
set can thus be enriched, and the overhead of data collection
can be mitigated. However, designing the virtual gesture
generation algorithm requires sophisticated knowledge that
cannot be extended to other tasks straightforwardly.

The FSL is also employed in [24] and [25] to tackle the
cross-environment problem in WiFi sensing. The researchers
in [24] presented a dual-path base network for classifying
activities and a metric-based meta-learning framework to
enhance the base network’s adaptability. The researchers
in [25] proposed using the Siamese network for few-shot
learning, and a multiple kernel variant of maximum mean
discrepancies (MK-MMD) was introduced for minimising
the domain shift such that the network can achieve cross-
domain recognition. Their networks can be transferred to
different environments for the same set of classes. However,
when new classes are introduced to the system, their net-
work models must be retrained using samples from both
the new classes and the current classes. Thus, the scalability
of these works is limited.

1.4 Contributions

In light of the initial success of using FSL in designing
the virtual gesture generation algorithm [23], in this work,
we further employ FSL to address the scalability issue
and domain shift challenge faced by many practical Wi-Fi
sensing applications. We demonstrated that the feature ex-
tractor can be generalised to a totally different sensing task.
Specifically, we exploited a public dataset as the base set,
applied the trained feature extractor to a different dataset,
and achieved good classification performance, which is a
different approach from [23]. In other words, our work aims
to eliminate the need to construct an individual base set for
every sensing task.

We adopt metric-based FSL for designing a scalable and
cross-domain Wi-Fi sensing system. A CNN backbone is
revised from the classic AlexNet architecture as the fea-
ture extractor. We design a collaborative sensing scheme to



leverage the spatial diversity gain enabled by multiple re-
ceivers. The proposed model is evaluated using three public
datasets, i.e, SignFi [12], Widar 3.0 [21] and Wiar [26]. We
study in-domain sensing, cross-domain sensing, and cross-
dataset sensing. Our findings show that the proposed FSL-
based sensing system outperforms state-of-the-art works in
the literature. Our contributions are summarised as follows:

e We propose an FSL-based Wi-Fi sensing system,
FewSense, which is capable of novel class recognition
and cross-domain sensing. Specifically, the proposed
system can achieve 76.3% cross-domain accuracy
for 76 novel sign language gestures using only one
labelled sample for each novel class from the target
domain when all the data is from the SignFi dataset.

o FewSense can be fine-tuned to new sensing tasks
using a few samples. When the feature extractor is
trained on the SignFi dataset (sign language recogni-
tion), evaluation over the Widar (gesture recognition)
and Wiar (human activity recognition) datasets can
achieve an average accuracy of 96.5% and 82.7%,
respectively, with five samples from each novel class.

e A collaborative sensing approach is proposed to
leverage the spatial diversity gain when there are
multiple receivers. We evaluated FewSense on the
Widar dataset. The accuracy can be raised by an
average of 29.2% when the number of receivers is
extended to six with one sample from each class, and
to a maximum of 100% with six receivers and five
samples from each class.

The code' developed for this study is available online.

The rest of this paper is organised as follows. Section 2
shows the CSI model in the Wi-Fi sensing system and states
the problem with the existing systems. Then we present
the overview of our system design in Section 3. Section 4
introduces our metric-based FSL method in details and
Section 5 presents our collaborative sensing model to enable
multiple receivers to work collaboratively. The performance
evaluation of FewSense is given in Section 6. We review
innovative works of FSL and cross-domain Wi-Fi sensing
works in Section 7. Finally, Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Background

As shown in Fig. 1, when a signal is sent from a trans-
mitter and captured by a receiver, it experiences various
propagation paths in a multipath environment. Specifically,
there are static paths, which may include line-of-sight (LOS)
and signals reflected by static objects such as walls and
furniture, e.g., tables. There are also dynamic paths, which
are reflected and/or scattered by moving objects in the
environment [27]. Taking gesture recognition as an example,
the movement of the palm will lead to dynamic paths of
signal propagation.
The channel model can be mathematically given as

h(Ta t) = Z h(TSat)(s(T - Ts) + Z h(Tdat)(S(T - Td)a (1)
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Fig. 1. Wi-Fi sensing model

where h(7s,t) and h(7g4,t) are the channel attenuation of
the static (grouped as {S}) and dynamic paths (grouped as
{D}), respectively, and J(-) is the Dirac delta function. In
the context of Wi-Fi sensing, orthogonal frequency-division
multiplexing (OFDM) is the physical layer modulation used
for IEEE 802.11a/g/n/ac/ax, which can obtain CSI in the
frequency domain, given as

H(f,t) =Y h(rs,t)e 7™ £ 3" h(rg, t)e 277 (2)
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Objects and environments have a direct impact on CSI
variations over time. Different gestures will have different
moving patterns, which lead to unique CSI variations.

Deep learning can be adopted to reveal the relationship
between the CSI variations and the corresponding gestures.
By collecting a series of continuous packets when a gesture
is performed, we can estimate and store records of CSI.
During the training stage, the deep learning model can learn
the specific patterns related to different gestures. Then, in
the testing stage, the receiver will obtain a collection of
CSI and infer the gestures based on the pre-trained deep
learning model.

2.2 Motivation

Deep learning has been widely adopted for Wi-Fi sens-
ing and has achieved excellent classification performance.
Convolutional neural networks (CNN) [12], [28], and long-
short term memory (LSTM) [25], [29] can learn and reveal
complex feature patterns in a supervised learning manner.
However, they are still subject to novel class recognition and
cross-domain sensing.

2.2.1 Limited Scalability/Novel Class Recognition

In real-life applications, it is common to add new gestures
to and/or remove existing ones from a gesture recognition
system, which will result in changes in the number of
classes (gestures). However, as already discussed, the classic
deep learning techniques such as CNN and LSTM have
limited scalability because they can only handle fixed-size
classes once trained. Whenever new classes, e.g., unseen
hand gestures, are added, the neural network model needs
to be retrained with a massive number of training samples.
Data collection and retraining overheads thus occur [23],
[24], which are time-consuming and laborious.
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Fig. 2. -SNE visualisation of the selected data from different domains:
the same sign language from the same user but different environments,
and different sign languages from the same environment but different
users.

2.2.2 Cross-Domain Sensing

In order to achieve good classification performance, the
training and test datasets should share the same distribution
of data. Most existing works let the same user perform the
gestures in the same environment [27], [30]. In other words,
the static CSI part of (2) remains the same, but the dynamic
part is uniquely caused by the gestures of the user. This is
termed ”in-domain sensing,” where the domains refer to the
environment and the user.

However, cross-domain sensing is actually more com-
mon in real-life deployments. The gestures will probably be
performed by different users in different environments, i.e.,
cross-domain. The domain shift impacts the performance of
Wi-Fi sensing systems for two reasons.

e When the environment changes, the static parts of (2)
for training and testing are different, which results in
different CSI patterns, i.e., varied data distributions.

o Different users may perform the same gesture in
slightly different ways, which will also lead to dif-
ferent CSI dynamic parts of (2).

In order to illustrate the domain shift, we use sign
languages from a public dataset SignFi [12] that will be
introduced in Section 6.1.1. Specifically, we selected three
sign gestures that are performed by two users at home
and in a lab environment. Their distributions are visualised
using t-SNE [31], which maps the CSI samples to a two-
dimensional space. As shown in Fig. 2, the same sign per-
formed in different environments or by different users has
totally different distributions. Therefore, directly applying
the neural network model trained on one domain to a new
domain would not work.

3 SYSTEM DESIGN
3.1 System Overview

This paper employs metric-based FSL to address the above
limitations. Our goal is to recognise novel classes in cross-
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domain scenarios, i.e., different environments and /or users,
using only a few samples. Specifically, a three-stage ap-
proach is designed, namely feature extractor training, fea-
ture matrix generation, and classification, as shown in Fig. 3.
Note that the same signal preprocessing algorithm is used
for all three stages.

3.2 Feature Extractor Training

We will first sample and preprocess raw CSI records and
obtain CSI tensors x, whose construction will be elaborated
in Section 4.1. A base set, B = {(Xb,yb)}, will be con-
structed by obtaining CSI tensors for different classes (e.g.,

{Xl{,xg, S xb } are the CSI

Ny
tensors and Y? = {yl{, ys, - - ,y?\?b} are the corresponding
labels. The number of instances in the base set is denoted
as Ny, and Ny = Ny x K3, where N, is the number of base
classes and Kj, is the number of samples per base class. The
domain of the base set is referred to as the source domain,
denoted as D;.

We use a standard supervised learning manner to train
a feature extractor fp and a classifier C (- | Wy,), param-
eterised by Wy and Wy, respectively. A large number
of classes in the base set enables the feature extractor to
learn unique latent features from base classes so that the
distances between instances of the same class are closer
while instances of different classes are further apart. Once
the training is completed, the classifier will be removed to
obtain the trained feature extractor. The training only needs
to be done once.

sign gestures), where X* =

3.3 Feature Matrix Generation

The data involved in this stage is called the support
set, which is defined as S = {(X*,Y*)}, where X* =



{Xf,xg, e ,vas} and YV® = {yf,yg, e ,yjsv} are the CSI
tensors and labels, respectively. N, = Nx K, where N is the
number of novel classes, and K is the number of samples
for each class. FSL is usually described as N-way K-shot
classification. The classes in the support set have no overlap
with the classes in the base set, i.e., Y’ N V* = (. Therefore,
they are called novel classes. The domain of the support set
is named as the target domain, denoted as D;. In practice
the source domain and target domain are likely different,
i.e., D, # D;, thus cross-domain sensing occurs.

We first collect K labelled shots (samples) for each novel
class to construct the support set, which will be denoised by
the preprocessing scheme. With samples from the support
set, the pre-trained feature extractor fy will learn the latent
feature representations of the novel classes, termed as the
feature matrix in this paper. We propose two methods to
generate it, i.e., direct feature matrix generation and fine-
tuned feature matrix generation, as shown in Fig. 4.

o Direct Feature Matrix Generation: The feature ex-
tractor will extract the feature embedding directly
from the support set. The feature embedding is
stored in the database and output as the feature
matrix.

o Fine-tuned Feature Matrix Generation: A new clas-
sifier will be introduced after the feature extractor.
The weight matrix of the classifier and the feature
extractor will be optimised using the samples in the
support set. The adapted weight matrix will be the
feature matrix.

3.4 Classification

The data involved in this stage is named as the query set

Q = {(X4,Y%)}, where X? = {x‘f,xg,--- ,X‘]]vq are the
CSI tensors and Y9 = {y?, ya, ,y?v } represents the la-

bels that to be inferred. Note that the stipport set and query
set share the same label space and are performed in the same
domain. Therefore, they have the same distribution.

The signal preprocessing scheme is used to remove the
phase noise of the query set. The feature extractor, fy, is used
to extract the latent features from the denoised query set.
The final results are determined by computing the cosine
similarity score between the latent features of the query set
and the feature matrix generated from the previous stage.

4 METHODOLOGY

In this section, we first introduce the signal preprocessing
algorithm that is used in all three stages of the proposed
FSL-based system. We then elaborate on each of these three
stages.

4.1 Signal Preprocessing

A Wi-Fi transmitter will continuously send packets that are
captured by receivers within the communication range. The
CSI can be estimated but will be impacted by sampling
frequency offset (SFO), packet detection delay (PDD) and
carrier frequency offset (CFO) [32], which can be given as

H(f,t)=e"MWH(f,1), @3)

5

where ¢(t) is the phase shift collectively caused by the above
issues.

Most of the existing works only employ amplitude for
sensing. The phase of CSI is more sensitive than the ampli-
tude [6] and will be beneficial to the system performance.
In this work, we leverage a linear transformation proposed
in [33] to sanitise the CSI. According to the specific imple-
mentation of the Intel 5300 Wi-Fi network interface card
(NIC) [34], the process can be given as

ZH(fi,t) = ZH(fi,t) — km; — b, @)

where i is ranging from 1 to 30, f; is the corresponding

subcarrier frequency, m; is the subcarrier index ranging

from -28 to 28. IEEE 802.11 CSI tool reports one CSI every

two subcarriers [34], and

o 4H(f307t) - AH(flvt)
m3p — M1

T
b= %ng(fi,t)- (6)

k

: ©)

In this work, we concatenate the amplitude, |H(fi,1)],
and the sanitised phase, ZH(f;,t). By combining the data
from all the antennas, we finally construct a CSI tensor x €
RUsxUapxUant where Uy is the number of sampling points,
Uap is the number of elements of amplitude plus phase, and
the Ugp: is the number of antenna pairs.

4.2 Feature Extractor Training Stage

The main purpose of the feature extractor training stage is
to train a feature extractor that can extract discriminative
features from input samples.

The structure of the feature extractor is shown in Fig. 5,
which is revised from the classic AlexNet architecture [17].
An Lo-norm layer [35] is added before the classifier, which
normalises the embedded latent feature vectors as follows:

fo(x)

T ?
where fj(x) is the output of the previous fully connected
(FC) layer, and || - ||2 denotes the Lo-norm operation. By
adding an Ly-norm layer, the embedded features will be
forced to lie on a hypersphere of a fixed radius [35]. Adopt-
ing Lo-norm layer will improve the system’s converging
speed and accuracy, because it forces the embedded features
from the same class closer and moves the features from
different classes further apart.

A classifier, C' (- | W), consists of a fully connected layer
with softmax activation function. In this stage, the classi-
fier is parameterised by the weight matrix Wy, € R™*MNs,
where n is the dimension of extracted features from the
feature extractor. The classifier takes the normalised fea-
ture and then computes (W) " fy (x?), where ()" denotes
transpose operation. Finally, the prediction is made via the
softmax function, mathematically given as

evi

"= (®)
where v is the output of the fully connected layer, and G
is the number of classes. Here, v. = (Wy) ' fo (x}) and
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Fig. 5. The architecture of the feature extractor, modified AlexNet.

G = Np. The output of the softmax function is a probabil-
ity vector that represents confidence levels across different
classes. The class with the highest probability is selected as
the classification result.

We train the feature extractor using the samples from the
base set, B, in a supervised learning manner. The feature
extractor will learn to extract distinct features from the
CSI samples of different classes. It is crucial to carry out
training with a sufficient number of base classes to enable
the feature extractor to generalise to novel classes. Once
the training is completed, the classifier is removed and the
feature extractor is attained.

4.3 Feature Matrix Generation Stage

This stage aims to generate discriminative features for novel
classes in the support set.

Firstly, one or a few samples from each novel class are
obtained for the feature matrix generation. The correspond-
ing CSI instances are added to the support set, S. The signal
preprocessing scheme will be performed on the support set
data to get the input for the feature extractor. Depending on
different deployment scenarios, two methods can be used in
the feature matrix generation stage.

4.3.1 Direct Feature Matrix Generation

The feature extractor extracts the latent feature vectors from
the denoised data. The support set embedding Fs € R"*¥
is obtained by computing the mean of the feature vector for
each class, given as

F, = [ f@(xi)an(XS)""vfe(X?V) } : 9)

The feature embeddings are saved in the database for future
use. In this case, the output matrix M of this stage is the
feature embedding, i.e., M = F, which will be fed into
the next stage for classification. This method allows fast
generation of distinctive feature matrix directly from the
support set with little overhead.

4.3.2 Fine-Tuned Feature Matrix Generation

In some challenging scenarios, where the distributions of
datasets or fundamental features may change dramatically,
the feature extractor trained on the base set will fail in new
sensing tasks. In order to adapt the feature extractor to new
tasks, we propose a fine-tuned feature matrix generation
scheme based on the fully labelled support set.

A classifier with the trainable weight matrix W; ¢
R™ N initialised by the support set embedding F's, is added

after the pre-trained feature extractor. The output of the
softmax function is o((Wg) T fo(x3)).

Fine-tuning is done by minimising the softmax loss
based on the support set, which will update the parameters
in the feature extractor fs and the weight matrix of the
classifier Wy.

The output matrix of this method is the weight matrix of
the classifier, i.e., M = W;. The fine-tuned feature extractor
will be used in the next stage. The fine-tuned feature matrix
generation method enhances the adaptivity of the model in
new sensing domains or tasks.

4.4 Classification Stage

At this stage, each sample in the query set will be classified
based on the cosine similarity score between the feature
matrix and the extracted latent features of the query set.

An instance from the query set Q will be firstly pro-
cessed by the preprocessing scheme. The feature extractor
will extract an embedded feature vector fy(x?) € R"*1.

We compute the cosine similarity score of fp(x?) pair-
wisely with all the elements in M by

_ MUfo(x)
M2l fo (o)l

The softmax function ¢ maps the score, v, to a probability
distribution, P, and an instance in the query set will be
classified to the class with the highest probability.

v (10)

4.5 Summary

FSL-based sensing has good scalability capacity. Whenever
novel classes need to be added, a few samples of these
classes should be collected and their feature representations
can be generated with acceptable overheads. Let us revisit
Fig. 2 for an analysis of cross-domain sensing. Data of the
same class from the same domain is likely clustered, while
data of different classes from different domains is likely
separated away. The domain shift may result in the failure of
cross-domain classification. In contrast, FewSense classifies
the samples by comparing the samples in the support and
query sets, while both sets are drawn from the same target
domain. Therefore, the samples in both sets undergo the
same domain shift. By using fine-tuning, we can rapidly
adapt the feature extractor and classifier weights using a few
samples from the support set, i.e., a transformation from the
source domain to the target domain. This approach enables
the model to adapt to the target domain with minimal effort.

5 COLLABORATIVE SENSING

In the previous sections, we introduced a Wi-Fi sensing
system using one transmitter-receiver setup that can capture
features from a particular direction. However, since the po-
sition and orientation of the user cannot be predicted, some
transmitter-receiver links may not be optimal to capture CSI
variations. The performance can be boosted by employing
multiple receivers, which can enrich feature observations
from different directions and work collaboratively to im-
prove system robustness and classification accuracy. Mul-
tiple transmitters are not considered since the MAC layer
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Fig. 6. Collaborative sensing using multiple receivers.

of Wi-Fi employs the CSMA protocol to prevent collisions.
Multiple transmitters may cause uneven sampling, i.e., the
received packets in the receiver may not be evenly dis-
tributed in time. Therefore, we consider one transmitter and
multiple receivers in this paper. Besides, normal data traffic
is not considered in this paper since it is not stable and may
also cause uneven sampling or low sampling rate problems.

As demonstrated in Fig. 6, there are N, receivers de-
ployed for collaborative sensing. Each receiver will be
equipped with the fine-tuning-FSL-based sensing approach
introduced in Section 4. When a signal is sent by a transmit-
ter, all the receivers will receive it simultaneously but from
different directions. Each receiver will be initially deployed
with the same feature extractor. For the i-th receiver, it
can construct its own support set, S; = (X7, V7). The i-
th receiver can then carry out fine tuning to adapt its feature
extractor fi with weights W}, and the classifier with the
weight matrix W,

In the classification stage, each receiver will also collect
its own query set, Q;. The i-th receiver will first carry out the
independent inference and obtain a probability distribution,
P,. They will then work together by calculating an averaged
probability distribution of all their observations, given as

2

1
Pe=_—5S P,

(11)
Ny ~

i

The class with the highest probability is predicted as the
final decision.

The work in [36] reveals that the relative direction and
location would have a major impact on the quality of CSI
and would affect how well the sensing model performs.
The receivers in collaborative sensing are placed in vari-
ous places to obtain data from various relative directions
and locations. By combining multiple observations together,
the deep learning model can have a more comprehensive
picture of the gestures.

TABLE 1
Summary of Datasets.

Environment User ID # classes x # # samples
reps X # Rx
Lab User s5 276x20x1 5520
User sl 150x10x 1 1500
. . User s2 150x10x 1 1500
SignFi | Lab2 Users3 | T50x10x1 1500
User s4 150x10x 1 1500
Home User sb 276x10x1 2760
User wl | 6x20x6 720
Widar Classroom User w2 | 6x20x6 720
User w3 | 6x20x6 720
User al 16x30x1 480
User a2 16x30x1 480
Wiar Meeting room User a3 16x30x1 480
User a4 16x30x1 480
User a5 16x30x1 480
User a6 16x30x1 480

6 EXPERIMENTAL EVALUATION

6.1 Setup of Experiments
6.1.1 Dataset

We used three public datasets for evaluation, i.e., SignFi [12],
Widar 3.0 [21] and Wiar [26]. The three datasets were col-
lected with real experiment settings in practical scenarios.
The CSI of all these three datasets are collected by the Intel
5300 Wi-Fi NIC using the IEEE 802.11 CSI tool [34]. This
tool reports the CSI of 30 subcarrier groups for each packet
at 20 MHz channel spacing. The information in the three
datasets is summarised in Table 1. The datasets are collected
by different research groups. Thus, their volunteers and
experimental experiments are different.

For each activity, we selected U, = 200 packets to obtain
a uniform input. There are 30 subcarrier groups in each
packet, and each subcarrier has amplitude and phase infor-
mation, thus U,, = 60. Finally, there are three transmitter-
receiver antenna pairs, i.e., Uy = 3. Thus, we have the CSI
tensors: x € R200%60x3,

SignFi dataset. The SignFi dataset [12] contains CSI sam-
ples of 276 different sign language gestures, which involve
head, arm, hand, and finger movements. The gestures are
performed by five users in three environments. Specifically,
the user s5 performs all 276 sign language gestures at home
and in a lab environment. Users sl to s4 also carry out a
subset of the gestures in the same lab room, but the settings
vary, e.g., with different laptop placements and desk and
chair arrangements. Hence, the lab environment for users
sl to s4, denoted as Lab 2 in this paper, is deemed different
from the lab environment for user s5. User s5 performs 276
sign languages. Each class was performed 20 times in the
lab and 10 times at home. Users sl to s4 perform 150 sign
languages 10 times in the lab 2 environment.

Widar dataset. The Widar dataset [21] is a large dataset,
and we only used part of it. Specifically, we selected six
gestures, namely Push & Pull, Sweep, Clap, Slide, Draw-
Zigzag, and Draw-N. These gestures involve arm and hand
movements. Six receivers are used to capture each gesture.
We used data from three users, denoted as users w1, w2, and
w3. Each user performs 6 gestures 20 times in a classroom
environment.



Wiar dataset. The Wiar dataset [26] contains 16 different
human motions, namely Horizontal Arm Wave, High Arm
Wave, Two Hands Wave, High Throw, Draw X, Draw Tick,
Toss Paper, Forward Kick, Side Kick, Bend, Hand Clap,
Walk, Phone Call, Drink Water, Sit Down, and Squat. These
activities involve torso, arm, and hand movements. We
used the data of six users, denoted as al to a6, for our
experiments. Each user performs each activity 30 times in
a meeting room.

6.1.2 Training Configuration

The feature extractor was trained in a supervised learn-
ing manner. The data from the user s5 lab environment
of the SignFi dataset was used as the base set. We used
the Adam optimiser with an initial learning rate of le™3
to minimise the cross-entropy loss function. The learning
rate was multiplied by 0.1 whenever the validation loss
stopped decreasing for 20 epochs. The training process of
the feature extractor terminated when the validation loss
stopped decreasing for 50 epochs. All experiments were
run on a PC with an i7-8700K 3.7 GHz CPU, and NVIDIA
GeForce GTX 2080Ti with 16 GB memory. Tensorflow and
Keras were used.

6.1.3 Evaluation Method

This paper evaluated the in-domain sensing (Section 6.2),
cross-domain sensing (Section 6.3), cross-dataset sensing
(Section 6.4), and collaborative sensing (Section 6.5). The
base set was constructed by randomly selecting IV, classes
each with Kj samples from the user s5 lab environment in
the SignFi dataset. The feature extractor, denoted as fév b
was trained from scratch using the base set.

We randomly selected N different classes (ways) each
with K samples (shots) from SignFi, Widar, or Wiar datasets
to construct the support set S. The remaining data of each
selected class was used as the query set.

Classification accuracy and the confusion matrix were
used as the metrics. Accuracy was defined as the number of
correct predictions divided by the total number of predic-
tions. The confusion matrix was used to show the number
of correct and incorrect predictions.

6.1.4 Evaluation Scenarios

In order to evaluate the cross-domain capability of the
FewSense, we have considered following five scenarios:

e Scenario 1, In-domain Evaluation: The support and
query sets are from the user s5 lab environment,
which is the same as the feature extractor pre-
training environment.

e Scenario 2, Cross-Environment Evaluation: The
support and query sets are from the user s5 home
environment, i.e., the same user but different envi-
ronments. As N, = 200 classes are used for training
the feature extractor, there are 76 remaining novel
classes.

e Scenario 3, Cross-Environment and Cross-User
Evaluation: The support and query sets are from
users sl to s4 in the lab 2 environment, i.e., differ-
ent users and different environments. In the SignFi

dataset, these four users performed 150 classes of
sign language, and 25 of them were novel classes.

o Scenario 4, Cross-dataset (Gesture recognition): the
support and query set are from the Widar dataset
(gesture recognition) in our experiments. The cross-
dataset scenario is also a special case of the cross-
domain. In this scenario, not only are the envi-
ronments and users different, but the forms of the
motions and devices are also different. The sign
language and gesture recognition tasks are similar.
Since the sign language contains movement of hands,
arms, and head, and the gesture contains hands, and
arms.

o Scenario 5, Cross-dataset (Activity recognition): the
support and query set are from the Wiar dataset
(activity recognition) in our experiments. Human
activities are completely different from sign language
recognition since they are mostly torso motions.

6.2

In-domain sensing is evaluated in this section, i.e., the base
set, support set, and query set share the same domain.
Intuitively, a feature extractor will have better generalisation
capability when more base classes are available. We used the
data from the user s5 collected from the lab environment in
the SignFi dataset as the base set. We trained feature ex-
tractors, feN ’, with IV}, base classes. Specifically, we studied
N, = 50, 100, 150, 200, and 250. These N, classes were
randomly selected from all the available classes, i.e., 276
classes in total. The rest of the classes of the user s5 lab
environment were used to evaluate the feature extractor’s
novel class recognition performance. Fine-tuning was not
applied. We evaluated different number of ways, i.e., N =2
to 26, and one shot, i.e., K=1.

As shown in Fig. 7, a larger IV}, i.e., more base classes,
leads to a higher accuracy, which is expected. When there
are more novel classes in the support set, i.e., a higher N,
the accuracy is decreasing, because it requires the feature
extractor with better generalisation capability. Specifically,
the average accuracies over all different numbers of novel
classes are 97.9% and 99.2% when N, = 200 and N, = 250,
respectively. However, if the number of base classes is less
than the number of classes in the support set, the FewSense’s
performance suffers. For example, FewSense’s performance
can only reach accuracies of 30.3% and 36.0% when the
number of base classes is 10 and 20, respectively, in the case
of 1-shot 26-way learning. Therefore, the feature extractor
should be trained with a higher number of classes in the
base set than in the support set.

In the rest of this paper, we used f7% as the feature
extractor. To further evaluate the performance of the feature
extractor f0200, we increased the number of novel classes to
76. As shown in Table 2, the classification accuracy is 91.7%
when N = 76, which is still high.

In-Domain Sensing

6.3 Cross-Domain Sensing

In this section, we evaluated the cross-domain sensing per-
formance. The feature extractor f3°¥ is trained with the user
s5 lab environment but the support and query sets are from

different domains.
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TABLE 2
In-Domain Sensing Performance of the Feature Extractor f200.

# ways 30 40 50 60 70 76
Accuracy | 954% | 95.8% | 95% | 93.3% | 92.3% | 91.7%
6.3.1 Impact of Numbers of Novel Classes

We evaluated N-way 1-shot learning with direct feature
matrix generation. Only the data of novel classes was used,
hence we evaluated N =2 to 76 and N =2 to 25 for scenarios
2 and 3, respectively.

As shown in Fig. 8, the accuracies of both scenarios
decrease when the number of novel classes, N, is increasing,
as a better generalisation capability of the feature extractor is
required. The accuracy of scenario 2 dropped to 57.9% when
N =76. Regarding scenario 3, the results in Fig. 8b demon-
strate that the system can learn the distinctive representation
of the novel classes, even though the feature extractor has
never seen data from these environments and users before.
The accuracies vary for different users because each user
may perform the same sign language in a different manner,
which results in different data distribution. In addition, the
performance of FewSense decreases as the number of novel
classes in the support set increases. The reason behind this
is that the more classes in the support set, the higher the
probability that there are more classes that have similar
features. This can also be observed in Fig. 2, where some
classes in the same domain could be close together.

6.3.2 Impact of Numbers of Shots

This section studied the impacts of different numbers of
shots, K, in the support set. Fine-tuning was not used. We
increased K from 1 to 5 for both scenarios 2 and 3.

The results are shown in Fig. 9, the overall performance
of FewSense increased as the number of shots increased.
For scenario 1, we used all the remaining 76 classes, i.e., 76-
way K-shot. The accuracy increased from 57.9% to 71.5%
when K increased from 1 to 5 (shown by the orange line).
Regarding scenario 3, we tested 25-way K-shot. Increasing
the number of shots can enrich the data diversity in the
support set, thus increasing the generalisation capability of
the feature extractor. Therefore, the decrease in accuracy due
to the number of new classes increase can be compensated
by increasing the number of shots. Again, the accuracies
vary according to different users, about 20% difference
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applied. The feature extractor f2%° is used.

between the best and worst cases, probably due to various
gesture patterns among users. Note that user s5 had the
lowest accuracy compared to the other four users, because
the number of novel classes of user s5 was higher (IV;, = 76).

6.3.3

We performed fine-tuning on the support set with only one
and five samples for each novel class. We studied 76-way
1-shot and 25-way 1-shot for scenarios 2 and 3, respectively.

Impact of Fine-Tuning
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As shown in Fig. 10, fine-tuning has improved
FewSense’s performance for all the testing scenarios. For
scenario 1 (user s5), the accuracy improved from 57.9%
to 72.8% and 87.1%, when one shot and five shots were
applied, respectively. For scenario 3 (users sl to s4), the
performance was improved by 8% and 16.9% on average
when one and five shots were applied, respectively. The
evaluation results indicated that our proposed fine-tuning
method could significantly improve the cross-domain’s ac-
curacy and quickly adapt to the new domain without requir-
ing extensive data collection, because the feature extractor
can be updated even using one shot.

Compared to the direct matrix generation method, the
fine-tune matrix generation can improve the performance of
the FewSense significantly. The average accuracy improved
from 75.5% to 83.8% and 81.2% to 93.9% for one and five
shots learning, respectively. Therefore, the decrease in accu-
racy due to the new class increase can also be compensated
by fine-tuning adjustments.

6.4 Cross-Dataset Evaluation

This section evaluated the classification performance when
the base set and support & query sets were from different
datasets. The same feature extractor fZ°C trained on the
SignFi dataset was used. The support and query sets were
from the Widar or Wiar datasets.

This would be quite challenging. Firstly, there will be a
significant domain shift between the datasets as the users
and environments are different. Secondly, different datasets
have different sensing tasks, which result in totally differ-
ent CSI variation features. For example, sign languages in
SignFi are mainly a combination of finger, hand, and head
movements; the gestures in the Widar dataset involve hand
movements, and the human motions in the Wiar dataset are
large-scale human activities that involve arm, hand, limb,
and leg, etc. The tasks of SignFi and Widar are similar, but
the ones between SignFi and Wiar are quite different.

6.4.1 Evaluation on Widar Dataset

This section evaluated the recognition performance when
the tasks of the base sets (SignFi) and the support & query
sets (Widar) were different but similar. Specifically, the ges-
ture data in the Widar dataset was used for evaluation.
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Fig. 11. Cross-dataset evaluation on the Widar dataset. The feature
extractor f2°0 is trained using SignFi dataset.

As there are multiple receivers available in Widar, we
selected the data of one receiver from users wl, w2, and w3.
We evaluated a 6-way K-shot, where K =1 to 5. We studied
both direct feature matrix generation and fine-tuned feature
matrix generation. The results are shown in Fig. 11.

When fine-tuning was used, the overall accuracy in-
creased dramatically. The minimum accuracy increase was
around 16.5%, when the data was from the users w1 and w2
in the one-shot learning case. The overall accuracy increased
with an increase in the number of shots. In the case of one-
shot learning with fine-tuning, the accuracies were 51.8%,
86.3%, and 72.3%, for user wl, w2, and w3, respectively. The
five shots learning gave the best performance, i.e., 90.6%,
99.0% and 100% for user wl, w2, and w3, respectively.
Comparing to the direct feature matrix generation, the av-
erage accuracy for five shots learning case was increased
from 63.4% to 96.5%. The corresponding confusion matrix
is shown in Fig. 12. The experiment results showed that our
proposed method can be scaled to similar sensing tasks, e.g.,
gesture recognition, with only a few samples.

As the feature extractor was trained using the data of
sign languages (SignFi), some latent features learned may
not apply to gesture recognition (Widar). The performance
was thus limited when fine-tuning was not used. When fine-
tuning was used, even with very few samples, the recogni-
tion accuracy was significantly improved. This is because
the feature extractor already has informative knowledge
about how to extract latent features for sign language, and
sign languages share some common features with gestures.

6.4.2 Evaluation on Wiar Dataset

This section evaluated the recognition performance when
the tasks of the base sets (SignFi) and the support & query
sets (Wiar) are quite different. Specifically, the human activ-
ity data in the Wiar dataset was used for evaluation.

We selected the data from six users in the Wiar dataset.
We evaluated 16-way K-shot, where K = 1 to 5. The
experiments were conducted with fine-tuning applied. The
experiment results are demonstrated in Fig. 13. The feature
extractor f2°° achieved the highest accuracy for user al,
with an accuracy of 66.2% and 94.2% for one and five
shots learning, respectively. The lowest accuracy was shown
for user a3, with an accuracy of 31.0% and 57.2% for one
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and five shots learning, respectively. In the case of five-
shot learning, the performance of FewSense was 82.7%
of accuracy on average. The results demonstrate that our
feature extractor can adapt to various sensing tasks without
the burden of high data collection and model retraining,
even when the tasks are very different from the original task.
FewSense’s performance was shown differently to different
users. There may be many reasons behind this. One could
be that different users perform the activities in unique ways,
which would result in different domain shifts. A larger
domain shift in comparison to the original feature extractor
training domain may require more data to generalise.

6.4.3 Impact of the Sample Size in Cross-domain Scenar-
ios

In this section, we investigated how domain difference
affects the FewSense’s performance. As indicated in the Sec-
tion 6.1.4, the domain difference between feature extractor
training and evaluation increases from scenario 2 to 5. To
ensure a fair comparison, we set the number of novel classes
to six and employed a fine-tuned feature matrix generation
approach.

As shown in Fig. 14, scenario 2 with the smallest
domain difference exhibits the best performance, as it
achieved around 100% accuracy throughout various num-
bers of shots. When the number of shots remained constant,
FewSense’s performance declined as the domain difference
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Fig. 14. Performance comparison of FewSense in different scenarios
with various domain differences.

increased. Therefore, while applying FewSense in cross-
domain scenarios, we need to take into account the differ-
ence between the source domain and the evaluation domain.
More support set samples will be required when the domain
difference is more significant.

6.4.4 Discussion

The work [23] also used FSL for Wi-Fi sensing and argued it
is cumbersome to build a feature extractor with good gen-
eralisation capability. Hence they designed virtual gesture
generation to reduce the effort of collecting data.

However, as we showed in this section, we can leverage
the public dataset as the base set and train a versatile feature
extractor. When the feature extractor is applied to a different
sensing task, we can always fine-tune the feature extractor
using very few samples from the new task. Therefore, the
overhead for collecting the base set can be mitigated.

Moreover, we evaluated the cross-dataset performance
of FewSense with 6-way and 16-way learning on the Widar
(Section 6.4.1) and Wiar datasets (Section 6.4.2), respectively.
Even though cross-dataset sensing tasks are more challeng-
ing, the FewSense has higher accuracy on them when com-
pared to cross-domain evaluations in Section 6.3. This is due
to the fact that in Section 6.3 we evaluated FewSense with up
to 76-way. There are more novel classes in Section 6.3 than
there are in this section. The overall accuracy is decreasing
as more novel classes are added, as demonstrated in Fig. 8.
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Therefore, it is reasonable that FewSense has better accuracy
in this section.

6.5 Collaborative Sensing

In this section, we evaluated the performance of the col-
laborative sensing algorithm. The fine-tuning was applied
in this section. The same feature extraction, f0200, trained
on the SignFi dataset was used. The support and query
sets were from users wl, w2 and w3 of the Widar dataset.
Six gestures were performed 20 times and captured by six
receivers each time. Each receiver has 20 samples for each
gesture. We constructed the support and query sets for each
receiver. One to five samples were randomly selected and
added to the support set, and the remaining were used as
the query set.

The deployment of receivers is shown in Fig. 15. The
performance of FewSense with each receiver is shown in
Fig. 16. The receiver 3 achieved the best performance among
all the receivers, and the receiver 6 achieved comparable
performance to the receiver 3. It should be noted that
receivers 3 and 6 perform best. The reason behind this could
be that receivers 3 and 6 have better locations, in which case
the model can be adapted to a new domain easier compared
to other receivers.

Due to the fact that the deployment of the receivers
may impact the performance of the collaborative sensing
system, we evaluate the performance of the collaborative
sensing system using the average accuracy of all possible
receiver combination sets. Accuracy can be improved by
using multiple receivers and more shots. Exploiting more
receivers enables the feature extractor to view gestures from
different directions, so rich features can be obtained for
improving system performance. As shown in Fig. 17, the
accuracy of the FewSense can be boosted by using multi-
ple receivers. Specifically, for one-shot learning, when the
number of receivers increased from 1 to 6, the accuracy
of user wl, w2, and w3 improved by 38.6%, 18.3%, and
30.8%, respectively. Comparing to the one receiver case,
the average accuracy was increased by 29.2% when six
receivers were used. Similarly, the classification accuracy in
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Fig. 16. One shot performance of FewSense with a single receiver. The
feature extractor f2°0 is trained using the SignFi dataset. Support and
query sets are from Widar dataset.

collaborative sensing can also be enhanced by more shots.
For one receiver case, the accuracy was improved by 39.2%,
17.2% and 30.1% for user w1, w2 and w3, respectively, when
the number of shots was increased from 1 to 5. The highest
accuracy is 100.0% achieved by the 5-shot learning using six
receivers. As the more samples involved in the fine-tuning,
the better generalisation capability that feature extractor can
obtain.

The work in [23] also used multiple receivers. How-
ever, the accuracy of their work is already relatively high
with only one receiver, so the accuracies were saturated
with more receivers. However, as demonstrated by our
work, more receivers will be beneficial when the accuracy
achieved using a single receiver is not saturated.

6.6 Complexity

The computational overhead involves three parts: feature
extractor training, fine-tuning, and inference. The signal
pre-processing algorithm used in all three stages took 0.3
seconds.

Training a feature extractor probably is the most compu-
tationally expensive. In order to achieve good generalisation
capability, the feature extractor needs to be pre-trained with
a large number of base classes. Specifically, we trained the
feature extractor using 200 classes, each with 20 samples of
the user s5 lab environment in the SignFi dataset, which
took around 10 minutes. Fortunately, the feature extractor
only needs to be trained once and can be done offline. The
pre-trained feature extractor takes up 45 MB of storage,
which can be deployed on embedded systems.

Fine-tuning is applied for adapting the pre-trained fea-
ture extractor and classifier to new sensing tasks or domains.
The time cost depends on the amount of data. In all the
experiments studied in this paper, the most time-consuming
one is 76-way 5-shots learning, which takes 82 seconds,
which is deemed acceptable.

Inference is completed by the proposed collaborative
sensing model when multiple receivers are available. The
time consumption of each inference is around 0.04 seconds,
which can be done almost in real-time.
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6.7 Comparison with the-State-of-the-Art
6.7.1

This section compared the performance of the proposed
method to a state-of-the-art domain adversarial training-
based method, also known as adversarial domain adapta-
tion, which has been employed in the Wi-Fi sensing area,
e.g., [18], [19].

The basic idea of domain adversarial training is to train a
network on data from different domains, which are termed
source domains. A domain adversarial network includes
a feature extractor, a classifier, and a domain discrimina-
tor. The feature extractor is used to extract features. The
classifier is used to identify the label of the input. The
domain discriminator is used to distinguish the domain
label of the input. The domain discriminator would force the
feature extractor to extract domain-independent features.
After training, the network is expected to perform well on
target domain data.

To ensure a fair comparison, we used the same modified
AlexNet architecture in this paper as the feature extractor
of the adversarial network. We trained the model with
data from two different environments, i.e., lab and lab 2,
and five users of the SignFi dataset. Each environment and
user pair forms a source domain. The data from the home
environment, user s5, was used as the target domain data.

The comparison results are shown in Table 3. The do-
main adversarial training-based approach only achieved an
overall accuracy of 4%, which failed to recognise the sign
language gestures in the target domain. This is probably
because the domain adversarial network requires a large
number of domains to enable the feature extractor to learn
domain-independent features. For example, the work in [19]
revealed their classification accuracy increased from about
45% to 75% when the number of source domains was
increased from 2 to 22.

Instead of training a feature extractor to learn the
domain-independent features, our proposed method adapts
to the target domain by comparing the similarity of the
extracted features between target domain instances. With
one sample from each class, our method achieved 57.9%
accuracy without fine-tuning. The accuracy can be further
increased to 72.8% when fine-tuning is applied.

Comparison with Domain Adversarial Training

6.7.2 Comparison with Domain-Independent Feature-
based Approach

The work in [21] proposed BVP, a domain-independent
feature, to address the cross-domain sensing problem. Ac-

TABLE 3
Performance Comparison With Domain Adversarial Training
Methods Accuracy
FewSense without fine-tuning (1-shot) | 57.9%
FewSense with fine-tuning (1-shot) 72.8%
Domain adversarial training 4.0%

TABLE 4
Cross-Domain Performance Comparison With Widar

Methods User wl | User w2 | User w3
Widar 82.0% 90.5% 92.4%
FewSense (1-shot 6-Rx) | 76.0% 94.3% 90.2%
FewSense (2-shot 6-Rx) | 92.0% 98.3% 100%
FewSense (5-shot 2-Rx) | 87.3% 91.0% 95.8%

cording to [21], extracting BVP requires at least three re-
ceivers. The Widar dataset provides BVP extracted from six
receivers, which is used here for comparison. We used the
same deep learning model in [21]. In order to perform cross-
domain sensing, the BVP data of users w4 to w9 collected
from the hall and office environments was used for training.
The BVP data of users w1 to w3 obtained from the classroom
was used for evaluation. In comparison, we evaluated the
performance of the collaborative sensing method on data
from the same three users collected in the same classroom
environment via six receivers.

The BVP-based approach achieved an average accuracy
of 82.0%, 90.5% and 92.4% for the user wl, w2 and w3,
respectively, using six receivers. The applications of the BVP
feature may be limited in real life since they require at least
three receivers to resolve the ambiguity problem. Compara-
tively, our FewSense model can outperform the BVP-based
approach only with two receivers, with respective results
of 87.3%, 91.0%, and 95.8% for users w1, w2, and w3. The
hardware constraint can be reduced since our collaborative
sensing model can achieve better performance with only
two receivers. In the case of six receivers for collaborative
sensing method, as can be observed from Table 4, one-
shot learning can achieve comparable performance with the
BVP-based method. When two shots are used, our method
outperforms the BVP-based method by an average accuracy
of 8%.

In terms of complexity, BVP feature extraction is com-
putationally expensive. For example, it took around 205
seconds to compute the BVP feature for one gesture from six
receivers in the classification stage. The high computational
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Fig. 18. Comparison of fine-tuning and retraining.

complexity limits its practical use. In comparison, the total
time cost for collaborative sensing with six receivers is 0.24
seconds. As a result, the classification of FewSense can be
done in real-time.

6.7.3 Comparison with Classic Supervised-learning-based
Sensing Method

Fig. 18 depicts a comparison of the convergence speed for
FewSense and retraining the entire network. The number
of shots per class was fixed at 1, and the training pro-
cedure was terminated after the validation loss stopped
decreasing for 20 epochs. For FewSense, the pre-trained
feature extractor %0 was utilised. FewSense can adapt to a
new environment far faster than retraining a network. The
typical re-training technique converges substantially slower
than the suggested method with the same quantity of data.
Validation accuracy and loss of fine-tuning converge quicker
than retraining. Furthermore, the fine-tuning approach can
attain approximately 70% accuracy, whereas the retraining
method’s greatest accuracy was 58%. Thus, with the same
amount of data, the FewSense can achieve higher accuracy
with less computational overhead compared to the classic
deep learning-based sensing method.

7 RELATED WORK
7.1

The FSL has been successfully implemented in many vision-
based tasks [37] and the similarity-based methods are
widely investigated. Matching networks [22] is proposed to
use a cosine similarity function to solve the FSL problem.
The authors in [38] train a neural network with a large
number of base classes and then replace the last fine-
tuning layer with a cosine similarity function. Researchers
in [39] proposed a prototypical network (PN) for FSL, which
employs Euclidean distance as the distance metric. The
works above aim to learn transferable features and a fixed
similarity function, but the generalisation capability of them
is limited. The work in [40] proposed relation network with
a trainable similarity metric to address the above limitation.

Few-Shot Learning

7.2 Domain Robustness of Wi-Fi Sensing

The authors in [18], [19] use a domain-adversarial training-
based domain adaptation method to extract domain-
independent features from multiple domains. For example,

the work in [18] employs a gesture classifier to classify ges-
tures, and a domain discriminator to recognise the domain
label of the input samples. The feature extractor is trained
to cheat the domain discriminator such that the domain
discriminator cannot distinguish the domain labels of the
input. The feature extractor is expected to map the input
from different domains to the same feature space. However,
this method requires a massive number of training samples
from different domains to obtain satisfactory performance.

Transfer learning focuses on leveraging the knowledge
of a pre-trained model and applying the model to a different
but similar task. In order to reduce the model retraining
effort in the target domain, the authors in [20] propose a
transfer learning-based method called CrossSense, which
employs an ANN-based model to translate the CSI features
of gestures in the source domain to the target domain.
Although transfer learning can reduce the data collection
effort in a new domain, it still requires many data samples
from the target domain to achieve a satisfying performance.
Moreover, transfer learning only works when the source
and target domains are similar enough. Otherwise, the
problem of negative transfer may limit the applications of
this method [41].

The domain-independent feature-based method is an-
other type of solution. Widar [21] uses multiple receivers to
extract BVP. However, at least three receivers are required
to resolve the velocity direction ambiguity problem, and the
feature extraction overhead cannot be ignored. Those factors
may limit the application in real deployments.

The work in [10] extracts the motion patterns as the
input features, which are experimentally demonstrated
to be domain-independent. However, some similar ges-
tures could have similar movement patterns. Therefore,
the classes of the gestures need to be designed to avoid
similarity.

8 CONCLUSIONS AND FUTURE WORKS
8.1 Conclusions

This paper proposed FSL-based WiFi sensing, ie.,
FewSense, to address the scalability and domain-dependent
challenges. FewSense utilised a revised AlexNet architecture
as the feature extractor to gain generalisation capability. The
features of the query and support sets were compared, and
the inference was made based on their cosine similarity
score. Collaborative sensing was designed to fuse observa-
tions from multiple receivers to boost classification accuracy.
Three public Wi-Fi sensing datasets, including SignFi (sign
language), Widar (gesture recognition) and Wiar (human
activity recognition), were leveraged for evaluation. We
carried out an extensive evaluation using a feature extractor
trained on the SignFi dataset. The experimental results indi-
cated that FewSense could be adapted to new sensing tasks
or domains with low data collection and computational
costs. The FewSense with one-shot learning can recognise
novel sign language gestures in SignFi with an average
accuracy of 99.2% and 84.2% in in-domain and cross-domain
scenarios, respectively. When applying FewSense to new
sensing tasks, FewSense recognised novel gestures on the
Widar dataset with an average accuracy of 69.9% and
96.5% for one-shot and five-shot learning, respectively. It



also achieved an average accuracy of 52.8% and 82.7% for
one-shot and five-shot learning, respectively, for classify-
ing novel human activities on the Wiar dataset. Finally,
our collaborative sensing approach can boost the classifi-
cation accuracy by 30% on average when there were six
receivers. In summary, FewSense demonstrated that cross-
dataset sensing is applicable. The generalisability of the
feature extractor can be achieved using a publicly available
dataset, alleviating the overhead of data collection.

8.2 Future Works

In real-world applications, Wi-Fi sensing systems are typ-
ically employed in complicated electromagnetic environ-
ments, where co-channel interference could be caused by
other devices using the same frequency band, such as Blue-
tooth and ZigBee. This problem was studied in [42] for tradi-
tional machine learning models. The researchers proposed
two subcarrier selection algorithms that dynamically pick
subcarriers based on correlation changes rather than merely
fusing subcarriers. They effectively improve the robustness
of the Wi-Fi sensing model under interference scenarios.
However, further studies are required for deep learning
based methods.

Although collaborative sensing can boost the perfor-
mance of FewSense, it is limited by the number of deployed
receivers. We aim to further improve the system’s perfor-
mance through data augmentation, which can enrich the
training dataset. These two approaches can be used together,
as data augmentation is applied to the training stage while
collaborative sensing is used at the classification stage.

Finally, WiFi sensing requires CSI, and several drivers
provide CSI, including Nexmon CSI?, Intel NIC 5300 [43]
and Atheros 9580 [32]. With the advancement of Wi-Fi sens-
ing, the IEEE 802.11 working group has created a new task
group named IEEE 802.11bf to develop a new amendment
to the Wi-Fi standard that would offer enhanced sensing
capabilities. Indeed, the majority of the existing works rely
on Intel NIC 5300 and Atheros 9580. Alternatively, we
will build our own testbed utilising low-cost ESP32 and
Raspberry Pi and investigate how Wi-Fi sensing systems
can collaborate across many platforms, allowing for the cost-
effective implementation of collaborative sensing.
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