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Key points 

 The morphometric similarity network (MSN) decreased in generalized epilepsy in 

the prefrontal, primary motor, and temporal areas; whereas it increased in the 

occipital, insular, and posterior cingulate cortices. 

 Neuronal cells mostly contributed to the transcriptomic relationship of MSN 

differences in generalized epilepsy. 

 MSN-related genes were specifically enriched for genes differentially regulated in 

previous studies of epilepsy but not of other brain disorders.
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Abstract 

Aims: Generalized epilepsy is thought to involve distributed brain networks. However, 

the molecular and cellular factors that render different brain regions more vulnerable 

to epileptogenesis remain largely unknown. We aimed to investigate epilepsy-related 

morphometric similarity network (MSN) abnormalities at the macroscale level and 

their relationships with microscale gene expressions at the microscale level.  

 

Methods: We compared the MSN of genetic generalized epilepsy with generalized 

tonic-clonic seizures patients (GGE-GTCS, n = 101) to demographically-matched 

healthy controls (HC, n = 150). Cortical MSNs were estimated by combining seven 

morphometric features derived from structural magnetic resonance imaging for each 

individual. Regional gene expression profiles were derived from brain-wide microarray 

measurements provided by the Allen Human Brain Atlas.  

 

Results: GGE-GTCS patients exhibited decreased regional MSNs in primary motor, 

prefrontal, and temporal regions, and increases in occipital, insular, and posterior 

cingulate cortices, when compared to the HC. These case-control neuroimaging 

differences were validated using split-half analyses and were not affected by 

medication or drug response effects. When assessing associations with gene 

expression, genes associated with GGE-GTCS-related MSN differences were enriched 

in several biological processes, including “synapse organization”, “neurotransmitter 

transport” pathways, and excitatory/inhibitory neuronal cell types. Collectively, the 

GGE-GTCS-related cortical vulnerabilities were associated with chromosomes 4, 5, 11, 

and 16, and were dispersed bottom-up at the cellular, pathway, and disease levels, 



Main text  Jiao LI, et al. 

5 
 

which contributed to epileptogenesis, suggesting diverse neurobiologically relevant 

enrichments in GGE-GTCS.  

 

Conclusions: By bridging the gaps between transcriptional signatures and in vivo 

neuroimaging, we highlighted the importance of using MSN abnormalities of the 

human brain in GGE-GTCS patients to investigate disease-relevant genes and biological 

processes. 

 

Keywords: cell-type-specific transcription; chromosome-specific transcription; 

genetic generalized epilepsy; morphometric similarity network; regional gene 

expression.  
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Introduction 

Epilepsy is a chronic neurological disorder that affects over 70 million people 

worldwide [1]. The manifestations of epilepsy are spontaneous and recurrent epileptic 

seizures that occur in the brain [2]. Generally, genetic generalized epilepsy (GGE), 

which accounts for 15-20% of all epilepsies, has normal-appearing brain magnetic 

resonance imaging (MRI) [3]. However, in vivo neuroimaging has facilitated the 

identification of diverse scales of regional and connectomic alterations associated with 

epilepsy, and has revealed widespread and distributed changes [4-11].  

 

Emerging evidence has shown subtle brain morphology/volume changes in GGE, but 

these findings have been controversial. Considering the thalamus, patients with GGE 

have been reported to have increased [12], decreased [7, 8], or no marked thalamic 

abnormalities [13]. Several studies have also reported cortical thinning [7-9], but the 

effects may be subtle [13, 14]. A large-scale international sample of epilepsy (n > 2,000) 

patients reported reduced volumes of the right thalamus and thinner bilateral 

precentral gyrus in GGE [8]. These variable findings may be due to the use of different 

methodologies or alternative multi-contrast MRI variables [15].  

 

In contrast to using a single MRI variable for detecting structural brain abnormalities, 

morphometric similarity network (MSN) analysis combines multiple modalities or 

features that may provide insights into macroscale cortical organization in a single 

individual [16]. It has been shown that MSN may have close associations with 

cytoarchitectural classes, distinguished by cortical lamination patterns when 

compared with diffusion-weighted imaging tractography [16]. Furthermore, 
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abnormalities of the MSNs in mental diseases have been reported to be associated 

with regional brain gene expression patterns [17, 18], and may identify transcriptomic 

and cellular profiles of regional brain vulnerabilities to neurogenetic disorders [19]. 

Although the use of the MSN is a reliable and robust approach, it has not yet been 

used to identify brain network abnormalities in GGE, with clinical correlates of the 

disorder. 

 

A predominant genetic contribution to GGE has been suspected. Overall, the 

percentage of epilepsy in siblings of patients with GGE is approximately 8%, suggesting 

the contribution of multiple gene variants [3, 20, 21]. Subsequent genome-wide 

association studies (GWAS) have implicated a number of common genes or loci with 

GGE [22, 23]. Although GWAS identified specific DNA variants that were responsible 

for these effects, multiple other factors could influence transcriptional activity and the 

ultimate abundance of proteins. Brain-wide gene expression atlases such as the Allen 

Human Brain Atlas (AHBA) microarray dataset [24] bridge the gap between human 

transcriptomes and neuroimaging [25]. Combining neuroimaging and transcriptomics 

may provide insight into how microscale architecture variations may relate to 

macroscale patterns of morphological alterations in various brain disorders [17-19, 26, 

27]. In a recent study, Altmann et al. [28] identified over 2,500 genes overexpressed in 

regions of reduced cortical thickness across all epilepsies. These overexpressed genes 

showed enrichment for genes related to microglia and inflammation. Although GGE is 

a type of network disorder, the molecular and cellular mechanisms underlying 

distinctive regions of vulnerable and other preserved areas of multiple MRI features-

based MSN in GGE are largely unknown.  
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In this study, we linked post-mortem gene expression information with in vivo 

structural imaging to identify molecular and cellular signatures of regional 

vulnerabilities to GGE-GTCS. We began by using the regional MSN method to test the 

dysconnectivity of patients with GGE-GTCS. We mapped case-control MSN differences 

at nodal levels and tested for significant differences in network organization across 

individuals. We then identified the relationships between regional MSN values and 

clinical factors in patients with GGE-GTCS. We next performed a functional enrichment 

analysis to identify the ontological pathways of genes associated with case-control 

regional MSN differences. Finally, we linked abnormal regional MSN-related genes to 

chromosomes and cell types to identify contributions to the transcriptomic 

relationships of GGE-GTCS-related changes in MSN. 

 

Materials and Methods 

Participants 

Patients with GGE-GTCS (n = 114) and healthy controls (HC, n = 157) were enrolled at 

Jinling Hospital, Nanjing University School of Medicine, Nanjing, China. All study 

protocols were performed according to the Helsinki Declaration of 1975 and approved 

by the local Institutional Review Board. Written informed consent was obtained from 

all participants. Epilepsy diagnoses were performed by two experienced neurologists 

using analyses of clinical and imaging information, according to the guidelines of the 

International League Against Epilepsy classification [29]. The patients had typical 

seizure semiology of GTCS without precursory symptoms of partial epilepsy and aura, 

and generalized spike-and-wave discharges, using electroencephalogram analyses. No 
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patients had any remarkable abnormality on structural MRI visual reading. Moreover, 

patients were excluded because of i) progressive diseases, malformations of cortical 

development, tumours, or previous neurosurgery, or ii) incomplete MRI scanning. In 

addition, HCs had no history of neurological disorder or psychiatric illnesses, and no 

gross abnormality, as determined using structural MRI.  

 

Data acquisition and data pre-processing 

All patients with GGE-GTCS and HC underwent scanning using a Siemens 3.0 T MRI 

scanner (Siemens Medical Solutions, Erlangen, Germany) at Jinling Hospital, Nanjing, 

China. The structural images were acquired from a high resolution, T1-weighted (T1w) 

magnetization-prepared rapid gradient echo sequence (repetition time = 2,300 ms, 

echo time = 2.98 ms, flip angle = 9°, field of view = 256 × 256 mm2, in-plane matrix size 

= 256 × 256, voxel size = 1 × 1 × 1 mm3, and slices = 176).  

 

The three-dimensional T1w images were pre-processed in surface-based space using 

FreeSurfer (version 6.0, http://surfer.nmr.mgh.harvard.edu/). Briefly, the cortical 

surface was reconstructed using skull stripping, segmentation of brain tissue, 

separation of hemispheres and subcortical structures, and construction of the 

grey/white interfaces and the pial surfaces [16, 30].  

 

Construction of the MSN 

The cortical surfaces were divided into 308 spatially contiguous regions [16-18, 31] 

derived from the original 68 cortical regions in the Desikan-Killiany (D-K) atlas [32]. 

This parcellation produced approximately equal sizes (~500 mm2) for each region, 
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using a backtracking algorithm [31], which minimized the influence of variabilities in 

parcel sizes [16-19, 33]. This parcellated D-K atlas was transformed to each 

participant’s surface to obtain an individual surface parcellation [16-18]. Seven 

features from the T1w images were extracted for each region, including surface area, 

cortical thickness, grey matter volume, intrinsic (Gaussian) curvature, mean curvature, 

curved index and folding index. Each participant's morphometric feature vector was Z-

scored across cortical regions to account for variations in value distributions between 

features [16, 17]. Pearson’s correlation analysis was performed on the morphometric 

feature vector between each paired cortical region, forming a 308 × 308 MSN for each 

participant. The procedures for constructing MSNs are shown in Fig. 1A. 

 

Case-control comparisons of regional MSN 

Regional MSN strengths were equivalent to the sum of the weighted degree (i.e., 

strength) of a given region to all other regions [16, 18]. To determine the distribution 

of the regional MSN, regional MSN strengths were averaged across all HC or patients 

with GGE-GTCS. In addition, to estimate case-control differences, we used a general 

linear model with age, sex, and total intracranial volume (TIV) as covariates. For each 

region i, the following model was used as: MSNi ~ intercept + β1×(Dx) + β2×(age) + 

β3×(sex) + β4×(TIV), where Dx is the binary classification of GGE-GTCS patients and HC 

[19]. This model yields T- and P-values for the effect of case-control differences. To 

control type I error, the statistical significance was set at P < 0.05 with a false-discovery 

ratio (FDR) correction for multiple comparisons across 308 regions.  

 

Statistical analyses 
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Demographic and clinical characteristics were evaluated between patients with GGE-

GTCS and the HC. Age differences, TIV, and image quality were analysed using two-

sample t-tests for normally-distributed variables and the Mann-Whitney U-test for 

non-normally distributed variables. Normality was assessed using D’Agostino-

Pearson’s omnibus normality test. The χ2 test was used to assess sex differences. The 

statistical significance was set at P < 0.05. 

 

Relationship between regional MSN and clinical variables 

To investigate the clinical relevance of the MSN in GGE-GTCS, we correlated the clinical 

variables (duration of epilepsy and seizure frequency) with regional MSNs in altered 

cortical regions. Exploratory correlation analyses were also performed across all D-K 

308 cortical regions. Partial correlation analyses were used to control for age as a 

confounding variable. The statistical significance was set at P < 0.05. 

 

Transcriptional correlates of case-control regional MSN 

We compared the case-control MSN map with post-mortem gene expression data 

from the AHBA (“Complete normalized microarray datasets”, 

https://human.brainmap.org/static/download) [24] collected from six individuals at 

multiple brain anatomical locations. Pre-processing of the AHBA dataset followed an 

established pipeline [34]. Because the AHBA dataset included only two right 

hemisphere data, only the left hemisphere was considered in our analyses. Thus, a 

mean of all samples in a region was calculated to obtain the matrix (152 regions × 

10,027 gene expression levels) of transcriptional level values [18].  
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Partial least squares (PLS) correlation [35], an explorative analysis, was used to 

correlate the case-control regional MSN patterns with the spatial distribution of 

transcriptional activities. Gene expression data were used as predictor variables of 

regional changes in MSN using PLS analyses. The first component of PLS (PLS1) was the 

linear combination of the weighted gene expression scores with a cortical expression 

map correlated with the case-control t-map of the regional MSN. To test whether the 

PLS1 explained more variance than expected by chance, we used a spin permutation 

test based on spherical rotations to account for spatial autocorrelation [36, 37]. First, 

we randomly permuted the rows (regions), preserving the spatial covariance structure 

regions (see below for the Spin test) in the gene expression matrix. We then compared 

the variance explained by the PLS correlation of the regional MSN differences on the 

observed transcriptional data with the distribution of variance in the difference of 

regional MSN explained by 5,000 random spin permutations. Finally, the Pspin values 

were obtained by comparing the observed variance explained to the centiles of the 

spin permutation distribution [18]. To examine the variability of each gene’s weighting 

coefficient, we used a bootstrapping method (resampling with replacement of the 152 

cortical regions) in the PLS analysis. The ratio of the observed weight coefficient of 

each gene to its bootstrap standard error was used to calculate the Z-scores of each 

gene weight on PLS1 [17, 18, 33, 38-40]. The set of significant genes was set at P < 0.05, 

after being FDR corrected. The PLS1 significant gene list is shown in Dataset S1.  

 

Enrichment analysis 

We tested whether the significant gene list shared enriched biological pathways with 

risk genes for GGE obtained from the previous GWAS studies using either meta- and 



Main text  Jiao LI, et al. 

13 
 

mega-analysis or whole-exome sequencing, and data reported from systematic 

reviews [22, 23, 41-44]. Metascape analysis (https://metascape.org/) provided 

automated meta-analysis tools to understand either common or unique pathways in 

40 independent knowledge bases [45]. A multi-gene-list meta-analysis was performed 

to facilitate the understanding of pathways (and pathway clusters) that were shared 

between, or selectively ascribed to, specific gene lists. Routine comparative 

approaches included using Venn diagrams to identify hits that were common or unique 

to gene lists. However, when multiple gene lists were analysed, the identification of 

consistent underlying pathways or networks was more critical, because previous 

studies have reported that overlap between OMICs datasets was more readily 

apparent at the level of pathways or protein complexes [46, 47]. Thus, the PLS1+ 

significant gene list and risk genes from previous studies in individuals with epilepsy 

were submitted to the Metascape website to compare an arbitrary number of gene 

lists across both gene identities and ontologies with minimum overlap: 3, P value cut-

off: 0.01, and minimum enrichment: 1.5 against a background of 20,232 brain-

expressed genes. The background gene list was calculated after probe to gene re-

annotation [34] and shown in Dataset S2. According to the Re-annotator toolkit [48], 

45,821 probes out of 58,692 probes can be uniquely mapped onto a gene and could 

be related to an entrez ID. As a result, the re-annotated set of 45,821 probes 

corresponded to 20,232 unique genes. In addition, considering the various numbers 

of background genes, we used a more restricted list of background genes (16,831 

genes) where probes exceed the background in at least 20% of the samples to perform 

the second set of enrichment analyses. All obtained pathways were thresholded at P 

< 0.05, FDR-corrected [49]. 
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To test whether chromosomal gene expression was related to case-control regional 

MSN values, we assessed the chromosomal enrichment of the genes from PLS1. A 

median rank-based approach was used to evaluate the enrichment of gene lists for 

specific chromosomes 1:22 [19, 39]. We first ranked each gene in terms of its Z-score 

weighting on the PLS1. We then calculated the observed median rank for genes located 

on specific chromosomes. The second step of randomly selecting and ranking genes 

was repeated 5,000 times to sample the permutation distribution of median rank in 

each chromosome. The null hypothesis was that the observed median rank (for the 

genes located on each chromosome) was not significantly different from the median 

rank of a random list of genes (equivalent number of genes located on a given 

chromosome). Finally, the Pperm values of chromosomal enrichment genes were 

estimated by comparing the observed median rank to the centiles of null median rank 

distribution for each chromosome [19, 39]. The statistical significance was set at Pperm 

<5th or >95th centile. 

 

To obtain gene sets for each cell type, we compiled data from five different single-cell 

studies using post-mortem cortical samples of human postnatal participants [19]. This 

approach avoided bias based on acquisition methodology, analysis, or thresholding, 

and led to the initial inclusion of 58 cell classes, many of which were overlapping based 

on nomenclature and/or constituent genes. We organized cell types into seven 

canonical classes: microglia, endothelial cell, oligodendrocyte precursors, 

oligodendrocytes, astrocytes, excitatory, and inhibitory neurons. We first assigned 

PLS1+ significant genes to each cell type and obtained the observed counts of 
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overlapped genes according to the specific cell types. We then randomly selected 

genes with an equivalent number of a given cell type from all genes, rather than 

significant genes from the PLS1 gene list, and obtained the counts of overlapped genes 

to a given cell type [18]. These procedures were repeated 5,000 times to sample the 

permutation distribution of counts of overlapped genes in each cell type. The null 

hypothesis was that the observed count of overlapped genes (for genes assigned to 

each cell type) was not significantly different from the overlapped genes of a random 

list of genes (equivalent number of genes assigned to a given cell type). Finally, the 

Pperm values of enrichment for each cell type were estimated by comparing the 

observed gene counts to the centiles of null gene counts distribution for each cell type 

[40]. The statistical significance was set at Pperm < 5th or > 95th centile. 

 

We further determined the relationships between GGE-related dysregulated genes 

obtained by whole-genome mRNA expression in whole blood samples and the 

expressions of genes related to regional MSN differences in epilepsy. The epilepsy-

related dysregulated gene list was reported by Rawat et al. [50]. We selected 236 

upregulated and 388 downregulated genes according to P < 0.05 after FDR correction 

and fold changes > 1.3. Genes used for subsequent correlation analyses were common 

across upregulated or downregulated genes and PLS1+ or PLS1− significant gene 

datasets. Robust correlation analyses [51] were used to determine relationships 

between PLS1+ or PLS1− significant gene weights and fold changes of upregulated or 

downregulated genes. The above-mentioned analyses were also used for major 

depressive disorder (MDD), autism spectrum disorder (ASD), schizophrenia (SCZ), 

bipolar disorder (BD), alcohol abuse disorder (AAD), and inflammatory bowel disease 
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(IBD), with diagnoses from Gandal et al. [52]. Because of outliers in the gene set that 

could potentially inflate or deflate associated correlations [18], Spearman’s correlation 

analysis was performed to characterize the associations. We resampled the fold 

changes 5,000 times to test the null hypothesis that the significant association was 

random. The Pperm value was obtained from the null models (<5th or >95th centile). 

 

Reproducibility analysis 

We examined the stability and reproducibility of the regional MSN pattern using a 

leave-one-feature-out approach [16, 53]. We re-constructed the MSN and the regional 

MSN patterns using six features (one feature was removed) derived from T1w in the 

HC group each time. We then computed the spatial similarity (Pearson’s correlation 

coefficient) of the regional MSN patterns between the full 7-features and 6-features. 

To account for spatial autocorrelation in regional MSN patterns, we obtained the 

statistical Pperm values using 5,000 spin permutation tests (see below Spin test). The 

statistical significance was set at Pspin < 5th or > 95th centile.  

 

To validate the regional case-control t-map and minimize the effect of the participant 

set, the HC were divided into two subgroups HC1 (n = 75, 26 females, age: 26.09 ± 6.96 

years) and HC2 (n = 75, 40 females, age: 24.67±5.79 years). One of the critical 

characteristics of case-control MRI data is the medication status of patients, which may 

influence the robustness of group analysis. To test for the robustness of the case-

control t-map of regional MSN, patients with GGE-GTCS were divided into two 

subgroups: drug-experienced patients (n = 65, 21 females, age: 25.34 ± 8.09 years), 

and drug-naïve patients (n = 29, 12 females, age: 24.38 ± 6.47 years), whose age and 
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sex were matched for the HC1 and HC2 groups, respectively (all P > 0.05). Following 

the same criterion of case-control analyses, two additional abnormal patterns of 

regional MSN were obtained for drug-experienced patients vs. HC1 and drug-naïve 

patients vs. HC2. Then, correlation analyses were performed on case-control t-maps 

between drug-experienced patients vs. HC1 and all patients vs. HC, and between drug-

naïve patients vs. HC2 and all patients vs. HC. Considering the overlapping sets of 

participants between the t-maps as mentioned above, we also measured the spatial 

similarity (Pearson’s correlation coefficient) of the abnormal regional MSN between 

drug-experienced patients vs. HC1 and drug-naïve patients vs. HC2. The Pspin values 

were obtained by performing 5,000 spin permutation tests (<5th or >95th centile).  

 

In addition, drug-experienced patients were divided into non-refractory (n = 49, 13 

females, age: 25.73 ± 8.16 years) and refractory patients (n = 13, 7 females, age: 22.46 

± 6.32 years), whose age and sex were matched for the HC1 and HC2 groups, 

respectively (all P > 0.05). The two groups were separately compared to the HC1 and 

HC2 groups to obtain the case-control t-maps. Then, correlation analyses were 

performed on case-control t-maps between non-refractory patients vs. HC1 and all 

patients vs. HC, and between refractory patients vs. HC2 and all patients vs. HC. 

Similarly, considering the overlapping sets of participants between the t-maps as 

mentioned above, we also measured the spatial similarity (Pearson’s correlation 

coefficient) of the abnormal regional MSN between non-refractory patients vs. HC1 

and refractory patients vs. HC2. The Pspin values were obtained by performing 5,000 

spin permutation tests (<5th or >95th centile). 
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To test the reproducibility of our results, we conducted a split-half analysis. Specifically, 

we divided the patients with GGE-GTCS into two subgroups: GGE-GTCS1 (n = 50, 12 

females, age: 26.58 ± 7.99 years) and GGE-GTCS2 (n = 51, 22 females, age: 23.96 ± 7.54 

years), and the age- and sex-matched HC1 and HC2, respectively (all P > 0.05) [5]. We 

performed case-control analyses of regional MSN on the subgroups (i.e., GGE-GTCS1 

vs. HC1 and GGE-GTCS2 vs. HC2) regressing-out age, sex, and TIV. We then computed 

Pearson’s correlation coefficients for the case-control t-maps between GGE-GTCS1 vs. 

HC1 and all patients vs. HC (main result), and between GGE-GTCS2 vs. HC2 and all 

patients vs. HC (main result). Considering the overlapping sets of participants between 

the above-mentioned t-maps, we also measured the spatial similarities (Pearson’s 

correlation coefficient) of t-maps between GGE-GTCS1 vs. HC1 and GGE-GTCS2 vs. HC2. 

The Pspin values were obtained by performing 5,000 spin permutation tests (< 5th or > 

95th centile). 

 

Spin test 

We used a spin-based permutation test to correct for potential confounding effects of 

spatial autocorrelation [36]. The spin test is a spatial permutation method based on 

angular permutations of spherical projections at the cortical surface. Critically, the spin 

test preserves the spatial covariance structure of the data and as such is far more 

conservative than randomly shuffling locations, which destroys the spatial covariance 

structure and produces an unrealistically unconservative null distribution. Specifically, 

we generated 5,000 random spatial rotations (i.e., spins) of the cortical regions to 

generate a null distribution.  
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Results 

Analyses of samples 

After quality control, acceptable T1w data were further analysed in 251 participants 

(Supplementary Results 1; Fig. S1) involving 101 patients with GGE-GTCS and 150 HC. 

Demographic and clinical characteristics are provided in Table 1. There was no 

significant difference in age (Mann-Whitney U-test, U = 6640, P = 0.10), sex (2 = 2.69, 

P = 0.10), TIV (t(249) = 1.22, P = 0.23), or FreeSurfer's Euler number (Mann-Whitney U-

test, U = 6537, P = 0.07; Fig. S2) between the patients and the HC. These factors were 

regressed out between-group comparisons. Sixty-five patients with GGE-GTCS 

received medication, and 29 patients were drug-naïve with newly-diagnosed GGE-

GTCS. The remaining patients’ clinical information was not available. In addition, 13 of 

65 drug-treated patients were classified into the drug resistance group, and 49 

patients were classified into the drug responsiveness group according to our previous 

study [13], while the drug information of three patients was unclear.   

 

Case-control differences of regional MSN alterations 

The regional MSNs showed a non-uniform distribution in both HC (Fig. 1B) and patients 

with GGE-GTCS (Fig. 1C), consistent with previous findings [16-18]. Specifically, highly 

positive MSN values were located in frontal and temporal cortical areas, and highly 

negative MSN values dominated in occipital and sensory-motor areas. In addition, to 

the best of our knowledge, we found the number of indices to construct MSN ranging 

from 5 to 12, which were derived from T1w or diffusion-weighted imaging or 

functional MRI (Supplementary Results 2; Table S1). To test the stability of the regional 

MSN in this study, we used the leave-one-feature-out approach to demonstrate the 
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spatial similarities of regional MSN among the full seven features, with one measure 

removed (all Pearson’s r-values > 0.9; Fig. S3).  

 

For case-control comparisons, by conducting a linear regression with age, sex and TIV 

as covariates, we found that 19 cortical regions were significantly different between 

the two groups (Fig. 1D). Positive and negative t-values denoted increased and 

decreased regional MSN in patients. Patients with GGE-GTCS exhibited nine increased 

areas in occipital, insular and posterior cingulate cortices and 10 decreased areas in 

prefrontal, primary motor and temporal areas (Supplementary Results 3; Table S2). 

 

There was no significant association between the duration of illness and brain regions 

with significantly abnormal regional MSN values (decreased/increased, n = 19) in 

patients with GGE-GTCS. In addition, we performed an exploratory correlation analysis 

across all D-K 308 regions. We found that the insula, parahippocampal and lateral 

occipital cortices exhibited positive correlations with the duration of illness, whereas 

the parietal, postcentral, precuneus and rostral middle frontal had negative 

correlations with the duration of illness (Supplementary Results 4; Fig. S4). Although 

MSN was a valuable tool to depict abnormalities in patients, we further aimed to 

clarify the critical role of regional MSN patterns in patients with GGE-GTCS. We 

therefore used regional MSN values as features to distinguish patients with GGE-GTCS 

from HC [accuracy: 80.40% ± 0.53% (mean ± SD), sensitivity: 75.05% ± 0.91%, and 

specificity: 85.74% ± 0.69%] (Supplementary Results 5; Fig. S5).  

 

Considering the effects of medication on the abnormal distribution of regional MSN in 
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patients with GGE-GTCS, we divided the patients into two subgroups, including drug-

naïve and drug-treated patients. We found a consistent spatial pattern of regional MSN 

alterations between drug-experienced patients vs. HC1 and all patients vs. HC 

(Pearson’s r(306) = 0.89, Pspin < 0.001; Supplementary Results 6; Fig. S6A), and between 

drug-naïve patients vs. HC2 and all patients vs. HC (Pearson’s r(306) = 0.80, Pspin < 0.001; 

Fig. S6B). In addition, we found a similar spatial pattern of regional MSN alterations 

between drug-experienced patients vs. HC1 and drug-naïve patients vs. HC2 (Pearson’s 

r(306) = 0.48, Pspin < 0.001; Fig. S6C), indicating the minimal effects of medication status 

on the main results.  

 

After considering a previous study suggesting an association between neuroimaging 

and drug response [13], we repeated our analyses by classifying the drug-use patients 

into refractory and non-refractory groups. We found a consistent spatial pattern of 

regional MSN alterations between non-refractory patients vs. HC1 and all patients vs. 

HC (Pearson’s r(306) = 0.85, Pspin < 0.001; Supplementary Results 7; Fig. S7A), between 

refractory patients vs. HC2 and all patients vs. HC (Pearson’s r(306) = 0.61, Pspin < 0.001; 

Fig. S7B), and between non-refractory patients vs. HC1 and refractory patients vs. HC2 

(Pearson’s r(306) = 0.34, Pspin < 0.001; Fig. S7C), suggesting that the case-control regional 

MSN map was slightly related to variable degrees of drug response in GGE-GTCS 

patients. In addition, considering the small samples of refractory patients, we used the 

leave-one-refractory patient-out method to demonstrate the similarity of case-control 

t-maps among all refractory patients vs. HC and one refractory patients removed vs. 

HC (all Pearson’s r(306) > 0.85; Fig. S8).  
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To test for the reproducibility of the case-control t-map, we conducted split-half 

analyses [5]. We found that the case-control t-maps of split-half analyses were similar 

between GGE-GTCS1 vs. HC1 and all patients vs. HC (Pearson’s r(306) = 0.84, Pspin < 0.001; 

Supplementary Results 8; Fig. S9A), and between GGE-GTCS2 vs. HC2 and all patients 

vs. HC (Pearson’s r(306) = 0.84, Pspin < 0.001; Fig. S9B), and between GGE-GTCS1 vs. HC1 

and GGE-GTCS2 vs. HC2 (Pearson’s r(306) = 0.43, Pspin < 0.001; Fig. S9C).  

 

To explain the case-control analysis of regional MSN at a network scale, we assigned 

the regions into two prior brain organizations: the Yeo-Krienen seven functional 

networks obtained during resting-state [54] and the von Economo cytoarchitectonic 

classes classified by cytoarchitectonic criteria [55]. Patients with GGE-GTCS exhibited 

no abnormal regions in Yeo networks (Supplementary Results 9; Table S3), and showed 

reduced regional MSN in von Economo class 1 (primary motor cortex, t(246) = –3.56, 

PFDR = 0.003) (Table S4; Fig. S10). 

 

Gene expression patterns co-locate with the case-control t-map  

The PLS1 component explained 16% variance on PLS correlation of the case-control t-

map with gene expression (Supplementary Results 10; Fig. S11). The variance 

explained by the PLS1 was significantly more than expected by chance (P = 0.02). The 

weighted score of the PLS1 component is shown in Fig. 2A. In addition, we found that 

the PLS1 weighted gene expression map was spatially correlated with the case-control 

t-map of the regional MSN (Pearson’s r(150) = 0.4, Pspin < 0.001; Fig. 2B). We performed 

bootstrapping on PLS weights resulting in Z-scores for each gene corresponding to the 

PLS1 ranking. The genes were ranked according to their contributions to PLS1 (Fig. 2C). 
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We found 1,839 genes with normalized PLS1 weights Z > 2.1 and 1,723 genes with PLS1 

weights Z < −2.1 (all P < 0.05, FDR corrected), such as DGCR8, CACNB4 and SLC12A5 

genes.  

 

Transcriptional enrichments for differences in regional MSN 

To determine the relationships between epilepsy-related risk genes and the PLS1 

significant gene list, we first generated a single omnibus gene set (119 genes) for 

epilepsy-related risk according to previous GWAS studies, whole-exome sequencing 

case-control studies, and data reported in systematic reviews [22, 23, 41-44]. After 

performing the multi-gene-list meta-analysis, we found that the PLS1+ significant gene 

set mostly shared enrichment pathways with epilepsy-related risk genes (P < 0.05, FDR 

corrected) (Fig. 3A), including “regulation of cell junction assembly”, 

“neurotransmitter transport”, “regulation of cell projection organization”, 

“modulation of chemical synaptic transmission”, “synapse organization”, and 

“regulation of system process”. In addition, the PLS1+ significant gene set obtained by 

the case-control t-map exhibited several specific enrichment pathways, including 

“histone modification”, “chromatin organization”, “protein phosphorylation”, and 

“negative regulation of cell cycle”. Visualization of intra-cluster and inter-cluster 

similarities of enriched terms is shown in Fig. 3B. We also found that the most 

interconnected pathways were located in shared enrichment pathways, such as 

“chemical synaptic transmission”, “trans-synaptic signaling”, and “synaptic signaling”, 

which were highlighted in Fig. 3C. In addition, after using relatively restricted 

background genes (n = 16,831), we found that the enrichment terms were similar with 

the main findings. The shared pathway between epilepsy-related risk genes and PLS1+ 
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significant genes also included “neurotransmitter transport” and “synapse 

organization” (Supplementary Results 11; Fig. S12). The shared pathway between 

epilepsy-related risk genes and PLS1− significant genes was “regulation of secretion by 

cell” (Fig. S13).   

 

Enrichments at the chromosome, cell type and disease levels 

We reasoned that there were transcriptional gene enrichments of MSN differences at 

three levels of biological complexity (from the chromosome to cell-type, and the 

disease level). First, regional differences were thought to be largely co-located with 

chromosomal genes [56]. We assessed the chromosomal enrichment of the genes 

using PLS1 and found that the most negatively weighted genes, which were highly 

expressed in decreased regions, were most strongly enriched for chromosome 11 

(Pperm = 0.02), and chromosome 16 (Pperm = 0.03) genes, and the most positively 

weighted genes, which were highly expressed in increased regions, were most strongly 

enriched for chromosome 4 (Pperm = 0.01) and chromosome 5 (Pperm = 0.005) (Fig. 4A).  

 

Second, to test the hypothesis that cellular composition was related to regional 

differences, we also identified specific cell types enriched for MSN alterations in our 

analyses. We first assigned the significant PLS1+ significant genes to seven canonical 

cell classes and found that a number of genes were significantly involved in excitatory 

neurons (number = 276, Pperm = 0.002), and inhibitory neurons (number = 184, Pperm = 

0.0002) (Fig. 4B). 

 

Finally, we found that 24 genes overlapped between the PLS1+ significant gene list and 
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identified genes that were significantly and differentially in whole-genome messenger 

RNA expressions from previous case-control studies of GGE-GTCS [50]. The PLS1+ 

significant gene weights were correlated with fold change values related to patients 

with GGE-GTCS (Spearman’s rs(22) = ‒0.47, Pperm = 0.006; Fig. 4C). A significant 

correlation was not present in the six disorders described by Gandal et al. [52], 

involving: SCZ (Spearman’s rs(154) = −0.02, Pperm = 0.47), ASD (Spearman’s rs(144) = 0.01, 

Pperm = 0.49), BD (Spearman’s rs(23) = 0.08, Pperm = 0.35), MDD (Spearman’s rs(18) = –0.16, 

Pperm = 0.50), AAD (Spearman’s rs(32) = 0.14, Pperm = 0.21), and IBD (Spearman’s rs(484) = 

0.06, Pperm = 0.07). There was no significant correlation between PLS1- gene weights 

and fold change values in epilepsy.  

 

Discussion 

The analysis of MSN is a novel way of assessing cortical network architecture, which 

has until now, not been used in patients with GGE-GTCS. Regional MSNs were 

significantly reduced in prefrontal and temporal areas and increased in occipital, 

insular and posterior cingulate cortices. By studying patterns of cortical morphometric 

abnormalities using multiple in vivo MRI parameters in relation to ex vivo human brain-

wide transcriptional architecture, we found that the expression of genes enriched for 

excitatory/inhibitory neurons and chromosomes 4, 5, 11, and 16 might reflect GGE-

GTCS-related MSN differences. These findings revealed MSN phenotypes in GGE and 

may help bridge the gap between the transcriptomes and imaging connectomes, 

providing an integrative understanding of the mechanisms in GGE.  

 

MSN changes in patients with GGE-GTCS 
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Rather than previously used single-feature structural/morphometric approaches, the 

MSN approach combines information across multiple cortical features in a single 

participant [16, 57]. Measures of high morphological similarity may represent 

cytoarchitectonically similar networks that are more likely to be axonally connected to 

each other [16]. In addition, the MSN framework has been shown to predict inter-

individual variations in human intelligence [16] and has previously helped to assess co-

variations in brain morphometry and gene expressions [17-19]. We thus effectively 

incorporated seven cortical morphological features derived from brain MRI to 

differentiate patients with epilepsy using a single classification parameter [58].  

 

In this study, we interpreted MSNs with significantly altered regions in patients with 

GGE-GTCS as an indication that there were decreased (or increased) architectonic 

similarities or more (or less) architectonic differentiation between these regions and 

the rest of the cortex [17, 18]. GGE-GTCS shares common morphometric brain 

alterations with other epilepsy subgroups and has diagnosis-specific features [8, 9, 59]. 

Transdiagnostic patterns of grey matter loss are located in the right thalamus, and the 

lower thickness is observed in the bilateral precentral gyri, parahippocampal, superior 

frontal, insula and caudal middle frontal cortex [8, 60]. Our observed MSN alterations 

were consistent with lower thickness in the precentral cortex and were consistent with 

reduced thickness in the precuneus and rostral middle frontal cortex and, conversely, 

with greater thickness in the insular cortices. Our work extended this finding by 

combining multiple structural indices to show that increased MSN connectivity in the 

insular cortex may be pathological in patients with GGE-GTCS. Replicable results might 

show the minimal effects of medication use and drug response on GGE-GTCS-related 
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MSN abnormalities. In addition, although the drug treatment group showed 

differences from the drug-naïve group regarding the age of onset and duration of 

illness, the two abnormal MSN patterns between the two groups, when compared to 

HC, were highly similar, indicating the minimal effect of clinical characteristics on MSN 

patterns. 

 

MSN-related gene enrichment 

Specific neurobiological hallmarks of MSN changes may be attributed to a host of 

factors such as genetic, molecular, and cellular alterations. Recently, human 

neuroimaging-genetic approaches have closed the gap between in vivo neuroimaging 

and its underlying molecular basis [25, 61]. Significant genes with PLS1 loading 

included DGCR8, CACNB4, and SLC12A5. These genes are protein-coding genes and are 

related to idiopathic generalized epilepsy [62]. Genome-wide expression profiling has 

revealed that protein-coding transcripts were altered in experimental and human 

epilepsy, including genes regulating synaptic or neuronal plasticity, cell death, 

proliferation, and inflammatory or immune responses [63, 64]. Heterozygous CACNB4 

variants have been implicated in epilepsy [65]. The SLC12A5 gene encodes the neuron-

specific cotransporter, K+/Cl- type-2, and idiopathic generalized epilepsy has been 

reported in patients with compound heterozygous SLC12A5 mutations [66]. 

Hemizygosity for the microRNA biogenesis gene DGCR8 leads to enhanced short- and 

long-term synaptic plasticity within hippocampal CA3-CA1 synapses, coinciding with 

spatial memory deficits [67]. We also found that shared biological and cellular 

processes driven from PLS1 and risk gene lists were related to “chemical synaptic 

transmission”, “neurotransmitter transport”, “regulation of cell projection 
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organization”, “modulation of chemical synaptic transmission”, and “synapse 

organization”. These processes, particularly change the function of many ion channels, 

regulating synaptic function, and neurotransmitter receptors, and have previously 

been reported to contribute to epileptogenesis [68, 69]. Disturbances in synaptic 

transmission, in particular to the balance between excitatory and inhibitory synapses, 

play a role in the pathogenesis of seizures and epilepsy, and the processes of synaptic 

transmission are also targets for therapies for epilepsy [70]. In addition, PLS1 gene lists 

were specifically enriched in “histone modification”, and “chromatin organization”. 

Recent evidence has begun to elucidate the specific roles of the epigenetic mechanism, 

including histone code modifications and chromatin remodelling in human epilepsy 

syndromes, as well as the process of epileptogenesis [71]. Histone modifications play 

crucial roles in epilepsy and show promise in regulating chromatin structure and gene 

expression during epilepsy [72]. Several studies have reported alterations of histone 

modifications in epilepsy models [73], so these specific pathways obtained by PLS 

correlations suggested that transcriptome-neuroimaging analyses may provide 

additional information. The neuron-related terms were also enriched after using a 

more relatively restricted list of background genes, possibly suggesting the stability of 

enriched terms. 

 

Chromosome-, cell-type- and disease-specific gene-set enrichments 

To test the hypothesis that chromosomal gene expression was related to MSN changes 

in GGE-GTCS, we assessed chromosomal enrichment for associated genes using PLS1 

[74]. We found that the most negatively and positively weighted genes, highly and 

lowly expressed in impacted MSN regions, were most strongly enriched for specific 
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chromosomes. Among patients with epilepsy, about 6% have chromosomal 

abnormalities, which were mainly associated with various epilepsy phenotypes and 

seizure types [75]. Single cases have been reported where patients with epilepsy had 

chromosomal abnormalities in chromosomes 4 [76] and 5 [77] associated with 

epilepsy. In addition, evidence suggests that people missing large amounts of DNA on 

chromosome 16 are more likely to develop a chronic seizure disorder during their 

lifetime [78]. Copy number variation of 16p13.11 has also been suggested to be a risk 

factor for GGE patients, even those with identically-sized 16p13.11 deletions, present 

with highly variable epilepsy phenotypes [79, 80]. Our data, consistent with relevant 

reports, highlighted the strength of our MSN analyses by confirming previously 

identified GGE-GTCS-related chromosomes and identifying new chromosomes [56] 

with relevant pathophysiological roles in patients with GGE-GTCS.  

 

Considering the extent of cellular diversity in the brain, we need to transform 

normative bulk-tissue cortical expression data into cell-type expression maps [81, 82]. 

This will allow us to assess which cell-type-specific processes might influence selective 

regional vulnerabilities [83]. To this end, we took an indirect approach by assigning 

PLS1+ significant genes to seven canonical cell classes [18, 19, 84, 85]. We found cell 

type-related gene-set enrichments in excitatory and inhibitory neurons and angiogenic 

endothelial cells, consistent with the largest single-nucleus transcriptomic changes in 

distinct neuronal subtypes [86]. Target cell types in epilepsy pathophysiology create an 

imbalance between excitatory and inhibitory neurons but may alter integrative 

properties in more complex ways [87]. In addition, MSN-related transcriptomic data in 

endothelial cells may be associated with inflammatory and immune responses for GGE 
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[88]. The mechanism related to pro-inflammatory expression may involve the 

regulation of the innate immune reaction in response to seizures [50, 69, 89]. Taken 

together, excitatory neurons and inhibitory neurons may contribute to the generation 

of epileptic seizures and immune responses in epilepsy pathogenesis.  

 

We also found that 24 genes overlapped between the PLS1+ significant gene list and 

the significantly differentially expressed genes (DEGs) in peripheral blood mRNA from 

case-control studies of GGE patients. These PLS1+ gene weights were correlated with 

GGE-related upregulated DEGs, but there was no correlation between PLS1+ gene 

weights and five disease-related DEGs from case-control post-mortem brain tissue [52]. 

These findings suggested a degree of specificity across diagnostic groups and 

transcriptional correlates of GGE-related changes in MSN capturing patterns of gene 

upregulation. Collectively, the identified GGE-related chromosomes, cell types and 

disease-related gene-set enrichments verified the validity of gene ranks obtained from 

changes in MSN and enabled us to identify potential biological targets of GGE-GTCS. 

 

Methodological considerations 

Several methodological issues had to be considered. First, the medication for drug-

experienced patients were heterogeneous. There were more than 10 types of 

medication for drug-experienced patients. In addition, at least 13 drug-experienced 

patients were treated with more than two types of drugs. Therefore, we could not 

identify the effects of medication type on the case-control t-map. Future investigations 

should control the medication type for patients to solve this issue, and it may be more 

appropriate to sub-stratify according to the type of medication, e.g., 6 months prior to 
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examination. Second, we did not have access to the molecular characteristics of our 

samples, limiting the ability to determine the direct effects of genetic variations on 

abnormal patterns of regional MSNs. Third, the AHBA dataset was only based on six 

participants and only included data for the right hemisphere for two of them. 

Differences in sample characteristics, for example, between the AHBA donors and the 

participants of our Chinese neuroimaging study, may furthermore require additional 

caution in interpreting imaging-genetic findings. Finally, because the significant genes 

were not identified based on correlations with spatially-defined phenotypes, but 

obtained by PLS correlation analyses, the newly proposed strategy [90] that mitigates 

the bias of leveraging gene enrichment approach in the spatial transcriptomic data 

could not be directly used [91]. In addition, we used a multi-gene-list meta-analysis to 

identify the shared and specific pathways between GGE-related risk genes from GWAS 

and PLS1 significant genes, which could not be performed by the newly proposed 

strategy [90]. Future studies will hopefully develop methods to test the effects of this 

type of bias on the present results. 

 

Conclusions 

In summary, we showed that patients with GGE-GTCS had altered regional MSNs, 

mainly observed in the prefrontal, temporal, and occipital cortices, which provided a 

better understanding of the potential mechanisms of GGE-GTCS pathophysiology. By 

correlating our neuroimaging findings to post-mortem transcriptomics, we found that 

regional MSN changes in patients with GGE-GTCS were associated with genes 

expressed across distinct chromosomes and cellular types. Our findings highlight the 

importance of bridging diverse types of biological organization when studying brain 
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dysfunction. 
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Human gene expression data that support the findings of this study are available in 

the Allen Brain Atlas (“Complete normalized microarray datasets”, 

https://human.brainmap.org/static/download). The PLS1 significant gene list is 

provided in Dataset S1. The background gene list is provided in Dataset S2. Epilepsy-

related risk genes can be obtained from previous GWAS studies using either meta- and 

mega-analysis or whole-exome sequencing, and systematic reviews [22, 23, 41-44]. 

Differential genes expression values of epilepsy and other brain disorders are from the 

raw Rawat et al. [50] (https://ars.els-cdn.com/content/image/1-s2.0-

S0888754318305093-mmc3.xlsx) and Gandal et al. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898828/#SD1) datasets, 

respectively. Compiled cell-specific gene set list can be obtained from the raw Seidlitz 

et al. [19] dataset 

(https://staticcontent.springer.com/esm/art%3A10.1038%2Fs41467-020-17051-

5/MediaObjects/41467_2020_17051_MOESM8_ESM.xlsx). 
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Tables 

Table 1. Clinical and Demographic Characteristics. 

Variables 
GGE-GTCS 

(n = 101) 

HC 

(n = 150) 

Statistics 

(GGE-GTCS vs. HC) 

Age at scan (years) 25.26 ± 7.84 25.38 ± 6.42 U = 6640, P = 0.10 

Sex (female/male) 34/67 66/84 2 = 2.69, P = 0.10 

Handedness (left/right) 0/101 0/150 2 = 0, P =1 

Duration of illness 

(months) 
69.52 ± 86.33 N.A. N.A. 

Onset age (years) 19.46 ± 8.81 N.A. N.A. 

Medication (yes/no) 65/29 N.A. N.A. 

Refractory (yes/no) 13/49 N.A. N.A. 

Note: Data are presented as either n or means ± standard deviations. The cohort size 

was obtained after the image data quality control.  

Abbreviations: GGE-GTCS, genetic generalized epilepsy with generalized tonic-clonic 

seizures; HC, healthy controls; N.A., not available. 

The U value was obtained by Mann–Whitney U–test (two-sided). The 2 values were 

obtained by Chi-square test. 
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Figures 

 

Figure 1. Case-control differences in regional morphometric similarity networks 

(MSN). (A) Flow chart of the construction of the regional MSN. Pearson’s correlation 

coefficient was used to analyse morphometric features between each paired region 

including surface area (SA), cortical thickness (CT), grey matter volume (GMV), intrinsic 

Gaussian curvature (GC), mean curvature (MC), curved index (CI), and folding index 

(FI). (B) Mean regional MSN values across healthy controls. Highly positive 

morphometric similarities were located in the frontal and temporal cortical areas; 

whereases highly negative MSN were located in occipital and sensory-motor areas. (C) 

Mean regional MSN values across patients with genetic generalized epilepsy with 

generalized tonic-clonic seizures. (D) Case-control t-map of regional MSN. Nineteen 

cortical regions showed statistically significant differences (P < 0.05, false-discovery 

rate-corrected). 
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Figure 2. Gene expression profiles related to the case-control t-map of regional 

morphometric similarities networks (MSN). (A) A weighted gene expression map of 

the first component of partial least square (PLS1) in the left hemisphere. (B) A 

scatterplot of regional PLS1 scores and case-control t-values of regional MSN 

(Pearson’s r(150) = 0.39, Pspin = 0.006). (C) Ranked PLS1 loadings. Genes that were 

strongly positively weighted on PLS1 (e.g., CCDC177) positively correlated with case-

control t-maps of regional MSN (r = 0.30, Pspin = 0.007), whereas genes that were 

strongly negatively weighted on PLS1 (e.g., ZNF226) negatively correlated with case-

control t-maps of regional MSN (r = -0.34, Pspin = 0.001).
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Figure 3. Functional enrichments of gene transcripts. (A) Gene ontology terms 

enriched for differences in the regional morphometric similarity network (MSN)-

related PLS1+ significant genes and epilepsy-related risk genes from previous genome-

wide association studies using either meta- and mega-analysis or whole-exome 

sequencing, and systematic reviews. (B) A subset of representative ontology terms 

from all enriched clusters (P < 0.05, false-discovery rate corrected). (C) The same 

enrichment network with its nodes is displayed as pie sections. Each pie sector is 
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proportional to the number of hits originating from a gene list. Red colour represents 

the ontology terms for risk genes, and blue colour represents the functional 

enrichments obtained by PLS1+ significant genes. The most interconnected pathways 

and the same enriched pathways between risk genes and PLS1+ significant genes are 

highlighted, such as “chemical synaptic transmission” and “synaptic signaling”. 



Main text  Jiao LI, et al. 

46 
 

 

Figure 4. Chromosome-, cell-types-, and epilepsy-related specific expression 

relationships to changes in the morphometric similarity network (MSN)-related 

genes. (A) Enrichment analysis for chromosomal genes. A plot of the median rank of 

genes from each chromosome on PLS1 with standard deviations. (B) Enrichment 

analysis for cell-types-specific genes. Significantly weighted genes were enriched in 

genes expressed by excitatory neurons and inhibitory neurons. (C) Enrichment analysis 

for epilepsy-related genes and other disorders-related genes. The PLS1+ significant 

weighed gene expression was associated with downregulated differential gene 

expression in epilepsy (Spearman’s rs(22) = ‒0.47, Pperm = 0.006). However, this 

association was not found in the other disorders. An asterisk represents Pperm < 0.05. 


