
First, do no harm - missing data treatment to support lake ecological state 1 

assessment  2 

Grzegorz Chrobak a,*, Tomasz Kowalczyk b, Thomas B. Fischer c, Szymon Szewrański a,  3 

Katarzyna Chrobak d, Jan K. Kazak a 4 

a Institute of Spatial Management, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland,  5 

b Institute of Environmental Development and Protection, Wroclaw University of Environmental and Life 6 

Sciences, Wroclaw, Poland  7 

c School of Environmental Sciences, Department of Geography and Planning, University of Liverpool, Liverpool, 8 

United Kingdom,  9 

d Department of Urban Design & Planning and Settlement Processes, Wroclaw University of Science and 10 

Technology, Wrocław, Poland 11 

 12 

* Corresponding author: Grunwaldzka St. 55, 50-357 Wroclaw, grzegorz.chrobak@upwr.edu.pl, +48 663 150 811 13 

 14 

Abstract: Indicators of ecological potential of water bodies, that are associated with field measurements, are often 15 

subject to data gaps. This is an obstacle to constructing reliable assessments of conditions of lakes, which can lead 16 

to abandonment of assessment. Furthermore, it can lead to the use of methods, based merely on their availability. 17 

In response to these problems, a systematic approach for expert-analyst interaction for missing data treatment is 18 

proposed. In this context, a combination of algorithms with hierarchical clustering of results was used. A particular 19 

emphasis is put on the stage of preparation and interpretation of input data and the role of an expert in the workflow 20 

developed. The beneficiaries of this article are ecological data experts and analysts who work in teams to assess 21 

and interpret the state of lake ecosystems, and who present the findings in reports that are used during public 22 

consultations and discussions with key decision makers. 23 
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1. Introduction 30 

1.1 Data quality issues in ecological assessment 31 

Since the publication of the Water Framework Directive in 2000, in te European Union (EU) management of water 32 

resources has become a priority, aiming to meet environmental objectives of water bodies (Di Quarto and Zinzani, 33 

2021; Kallis and Butler, 2001). In this context, pro-ecosystem approaches require the use of methods that are based 34 

on a holistic understanding of dependencies in evaluation procedures, potentially leading to: 1) the emergence of 35 

innovative and genuine ecological approaches to water management practices (Gain et al., 2021; Giupponi, 2007; 36 

Poikane et al., 2015; Reis et al., 2017), and also to: (2) a rapid growth of methodologies, data and indicators 37 

produced by EU member states (Birk et al., 2013; Booty et al., 2001; Carey et al., 2021; Kelly et al., 2016; Zambelli 38 

et al., 2012). The number of approaches to assessing the ecological potential of water bodies is inextricably linked 39 

with issues of production, modeling and processing of observation and measurement data (Birk et al., 2012; Paruch 40 

et al., 2017; Posthuma et al., 2020). At each stage of the creation of environmental indicators, problems can arise 41 

related to the quality and availability of input values (Brito et al., 2020; Gobeyn et al., 2016; Lindholm et al., 2007; 42 

Matthies et al., 2007; Paruch et al., 2017). A key task and, at the same time, challenge are the intercalibration 43 

procedures that allow to obtain common reference levels for the classification of the ecological state of lakes. . 44 

Importantly, any unification of indicators requires a clear recognition of input data and the development of coherent 45 

methods for managing incomplete information (Gobeyn et al., 2016; Lahtinen et al., 2017). This can help to avoid 46 

undesirable consequences associated with ignoring unknowns. 47 

 48 

1.2  Implications of missing information 49 

The effects of a lack of data in the process of assessing ecological conditions of aquatic ecosystems can be seen at 50 

every level of data processing, including the ex-post evaluation of indicators (Yang et al., 2021; Zhang et al., 51 

2019). Identification of the type of missing information is a critical element in the initial phase of dealing with 52 

measurement data (Little, 2021). The quantity, nature, and severity of data flaws have a direct impact on the 53 

methods that can be used to work with specific datasets. In the case of measurement sets used to assess the 54 

ecological status of lakes, deficiencies in observations often result from a type of defects, referred to as Missing 55 

At Random (MAR) (Seaman et al., 2013). In this context, there is a need to rely on substantive acceptability, as 56 

MAR is an assumption which is impossible to prove statistically (Little, 2021). Due to contingent emptiness in  57 

datasets, parameter bias can result in analyses (Schielzeth et al., 2020). How to best solve this problem depends 58 

on the assumptions made, as well as on the knowledge of the context (Koehler et al., 2017). In this context, the 59 



most common consequences of mishandling gaps in data sets include; information loss, bias in statistical inference 60 

or modeling, and results misinterpretation (Hossie et al., 2021; Noble and Nakagawa, 2021). Another problem 61 

connected with an incomplete input dataset includes an inability to use certain data analysis methods / algorithms 62 

(e.g. PCA, SVM, neural networks) (Ghannam and Techtmann, 2021). A consequence of these issues is that popular 63 

methods ted to be used, such as partial deletion, interpolation, or imputation (Curley et al., 2019; Johnson et al., 64 

2021). Missing knowledge management requires informed decisions to be taken along the data analysis path 65 

(Likmeta et al., 2021; Newman, 2014; Wang and Xue, 2020). 66 

 67 

1.3  Data imputation – ecological assessment perspective 68 

The assessment of the condition and potential of aquatic ecosystems is connected with the identification of 69 

activities aimed at maintaining or improving the status of them, as required under Article 11 of the Water 70 

Framework Directive. In practice, this is associated with a planning process that takes place in a 6-year cycle. 71 

Responsible for them are water management boards together with the departments of boards of individual water 72 

sub-regions (usually within river basins). Water administration are working together on: identifying anthropogenic 73 

pressures; updating environmental objectives and protected water areas; restoring water bodies,; and setting 74 

boundary values for heavily modified and artificial water bodies. An important stage is the preparation of strategic 75 

environmental assessment (SEA; Mustow, 2021). At this key moment, assessors have the opportunity to influence 76 

the shape of the analyzes, the interpretation of the results. Furthermore, they can apply for supplementing or 77 

correcting the methodology. Comments are directed to the authors of the plan at the stage of public consultations. 78 

Among other measures, indicators of the ecological status of lake ecosystems are used to obtain results that support 79 

the definition of management practices. The evaluation of the structure and efficiency of surface water ecosystems 80 

is known as ecological status. This demonstrates how stresses (such as pollution and habitat deterioration) have an 81 

impact on specified quality components. Each surface water body has an ecological status that is assessed based 82 

on biological quality components and supported by physico-chemical and hydromorphological quality elements. 83 

According to the "one out, all out" approach, the element with the worst status out of all biological and supporting 84 

quality factors determines the overall ecological status rating for a water body. Data used to evaluate the ecological 85 

status of lakes are sets largely based on the results of field measurements. Observations are prone to errors that 86 

can occur at the stage of collecting samples (Yanai et al., 2021). There is always uncertainty over results, even if 87 

using different tools (Ejigu, 2021). Loss of data or a complete lack of it may result in abandoning the assessment, 88 

which, in some cases, significantly reduces the pool of evaluated ecosystems. This often leads to gaps in data sets 89 



that weaken results of individual measurement campaigns. Moreover, the same input data serve as components 90 

necessary to construct different environmental indicators, placing additional emphasis on the validity of an 91 

imputation attempt. In research on the ecological quality of ecosystems, various methods of supplementing missing 92 

values are used (Muharemi et al., 2019; Said et al., 2019; Zhang and Thorburn, 2022).  93 

The so-called hot deck imputation is used for handling missing data on large scale water quality indices (Ahmed 94 

et al., 2021; Srebotnjak et al., 2012). Most extensively used are methods based on multiple imputation. These are 95 

available for most data types (Ben Aissia et al., 2017; Betrie et al., 2016; Neri et al., 2018; Ngouna et al., 2020). 96 

When faced with a high level of missingness data, machine learning techniques were adopted. These are able to 97 

troubleshoot complex data issues (Irvin et al., 2021; Kim et al., 2020; Ngouna et al., 2020; Ratolojanahary et al., 98 

2019; Rodríguez et al., 2021). Furthermore, the spatial nature of the issue results in an introduction of time and 99 

space variables (Koki et al., 2020; Labuzzetta et al., 2021; Liu et al., 2016; Lou and Obradovic, 2011; Sojka et al., 100 

2020; Yüksel, 2012; Zhang and Thorburn, 2021).  Research with ecological water quality indicators uses methods 101 

based on a case study approach. This confirmins their effectiveness at the local scale (Bilgin and Bayraktar, 2021; 102 

Liu et al., 2011; Ren et al., 2008; Sojka et al., 2019; Weerasinghe and Handapangoda, 2019). There is a noticeable 103 

trend in the research indicating the need to develop methods that work well at the regional level, providing the 104 

option of later intercalibration of the results (Akbar et al., 2011; Botha et al., 2020; Hu et al., 2018; Jiang et al., 105 

2017; Lepš and Šmilauer, 2006; Li et al., 2021; Luo et al., 2019). Holistic approaches facilitate macro-quality 106 

management of water resources, which is important in the context of policy design and pan-regional impact 107 

assessment. Moreover,  monitoring of ecological indicators and the impact of climate change on phenomena that 108 

threaten the stability of ecosystems has lately been explored (Cheruvelil et al., 2017; Fazli et al., 2018; Hutjes, 109 

2019; Krzeminski et al., 2019; Lizotte et al., 2014; Mankin et al., 1999; Mustajoki et al., 2004; Peters-Lidard et 110 

al., 2021). 111 

 112 

1.4 Research goals  structure of paper 113 

The main goal of the research underpinning this paper was to present a workflow that can be used when an expert 114 

group or an ecological assessor are faced with the problem of missing values in an input dataset. In this context, a 115 

novel combined expert and analyst approach to ecological assessment is introduced. This approach gives experts 116 

the opportunity to influence (and adjust) processes by making decisions in key nodes. A further goal is the 117 

identification of possible techniques of data visualization, both with regards to raw data and analysis.  118 

 119 



In the methodological approach, graphic representation of often complicated processes is crucial for effective 120 

cooperation in an expert team. Featured data treatment schema takes the specificity of the work of experts into 121 

account, dealing with various assessment objects with a different degree of data incompleteness in the assessment 122 

process. Thus, there are certain cross-roads highlighted where a decision is necessary, made by a specialist or 123 

requiring consultation before proceeding with the analysis (2.3. Proposed workflow). The data treatment 124 

framework guides the user through the steps of pre-selecting data (3.1. Missing data identification and triage), 125 

identifying and selecting imputation predictors (3.2. Predictor examination), the actual multiple data imputation 126 

process using the random forest algorithm (3.3. Missing data imputation), and then introduces the step of clustering 127 

similar complementary sets based on their characteristics in the context of the Ward criterion via hierarchical 128 

clustering (3.4. Clustering imputation and 3.5. Data imputation results).    129 

 130 

2. Materials and Methods 131 

2.1  Data, software & previous research 132 

The input data used in this work come from the resources of the Chief Inspectorate of Environmental Protection 133 

in Poland (Appendix A) (GIOŚ, 2015). These are measurements included in the data used to develop indicators of 134 

the ecological condition of lake ecosystems. Results of the analyzes are reported to the European Commission data 135 

repositories, including information on the state of water among the Member States of the European Union 136 

(European Environment Agency, 2018) (Figure 1). 137 

The analyzes concern a set of 499 objects for which measurements were made during the 2013-2015 measurement 138 

campaign. Chlorophyll a, nitrogen, phosphorus, phytoplankton, Ecological State Macrophyte Index (ESMI), 139 

Diatom Index for Lakes (IOJ), Phytoplankton Method for Polish Lakes (PMPL), visibility, and conductivity are 140 

some of the measures used to determine a lake’s ecological status. The basic information on data is provided in 141 

Appendix B. Data were the subject of constructing a methodology aimed at improving effectiveness and 142 

reproducibility of the procedure for determining ecological status indicators with the use of machine learning 143 

algorithms (Chrobak et al., 2021b). In the next step, the set was used to extend the methodological approach to 144 

include the use of an unsupervised tool, supporting the prioritization of lakes in the context of organizing remedial 145 

measures necessary for the ecosystem to achieve environmental goals (Chrobak et al., 2021a). An important 146 

element of working with data at each of these stages was the need to deal with the problem of missing information. 147 

In this paper, the consequences of the lack of observations in the collection are addressed, and the missing data 148 

imputation is performed and tested as a complementary solution working with workflow previously developed.      149 



 150 

Figure 1. The map presenting lakes with shapes representing resulting ecological state according to EU classes.  151 
Originally, missing data were not included in the calculations. Instead, they influenced the appropriate value of the uncertainty of the result 152 
in the tables attached to the report.   153 

 154 

 155 

2.2  Imputation and clustering techniques 156 

In order to select the optimal technique for imputation of missing observations, the ‘missingness’ type of the 157 

dataset was identified (Zhou, 2020). The discovered systematic tendencies in the dataset show that missing 158 

observations can be predicted with use of other information present (see section 3.2 Predictor examination). It is 159 

due to existing correlations between fields and thanks to the knowledge of the data collection procedure that errors 160 

in measurements or deficiencies are not the result of a deliberate procedure. Thus, the missingness type was 161 

labelled as missing at random (MAR) (Bhaskaran and Smeeth, 2014). The following procedure of iterative 162 

imputation of missing values was preceded by stages (1); which involved applying the Pearson product-moment 163 

correlation method to analyze the degree and direction of data association (Russo, 2021) and (2); Principal 164 

Component Analysis (PCA) performed on the dataset with missing values to investigate uncertainty related 165 

absence of information (Husson et al., 2014).  166 



Missing value imputation was done using methods of Multiple Imputation by Chained Equations (MICE) for 167 

multivariate dataset cases (Zhang, 2016). The goal to replace missing values with plausible data to estimate a more 168 

realistic layout dataset, which is affected only minimally by incomplete observations. Within the procedure, the 169 

following steps were performed on the input dataset (Raghunathan et al., 2001): 170 

Step 1. For every missing value in the dataset, random extraction is performed from non-missing data to provide 171 

initial, basic imputation (D). 172 

Step 2. The field with the least missing values ratio (f) is selected and transformed back to feature missing values. 173 

Step 3. The f is regressed as a dependent variable onto the initially imputed dataset as f ~ D. 174 

Step 4. The predicted values obtained from a regression model are used to fill missing data in f. Both, the non-175 

missing and imputed values are used once f acts as an independent variable in regression modeling for the 176 

following dependent variables. 177 

Step 5. Steps 2-4 are repeated for each variable with missing data identified. One iteration is understood as an 178 

operation of cycling through each of the variables. The cycle is finished once all missing values are replaced with 179 

regression predictions that match the data relationships observed in the initial dataset.  180 

The MICE model parameters selected for this research are:  181 

a) dataset: matrix (8 x 499) with missing values, 182 

b) data imputation method: random forest imputation (Shah et al., 2014), 183 

c) visit sequence: roman (left to right). 184 

About 10 iteration cycles are performed in most research tasks (Gelman et al., 2011). However, at the conclusion 185 

of iterative cycles, the distribution of the imputation parameters (for instance, the regression model coefficients) 186 

should have converged and become stable. In order to eliminate the undesired dependency on the sequence in 187 

which variables are imputed, the authors performed 50 iterations until reaching convergence (Figure 2). The 188 

algorithm performance resulted in 30 imputed datasets, which were subject to a distribution-based clustering 189 

process. 190 

191 
Figure 2. The formation of standard deviation for successive imputation cycles led to selection of 50 initial iterations as a default parameter 192 
for this analysis.  193 
 194 



For each of the fields with missing values, as a result of the data imputation method, 30 versions of the possible 195 

information supplementation were obtained. The hierarchical clustering technique was used to select the 196 

imputation sets that correspond to the formation of the original variable in the context of the parameters of the 197 

similarity of the data distribution (Wu et al., 2009). Initially, each dataset was treated as a separate cluster in the 198 

agglomerative version of the algorithm. Following that, similar clusters were merged to form larger units based on 199 

predefined rules. When only one cluster emerged, the algorithm concluded that no further agglomeration is 200 

possible (Murtagh and Legendre, 2014).  The clustering procedure included the following steps: (Hartigan and 201 

Wong, 1979): 202 

Step 1.  The distance matrix was computed between columns of versions of imputed columns (the original field is 203 

a feature in proximity calculation, as well, with missing values allowed, but excluded from analysis) – resulting in 204 

a cross-distance matrix. 205 

Step 2. A cross-distance matrix was used as a dissimilarity structure for an agglomeration method to perform 206 

proximity-based merging – every column was considered as an individual cluster. 207 

Step 3. The clusters with similar characteristics (proximity) were merged.  208 

Step 4. The cross-distance matrix was recalculated for each cluster. 209 

Step 5. The steps 3-4 were repeated until a single cluster remained. 210 

In the construction of the cross-distance matrix for each of the dataset fields, the form of squared Euclidean 211 

distance matrix was used (Sarstedt and Mooi, 2014). The Ward’s method, based on the optimal value of an 212 

objective function – in this case – the minimum variance was used as a criterion for choosing a pair of clusters to 213 

merge at each step (Ward, 1963). The overall within-cluster variance is reduced, using Ward's minimal variance 214 

criterion (Kruskal and Black, 2012): 215 

𝐷1,2 = √
2 ⋅ |𝑘| ⋅ |𝑙|

|𝑘| + |𝑙|
⋅ ‖

𝑘
→ −

𝑙
→‖ 216 

where: 217 

𝐷1,2 – dissimilarity between cluster 1 and cluster 2, 218 

k,l – observations from cluster 1 and cluster 2, 219 

𝑘
→, 

𝑙
→ – centroids for clusters 1 and 2, 220 

‖ . ‖ – Euclidean norm. 221 

For using this approach, the pair of clusters was selected that, after merging, resulted in the least amount of total 222 

within-cluster variance. A weighted squared distance between cluster centers was used to calculate this increase. 223 



All clusters were singletons in the first stage (clusters containing a single point). The initial distance between 224 

individual objects was proportional to the squared Euclidean distance in order to execute a recursive algorithm 225 

under the objective function (Everitt, 1980) as: 226 

𝐷𝑖,𝑗 = ∑(𝑥𝑣𝑖
− 𝑥𝑣𝑗)

2
𝑑

𝑣

 227 

where: 228 

𝐷𝑖,𝑗 – distance between cells i and j, 229 

𝑥𝑣𝑖
 – value of x variable at cell i, 230 

d – number of dataset dimensions. 231 

 232 

Every feasible cluster pair is examined at each phase, and the two clusters whose merger results in the least amount 233 

of information loss are combined. Ward defines information loss in terms of an error sum-of-squares criterion 234 

(ESS) (Ward, 1963): 235 

𝐸𝑆𝑆 = ∑ 𝑥𝑖
2

𝑛

𝑖=1

−
1

𝑛
(∑ 𝑥𝑖

𝑛

𝑖=1

)

2

 236 

where: 237 

n – number of observations, 238 

𝑥𝑖 – the value of i-tj observation. 239 

and 0 being mean value of all the observations. 240 

 241 

2.3  Proposed workflow 242 

Within the block diagram of the suggested method, the proposed data analysis processes for the efficient 243 

imputation of missing values have been systematized (Figure 3). The workflow was created to supplement the 244 

methodology described in the authors' previous works on optimizing the assessment of the ecological state of lake 245 

ecosystems (Chrobak et al., 2021a, 2021b). This enabled the evaluation solutions to be tailored to the framework 246 

imposed by the Water Framework Directive, which indicates the need to conduct assessments involving expert 247 

knowledge. From the technical point of view, the approach addresses cases where the analysis cannot be performed 248 

effectively due to a significant number of missing observations. Thus, the decision whether to continue the analysis 249 

with use of data imputation is made by the expert, who is guided by experience and aided with dataset recognition 250 

led by skilled analyst. The aim is to obtain reliable premises for the implementation legitimacy of subsequent steps 251 



of ecological assessment process. In the diagram of the analytical process shown below, the dataset objects (lakes 252 

with measurements) appear as rectangles with blue border. Purple-outlined hexagonal blocks denote an analytical 253 

or computational process that could produce new data objects or serve as the basis for decision-making. In some 254 

places, these blocks are linked to orange-colored square blocks. In these cases, an expert decision is advised. Given 255 

the number or severity of missing observations, the expert may decide to end the process. If the process is not 256 

stopped during the data triage stage (section 3.1), the dataset is subjected to multivariate imputation, the results of 257 

which are clustered. The sets of imputations proposed by the algorithm are reviewed again by an expert, who is 258 

supported by the clustering results. Finally, the selected dataset with no missing values is submitted to further 259 

analyses, serving as an input for the supervised classifier of the lake ecological state class. The operation of such 260 



a classifier was described in the work that was published before this research (Chrobak et al., 2021b).261 

 262 

Figure 3. The workflow of missing data curation and imputation. The main purpose of arranging the steps taken into a procedural form is to 263 
systematize the methodology so that it is reproducible. Each of the process blocks enclosed by a purple frame symbolizes the action on the 264 
data. The squares with an orange frame indicate the moment of the decision made by the analyst / expert. Each of the steps of the analysis 265 
is discussed along with an example of implementation in the following subsections of this article. 266 

 267 

3. Results 268 

3.1   Missing data identification and triage 269 

The input data of the analysis were characterized by a different number and structure of missing measurements. 270 

The identification of the shortcomings started with the preparation of the chart showing the scale of the problem 271 



(Figure 4). According to the adopted classification, the so-called "missing grade", deficiencies were identified in 272 

5 out of 8 variables used in the process of assessing the ecological condition of lakes (Khorshidi et al., 2020). The 273 

spread of NA's percentage ranged from 0.2% for the conductivity variable to 15% for the IOJ parameter.  It is 274 

worth noting that the fields containing the measurement results for ESMI and IOJ together account for the existence 275 

of approx. 80% of the deficiencies. Moreover, these deficiencies are characterized in the adopted methodology of 276 

data triage as NotBad (missing <= 20% values), where the deficiencies in the field of PMPL, chlorophyll a, and 277 

conductivity are labeled as Good (less than 5% missing). Despite the lack of fields with the Bad category, it is 278 

important to remember that (1) the categories are arbitrary intervals that are largely dependent on the decision of 279 

an expert who knows the data; and (2) it is possible that there are gaps in the intersection data that, when 280 

accumulated at the intersections, will give a picture of real losses in the set of measurements' quality. IOJ and 281 

ESMI parameters are components that strongly affect the results of ecological status classification, as indicated by 282 

the PCA analysis by Chrobak et al., 2021. Leaving these fields out of the analysis may cause the final result to be 283 

skewed.  284 

 285 

Figure 4. The visual representation of missing values across the dataset indicated deficiencies in five out of eight variables involved in the 286 
construction of the lake evaluation index. In addition, the number of objects (39) that have information gaps for more than one field is also 287 
indicated. The analysis did not reveal any cases where the object has gaps for each of the variables. The fields to note are IOJ and ESMI, 288 
together accounting for 80% of existing NA statements, which is a prerequisite for taking corrective action on the data. 289 

 290 

 291 

 292 



3.2 Predictor examination 293 

One of the data preprocessing steps, crucial for later decisions made during data imputation, is the exploratory 294 

analysis of predictors (Braun and Oswald, 2011). The variables were subjected to the analysis of mutual linear 295 

dependencies, which allowed for an assumption of the situation earlier referred to as MAR in the context of missing 296 

observations. Strong correlations (> = | 0.5|) were identified, e.g. for visibility-PMPL or nitrogen-chlorophyll pairs 297 

(Figure 5). Variables that are strongly associated with each other are not preferred candidates for following 298 

multiple data imputation (Ellington et al., 2015). In most situations, the selected imputation method should omit 299 

these variables during the algorithm implementation (Alice, 2015). For some instances, it is also possible for 300 

algorithms to fail or produce unreliable, overfitted results (Christie et al., 1984). Thus, highly correlated variables 301 

were excluded from the imputation process. For each of the fields with missing values a separate selection of 302 

predictors was performed, on the basis of which the calculations were continued.  As a result, in the case of the 303 

IOJ variable, each of the possible predictors was qualified (the weakest correlation concerned the relationship with 304 

nitrogen, the strongest with phosphorus). The following predictors were related to the ESMI index: phosphorus, 305 

IOJ, and conductivity. For the imputation of the field containing the PMPL measurement results, the variables: 306 

IOJ, conductivity, and phosphorus were specified. IOJ and conductivity variables were used to supplement 307 

deficiencies in the chlorophyll field. It can be seen that the IOJ variable, which is one of the imputation objects, 308 

has no correlations identified in the data set, which would rule out using any of the variables due to the concern 309 

about multicollinearity-induced bias. In that case, multiple imputation was performed using all of the available 310 

predictors. The PCA plot shows the effect of IOJ on data variability in the dataset (Figure 4).Furthermore, the plot 311 

includes variable-wise uncertainty due to the presence of empty observations (Husson et al., 2018). The analysis 312 

demonstrates that variability across different possible imputation scenarios is limited, implying that PCA results 313 



may be perceived as plausible by a user (Benahmed and Houichi, 2018). It also shows the need to monitor the 314 

impact of data imputation on the shaping of leading dimensions’ explanatory skills (Chrobak et al., 2021b).  315 

 316 

 317 

3.3 Missing data imputation 318 

Missing data imputation concerned four variables (IOJ, ESMI, PMPL, chlorophyll a), for which individual sets of 319 

predictors were selected in the previous stage of work. The applied method of multiple imputation is the MICE 320 

approach, using the random forest algorithm (Xiao and Bulut, 2020). The method is effective when linear 321 

relationships exist between variables and does not require the use of hyperparameter calibration practices. The 322 

distributions were assumed for each variable and imputation was performed according to the distribution 323 

Figure 5. Evaluation of predictors preceding the data imputation process. Correlation analysis using the Pearson product-moment 
correlation coefficient method indicated the existence of a linear relationship between some sets of observations. This information 
was used to select potential predictors of imputation of missing values. The results visible on the vector PCA indicated the importance 
of the IOJ parameter affecting the diversity of the data set, which affects the final ability of the variable to explain the differentiation 
in the shaping of the first coordinate variance in the reduced observation space. 



characteristics obtained from the original, non-imputed dataset (Figure 6). It is not possible to know the true value 324 

of intercept term due to missing data in the source field, thus introduction of a distribution assumptions was 325 

necessary.  326 

 327 

 328 

Figure 6. The density plots for each of imputation dataset are showed in red. The density of original field is displayed as blue line. The dataset 329 
desired to be the best imputation option is expected to be similar in context of data density distribution. However, different results for 330 
individual iterations of the 'rf' algorithm do not give an unambiguous fit of the optimal solution. The results also indicate the necessity of 331 
continuous monitoring of the model results in order to avoid the use of distributions, the parameters of which (e.g. kurtosis) differ significantly 332 
from the expected fit.  333 

The selection of the set of possible imputations was carried out for the IOJ variable as a presentation of the 334 

functioning of the approach in practice. According to the results of the PCA analysis and the identification of 335 

predictors, it is a variable that significantly influences the result of the final classification of the ecological state of 336 

lakes in the adopted methodology. Gaps in observations of 15% make it an indicator that has the potential to be 337 

the most difficult imputation, compared with e.g. chlorophyll (<5%). The plot in Figure 4 indicates the presence 338 

of imputation sets that may result in an optimal but not overfitted match (Radosavljevic and Anderson, 2014).  339 



3.4 Clustering imputations 340 

According to the scheme of proceedings presented in the Materials & Methods section (Figure 3), the grouping of 341 

similar imputations was performed, using the hierarchical clustering method (Cohen-Addad et al., 2019). The aim 342 

of this part of the analysis was to use a tool that allows for fairly intuitive and quick interpretation of a given set 343 

of imputation sets, bearing in mind the possibility of carrying out more imputation iterations in specific cases or, 344 

if necessary, indicating many supplementary series (scenarios). In order to minimize the cluster-associated 345 

variance loss the Ward’s method was applied, so that, at each algorithm performance step, the combination of 346 

every possible cluster pair was considered. It this case, the information loss was defined in terms of an error sum 347 

of squares criterion (ESS). Each of the leaves of the resulting dendrogram referred to the series obtained in the 348 

multiple imputation process. Sets of similar observations according to Ward's criterion were collected under the 349 

dendrogram branch (Figure 7). The height parameter of the combination displayed on the x axis indicated the 350 

similarity measure between two sets. Seven clusters within the data set were defined, using the so-called gap 351 

statistic method, which compared the total intra-cluster variation for different cluster quantities with their expected 352 

values under null reference distribution of the dataset generated with use of Monte Carlo simulations during the 353 

sampling procedure (Tibshirani et al., 2001). The original series of IOJ containing the missing observations 354 

(marked as 31) was introduced to the analysis, for which the distribution estimation was performed (Figure 7). The 355 

source set of observations was included within one cluster, marked as 4 with the sets: 1, 3, 20, and 24, which in 356 

the next steps will be considered as plausible and safe imputation options with regards to variance and distribution 357 

criteria. The distance obtained by the pair of objects 1 and 31 significantly differed from the other objects within 358 

cluster 4. Despite the fact that it indicates the best match according to the adopted criteria, it is advisable to perform 359 

a similarity test (e.g. z-statistic) in order to recognize the differences between the objects cluster (Ben-Zvi, 2004).   360 



Figure 7. The dendrogram created for set of plausible imputation options for IOJ variable was based on bottom-up, distribution based 361 
hierarchical clustering algorithm. During consecutive model runs, seven separate clusters were distinguished. The 4th cluster (enclosed with 362 
blue frame) contains the original IOJ variable (marked with the number 31) entered for the analysis. High similarity in the context of 363 
distribution was recognized for imputation set no. 1. The next options of field completion with similar distribution are found in sets: 3, 20, and 364 
24. The sets from the fourth cluster, in the given prioritization order, constituted a pool of plausible solutions to the problem of missing values. 365 

 366 

3.5  Data imputation results 367 

The results of data imputation for the IOJ variable were presented in the form of sequences of corresponding series, 368 

arranged according to Lake ID in the original dataset (Figure 8). It allowed for the tracing of the imputation process 369 

within Cluster No. 4, as well as the final verification of the results, using polynomial regression on each of the 370 

retrieved series. Treating the process-aspect approach to data imputation is one of the most informative ways of 371 

presenting the process-aspect approach to data imputation. It proved to be highly informative to decision-makers 372 

and water-quality experts during the presentation of results and project-group meetings. The second way for 373 

visualizing the imputation process is to arrange lakes in order of catchment area, allowing for simultaneous 374 



assessment of the degree of missing observations in spatial terms (Figure 9). The method also makes it simple to 375 

partition the sets so that specialists working on specific catchment assessments can accurately evaluate the scope 376 

of the problem in their work area and compare it to the situation in other task groups. Furthermore, the visualization 377 

enables for cross-referencing of individual implementation outcomes across the cluster (red dashed lines) and 378 

tracing of the data imputation process to identify undesired outliers generated by the method used. 379 

 380 

 381 

Figure 8. The chart shows a compilation of the four imputation sets (in order of priority) against the original IOJ value evolution of the 382 
evaluation set. Dashed red lines indicate where data imputation has been performed. For each of the options within the cluster no. 4, the 383 
statistics of the shaping of the variable allow for "safe" imputation of data and the use of the set in subsequent analyzes on the way to obtain 384 
a reliable indicator of the ecological condition of lakes. 385 

 386 



 387 

Figure 9. The distribution of clustered imputations shows point concentrations around values which triggered separation. The characteristics 388 
of each cluster can be distinguished during the reverse reasoning making it possible to determine entry requirements for next iterations of 389 
imputation algorithm when assessing dataset obtained in currently ongoing data collection campaign.   390 

 391 

4. Discussion 392 

This research study underlying this paper focused on how to deal with missing-at-random data curation and 393 

imputation in the process of assessing the ecological status of lake ecosystems. The study was based on a collection 394 

of 499 lakes in Poland, with missing values detected to various degrees. A methodology was designed, based on 395 

the authors' knowledge and support in the field of expert evaluations, allowing for the imputation of data gaps to 396 

be implemented. The technique is demonstrated with an example from an authentic dataset used in the ecological 397 

status assessment with the goal of submitting the results to European Union bodies in relation to WFD obligations 398 

(Reyjol et al., 2014). The presented scheme of conduct is a complementary element to the previous works, where 399 

the stage of incomplete information management is part of an extensive algorithm of ecological assessment of 400 

lakes. The tools used in the study allowed for the selection of four ranked propositions of value imputation for the 401 

IOJ index, which was characterized by a 15% share of incomplete values. Data imputation, especially in the case 402 

of the identification of relatively large gaps in data sets (e.g.> 5%), is always associated with the risk of introducing 403 

bias into the process, which may negatively (‘mis-informatively’) affect the final results and their interpretation 404 

(Krueger, 2017). As a result, it's critical to understand the facts and intentionally employ the various strategies for 405 

addressing flaws. Testing the susceptibility of values to outliers is a useful practice which is part of the input data 406 

recognition stage (Jackson and Chen, 2004). Due to the emerging need to analyze lakes in a regional (or sub-basin) 407 

perspective, the future role of ecological status indicators, which will be used to make decisions at higher (supra-408 



local) levels of water resource quality management, should be taken into account (Mammides, 2020; Rivera-409 

Rondón and Catalan, 2020; Wu et al., 2021). It is connected with going beyond the locally understood and 410 

evaluated indicators (Baldera et al., 2018; Kraemer et al., 2020). This is one of the challenges of the ecological 411 

evaluation of aquatic ecosystems, as the management of gaps in large-scale data requires the development of 412 

methods of analyzing the relationships between indicators and their components in the context of spatial and 413 

temporal relationships between the objects of assessment (Kolada et al., 2014; Rossaro et al., 2012; Werner et al., 414 

2016). This may ultimately lead to the observation of a phenomenon referred to as data drift, defined as a difference 415 

in variation of the data used to construct an initial assessment framework and the observations feeding the 416 

assessment model in the next round of reporting (Brock and Carpenter, 2012; Koehnken et al., 2020). Taking the 417 

changes in ecosystems and their internal relationships into account, especially in the era of the identified impact 418 

of climate change effects, new factors may affect the variability of the ecological state of lakes over time. Thus, it 419 

is critical to create a consistent procedure for detecting data drift, defining drift percentage criteria, and configuring 420 

pro-active alerts so that the necessary action may be performed (Dong et al., 2018; Gupta et al., 2020). Shift may 421 

manifest itself in the data at the level of their covariate shift, therefore steering with data imputation should 422 

minimize the effect of completions on the distribution of the variable (Hilt et al., 2017; Martin et al., 2020). 423 

The clustering approach used in this work to select plausible options is an alternative solution to the pooling stage 424 

within the multiple imputation process. The classification algorithm used is, comparatively speaking, easy to 425 

interpret (Cohen-Addad et al., 2019). The user also does not need to define the number of clusters a-priori. 426 

However, during the process arbitrary decisions are made (distance metric, linkage criterion), which prompts the 427 

expert to monitor the results in order to react quickly to noticeable errors, e.g. related to the use of mixed data 428 

types (Karthikeyan et al., 2020; Zhang et al., 2013). In addition, the algorithm is sensitive to the increase in the 429 

number of dimensions in the data, so an iterative analysis of successive variables requiring imputation is 430 

recommended (Contreras and Murtagh, 2015). The Ward criterion used allowed for the creation of clusters based 431 

on a minimal increase in degree in within cluster variance making the approach less susceptible to noise related to 432 

multiple imputation results (McInnes et al., 2017).  433 

Thus, the main limitations of the proposed approach are of two types. First, in terms of the algorithms used, the 434 

method inherits some of their inherent limitations. In the case of the applied data imputation using the MICE 435 

method with the use of random forest function, the limitations result from the need to control the results of 436 

supplements. The expert should control the process so as not to allow indiscriminate acceptance of results 437 

significantly deviating from the observed data. This may affect the second element of the process, which is 438 



hierarchical clustering, which is sensitive to the presence of noise and outliers. This applies to both the original 439 

input data and the imputation results. The second type of limitation is also related to noise, however, it concerns 440 

noise generated on the side of expert judgment. The method does not allow for the complete elimination of 441 

cognitive errors resulting from the participation of expert decisions characterized by their own systematic noise or 442 

bias.  443 

One of the indirect limitations of the whole assessment system, which this methodology also inherits, results from 444 

the dependence on measurement timing and hydrological background for subsequent analyzes. As the analysts 445 

work within a given time window, the measurement reports contain data that represent the ecological situation of 446 

the reservoir considered to characterize it in terms of "typical state". In practice, this means that the samples of the 447 

studied variables from the extremal hydrological periods (drought, flood) are included in the reports for separate 448 

analyzes in the research dealing with extraordinary situations. Thus, the relationship between extraordinary 449 

measures and “normal” periods is neglected. Undoubtedly, periods of ecological stress can affect the quality and 450 

values of measurements, being for example a delayed ecosystem response to critical phenomena. Although striving 451 

for normality of results through their early averaging and sampling in arbitrarily selected "typical" periods has a 452 

mitigating effect on the variance of results, the noise generated at the early stage of the assessment is not measured 453 

at present. 454 

An important positive effect of the proposed imputation process is leading the data set to the smooth transition of 455 

subsequent evaluation steps, where specialists often use tools that function only with non-missing input. Due to 456 

the key nature of the input data management process, the transparency aspect of the analytical procedures used is 457 

not without significance (Romañach et al., 2014; Zasada et al., 2017). Methods that include data visualizations as 458 

inseparable elements of data processing are beneficial to supporting the ability to explain actions taken, especially 459 

at the level of expert - decision makers interactions, which are critical for the often overlooked data-sense making 460 

stage of ecological assessment (Arciniegas et al., 2013).  461 

    462 

5. Conclusions 463 

The missing data treatment scheme presented in the paper is aimed at systematizing the value imputation stage so 464 

that it is possible to perform an efficient, reproducible solution ready to implement within existing lake ecological 465 

state assessment methods. The analyses included eight variables. There were gaps in the measurement data for five 466 

of them. The number of missing items indicated the need to imputate data for four variables.  An approach was 467 

used based on random forest multiple imputation with predictors examination. A hierarchical algorithm with a 468 



Ward's variance minimization criterion was used to cluster plausible imputation solutions obtained in previous 469 

step. There were seven clusters of similar additions found. Cluster 4. contained the original data set as well as four 470 

completed sets that met the membership criteria. The results were presented as a dendrogram in the case of the 471 

selection of clusters, as well as with the help of ordered trajectories of the shaping of the variable for the set 472 

containing missing values in relation to the four possible supplementary series according to the adopted criteria. 473 

The stage of missing data treatment was indicated as an integral part of the process of assessing the ecological 474 

condition of lakes, influencing the selection of modeling and classification methods in subsequent stages of 475 

analyzes related to the proper ecological assessment and prioritization of ecosystems in terms of the selection of 476 

remedial solutions. The authors note the positive impact of methodological and visual communication on the 477 

experts-analyst-decision maker line, which should be carried out with the transparency of the process (Moallemi 478 

et al., 2020). This can be facilitated, for example, with the use of available data visualization techniques. This 479 

research concludes the three-step approach to lake ecological assessment, which now consists of 1) data 480 

preprocessing and missing values treatment, 2) model-based assessment, and 3) lake prioritization for remedial 481 

purposes. Taking into account the holistic view of the research results, the proposed solutions are aimed at 482 

systematization of the process of supplementing gaps in data on measurements, in contrast to the previous omission 483 

of this issue in the reports on the assessment of the ecological state of lakes. The role of the expert limnologist was 484 

also unclear in the course the analyzes. As a result, some lakes were only assessed by experts, while others using 485 

analytical approaches. Some of the assessments were carried over from previous measurement campaigns. This 486 

resulted in a conflict of results in the event that the lake apparently did not achieve environmental objectives, 487 

despite the implemented remedial measures. Thus, a certain kind of data-result asymmetry occurred. The proposed 488 

fragment of the methodology was therefore aimed at organizing the assessment process by: 1) defining the role of 489 

an expert in the course of analyzes, 2) introducing a consistent methodology of data pre-processing, which will be 490 

passed to expert judgment only in the next steps, 3) enabling the use of effective algorithms in the assessment, 491 

which are sensitive to data deficiencies (e.g. kSVM or PCA ), and 4) enabling the preview of the entire assessment 492 

process so that it can be corrected or further improved in the future. With reference to the results of the next 493 

campaign to assess the ecological status of waters, future research should focus on assessing the scale of the 494 

phenomenon of ecological data drift, which, based on the observed climate change, anthropological pressure and 495 

loss of biodiversity, may have a significant impact on the broad concept indicator construction for lake water 496 

ecological assessment. 497 

 498 



6. Software and data availability 499 

The research was conducted with use of software providing: data visualization (Tableau 2021.1.1, 500 

https://www.tableau.com/), data modelling (R 4.0.5 via RStudio 1.4.1106 „Tiger Daylily”, https://www.r-501 

project.org/, https://rstudio.com/), and algorithm development (draw.io 15.9.1, https://www.diagrams.net/). 502 

Appendix B contains an R language script that converts all of the analysis procedures in this paper into an 503 

executable, reproducible workflow. The materials for this work are available from the HydroSource platform: 504 

https://www.hydroshare.org/resource/ebec024018be4c2ba04cbfa85bb14d8e/ in the repository titled 505 

"LakeEcoMissingData". Accessed as Resource: a) R-code for data preprocessing, imputation and clustering as 506 

“LakesMissingRcode.R”, b) XML file of featured workflow schema as “LakeMissingWorkFlow”, c) CSV file 507 

containing raw measurement results treated as input to this analysis, d) a set of results of the statistical analysis of 508 

the variables involved in the study. 509 
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