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Graphical Abstract



Highlight 

 Spatiotemporal (2012-2016) carbon emissions in two mega-urban

regions are modeled.

 Urban forms from LCZ maps, NTL images, and a panel data model are

used.

 The results show high accuracy (R2=0.98) and better reveal intra-urban

variations.

 Urban compaction and natural landscapes are found to relate to low

emissions.

 Scattered low-rise buildings are associated with increased carbon

emissions.
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Modeling spatiotemporal carbon emissions for two 1 

mega-urban regions in China using urban form and 2 

panel data analysis 3 

Abstract 4 

Spatiotemporal monitoring of urban CO2 emissions is crucial for developing strategies and 5 

actions to mitigate climate change. However, most spatiotemporal inventories do not adopt 6 

urban form data and have a coarse resolution of over 1 km, which limits their implications 7 

in intra-city planning. This study aims to model the spatiotemporal carbon emissions of the 8 

two largest mega-urban regions in China, the Yangtze River Delta and the Pearl River 9 

Delta, using urban form data from the Local Climate Zone scheme and landscape metrics, 10 

nighttime light images, and a year-fixed effects model at a fine resolution from 2012 to 11 

2016.  The panel data model has an R2 value of 0.98. This study identifies an overall fall in 12 

carbon emissions in both regions since 2012 and a slight elevation of emissions from 2015 13 

to 2016. In addition, urban compaction and integrated natural landscapes are found to be 14 

related to low emissions, whereas scattered low-rise buildings are associated with rising 15 

carbon emissions. Furthermore, this study more accurately extracts urban areas and can 16 

more clearly identify intra-urban variations in carbon emissions than other datasets. The 17 

open data supported methodology, regression models, and results can provide accurate and 18 

quantifiable evidence at the community level for achieving a carbon-neutral built 19 

environment. 20 

https://www.editorialmanager.com/stoten/viewRCResults.aspx?pdf=1&docID=221386&rev=1&fileID=6562805&msid=e2650006-f950-49bc-9973-97b809e3fe7b
https://www.editorialmanager.com/stoten/viewRCResults.aspx?pdf=1&docID=221386&rev=1&fileID=6562805&msid=e2650006-f950-49bc-9973-97b809e3fe7b
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1. Introduction26 

Climate change has become an important challenge for global sustainable development. 27 

As the top carbon producer in the world, China has been deeply involved in global efforts 28 

to mitigate climate change. In 2020, China pledged to peak carbon emissions by 2030 and 29 

achieve carbon neutrality by 2060 (Xinhua, 2020), which is the first carbon neutrality 30 

promise from developing countries. Cities account for more than 70% of total carbon 31 

dioxide (CO2) emissions (IEA, 2021). Hence, they are the principal causes of climate 32 

change and the major grounds for achieving carbon neutrality.  33 

34 

Spatiotemporal monitoring of CO2 emissions in urban areas is crucial for understanding 35 

the dynamic patterns and drivers of the carbon cycle and is the foundation for devising 36 

strategies and actions to mitigate climate change (Rong, Zhang, Qin, Liu, & Liu, 2020; 37 

Jincai Zhao et al., 2019). A reliable fine-resolution CO2 emission inventory will also be fed 38 

into the baseline scenarios for future carbon estimations for carbon peak and neutrality 39 

goals. A group of scientists working on climate change issues has further appealed to 40 

prioritize high-quality and fine-resolution emission inventories and to understand the 41 
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interactions between cities and climate for climate change mitigation (Bai et al., 2018). 42 

Therefore, it is imperative to conduct an intensive examination of the spatiotemporal 43 

heterogeneity of urban CO2 emissions in China. In particular, the Pearl River Delta (PRD) 44 

and the Yangtze River Delta (YRD) are the two largest urban agglomerations in China, 45 

with approximately 300 million residents and accounting for about 20% of the country’s 46 

carbon emissions (Shan et al., 2022). Understanding the carbon emissions of these two 47 

mega-urban regions is critical for strategic carbon emission reduction at both national and 48 

international scales. Thus, this study focuses on the spatiotemporal CO2 emissions of the 49 

YRD and PRD regions. 50 

51 

In order to assess carbon emissions and facilitate practical mitigation strategies, diverse 52 

methodologies have been developed to model spatiotemporal variations in carbon 53 

emissions. The bottom-up approach provides the most accurate estimations from emission 54 

sources (Gurney et al., 2009; J. Wang et al., 2014). Although securing the most precise 55 

estimation from emission sources, bottom-up approaches generally have limited 56 

applications in spatiotemporal analysis owing to the lack of detailed data about emission 57 

sources, energy consumption, geographical locations, etc. Moreover, inventories from 58 

bottom-up methods often have a limited time span and are difficult to perform in multi-59 

temporal analyses.  60 

61 

The top-down method distributes the emissions from a large spatial unit to the required 62 

grid based on certain proxy data (Doll, Muller, & Elvidge, 2000). Population and nighttime 63 
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light (NTL) satellite images are the key proxy data for predicting carbon emissions in top-64 

down models because of their proper representation of human activities, large spatial 65 

coverage, and frequent temporal resolution (Doll et al., 2000; Ghosh et al., 2010; Ou, Liu, 66 

Li, & Shi, 2015). In particular, NTL data can reflect the socioeconomic situations on the 67 

Earth’s surface at high spatiotemporal resolution during nighttime (Christopher D Elvidge 68 

et al., 1997; Small, Pozzi, & Elvidge, 2005), thereby offering continuous, frequent, 69 

consistent monitoring of energy activities and carbon emissions. However, these two 70 

datasets have some notable limitations. Population data can reflect human settlement, but 71 

they often have a coarse spatial resolution from demographical data and are insufficient to 72 

reflect energy activities in non-residential areas. NTL data may underestimate energy 73 

activities in non-lit areas such as offices, industries, power plants, and road networks. 74 

Therefore, a comprehensive proxy dataset covering various urban structures and land cover 75 

types is necessary for a more accurate demonstration of the spatial patterns of carbon 76 

emissions.  77 

 78 

Urban development and urban forms are the key factors affecting the distributions and 79 

magnitude of carbon emissions (C. Li, Song, & Kaza, 2018; Zhilin Liu, Ma, & Chai, 2016; 80 

Y. Wang, Hayashi, Chen, & Li, 2014; Xia, Zhang, Sun, & Li, 2017). The effect of urban 81 

landscape on the transmission and diffusion of air pollutants can be more profound in high-82 

density urban areas (Yuan, Ng, & Norford, 2014). However, urban forms, specifically 83 

urban morphology and land use/land cover information, are rarely used as proxy data for 84 

predicting carbon emissions owing to data availability (Cai et al., 2021). Neglecting urban 85 
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form in modeling carbon emissions may influence the accuracy of the model and lead to 86 

an incomplete understanding of the impact of urban form for further planning strategies.  87 

 88 

In addition, intra-city planning strategies are substantial for the climate change mitigation 89 

action plan (Penazzi, Accorsi, & Manzini, 2019). Cities have proposed their action plan at 90 

the city level to facilitate carbon emission mitigation strategies and develop low-carbon 91 

cities (Khanna, Fridley, & Hong, 2014). However, the spatial resolution of previous top-92 

down inventories in China was usually greater than 1 km. (B. Cai et al., 2018; M. Li et al., 93 

2017), which is still insufficient to characterize the heterogeneity of carbon emissions 94 

within cities and impedes further application in intra-city planning. Inventories with finer 95 

spatial resolution are essential for a more precise spatial distribution and more specific 96 

actions at the district and community levels.  97 

 98 

Moreover, ordinary least squares (OLS) models (Meng, Graus, Worrell, & Huang, 2014; 99 

Ou, Liu, Li, & Shi, 2015; Jincai Zhao, Chen, Ji, & Wang, 2018; Juchao Zhao, Zhang, Yang, 100 

Zhu, & Ma, 2020) have been frequently used in the top-down method to predict carbon 101 

emissions from NTL images. Considering that the relationship between the predictors and 102 

carbon emissions can vary over space and time, regular OLS regression models may be 103 

biased because of this type of heterogeneity. Adding time or space fixed effects to models 104 

can be a highly efficient way to address these invariant characteristics and assess the net 105 

effect of the predictors on the response variable. Models with city/province fixed effects 106 

have previously been used to estimate CO2 emissions (Cui et al., 2019; K. Shi et al., 2016; 107 
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Zhang, Pan, Zhang, & Xu, 2021). The time-fixed effects that are necessary for controlling 108 

the time-specific characteristics of carbon emissions in different years should also be 109 

considered in the regression model.  110 

 111 

In order to address the limitations of previous studies, the objectives of this study are:  112 

i. To develop a time-fixed effects model to estimate spatiotemporal carbon emissions at a 113 

fine resolution using open urban form data 114 

ii. To understand the impact of urban form on carbon emissions of the PRD and YRD regions 115 

iii. To predict carbon emissions of both selected regions during the period 2012 – 2016 116 

iv. To analyze the spatiotemporal variations of carbon emissions of the two regions 117 

 118 

2. Material and methods 119 

2.1 Study area 120 

With approximately 20% of China's population and 30% of its gross domestic product 121 

(GDP), the PRD and YRD regions are the two fastest growing and leading mega-urban 122 

regions in China (Figure 1). The PRD region is located on the southeast coast of China, 123 

covering a total area of 56,000 km2 and consisting of nine megacities in Guangdong 124 

Province and two special administrative regions, namely Hong Kong and Macao. As one 125 

of the priority economic development zones of China, the PRD region is poised to become 126 

the largest bay area in the world with a vital role in facilitating low-carbon and sustainable 127 

development (Zhou, Shan, Liu, & Guan, 2018). In July 2010, the National Development 128 
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and Reform Commission of China released the Notice on the National Pilot Project of Low-129 

Carbon Provinces and Cities, and the PRD region was selected as a pilot area for the 130 

national program (National Development and Reform Commission of China, 2010). The 131 

Guangdong government also regards green and low-carbon development in the region as a 132 

priority to achieve sustainable development and mitigate climate change.  133 

134 

The YRD region comprises the Shanghai municipality, as well as cities in Jiangsu, 135 

Zhejiang, and Anhui Provinces. It has become one of the largest megalopolises in the world 136 

because of the dramatic and rapid urbanization in this region. In 2019, the resident 137 

population of the YRD region exceeded 200 million, accounting for 16.2% of the total 138 

population of the country (State Council of China, 2019). In order to meet the huge energy 139 

consumption demand in the region, the energy system in the YRD region provides a strong 140 

guarantee of rapid economic and social development. A national development strategy, 141 

YRD Urban Agglomeration Development Plan was released in 2018 to address the low-142 

carbon development of the region and to enhance the efficiency of urban land use in the 143 

region. Thus, to achieve sustainable development of the two mega-urban regions and 144 

mitigate global climate change, it is urgent to undertake carbon emission monitoring and 145 

spatial optimization strategies to transform the two regions into low-carbon, clean, and 146 

efficient urban agglomerations.  147 

148 
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 149 

Figure 1 Locations of the study areas (a), cities in the Yangtze River Delta region(b), and 150 

cities in the Pearl River Delta region (c) 151 

 152 

2.2  Data 153 

2.2.1 Statistical data 154 

Carbon emissions from fossil fuel consumption were calculated for all 30 cities (11 cities 155 

in the PRD region and 19 cities in the YRD region). The latest emission factors were 156 

retrieved from Zhu Liu et al. (2015). Data on energy consumption were acquired from the 157 
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energy balance table of the statistical yearbooks of cities and the country. Socioeconomic 158 

information including GDP and population data for each city, was also retrieved from the 159 

city statistical yearbooks.  160 

2.2.2  Satellite images 161 

The NPP-VIIRS NTL data has been emerging as a new source of NTL images with a fine 162 

spatial grid and free of saturation (Christopher D Elvidge, Baugh, Zhizhin, Hsu, & Ghosh, 163 

2017). It provides the latest nightlight information since 2012 and has a spatial resolution 164 

of 500 m ×  500 m higher than the DMSP-OLS data (1 km ×  1 km). Furthermore, 165 

comparative studies demonstrate that the NTL data from the NPP-VIIRS can more 166 

accurately represent energy consumption as well as carbon emissions than the DMSP-OLS 167 

(Chen, Zhang, Wu, & Cai, 2020; Christopher D. Elvidge, Baugh, Zhizhin, & Hsu, 2013; 168 

Ou, Liu, Li, Li, & Li, 2015).  Therefore, NPP-VIIRS is more capable of predicting carbon 169 

emissions and shows promising predictive results.  170 

 171 

This study chose VIIRS Stray Light Corrected Nighttime Day/Night Band Composites as 172 

the primary proxy data for predicting spatiotemporal carbon emissions (Mills, Weiss, & 173 

Liang, 2013). For each year, the final output of the NTL image was a collection of the mean 174 

DN value of the pixels among all monthly products within the year. 175 

 176 

As the NPP-VIIRS data have been available since 2012, the study period of this study was 177 

from 2012 to 2016 to include the most complete time span of the NTL data and statistical 178 

data. Furthermore, as the carbon emissions of megacities in China have been relatively 179 
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stable since 2012 (Shan et al., 2017), the results from this study period can still provide 180 

insight into the current and future carbon emission characteristics of such mega-urban 181 

regions.  182 

183 

2.2.3 Local climate zone (LCZ) maps 184 

Urban forms can be characterized by urban morphology and land use/land cover (Ren et 185 

al., 2017). The LCZ scheme proposed by Stewart, Oke, and Krayenhoff (2014), provides a 186 

standardized way to characterize global cities based on their morphology and function and 187 

is therefore suitable for representing urban forms. Compared with previous land use/land 188 

cover products with a single urban class, it provides a detailed investigation of the built 189 

environments and characterized the land surface structure and cover into 10 built types 190 

(LCZ 1-10) and seven natural types (LCZ A-G) (Figure 2).  191 

192 

The scheme has recently gained extensive applications in urban studies because it provides 193 

a detailed description of urban structure, uses publicly available data and software, and 194 

serves as an internationally recognized standard for the uniform classification of cities 195 

across the globe. In particular, the LCZ scheme has demonstrated strong capability in 196 

characterizing the spatial distribution of air pollutants (Y. Shi, Ren, Lau, & Ng, 2019). 197 

Accounting for urban morphology and land cover through LCZ classification can provide 198 

a new opportunity to model the spatial variation of carbon emissions. 199 
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 200 

Figure 2 LCZ map of the PRD and YRD regions in 2016 201 

 202 

The LCZ maps with 100 m resolution of the two regions from 2012 to 2016 were retrieved 203 

from previous studies (Cai, Ren, Xu, Lau, & Wang, 2018; Chung, Xie, & Ren, 2021; R. 204 

Wang et al., 2019). They were produced based on various remote sensing products such as 205 

Landsat 8, a digital elevation model, Sentinel-1, Sentinel-2, and a random forest classifier. 206 

The accuracy assessment showed that their overall accuracy was approximately 73% (M. 207 

Cai et al., 2018; Chung et al., 2021; R. Wang et al., 2019).  208 

 209 

In order to further link the LCZ maps with land use information for a holistic understanding 210 

of the urban structure, this study calculated the percentage of different Essential Urban 211 

Land Use (EULUC) developed by Gong et al. (2020) within each LCZ. The EULUC 212 
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depicts land use information for China in 2018; therefore, we used the LCZ maps in 2016, 213 

which is the closest in time to link the land use information.  214 

2.3 Research steps 215 

2.3.1 City-level carbon emissions estimation  216 

Emissions from fossil fuels were calculated based on fossil fuel consumption information 217 

and the corresponding emission factors using the IPCC approach (Equation 1)(IPCC, 218 

2006). In this study, the latest emission factors (Zhu Liu et al., 2015) were adopted. Annual 219 

fossil fuel consumption data were obtained from the energy balance table of the statistical 220 

yearbook of each city. 221 

 222 

CEi  =  ADi × EFi (Equation 1) 

 223 

 224 

where 𝑖 represents fossil fuel types summarized by the National Bureau of Statistics of 225 

China (2016). AD represents fossil fuel consumption and EF (unit: gCO2/MJ) is the 226 

emission factor that converts the energy consumption to carbon emissions. The city-level 227 

carbon emissions can be calculated by aggregating the emissions from all fossil fuel types 228 

using (Equation 2). 229 

 230 
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 231 

CE = ∑𝐶𝐸𝑖

𝑛

𝑖=1

 
(Equation 2) 

 232 

2.3.2 Urban form factors  233 

According to the LCZ maps, the natural LCZ classes (LCZ A-G) were integrated into one 234 

class as the natural land cover. To focus on the impact of urban compaction, LCZ 1-6 were 235 

reclassified into two categories: compact urban forms (LCZ 1-3), and open urban forms 236 

(LCZ 4-6). Therefore, 13 LCZ classes (12 built classes and one natural class) were analyzed 237 

in this study.  238 

 239 

The urban form of the study area was quantified using a series of metrics that can offer 240 

detailed and comprehensive spatial patterns of different land use/landscape types at both 241 

class and landscape levels based on LCZ maps (Haines-Young & Chopping, 1996; Neel, 242 

McGarigal, & Cushman, 2004). The class-level landscape metrics can describe spatial 243 

patterns of classes within a predefined land lot area, including the percentage of landscape 244 

types (PLAND), Largest Patch Index (LPI), Aggregation Index (AI) (He, DeZonia, & 245 

Mladenoff, 2000), and Connectance Index (CONNECT) (Tischendorf & Fahrig, 2000). 246 

Landscape-level metrics can provide information on the diversity of land cover and land 247 

use types, including the contagion index (CONTAG) and Shannon’s Evenness Index (SEI). 248 

The definitions and computation methods of these metrics are summarized in Table 1. 249 

There were 52 class-level landscape metrics (13 LCZ classes for each class-level landscape 250 

metric) and two landscape-level metrics urban form indicators that were deployed as urban 251 
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form factors. The 54 metrics were calculated at a 500 m grid level on the Fragstats platform 252 

(version 4.2.1) (McGarigal, Cushman, & Ene, 2012).  253 

 254 

Table 1 Landscape metrics adopted in this study 255 

Landscape 

metrics 

Definition Equation*  

PLAND Percentage of the landscape of 

class i 

𝑃𝐿𝐴𝑁𝐷𝑖 =
∑ 𝑎𝑖𝑗

𝑛
𝑗=1

𝐴
(100) 

LPI Percentage of the largest patch 

of the landscape of class i 

𝐿𝑃𝐼𝑖 =
𝑚𝑎𝑥 𝑗=1

𝑛 (𝑎𝑖𝑗)

𝐴
(100) 

AI Percentage of like adjacencies 

to the maximum potential like 

adjacencies of the 

corresponding class i 

𝐴𝐼𝑖 = [
𝑔𝑖𝑖

𝑚𝑎𝑥 → 𝑔𝑖𝑖
] (100) 

CONNECT Percentage of functional joins 

between patches of class i to 

the total number of potential 

joins between all 

Patches of the class 

𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝑖 = [
∑ 𝑐𝑖𝑗𝑘

𝑛
𝑗≠𝑘

𝑛𝑖(𝑛𝑖 − 1)
2

] (100) 
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CONTAG Observed contagion to the 

maximum potential contagion 

for the provided classes 

𝐶𝑂𝑁𝑇𝐴𝐺

= 1

+

[

∑ ∑ [𝑃𝑖 ∗
𝑔𝑖𝑞

∑ 𝑔𝑖𝑞
𝑚
𝑞=1

]𝑚
𝑞=1

𝑚
𝑖=0

2 𝑙𝑛 (𝑚) 

∗ [𝑙𝑛  (𝑃𝑖 ∗
𝑔𝑖𝑞

∑ 𝑔𝑖𝑞
𝑚
𝑞=1

) ]

]

(100) 

SHEI Area composition and richness 

calculated based on the 

percentage of each class and 

the number of classes 

𝑆𝐻𝐸𝐼 =
−∑ (𝑃𝐿𝐴𝑁𝐷𝑖 ∗𝑙𝑛 𝑃𝐿𝐴𝑁𝐷𝑖  )

𝑚
𝑖=1

𝑙𝑛  𝑚 

256 

* i and q are the classes of the landscape; j and k represent the patches in the landscape;257 

m is the total number of classes within the landscape; n is the total number of patches in 258 

the landscape; a is the area of the patch; A is the area of the landscape; g refers to the 259 

number of adjacencies between pixels of patch types using the double-count method; and 260 

c refers to the functional joins (0 = not joined, 1 = joined).  261 

262 

263 

264 
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Furthermore, to focus on carbon emissions in urban areas, this study excluded grids where 265 

the natural landscape is completely dominant, that is, grids where the LPI of the natural 266 

LCZ is 100%. 267 

 268 

 269 

2.3.3 Statistical analysis 270 

 271 

The NTL data and 54 urban form factors were regarded as potential independent variables 272 

whereas the city-level carbon emissions were the dependent variable. Panel data are at the 273 

city-year level. The statistical model assumes a linear relationship between the predictors 274 

and CO2 emissions at the city level, and such a relationship can also be applicable at the 275 

grid level (500 × 500 m2).  276 

 277 

In order to eliminate redundancies of the predictors, we performed Least Absolute 278 

Shrinkage and Selection Operator (LASSO) regression to determine the optimal subset of 279 

predictor variables from all predictors. LASSO variable selection is a supervised algorithm 280 

that screens variables that are closely associated with the response variables from a vast 281 

number of candidate predictors (Tibshirani, 1996) and is therefore suitable for the relatively 282 

large prediction datasets in this study. We further refined the selected variables from the 283 

LASSO regression according to the rule of Variance Inflation Factor (VIF)<5 to include 284 

only non-collinear variables. 285 

 286 
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The relationship between city-level carbon emissions and the selected predictors can be 287 

established using multiple linear regression (Equation 3): 288 

 289 

  
CEij = α1 Vαr1  +  α2 Vαr2 + …+ αn Vαrn  +  γ + ε𝑖𝑗  

 

(Equation 3) 

where CEij is the city-level carbon emission for city i in year j (2012-2016). α1..., αn are 290 

the estimated coefficients of the predictors Vαr1 …,Vαrn. γ is the intercept and ε𝑖𝑗 is the 291 

residual of the model.  292 

 293 

 294 

Further to the basic model mentioned above, this study considered a linear regression 295 

model with time-fixed effects to capture the possible time trends and involve temporal 296 

heterogeneity for a more accurate and stable prediction of carbon emissions. The 297 

relationship between the predictors and city-level carbon emissions was established, 298 

accounting for time-fixed effects (Equation 4): 299 

 300 

CEij = CEij = α1 Vαr1  +  α2 Vαr2 + …+ αn Vαrn  +  γ + 𝜷𝒋

+ ε𝑖𝑗 

 

(Equation 4) 

 301 

where 𝛽  denotes the year-specific adjustment to intercept γ in year 𝑗 . The model was 302 

further validated using the F-test and Hausman test to decide between fixed or random 303 
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effects. Once the relationship was proven by the tests, it was valid to use the selected 304 

predictors as proxies to estimate CO2 emissions via a top-down model. This statistical 305 

relationship was then applied to all predictors at the grid level (500 m) for each year to 306 

obtain the spatiotemporal carbon emissions.  307 

In addition, the coefficient of each variable was standardized to evaluate the effect of each 308 

predictor ((Equation 5). 309 

310 

𝛼∗ =
𝑆Var

𝑆𝐶𝐸
× 𝛼 

(Equation 5) 

where 𝑆Var   and 𝑆𝐶𝐸  represent the standard deviations of the predictor and the carbon 311 

emissions, respectively, and 𝛼 is the coefficient of the corresponding predictor in (Equation 312 

4). 313 

314 

Furthermore, the sum of the projected carbon emissions on all grid cells within the 315 

administrative boundary of the city can differ from the values in Section 2.3.1. To be 316 

consistent with the city-level carbon emissions in the section, we further refined the 317 

predicted carbon emissions for each pixel (Equation 6) for each year to adjust the gridded 318 

CO2 emissions (Cui et al., 2019): 319 

320 

𝐶𝐸𝑝 = 𝑃𝐸𝑝 ×
𝐶𝐸𝑖

𝑃𝐸𝑖

(Equation 6) 
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 321 

where 𝐶𝐸𝑝 is the adjusted carbon emission value for pixel p, PE is the predicted carbon 322 

emission based on (Equation 4), 𝐶𝐸𝑖 denotes the city-level carbon emission for city i from 323 

Section 2.3.1, and 𝑃𝐸𝑖 is the sum of predictive carbon emission values within city i. 324 

 325 

 326 

3. Results  327 

3.1 City-level carbon emissions 328 

 329 

Five representative metropolises in the two regions, Shanghai, Guangzhou, Hangzhou, 330 

Shenzhen, and Hong Kong, were selected to present their city-level carbon emission 331 

(Figure 3).  Shanghai, the most populous and economically prosperous city in China, has 332 

the highest annual carbon emissions of approximately 200 Mt. The year 2013 was the 333 

turning point for carbon emissions in Shanghai, when carbon emissions started to decrease. 334 

Guangzhou is the capital and largest city in Guangdong Province. A significant drop in 335 

emissions has also been observed in Guangzhou since 2013, with emissions down by half 336 

to approximately 60 Mt. The emissions in Hangzhou, the capital city of Zhejiang province, 337 

peaked in 2014 during the study period. Shenzhen is the first special economic zone in 338 

China and is recognized as one of the fastest-growing megacities in the world. From 2012 339 

to 2015, the total emissions in Shenzhen showed a stable pattern, even under high-speed 340 
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urban development, which may be attributed to its energy transformation into innovation-341 

based industries. Similar to Shenzhen, the carbon emissions in Hong Kong also showed 342 

fewer fluctuations from 2012 to 2016.  343 

344 

Carbon emissions per capita (Figure 3 (b)) are relatively low in Shenzhen and Hong Kong 345 

and are below the national average of 7.1 tons (The World Bank, 2020). Shenzhen had the 346 

lowest emissions per person, which remained stable during the study period. The per capita 347 

carbon emissions of Hong Kong were also relatively low, peaking in 2014. Guangzhou and 348 

Hangzhou had the largest emissions per person, at approximately 12 tonnes in 2012 and 349 

2013. The per capita emissions of Guangzhou dropped by 30% in 2014, whereas 350 

Hangzhou's per capita emissions began to decline in 2014. The emissions in Shanghai were 351 

close to 8 tonnes per person during the study period and began to decrease in 2013. 352 

353 

Shenzhen and Hong Kong account for a large proportion of the modern service and high-354 

tech manufacturing industries. Therefore, these two cities had the smallest carbon 355 

emissions per unit of GDP (Figure 3 (c)). Although the total and per capita emissions of 356 

Hangzhou did not drop much, the carbon emissions per unit of GDP showed a significant 357 

decreasing trend from 2012 to 2016. Shanghai and Guangzhou had the largest amount of 358 

carbon emissions per unit of GDP and also witnessed a large decline during the study 359 

period, indicating an increase in carbon efficiency with economic growth, as well as the 360 

progress of the continuous adjustment and optimization of the energy structure of these 361 

cities (Pei et al., 2018).  362 

363 
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Figure 3 City-level carbon emissions of the five metropolises in the two regions; (a) total 366 

emissions, (b) emissions per capita, (c) emissions per unit of GDP 367 

 368 

3.2 Panel data analysis  369 

 370 

Among all potential predictors, 23 with VIF less than 5 remained in the LASSO regression 371 

model (see Table S1in Supplementary Material). In particular, NTL data indicated a strong 372 

positive correlation with carbon emissions. According to the correlation analysis, NTL 373 

alone explained 88.36% (r = 0.94) of the variance in carbon emissions.  374 

 375 

The selected predictors were applied in several candidate regression models, including the 376 

OLS model, random effect model, year-fixed effects model, and two-way fixed effects 377 

model (see Supporting Information). The year-fixed effects model yielded the largest 378 

adjusted R2 (0.98) and F-value, and a significant Hausman Test (p-value < 0.05), thus 379 

verifying the applicability of selecting the year-fixed effects model to interpret and predict 380 

carbon emissions for the two regions.  381 

 382 

Table 2 shows that 11 predictors are statistically significant (p-value < 0.05) in the year-383 

fixed effects panel data model. The percentage of compact urban forms is found to be the 384 

most influential with a standardized coefficient of -0.312 and is negatively associated with 385 

carbon emissions. Moreover, the LPI of LCZ 7, the aggregation of natural LCZ, LCZ 2, 386 

and LCZ 6 demonstrate negative impacts on carbon emissions.  387 

 388 
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The CONNECT of LCZ 10 showed the largest effect on increasing carbon emissions 389 

(standardized coefficient = 0.17). The percentage and LPI of LCZ 9, LPI of LCZ 2 and 390 

LCZ 10, and aggregation of LCZ 3 are also inclined to raise carbon emissions.  391 

 392 

Table S2 shows the intercepts of the model for each year. It can be observed that 2012 has 393 

the largest year-specific constant, indicating that the year has the highest carbon emissions 394 

in all cities in both regions over the entire study period. Overall, the carbon emissions in 395 

the study area have changed significantly since 2012. The constants continually decreased 396 

from 2012 to 2015, and carbon emissions showed a downward trend during this period. 397 

The constant for 2016 grew slightly, demonstrating an overall lift of carbon emissions of 398 

the cities in the two regions in 2016.  399 

 400 

 401 

 402 

  403 
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 404 

Table 2 Results of the panel data model with year-fixed effects 405 

 406 

Predictors Unstandardized Coefficients Standardized Coefficients   

NTL 5.03 × 10-4*** 1.17**   

PLAND_Compact LCZ -3.38*** -0.31***   

PLAND_LCZ 9 1.76* 0.07*   

LPI_LCZ 9 22.19*** 0.08***   

LPI_LCZ 10 5.59*** 0.12***   

LPI_LCZ 2 243.61*** 0.13***   

LPI_LCZ 7 -103.07** -0.05**   

CONN_LCZ 10 59.00*** 0.17***   

AI_natural LCZ -1.09* -0.13*   

AI_LCZ 2 -0.55** -0.11**   

AI_LCZ 3 0.63*** 0.12***   

AI_LCZ 6 -0.51** -0.10**   

R2 =0.986 Adjusted R2 =0.98    

F Statistic 192.39*** (df = 28; 77)    
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Note:  *p<0.1; **p<0.05; ***p<0.01   

 407 

 408 

3.3 Spatiotemporal carbon emissions  409 

 3.3.1 Overall analysis  410 

The spatiotemporal carbon emissions of the two regions based on the predictive panel data 411 

model are shown in Figure 4. In the PRD region, among all years, high emissions (greater 412 

than 10 Gg) are generally concentrated in highly urbanized cities, including Hong Kong, 413 

Guangzhou, Shenzhen, Foshan, Zhongshan, and Dongguan, owing to the dense urban 414 

population and energy activities in these cities. The emissions displayed a more scattered 415 

pattern in less-populated cities such as Zhaoqing, Jiangmen, and Zhuhai. High emissions 416 

are usually surrounded by medium levels of carbon emissions around the urban fringe, and 417 

the emissions gradually decrease from the city cores to rural areas. Moreover, there is no 418 

clear boundary for carbon emissions among major cities in the PRD region, demonstrating 419 

the formation of a growing urban agglomeration in the region. Larger spatial coverage of 420 

high carbon emissions was mostly found from 2013 to 2016 than that in 2012, which may 421 

be related to the fact that the total emissions in the region peaked in 2014 (Zhou et al., 422 

2018). 423 

 424 

In the YRD region, high emissions were mostly located in the urban cores of Shanghai, 425 

Hangzhou, Suzhou, and Wuxi. A notable agglomeration of high emissions was identified 426 

among the city group of Suzhou-Wuxi-Changzhou. Other hotspots of high emissions were 427 
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detected in the urban centers of Nanjing, Ningbo, and Jiaxing. The carbon emission in the 428 

southern part of the YRD region presented a highly decentralized distribution pattern, and 429 

the concentration of carbon emissions in the northern part was significantly greater than 430 

that in the southern part. Low emissions (less than 2 Gg) were most distributed on the 431 

fringes of urban centers. The inter-annual spatial variations are relatively insignificant 432 

since the growth rate of carbon emissions peaked in 2007 (Tang, Zhang, & Bethel, 2019).  433 

434 

According to the change from 2012 to 2016 (Figure S1), significant increases in carbon 435 

emissions were concentrated in the major urban cores in the two regions, whereas the 436 

reduction of emissions is in a more decentralized manner. There is an overall increase in 437 

the magnitude of carbon emissions in most urban areas of the two regions, which can result 438 

from the urban expansion process of the cities during the study period. In the PRD region, 439 

the reduction in carbon emissions was scattered in Guangzhou, Foshan, Dongguan, 440 

Shenzhen, and Zhongshan. In the YRD region, the decline was primarily identified in the 441 

urban areas of Shanghai, Changzhou, Ningbo, and Hangzhou, as well as in the suburbs of 442 

Shaoxing and Wenzhou.  443 

444 
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Figure 4 Spatiotemporal variations of carbon emissions of the PRD region (a-e) and YRD 445 

region (f-j) 446 

 447 

 448 

3.3.2 Year-on-year changes in CO2 emissions 449 

 450 

Figure 5 reveals the yearly changes in gridded CO2 emissions in the two regions. From 451 

2012 to 2013, the PRD region witnessed significantly increased emissions in most cities, 452 

which is likely related to the continuous urban expansion during this period (Figure 5 (a)). 453 

Dispersive declines were also observed in Guangzhou and Foshan. Similar to the PRD 454 

region, there was a large increase in carbon emissions in the YRD region from 2012 to 455 

2013. Some scattered decreases were observed in Nanjing, Suzhou, and Hangzhou. 456 

 457 

Between 2013 and 2014, a large expansion of emission decrease has been detected in the 458 

PRD region, covering most of the urban areas of Dongguan, Guangzhou, Foshan, 459 

Zhongshan, Zhaoqing, and Yunfu. Some concentrated growth is located in Hong Kong and 460 

Shenzhen while some scattered increases are in other cities in the region. Meanwhile, the 461 

YRD region is concurrent with a more mixed pattern of growth and decline in carbon 462 

emissions (Figure 5 (f)). Frequent blue pixels that represent declines are distributed in the 463 

urban cores of the region, especially in Shanghai, Hangzhou, Ningbo, Nanjing, and 464 

Suzhou-Wuxi-Changzhou. The increases were more often distributed in the urban fringes 465 

of the YRD region. 466 

 467 



29 
 

 468 

Between 2014 and 2015, the PRD region experienced a large decline in emissions in most 469 

cities, especially Hong Kong, Shenzhen, Guangzhou, Foshan, and Zhongshan (Figure 470 

5(g)).  The decline hotspots shifted from the southwest to the southeast of the region 471 

compared to the changes from 2013 to 2014. Some scattered increases were identified in 472 

Guangzhou, Shenzhen, and Foshan. The YRD region also showed a prevailing decrease in 473 

emissions, with some increases in Shanghai and Suzhou (Figure 5(c)). The spatial patterns 474 

showed fewer variations in the urban fringes of the two regions during the study period.  475 

 476 

 Between 2015 and 2016, the PRD region exhibited a generally downward pattern (large 477 

area covered with blue and yellow color in Figure 5 (d)), whereas some mixed changes 478 

were identified in the Guangzhou-Foshan area. Further declines in carbon emissions have 479 

been observed in the major cities in the PRD region, including Guangzhou, Shenzhen, 480 

Foshan, and Hong Kong. In contrast to the downward trend in the PRD region, the YRD 481 

region has growing carbon emissions in the urban centers of most cities (Figure 5 (h)). 482 

Concentrated reductions in carbon emissions were also observed in the urban centers of 483 

Shanghai. 484 

 485 

In general, yearly changes in carbon emissions in the PRD region are more uniform and 486 

show an overall decreasing pattern, demonstrating that the region has achieved integrated 487 

and coordinated development. However, the year-on-year changes in the YRD region are 488 

more diverse and mixed in different cities, indicating that coordinated development has not 489 
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yet been fully realized in the region, and the emission reduction measures and effects are 490 

not consistent across cities. 491 

 492 

 493 

Figure 5 Year-on-year change in carbon emissions from 2012 to 2016 in the PRD region 494 

(a-d) and YRD region (e-h) 495 

 496 

4. Discussion 497 

4.1 Influential urban form and planning implications  498 

4.1.1 Urban compaction 499 

Low-carbon strategies at both the community and city levels can be devised based on the 500 

effects of landscape metrics (Section 3.2) and land use information (Table S3 from LCZ 501 

maps). Urban compaction (LCZ1-3) has the minimum standardized coefficient and is, 502 

therefore the most influential urban form factor in decreasing carbon emissions. A compact 503 
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urban layout and planning can reduce travel distance, thus abating transport-related carbon 504 

emissions. Moreover, compact development may have more efficient interactions among 505 

different zones (Yeh & Li, 2001; Yu, Wu, Zheng, Li, & Tan, 2020) and, therefore, can 506 

reduce energy consumption in different sectors. Hence, this study recommends compact 507 

and centralized urban development rather than decentralized distribution in the future 508 

urbanization processes in the two regions. It is also imperative for urban planners and 509 

decision-makers to accommodate sufficient public transportation facilities and improve the 510 

accessibility of the road networks of the two regions. Nevertheless, arbitrarily increasing 511 

the size of compact urban settlements can increase anthropogenic carbon emissions and 512 

should therefore be considered carefully when developing compact settings with various 513 

heights and functions. 514 

 515 

Accordingly, panel data analysis can provide an in-depth and detailed understanding of the 516 

impacts of different compact urban forms on carbon emissions based on the effects of 517 

landscape metrics for LCZ 1-3. The landscape metrics of LCZ 1 yield insignificant results 518 

in this study. The LPI of LCZ 2 (compact middle-rise buildings) can raise carbon 519 

emissions, whereas the aggregation of LCZ 2 is related to low emissions. Compact middle-520 

rise buildings are common and crucial urban forms often with commercial and residential 521 

functions in both regions (Table S3). The results of this study offer insights into the design 522 

of essential urban forms where compact mid-rise buildings should be clustered together. 523 

Meanwhile, the size of the aggregated patch of LCZ 2 should be restricted to avert the 524 

dominance of LCZ 2. Compact low-rise buildings (LCZ 3), which are primarily dense 525 

commercial areas and urban villages, prefer relatively scattered layouts, based on the panel 526 
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data model. The concentrated pattern of LCZ 3 is likely related to the high population 527 

density and increased energy consumption from commuting and commercial activities.  528 

  529 
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4.1.2 Other urban forms  530 

 531 

The aggregation of LCZ 6 (open low-rise) is also associated with lower emissions. Open 532 

low-rise buildings often belong to large commercial or recreational areas with high 533 

emissions from both the residential and business sectors (Table S3).  This finding provides 534 

evidence for the planning of villa areas and resorts that they should be allocated in an 535 

aggregated manner to reduce traffic-related emissions and inter-zone energy activities.  536 

 537 

The panel data model also indicates that the total area and area of the LPI of LCZ 9 538 

(scattered low-rise buildings) are related to high emissions. LCZ 9 is a typical residential 539 

building type in rural areas. Sparse building settings can increase travel distances and lead 540 

to increased transport-related emissions. Accordingly, this study suggests restricting the 541 

proportion and size of scattered low-rise buildings to avoid making LCZ 9 the dominant 542 

urban form of community to achieve low-carbon development.  543 

 544 

Heavy industrial areas (LCZ 10) are often associated with high emissions, because factories 545 

can generate pollutants during industrial processes. The LPI and CONNECT of LCZ 10 546 

can increase carbon emissions, providing evidence and knowledge for planning industrial 547 

areas in the two regions. In the process of energy transformation, the total area of industries 548 

does not necessarily induce high emissions in either region; however, it is necessary to 549 

control the area of the largest patches of factories and industrial facilities. It is also 550 

necessary to reduce the connectivity of industrial areas by increasing the distance between 551 

the different patches. Therefore, this study proposes that when heavy industrial areas are 552 
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the primary land use, they should be distributed in a decentralized manner, with other land 553 

uses spaced in between. The results of this study also encourage an increase in the 554 

dominance of lightweight buildings (LCZ 7), which are typically manufactured and 555 

warehouse buildings located in rural areas (Table S3). When LCZ 7 is the major land use 556 

type, it tends to indicate low urbanization rates and building energy consumption. 557 

 558 

Furthermore, the AI of the natural landscape (LCZ A-G) is related to lower emissions, 559 

which indicates that the natural landscape should have certain aggregation and dominance 560 

in land use planning at both the community and city levels.   561 

  562 
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4.2 Comparison with other datasets  563 

The spatial distributions predicted in this study are compared with the original NPP-VIIRS 564 

NTL images and the FFDAS version 2.2 dataset at a 10 km resolution (Asefi‐ Najafabady 565 

et al., 2014) to evaluate the performance of the results. The FFDAS models the spatial 566 

distribution of global carbon emissions from DMSP NTL data, population data, and power 567 

plant emissions for the period 1997-2012. Hence, 2012 was selected for comparison and 568 

the results from this study were further aggregated to the same spatial grid of the FFDAS 569 

to ensure consistency between the two datasets. We calculated the difference between the 570 

two datasets by pixels (FFDAS minus PRE).  571 

 572 

For the identification of urban areas, the results from the present study extract the largest 573 

urban areas compared to the NPP-VIIRS data and FFDAS, not only in urban centers but 574 

also in suburbs and less-populated areas such as the isolated points in Hangzhou, Nantong, 575 

and the southern PRD region. This study adopted LCZ maps generated from multi-source 576 

satellite images to extract urban areas, which can identify urban areas with potential energy 577 

activities during both day and night according to the spectral characteristics of the earth’s 578 

surface that are independent of diurnal variation. However, NTL images can only identify 579 

lit areas during the nighttime; therefore, it is likely to underestimate urban areas without 580 

human activities during the nighttime. Therefore, this study can more accurately and 581 

comprehensively extract urban areas than previous datasets that only adopted NTL data as 582 

the primary proxy data by exploiting LCZ maps.  583 

 584 
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Moreover, compared to the original NPP-VIIRS images and the FFDAS dataset, this study 585 

more clearly characterizes the intra-urban variations in carbon emissions. The FFDAS has 586 

a coarse spatial resolution and is not able to detect intra-urban variations in carbon 587 

emissions. The NTL data have relatively uniform magnitudes of carbon emissions in urban 588 

centers, whereas the results of this study show larger fluctuations in cities of these two 589 

regions.  Greater intra-urban variations can be more realistic because the brightness of the 590 

light is not necessarily related to the intensity of energy activity, and buildings with similar 591 

brightness can have different energy consumption magnitudes; the LCZ maps contain 592 

information on urban forms and functions that can assist in reflecting the heterogeneity of 593 

energy activities.  594 

595 

The differences between FFDAS and the results of the current study are shown in Figure 6 596 

(d) and (h) by subtracting the results of this study with FFDAS in the same 10 km spatial597 

grid. The green pixels show the locations where the FFDAS has larger values (more than 598 

0.5 standard deviations), whereas the brown color indicates that the value from this study 599 

is higher. Overall, the differences between the two for the majority of the pixels are minor 600 

(less than 0.5 standard deviations). In the PRD region (Figure 6 (d)), large differences are 601 

not frequent, and the results of this study have relatively larger values in the western part 602 

of the region, which is relatively unprosperous. The green pixels where the FFDAS is 603 

higher, are scattered in this region. For the YRD region (Figure 6 (h)), this study has higher 604 

values in the north part of the region, Jiaxing, and Huzhou. The green pixels are primarily 605 

located in Shanghai and Suzhou, the two most prosperous cities in this region. In summary, 606 

this study demonstrates high values of carbon emissions in relatively less developed cities 607 
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under rapid urbanization compared to FFDAS data. This mismatch is in accordance with a 608 

previous finding that NTL data have relatively poor performance in less developed than in 609 

developed regions and can underestimate emissions in these regions (Doll et al., 2000). 610 

Therefore, the comparison further highlights the necessity of supplementing urban form 611 

information to improve the deficiencies of NTL data in unprosperous areas when modeling 612 

carbon emissions.  613 

 614 

Overall, the results from this study have the strengths of more proper extraction of urban 615 

areas, the ability to characterize intra-urban variations in carbon emissions, and more 616 

accurate prediction in less-developed areas.  617 
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Figure 6 Comparison with other data sources, (a-e) for the YRD region, and (f-h) for the 619 

PRD region 620 

 621 

4.3 Limitations and future work 622 

This study has several limitations. First, the emission factors for each energy activity 623 

remain subject to large uncertainties. There are various sources of emission factors, such 624 

as the IPCC on Climate Change (IPCC, 2006), and China’s National Communication 625 

(Development & Commission, 2012). We attempted to minimize this problem using 626 

localized coefficients proposed by Zhu Liu et al. (2015). The emission factors were revised 627 

according to independently evaluated activity data and two comprehensive measurement 628 

datasets in China. There are also uncertainties in proxy data that disaggregate carbon 629 

emissions. Although the NPP-VIIRS has the finest spatial resolution among all the 630 

instruments onboard the S-NPP satellite, it can have background noise (Christopher D 631 

Elvidge et al., 2017) and geolocation errors (W. Wang, Cao, Bai, Blonski, & Schull, 2017).  632 

In addition, the LCZ maps have an overall accuracy of 73.2% and have relatively poor 633 

performance for classes such as LCZ 9, LCZ B, and LCZ C (M. Cai et al., 2018; Chung et 634 

al., 2021; R. Wang et al., 2019). Therefore, we propose combining other high-quality urban 635 

form data with the LCZ data to minimize the modeling error.  636 

 637 

In the future, we plan to include other open urban data with high spatiotemporal resolution, 638 

such as human activity data from social media applications. In addition, the development 639 
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stages of cities can influence the effects of urban form on carbon emissions. Further studies 640 

will use larger data samples to account for the developmental stages in the modeling. Also, 641 

the impact of urban development on carbon emissions may not be linear, which is not 642 

reflected in the current linear models. We plan to adopt more advanced models, such as 643 

neural networks or random forests (Hu et al., 2017; Huang et al., 2018; Xu et al., 2018) 644 

that can incorporate nonlinear and complex relationships in the modeling of carbon 645 

emissions, to achieve higher accuracy than that of previous models. The spatiotemporal 646 

inventories created in this study can serve as a baseline for future carbon emission 647 

projections to examine progress towards carbon neutrality. The inventories will be updated 648 

annually to support carbon audit and mitigation strategies.  649 

 650 

 651 

5. Conclusions  652 

This study analyzed the effects of urban forms that were generated from LCZ maps and 653 

landscape metrics on carbon emissions in the PRD and YRD regions. Moreover, carbon 654 

emissions at 500 m resolution of the two regions from 2012 to 2016 were predicted from 655 

NTL data and urban forms using panel data regression.  656 

 657 

The following conclusions can be drawn from this study: 1. Both NTL data and urban form 658 

factors are found to be significantly associated with carbon emissions of the two regions in 659 

the year-specific panel data model (R2 = 0.98). 2. The panel data model indicates that there 660 
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is an overall decrease in the carbon emissions of the two regions since 2012 and a slight 661 

elevation from 2015 to 2016. 3. Urban compaction and natural landscape are found to relate 662 

to low emissions, whereas scattered low-rise buildings are associated with rising carbon 663 

emissions. 4. There are notable spatial variations in carbon emissions, although city-level 664 

carbon emissions are generally stable for most cities in both regions during the study 665 

period. In particular, the YRD region has larger emission hotspot expansions than the PRD 666 

region. 5. Compared to the original NTL data and the FFDAS data, the results from this 667 

study extracted urban areas more accurately and can more clearly identify the intra-urban 668 

variations in carbon emissions.  669 

 670 

The results offer several important policy implications for urbanization progress towards 671 

carbon neutrality in the two mega-urban regions. First, although a compact urban form is 672 

generally beneficial for reducing carbon emissions, it is also necessary to investigate the 673 

effects of different building heights and functions in a compact urban environment. Second, 674 

compact middle-rise buildings should be clustered on a relatively small scale within the 675 

community. Third, compact low-rise buildings favor a more scattered layout. In addition, 676 

open low-rise buildings should exhibit aggregated patterns. Furthermore, this study 677 

suggests limiting the size, proportion, and dominance of scattered, low-rise buildings. In 678 

addition, industrial areas should be distributed in a decentralized manner, and the distance 679 

between patches should be increased. In addition, there should be a greater concentration 680 

of natural landscaping and predominantly lightweight low-rise buildings.  681 

 682 



42 
 

This study is novel in several aspects. First, this study is the first to incorporate detailed 683 

and comprehensive urban form factors from LCZ maps in carbon emission modeling, 684 

providing an accurate estimation of the spatial variations in carbon emissions. Second, 685 

carbon emissions are modeled using a panel data model with time-fixed effects rather than 686 

OLS models, accounting for the temporal dimensions of carbon emissions. Third, the 687 

research framework only adopted open data and utilized an internationally accepted 688 

scheme of urban form, thereby demonstrating the effectiveness and potential of applying 689 

the method to other cities and regions worldwide and identifying opportunities for global 690 

efforts to reduce carbon emissions. Therefore, urban planners, architects, and decision-691 

makers can refer to the developed methodology, regression models, and spatiotemporal 692 

inventories to jointly foster a carbon-neutral built environment. 693 
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