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Abstract 

Pharmacogenetics has huge potential to transform the field of medicine and deliver 

personalised treatments to patients. However, its wider use is limited by many 

factors, particularly a lack of suitable evidence of efficacy or safety for regulatory 

approval and clinical use. The evidence required can be difficult to ascertain, 

presenting three main problems.  

The first issue is that regulatory guidance for the evidence required is complex and 

varies greatly between different authorities and contexts. Guidance from the UK 

Medicines and Healthcare products Regulatory Authority (MHRA) and the US Food 

and Drug Administration (FDA) was reviewed along with criteria formulated by other 

industry and academic groups.  It was found that there is a clear need for a unified 

set of standards for evidence gathering in pharmacogenetics. This was 

strengthened by an analysis of the evidence used by five different randomised 

controlled trials to justify the inclusion of their pharmacogenetic biomarker. Large 

variation in the quality and type of this evidence was found. These findings were 

used to make recommendations for future evidence gathering for trials, regulators, 

and journals.  

Additionally, the evidence required for clinical implementation has traditionally been 

the prospective randomised controlled trial. Gathering information from two novel 

systematic reviews and meta-analyses of carbamazepine-induced Stevens-Johnson 

syndrome, it was shown how these sources of observational evidence can produce 

effect estimates and measures of clinical validity of greater precision than that of a 

prospective trial.  

Finally, the level of evidence for a pharmacogenetic test that would be acceptable to 

the general public is not known. A discrete choice experiment (DCE) was designed 

to quantify these views. The first step was a systematic review of existing DCEs in 

this area, to extract useful information from these to inform the work. An extensive 

programme of qualitative work with healthcare professionals, patients, and the 

general public then further informed the design of this novel DCE. Participants were 

randomised to complete one of eight DCEs in different disease areas, with either a 

‘high’ evidence scenario or a ‘low’ evidence scenario described. Launched in May 

2021, over 2,000 responses were collected and the results were analysed in 

preference-weighted utility models. Although there was no difference in utility 

between ‘high’ and ‘low’ evidence tests, several important insights were generated 



 
 

(particularly in regard to data sharing and privacy) that will potentially have large 

impacts on policy in this area.   
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Chapter 1: Introduction 
 

1.1 Personalised medicine 

 

What cures one person may do nothing for another. A drug that causes unpleasant 

side-effects in one person may cause no issues for another. The drug that vastly 

improves one person’s quality of life might harm or even cause death in another 

person. This variability in responses has been known since at least the 1950s (1). 

Medicine has attempted broad measures to predict and modulate these effects. 

Moderating drug dosages based on kidney and liver function is common practice in 

many drug prescriptions (2-4). However, this approach is something of a blunt 

instrument: a lower dose may reduce the risk of harmful side-effects, but it may also 

drastically reduce drug efficacy. This approach also does not cover dose-independent 

side-effects, which are much less predictable. What is needed is a way to tailor drugs 

to each individual’s unique biology.  

This is termed personalised, precision, or stratified medicine, often defined as “the 

right drug for the right person at the right time” (5-7) . These new approaches to 

clinical care describe the tailoring of medical treatment to the individual characteristics 

of each patient (8). It does not usually refer to unique treatments designed for 

individuals, but the classification of patients into subpopulations for treatment (8).  

This can include individualised treatment approaches based on genotype, known as 

pharmacogenetics or pharmacogenomics (9-13) where genetic variations are used to 

predict the best drug, or the optimal dose of a drug to prescribe (13). This is in contrast 

to traditional, empirical medicine, where the same drug, at similar doses, are given to 

all patients with the same condition (12) (Figure 1.1). Stratified medicine, somewhere 

between the two, uses characteristics (such as genotypes or molecular profiles) to 

stratify patients into groups that inform treatment. However, while stratified and 

personalised medicine are technically distinct terms, it is important to note that they 

are often used interchangeably in practice (14). 
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Figure 1.1 -The scale of medicine specificity moves from empirical to personalised medicine, with 

stratified medicine as a mid-point (12). Examples of drugs that are prescribed in each way are listed in 

bullet points. OTC = over the counter 

Pharmacogenetics and pharmacogenomics both describe the process of using 

genotype data for risk assessment and guiding treatment, which may then impact on 

a patient’s prognosis (4, 9, 15-17). A distinction has been drawn between the terms. 

Pharmacogenetics may be understood as the focus on a single or small number of 

gene(s), while the scope of pharmacogenomics includes many genes or a whole 

genome (18). These terms have also been distinguished by Møldrup (2001), who 

argued that pharmacogenetics refers to “the study of drugs based on known allele-

specific genetic variations”, while pharmacogenomics is the “identification and 

elucidation of genetic variations which will impact on the efficacy of drugs or offer 

different targets” (19). While acknowledging that the terms may be used 

interchangeably, Williams-Jones and Corrigan (2003) defined pharmacogenomics as 

a “broad-based pharmaceutical industry-led initiative”, in contrast to the “narrower 

spectrum of inherited differences in drug metabolism and disposition linked to 

individual genetic variations” of pharmacogenetics (20). The definitions used by the 

Food and Drug Administration (FDA) of the United States hinge on the type of genetic 

material used - pharmacogenetics is considered to use deoxyribonucleic acid (DNA) 

as a biomarker, while pharmacogenomics uses both DNA and ribonucleic acid (RNA) 

(21). DNA resides in cell nuclei and contains the instructions for protein synthesis. 

RNA is similarly structured to DNA but is used for transcription of synthesis 

instructions from DNA to ribosomes and ribozymes (22, 23). The European Medicines 

Agency (EMA) defines pharmacogenetics as the study of interindividual variations in 

DNA sequence related to drug response, and pharmacogenomics as the broader 
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science of genes relevant to disease susceptibility and drug response (24). 

Interindividual variation  

Regardless of the term used, this field has enormous potential to revolutionise 

medicine. This promise has already been realised in several disease areas. In HIV, 

genetic testing has near-eliminated severe adverse drug reactions (ADRs) to the drug 

abacavir (25-27). This reaction, the abacavir hypersensitivity reaction (AHS) causes 

fever, rash, gastrointestinal, and respiratory symptoms, and occurred in 

approximately 3.7% of patients (28, 29). 

In cardiovascular medicine, personalised dosing for warfarin can improve drug 

efficacy, reduce the risk of ADRs and reduce the burden of multiple blood tests on 

patients (30-32). In addition, a personalised approach offers potential improvements 

in cost-effectiveness for funders of healthcare. For example, with fewer ADRs, fewer 

medical interventions are required for the patient population (33-35). An improvement 

in patient quality of life is also important when discussing cost-effectiveness (see 

below) (36). 

The pharmaceutical industry has also seen a major paradigm shift away from 

‘blockbuster’ drugs (those generating more than $1 billion in revenue per year (37)) 

to ‘patient-centrism’ (38), leading to renewed interest in personalised medicine. Often, 

blockbuster drugs treat conditions that are common, such as sildenafil for the 

treatment of erectile dysfunction (39). However, the newer and more personalised 

breed of blockbusters include the targeted cancer immunotherapy pembrolizumab 

(40).   

Regulatory authorities have also had to adapt to this shift. As of June 2021, there 

were 409 drugs with listed pharmacogenetic information on their drug labels on the 

Pharmacogenomics Knowledgebase (PharmGKB) (Figure 1.2) (41, 42). These range 

from the strongest recommendations (Testing is required before using the drug) to 

markers that are used in an exploratory or informative basis. The FDA has the highest 

number of these approvals. This can be compared to 5 years prior, when 208 drug 

labels were listed, with less information available for each (43).  
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Figure 1.2 - PharmGKB categories of pharmacogenetic testing, by regulatory agency. Full descriptions 

of each category are available here: https://www.pharmgkb.org/page/drugLabelLegend#pgx-level . EMA 

= European Medicines Agency. FDA = Food and Drug Administration (USA). HCSC = Health Canada 

(Santé Canada). PMDA = Pharmaceuticals and Medical Devices Agency (Japan). Swissmedic = Swiss 

Agency of Therapeutic Products. PGx = pharmacogenetics. 

The ‘moment of critical impetus’ for pharmacogenetics was the 1998 FDA approval 

of the breast cancer drug trastuzumab (Herceptin) and its companion diagnostic test 

HercepTest (44, 45). Trastuzumab treats HER2+ breast cancer, a marker 

overexpressed in 20-30% of breast cancers (46-48) (discussed further in 1.1.3.1 

Cost and cost-effectiveness below). 

Since then, the number of similar approvals has soared. The Clinical 

Pharmacogenetics Implementation Consortium (CPIC), which publishes freely 

available gene-drug guidelines, has completed 25 gene-drug guidelines (as of 

October 2020), pooling information from several national regulatory agencies and 

the literature (49) 

In 2019, a sample of UK primary care patients aged 50 and over found that the 

majority (58%) had been prescribed at least one drug with a pharmacogenetic 

dosing guideline over a 1-year period, rising to 80% over a 20-year period (50). 

https://www.pharmgkb.org/page/drugLabelLegend#pgx-level
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There was a continual increase in the use of these drugs, and the authors predicted 

that this would continue to rise in the future. A 2021 study also found that around 

20% of all new prescriptions in a community pharmacy over one year had an 

actionable drug-gene interaction (51). Recent work in Denmark with younger 

participants also highlights the increasing use of pharmacogenetic drugs, 

particularly in the field of mental health (52).  

 

1.1.1 What is a biomarker? 

The 2001 Biomarkers Definitions Working Group defined a biomarker as “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic response to a 

therapeutic intervention (53)”.  This definition is widely accepted. Pharmacogenetics, 

the focus of this thesis, concerns the use of genetic variants as biomarkers relating 

to drug response (15, 54-56). While these are the most widely studied biomarkers, 

others include proteins, imaging data, and epigenetic changes (44, 57).  

Genetic mutations (used as biomarkers) can be germline or somatic. Germline 

mutations occur in eggs or sperm and are passed on to the next generation. 

Individuals are born with germline mutations. Somatic mutations occur in single cells 

in any tissue, and are not passed onto the next generation (58).  

Biomarkers can be sub-categorised by their function (Figure 1.3) (44, 59-61). These 

often-overlapping functions enable pharmacogenetics to impact many fields. These 

include reducing ADRs, improving drug efficacy, diagnostics, economics/cost-

effectiveness, and drug development (17). The FDA divides biomarkers into 

diagnostic, where they identify patients with a particular disease or disease subset; 

prognostic, where they indicate future clinical course of a disease irrespective of 

treatment; predictive, where they identify patients likely to respond in a particular way 

to a treatment; and response, where they indicate a biological response after an 

intervention (60).  
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Figure 1.3 - biomarker categories as defined by a meeting of stakeholders in industry, regulatory 

bodies, academia (60). CFTR – cystic fibrosis transmembrane conductance regulator. HLA-B – human 

leukocyte antigen B.  

Biomarkers must be also distinguished from surrogate endpoints, which are defined 

as a subset of biomarkers (62-64). Surrogate endpoints are laboratory or physical 

signs used in trials in place of clinical efficacy measures (62, 64, 65). 

The use of biomarkers improves patient outcomes and prognoses by reducing their 

risk of ADRs, and improving drug efficacy (through more efficient dosing, or choice 

of drug). I now present two case studies of these applications. 
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1.1.2 Benefits of pharmacogenetics 

1.1.2.1 Reducing the risk of ADRs 

The World Health Organisation (WHO) defines an ADR as “a response to a medicine 

which is noxious and unintended, and which occurs at doses normally used in man” 

(66). ADRs are the cause of 6.5% of UK hospital admissions, and 14.7% of extended 

hospital stays, costing the NHS an estimated £466 million a year (67-69). A 2021 

meta-analysis estimated a prevalence of ADRs of 8.32% (95% CI 7.82 – 8.83%) 

among 1,568,164 patients across 12 countries (70). 

Many clinical trials have already taken place with the aim of using genetic testing to 

reduce ADRs (71-76). Arguably the most successful example of the integration of 

pharmacogenetics into clinical practice is the case of the antiretroviral drug abacavir, 

used for HIV treatment (34, 77, 78). Abacavir (Ziagen) was discovered in 1997 (79) 

and approved for use by the FDA in 1998 (78, 80, 81). It is used in combination with 

other drugs to treat HIV infection (77, 80).  

During Phase II trials of abacavir, it was observed that 3-4% of patients suffered a 

specific adverse reaction to the drug (82, 83). A 2001 review reported the incidence 

of this reaction among clinical trial participants to be 4.3% (82). The reaction, AHS, is 

characterised by symptoms including: fever, chills, rash, nausea, vomiting, and 

fatigue, and can be life-threatening (83, 84). AHS can be diagnosed clinically and 

confirmed with a skin patch test (76). Initially, it was difficult to predict which patients 

would suffer from AHS in response to abacavir treatment.  

Susceptibility to AHS is strongly associated with the presence of the HLA-B*57:01 

allele (variation of the HLA-B gene). This link was first reported in 2002 (85-87). This 

association (odds ratio [OR] 859.1 [95% CI 189.2 – 3901.4], p < 0.001 in one meta-

analysis (88)) is “one of the strongest associations ever described between a genetic 

marker and a disease” (89). The prevalence of HLA-B*57:01 is highest in Caucasian 

patients, and lowest in Black patients (90). However, the specificity of the screening 

test is still comparable between these groups (76). 

With the link discovered, clinical trials could then take place to investigate the 

effectiveness of testing patients for the presence of the HLA-B*57:01 allele prior to 

commencing abacavir. The large PREDICT-1 randomised controlled trial (RCT) 

randomised patients to receive abacavir with or without genetic testing for HLA-

B*57:01 (85). The incidence of AHS was significantly reduced in the tested group, 

with a calculated OR of 0.03 (95% CI 0.00 – 0.18, p < 0.001). The negative predictive 
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value of screening was found to be 100% - meaning that a patient who tests negative 

will definitely not develop AHS.  

Other investigations include the SHAPE and ARIES studies. SHAPE was a 

retrospective case-control study that matched white and black AHS patients with 

racially similar patients who tolerated abacavir (76). White patients were more likely 

to develop symptoms earlier in the course of treatment. Symptoms also differed 

between groups, with fever and gastrointestinal symptoms the most reported 

symptoms in white and black patients, respectively. HLA-B*57:01 was significantly 

associated with AHS in both white (OR 1945 [95% CI 110 – 34352]) and black (OR 

900 [95% CI 38 – 21045] participants. The sensitivity of HLA-B*57:01 screening was 

100% in both groups, indicating the value of testing patients regardless of racial 

background.  

The ARIES trial was an RCT comparing two common HIV regimens, including 

abacavir (91). Within this trial, Young, et al. recruited 517 HLA-B*57:01 negative 

patients to be evaluated for AHS over the 30-week study period (92). Less than 1% 

of these patients developed AHS symptoms, providing further evidence for the utility 

of HLA-B*57:01 as a marker of AHS.  

Testing was recommended as a cost-effective measure in the UK in 2004 (93). Today, 

British National Formulary (BNF) guidelines require testing before commencing 

abacavir in every patient where HLA-B*57:01 status is unknown (25). Screening was 

recommended by the FDA in 2008 (80, 94), with the cost-effectiveness shown in a 

later study (95). Today, both the UK and US labels for abacavir include a boxed 

warning on the importance of HLA-B*57:01 screening prior to abacavir use (81, 96). 

Screening is also recommended by the CPIC (26). 

1.1.2.2 Improving drug efficacy 

Matching patients with drugs most likely to provide benefit is a key offering of 

pharmacogenetics. A drug’s clinical efficacy is a measure of clinical disease 

improvement after administration of the drug (97). Many drugs have highly variable 

rates of efficacy (7) (Table 1.1).  

Condition Efficacy rate (%) 

Alzheimer’s disease 30 

Asthma 60 

Diabetes 57 

Hepatitis C virus 47 
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Oncology 25 

Osteoporosis 48 

Rheumatoid arthritis 50 

Schizophrenia 60 

Table 1.1 – Broad efficacy rates for drugs in different conditions, adapted from Pirmohamed and Lewis 

(2004) (7), from data in Physicians' Desk Reference (2000) 

Drug response is usually a complex process, influenced by polymorphisms (variations 

in the population) in multiple genes (17). Drug response is also influenced by external 

factors, including diet, adherence, and individual health status (15). It is also important 

to note that attributing a phenotype or function (including efficacy or ADRs) to a 

particular polymorphism does not prove causation (17). Even with these caveats in 

mind, there are clear examples of benefits to drug efficacy with pharmacogenetics. A 

2015 meta-analysis found that personalised therapies were associated with longer 

overall survival in cancer trials compared to non-personalised therapies (13.7 vs 8.9 

months, p <0.001) (98). 

A successful example of this is the oncology drug vemurafenib (Zelboraf), a kinase 

inhibitor used to treat cancers with the BRAF V600E mutation (Figure 1.4) (99-103). 

This mutation is seen in around 50% of melanomas, and at lower frequencies in other 

cancers (99, 100, 104-109). Vemurafenib was first used in a Phase I trial in 2010. 

This trial initially recruited 55 patients with any cancer, then launched an extension 

that recruited only patients with confirmed BRAF V600E mutations (110). In this 

second group, 81% of patients had a response, with two patients experiencing 

complete responses. A 2012 Phase II trial in 132 BRAF V600E metastatic melanoma 

patients found a median overall survival of 16 months, and a progression-free survival 

of 6.8 months (101). A subsequent Phase III trial enrolled 675 metastatic melanoma 

patients with BRAF V600E mutations (111). Patients were randomised 1:1 to receive 

either vemurafenib or dacarbazine (a chemotherapy drug). Those on vemurafenib 

had significantly better outcomes, with a hazard ratio of 0.37 for death compared to 

dacarbazine patients (95% CI 0.26 to 0.55, p < 0.001) (111).  A more recent study in 

patients with and without this specific mutation had to stop recruitment early in the 

non-BRAF V600E arm due to lack of efficacy in this group, compared to the BRAF 

V600E positive group (112). 
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Figure 1.4 - development of vemurafenib through selected Phase I, II and III trials. Phase I 

(NCT00405587) took place in 2006 (110), Phase II (NCT00949702) in 2009 (101), and Phase III 

(NCT01006980) in 2010 (111). IRC = independent review committee 

Vemurafenib is extremely selective for tumours with the BRAF V600E mutation (103). 

Additionally, vemurafenib has been shown to promote tumour growth in patients with 

wild-type BRAF tumours (102), and has been associated with acute kidney injury 

(113, 114). Therefore, it is essential that clinicians are able to accurately detect which 

patients will benefit before prescribing. The companion diagnostic test for the BRAF 

V600E biomarker was developed by Roche in 2005, prior to clinical testing of 

vemurafenib (99, 115). Development was made more difficult since melanin, found in 

melanomas, inhibits the DNA polymerase enzyme used in testing (115, 116). The 

assay has a correct mutation call rate of over 96% and is additionally able to detect 

other BRAF mutations (V600D and V600K) (99, 115). 

Vemurafenib was also included in the SHIVA trial that randomised 195 patients with 

any cancer type to molecularly targeted treatments, or to standard of care (physician’s 

choice) (see Chapter 3) (117). Vemurafenib has also been tested in trials in 

combination with other targeted agents, including cobimetinib (118, 119), ipilimumab 

(120), and irinotecan/cetuximab (107).  

The FDA approved vemurafenib for use in metastatic melanoma on the condition that 

the BRAF V600E mutation is detected by an FDA-approved test (102). There are 

currently two of these tests available for use (121). In the UK, vemurafenib was 
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approved for use in 2012 for the treatment of unresectable or metastatic BRAF V600E 

positive melanoma (122).  

1.1.2.3 Drug development 

 

These kinds of trials, essential for the regulatory and clinical approval of a 

biomarker, can be very expensive. Adams & Brantner (2009) calculated that the 

average expenditure per drug on human clinical trials is $27-74 million a year (123). 

Drugs can later be withdrawn, or their use restricted based on variable efficacy or 

ADR risk. While pharmacogenetic trials can be expensive, pharmacogenetics can 

also be used by pharmaceutical companies to ‘de-risk’ drug development by 

enhancing target identification, clinical testing, and drug safety (124-126). 

Pharmacogenetics has utility at every phase of drug development and testing 

(Figure 1.5). 

 

Figure 1.5 - Pharmacogenetics during the drug development timeline. Produced from information in 

Roses (2008) (126) and Pirmohamed and Lewis (2004) (7) 

  

A 2019 report on precision medicine moving into clinical applications stated the 

need for the drug development pipeline to be accelerated using pharmacogenetics, 

including the importance of deep phenotypic characterisation (the precise and 

comprehensive analysis of phenotypes) (127). This is important for accurately 

classifying patients into subpopulations for personalised and precision medicine. 

The authors also discussed the need for including diverse populations in genomics 

research (127).   
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For example, a meta-analysis of genome-wide association studies focussing on 

HbA1c (used to monitor diabetes) found that the rs1050828 mutation in the G6PD 

gene was associated with significantly lower HbA1c levels in patients of African 

American ancestry (128). As raised HbA1c is used as a marker for diabetes, the 

authors calculated that 650,000 adults in the US may have diabetes but will be 

missed by HbA1c screening since their levels are kept low by their mutation (128). 

This study shows the need for investigators to consider diverse populations in 

genome-wide association studies. It is also valuable to developers of drugs to treat 

diabetes. If G6PD screening became widely available, a large additional market for 

diabetes drugs would open up.  

A further example is the process of salvaging drugs, or ‘drug rescue’ (7, 129-131). 

This occurred with abacavir, the HIV drug that can cause hypersensitivity reactions 

(see above). This drug, effective for HIV treatment, may have been withdrawn from 

market due to its associated risks if not for the discovery of the link between 

hypersensitivity and HLA-B*57:01 (85, 129). Potential patients can now be tested 

before prescription, and abacavir use limited to those negative for HLA-B*57:01.  

Despite the advantages of including pharmacogenetics in drug pipelines, uptake 

has been slower than expected (130). Barriers to implementation in this setting 

include limited knowledge of genotypes, limited technologies, and financial hurdles 

(130). However, a 2016 survey of industry perspectives on biomarker qualification 

found that regulatory complexity was a greater challenge to qualification than 

scientific or technical complexity in the case of most biomarkers (132). These 

difficulties have also been acknowledged by the FDA (133). 

“a recent survey looked at the drug pipeline portfolios of about 

20 major companies and showed that a very small minority 

included what could be called stratified or personalized 

medicine. When you ask people in industry about this, some 

feel it is because there's no clear regulatory pathway or 

guidelines.” - The director of the FDA Office of Clinical 

Pharmacology, Issam Zineh, 2016 (133). 

These regulatory issues will be explored further in Chapter 2.  
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1.1.3 Issues in pharmacogenetics 

While there are clear benefits to using pharmacogenetics, there are also issues 

around cost, implementation, and ethics to consider. Finally, it is morally, ethically, 

and clinically essential to consider the preferences of patients, healthcare 

professionals, and the general public regarding the wider use of pharmacogenetics.  

 

1.1.3.1 Cost and cost-effectiveness 

 

New technologies are generally associated with extra costs (134, 135), and genetic 

biomarkers are no exception (35, 135). Both benefits and costs need to be considered 

when evaluating a new intervention or biomarker for reimbursement or adoption by a 

health service provider/payer (136). A technology that is more beneficial and less 

costly than an alternative would usually be accepted (depending on cost, disease 

prevalence, practicalities, etc). Conversely, an intervention that costs more and is less 

beneficial than the alternative should always be rejected. The difficulty lies in deciding 

for interventions that sit between these extremes. An increase in cost may be 

acceptable where there is a certain level of increased benefit. Setting this level can 

be complex. 

There are four possible outcomes of a cost-effectiveness analysis, two of which 

require payers to make a judgement (Figure 1.6) (137).  
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Figure 1.6 – The four outcomes of a cost-effectiveness analysis. Based on Figure 7.1 of Walley, et al. 

(2004) (136). The top left quadrant denotes an intervention that should definitely be rejected since it is 

more expensive and has less benefit than the comparator intervention. Conversely, the bottom right 

quadrant denotes an intervention that should normally be accepted since it is less expensive and delivers 

greater benefits. The top right and bottom left sectors require a judgement to be made using the 

incremental cost-effectiveness ratio (ICER). 

The difference between the cost of an intervention and an alternative programme is 

known as the incremental cost. This can be divided by the incremental benefit (the 

difference between the benefit of the intervention against an alternative). The 

incremental cost per unit of benefit gained is known as the incremental cost-

effectiveness ratio (ICER) (Equation 1.1) (136, 138). 

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  
(𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝐴 − 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝐵)

(𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝐴 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝐵)
 

Equation 1.1 – Incremental cost effectiveness ratio for hypothetical drugs A and B. 

Quality-adjusted life years (QALYs) are one measure commonly used to evaluate the 

benefit of an intervention. For an intervention to be accepted, the incremental costs 
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per QALY gained should not exceed a pre-determined value assigned to one QALY 

(137). In the UK, this value is normally £20,000 to £30,000 (139). In the USA, this 

value has been quoted as up to $150,000 per QALY (140). 

However, precision medicine has ‘unique economics’ in regard to innovation, pricing, 

diagnostics, and access (141). For example, if a company can market a drug to a 

subgroup of patients (identified by a biomarker) in which it will be most effective, they 

can demand higher prices to reflect this higher drug efficacy (141). Trastuzumab 

(Herceptin) is an example of this, becoming a blockbuster drug despite only being 

efficacious in a subset of breast cancer patients (12, 142). 

Trastuzumab is a monoclonal antibody targeting HER2, a tyrosine kinase that 

mediates cell growth, differentiation, and survival (143, 144). HER2 is overexpressed 

in 20-30% of breast cancers (48) and is associated with shorter overall survival (145). 

Trastuzumab was first developed in 1991 by Genentech (146), and has since become 

one of the top 10 bestselling drugs in the world (44, 147). It is only indicated in HER2+ 

breast cancer (47). A 2011 meta-analysis found a significant benefit to overall survival 

of trastuzumab in early-stage breast cancer (OR = 0.78, 95% CI 0.69- 0.88, p < 0.001) 

(148). The UK’s National Institute of Health and Care Excellence (NICE) approved 

trastuzumab for use in HER2+ breast cancer in 2006, citing ICERs of £4461 to 

£32,701 per QALY gained (149).  

Conversely, an analysis of HLA-B*15:02 screening prior to carbamazepine 

prescription in Hong Kong found that while screening in an ‘ideal situation’ would be 

cost-effective ($11090 per QALY gained), the actual situation in which screening was 

taking place led to it becoming a very expensive screening programme ($85697 per 

QALY gained) (150). The study found that this was mainly due to decreased use of 

carbamazepine, as clinicians switched to drugs that did not have a screening 

mandate, but which were more expensive and had little additional benefits. Notably, 

these drugs also placed patients at risk of serious ADRs, albeit at lower rates than 

carbamazepine. This led to no overall reduction in the rates of serious ADRs in 

patients with epilepsy treated with anticonvulsants, and higher than expected costs 

per QALY. Poor adherence to the guidance to use genetic testing prior to prescribing 

carbamazepine was also a factor. This case shows the importance of including a full, 

realistic economic evaluation in the assessment of biomarkers.  

Other principles from economics, namely stated preference and discrete choice 

experiments (DCEs), can be used in health research (151, 152). This is explored 

more fully in Chapter 5. 
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1.1.3.2 Implementation 

Pharmacogenetics is not as widely used as it has the potential to be. In 2008, Hong 

Kong implemented a policy of screening patients for HLA-B*15:02 before 

commencing carbamazepine, to prevent the serious ADR Stevens-Johnson 

syndrome/toxic epidermal necrolysis (SJS/TEN). Researchers in Hong Kong 

investigated the effect this implementation had on rates of screening and of 

carbamazepine-induced SJS/TEN (153). While rates of carbamazepine-induced 

SJS/TEN fell significantly (p = 0.027), the overall rate of SJS/TEN remained steady. 

This occurred because physicians were instead prescribing other antiepileptic drugs 

that did not have a genetic testing mandate. Cases of SJS/TEN caused by these other 

drugs then rose. Prescriptions of carbamazepine decreased by 81% once the policy 

was implemented.  

A similar case took place in Taiwan, where HLA-B*15:02 screening was mandated 

from 2010 onwards (154). Over a 10-year study period (2005-2014), the number of 

carbamazepine-related ADRs fell by 87.1%. However, the number of new users of 

carbamazepine fell by 82.6%. The use of other antiepileptic drugs increased after 

screening was mandated, but the authors did not collect data on any subsequent 

increase in SJS/TEN related to these. The study demonstrated that there are also 

medical educational barriers – more specialised physicians working in larger medical 

centres were more likely to utilise pharmacogenetic screening (154). 

These cases show that human behaviour must be accounted for when implementing 

pharmacogenetics. I have explored this issue further in my DCE, in Chapters 6 and 

7. However, this is far from the only reason why pharmacogenetic testing is lagging 

behind its potential. There are significant regulatory hurdles (1, 68, 155), technological 

barriers, and practical issues (particularly in low- and middle-income countries) (1, 68, 

156-159). One of the largest issues is the lack of well-controlled trial evidence to 

justify the implementation of pharmacogenetics (156, 160). Regulatory bodies 

normally require RCT evidence as a minimum to accept a new test or intervention 

(161). However, a certain standard of evidence needs to be met before an RCT can 

be performed. This is to ensure the safety of trial participants and efficient use of 

resources. The issue is that this standard is ill-defined and very different standards 

have been met by different approved biomarkers (155). I have explored these issues 

further in Chapter 3.  

 



17 
 

1.1.3.3 Ethical issues 

Pharmacogenetics should be understood in terms of both benefits and risks. As 

discussed, the potential benefits are many: reduced incidence of adverse events, 

increased treatment efficacy, and the identification of better targets for drug 

development. However, there are several issues surrounding the use of genetic 

biomarkers that need to be addressed (15).  

Genetic information does carry some unique risks. Testing an individual is not truly 

individualistic. Relatives who share genetic information are inadvertently also tested, 

often without consent (162). Confidentiality and privacy are consistently rated as 

important issues in patient surveys of pharmacogenetics (163-165). Clinicians are 

also concerned about these issues. In one survey, the majority of clinician 

participants were ‘very worried’ that patients would be disadvantaged for future 

health insurance based on genetic test results (163).  

These concerns are linked to the stigma and discrimination that may occur in 

response to some genetic test results. Genetic discrimination is the unjust or 

prejudicial treatment of people based on their genetics (166, 167). Schizophrenia is 

an example where genetic testing is emerging as a technology. However, mental 

illness carries a large stigma and treatment options are often limited. The 

discrimination that could result from knowledge of someone’s risk of schizophrenia is 

high – including health insurance raising prices to cover costs of psychiatric care, and 

banks refusing loans fearing an individual’s capacity to repay (168). In another study, 

more participants were concerned about insurance companies, the government, or 

their employers knowing results of genetic screening for Alzheimer’s disease than 

results of screenings for cancer risk (169). This may be because Alzheimer’s is likely 

to be incurable and more expensive for insurers (and disagreeable for employers), 

providing a motive for genetic discrimination.  

There is legislation to protect against genetic discrimination. The UK follows 

European law, including the 1997 Convention on Human Rights and Biomedicine. 

The 2016 recommendation CM/Rec(2016)8 from the Council of Europe ensures that 

insurers cannot require people to undergo genetic tests for insurance purposes. The 

recommendation also specifies standards for the processing and storage of personal 

genetic data (170). The Association of British Insurers has published a Code on 

Genetic Testing and Insurance that states that companies within the association 

cannot, under any circumstances, require or pressure customers to have a predictive 

or diagnostic genetic test (171). 
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In the US, the 2008 Genetic Information Nondiscrimination Act (GINA) was enacted 

to prohibit discrimination by insurers or employers based on any genetic information 

(166, 172). However, some effects are currently outside of the law. GINA does not 

apply to the US military, where DNA is routinely collected from service personnel 

(173) There have been cases where adoption agencies have refused to place children 

in families where one or more parents are at risk of Huntington’s disease (174-176) . 

Privacy is clearly an important part of genetic testing to be considered.  

A further ethical dilemma arises when the testing technology outpaces available 

treatments. A 2020 study of molecular testing by the NHS in advanced lung cancer 

found that 83% of patients underwent somatic molecular testing for all three 

recommended biomarkers (ALK, PD-L1, and EGFR), and 96% of these tests yielded 

useful results (177). Testing for these biomarkers is mandated since there are 

approved drugs that target these mutations. However, this is not always the case. 

Direct-to-consumer (DTC) tests provide consumers with at-home germline genetic 

testing (178). These variants often include germline mutations linked to currently 

incurable and largely non-preventable conditions, such as Parkinson’s and 

Alzheimer’s disease (179). Without the benefits of genetic counselling, persons 

receiving this information may be at risk of harm (178, 180). Additionally, these tests 

are often not fully validated, with false positives and negatives occurring at high rates 

(181). However, these tests are extremely popular, with over 26 million people having 

been tested as of January 2019 (182). This shows that there is clearly a demand for 

genetic testing. The challenge is to ensure that future pharmacogenetic testing using 

clinically validated and approved tests aligns with the preferences of patients, in order 

to guarantee maximum uptake rates and clinical utility. I have chosen to investigate 

this issue using a discrete choice experiment, as demonstrated in Chapters 6 and 7.  

While there are many benefits, pharmacogenetics must not appear to have all the 

answers. Genetics is not the only factor that can influence a drug’s efficacy. Age, sex, 

compliance, and environmental effects may also contribute to an individual’s 

response to a drug (20). It is difficult to unravel the complete picture of drug response.  

However, we must simultaneously take care not to be overly cautious. It has been 

suggested that genetic tests are more harshly judged than tests using other 

technologies (4, 15, 183). This ‘genetic exceptionalism’ has arguably slowed progress 

in pharmacogenetics and genetic biomarker research.  
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1.1.3.4 Preferences 

Incorporating the preferences of stakeholders (including patients, healthcare 

professionals, and the general public) is essential if pharmacogenetics is to be 

accepted as a part of clinical practice.  

A 2012 study of 1463 US residents found that 70-85% of participants would take free 

genetic tests predicting their risk of future disease (169). When willingness-to-pay 

(WTP) was calculated by adding a price tag, mean prices of between $320 - 622 were 

obtained. Although mainly applicable to the US healthcare system, this study showed 

that the general public are amenable to genetic testing, even when that might provide 

upsetting news. Despite this acceptance, medical education in pharmacogenetics is 

usually lacking. A recent survey of 282 US and Japanese paediatricians found that 

less than half could correctly answer a pharmacogenetics quiz question. Less than 

10% of participants said they were ‘very familiar’ with pharmacogenetics. Despite this, 

82% considered pharmacogenetics a valuable tool in improving drug efficacy (184).  

The characteristics of an ideal genetic test are less clear. This makes policy decisions 

in this area even more challenging. The scenarios of testing are often complex and 

involve difficult decisions. One method often used to measure preferences for test 

characteristics is the DCE. This method, from use in economic theory, is ideal for the 

quantification of complex scenarios (185). For example, Dong, et al. (2016) measured 

the preferences of patients for genetic testing to prevent very rare ADRs (186). 

Modelling revealed that the majority of patients always wanted a genetic test, 

regardless of cost or other factors. This could potentially impact health policy, if 

providers know that genetic testing is broadly very important to the general public, 

even in the context of a 1-in-a-million chance ADR. There have been several uses of 

DCEs in pharmacogenetics, and I have explored these further in Chapter 5.  

 

1.2 Conclusion 

What is clear is that for pharmacogenetics to move forward, the views of all 

stakeholders must be collected, analysed, and incorporated into policy. A practical 

method for evaluating views on complex subjects is the DCE (164, 187, 188).  This has 

been used successfully in many areas of pharmacogenetics and is discussed in detail 

later in the thesis in Chapters 5, 6, and 7. 

The aim of this thesis is to explore the evidence base of pharmacogenetics, with a 

focus on quantifying the views of the general public in this area. I will first focus on 
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the regulatory issues that have been shown to limit the wider use of 

pharmacogenetics (Chapter 2). An expanded version of a published paper 

analysing the evidence cited by existing RCTs to justify inclusion of genetic 

biomarkers is then included (Chapter 3). There is then an exploration of the use of 

simulation in the R coding language to produce evidence for genetic testing in a 

very rare outcome (Chapter 4). 

The final chapters examine the use of DCEs and present my own experiment 

conducted in 2021 with 2000 members of the general public. I first undertook a 

systematic review of existing DCEs in pharmacogenetics, focussing on those that 

specifically examined ADRs (Chapter 5). I applied these ideas to my own DCE 

design, incorporating extensive qualitative work into the design (Chapter 6). The 

final chapter presents the results of the DCE and how these fit into the wider 

literature on pharmacogenetics (Chapter 7).  
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Chapter 2: Biomarker assessment and regulation 

“A bad tumor biomarker test is as bad as a bad drug” (1) 

2.1 Why do we need biomarker assessment and regulation? 

Any medicine that is going to be used in humans needs to go through a rigorous 

assessment and regulatory process to ensure it is safe and effective (2). The same 

is true of biomarkers. While biomarkers do not directly endanger life or health via 

toxicity or adverse drug reactions (ADRs), there are still dangers associated with 

their use (3). Misdiagnosis, inaccurate risk estimates, and incorrect drug choices are 

possible results of a poorly regulated and/or validated biomarker process (4-6). A 

poor choice of biomarker to select patients for a trial risks failing to prove the 

efficacy of a useful drug (7). Clinically, a poor biomarker may lead to incorrect 

decision making and subsequent patient harm (1). Regulators generally require 

clear evidence of patient benefit to approve an intervention (8). This evidentiary 

standard is ill-defined. This has led to approvals of some biomarkers with very 

different levels of evidence behind them (9). Some groups (in industry, within 

regulators, and academic) have attempted to produce frameworks for the evaluation 

of biomarkers, that identify and assess the evidence for their use. However, this has 

not led to a unified solution for clinicians, researchers, and drug developers to use 

when investigating genetic biomarkers and there is limited specific guidance on the 

qualification and use of biomarkers. For the avoidance of doubt, when referring to 

‘biomarkers’ in the remainder of this chapter it can be assumed that the discussion 

relates equally to pharmacogenetic markers as it does to other types of biomarkers.  

The aim of this chapter is to detail how genetic biomarkers may be assessed, 

including the use of several different formal frameworks. The level, type, and quality 

of the evidence required under each assessment is detailed. The guidelines issued 

by regulatory authorities on what evidence is acceptable for the use of a biomarker 

clinically and/or in a trial setting are discussed. Finally, the challenges associated 

with integrating genetic biomarkers into trials are discussed.  

In general, the more risk associated with a biomarker, the more regulatory scrutiny it 

undergoes (Figure 2.1). ‘Risk’ here refers to the potential impact of the decision 

made by using the biomarker (10). A lower risk biomarker might be one used to 

identify those at risk of developing a mild, but inconvenient ADR, in combination 
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with clinical factors. A higher risk biomarker may be used to define eligibility for life-

changing treatment options. 

In a trial, biomarkers integral to that trial’s conduct also require more evidence than 

biomarkers used on an exploratory basis (6, 11, 12). The level of scrutiny and 

evidence required are also dependent on the intended use of the biomarker (10, 12-

15). Biomarkers for exploratory usages will have less scrutiny than those integral for 

clinical decision making (16). For example, the SHIVA trial assigned cancer 

treatment to metastatic cancer patients based on their tumour biomarkers (17). The 

biomarkers used in this serious disease setting, potentially affecting patient survival, 

should undergo greater scrutiny and require more and higher quality evidence 

before use. In contrast, using CYP2D6 genotyping to determine opioid dosing (18) 

does not directly impact on survival. This biomarker can therefore be used with less 

scrutiny and less evidence. 

 

Figure 2.1 - As the risk associated with a biomarker increases, so does the level of regulatory scrutiny 

levied. This is also influenced by the intended use of the biomarker. “Risk” refers to the impact of the 

decision to be made based on the biomarker results. Exploratory, or agnostic biomarker use refers 

here to examining a biomarker in an isolated manner, separate from, e.g., the tumour site. From Amur, 

et al. (2015) (10). 

However, the use of biomarkers in drug development or to guide treatment are still 

relatively new concepts compared to issues normally dealt with by pharmaceutical 

regulation. Many regulatory authorities are still trying to ‘catch up’ with the science, 
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and there is generally little consensus across jurisdictions. The US Food and Drug 

Administration (FDA) has admitted that next-generation sequencing technologies 

strain its current regulatory methods (19, 20) and its current approval process for 

biomarkers has been criticised as not fit-for-purpose (12).  

The implementation of biomarkers and pharmacogenetics into clinical practice is 

limited by a lack of high quality randomised controlled trial (RCT) evidence (21, 22).  

This issue is also discussed further in Chapter 3. However, it is also difficult for 

triallists and funders to commence these RCTs without clear regulatory guidance.  

The aim of this chapter is to provide an overview of the current frameworks 

available for the evaluation of biomarkers. Outside of national and international 

regulatory agencies, many frameworks have been published for the evaluation of 

biomarkers. Many of these are used by regulators for their own evaluations. I 

discuss these frameworks in this chapter, along with an overview of the views of UK 

and US regulators. Finally, I discuss the difficulties of regulating trials for genetic 

biomarkers and some innovative solutions to these problems.   

2.2 How are biomarkers evaluated? 

There are several terms relating to biomarkers and their regulation that are formally 

defined.  

Regulation, or licensing, is the process where drugs or biomarkers are assessed by 

government agencies for safety, efficacy, and quality of production, before being 

allowed onto the market (23). Regulators require biomarkers to be qualified before 

they are used clinically. Qualification, in the context of a biomarker to be used for 

drug development, is “a conclusion, based on a formal regulatory process, that 

within the stated context of use, a medical product development tool can be relied 

upon to have a specific interpretation and application in medical product 

development and regulatory review” (16, 24-26). When considering a biomarker to 

be used to guide treatment within a clinical context, it is the process by which a 

biomarker is linked to a clinical outcome or phenotype of interest (16, 27). This 

qualification can be split into analytical and clinical domains (15, 28). Analytic 

concerns include sensitivity, specificity, and precision, while clinical concerns 

include validity, quality assurance, and education of providers (28). Clinical 

concerns also include the risks and benefits associated with testing (28), and the 

link between the biomarker and the outcome of interest (29). Prior to a biomarker’s 

approval by a regulatory authority, analytic validity, clinical validity, and clinical utility 
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need to be evaluated (Table 2.1). Analytical validity refers to the biomarkers assay’s 

ability to accurately detect the biomarker of interest, clinical validity refers to how 

well a biomarker test result correlates with the outcome of interest e.g. an adverse 

drug reaction, whilst clinical utility refers to the benefits a person would derive from 

a biomarker test. Each is considered in more detail in Table 2.1 below. 

Term Definition Example 

Analytic validity Ability of a biomarker test to accurately and reliably 

measure the genotype (or analyte) of interest. 

Includes analytic sensitivity, specificity, reliability, 

and robustness (1, 12, 13, 28, 30, 31) 

Ensures the biomarker performance is fit-for-

purpose (29) 

Within- and 

between-

laboratory 

precision  

Clinical utility The risks and benefits associated with a test’s 

introduction to practice – the health outcomes 

(positive and negative) from the testing (28) 

The likelihood the test will lead to improved outcome 

with a given intervention (27) 

Choosing an 

effective treatment 

in personalised 

medicine 

Clinical validity Ability of a biomarker test to accurately and reliably 

predict the disorder or phenotype of interest (27).  

Includes clinical sensitivity and specificity, positive 

and negative predictive values, and genetic factors 

(penetrance, variable expressivity) (28, 32) 

Ensures the biomarker reflects the outcome of 

interest (29) 

Validation of the 

test when 

predicting clinical 

outcome in all 

populations where 

it might be used  

Table 2.1 - Analytic validity, clinical utility, and clinical validity definitions used in biomarker 

qualification. See also Gillis and Innocenti (2014) (33) 

Analytic validity involves assessing how biomarker assays perform in laboratory 

settings (30). The choice of assay for biomarker detection is assessed for sensitivity 

and specificity, as well as its analytical limits (31). When testing defines the 

population for a treatment, it is vital that testing is accurate (34). Other important 

issues to consider at this stage are: sample integrity over storage; training of 

personnel; and methods for minimising variability at all stages of the assay (31). An 

example of the importance of testing analytic validity is the failure of a promised 

proteomics biomarker for the detection of ovarian cancer (35, 36). Initial 

encouraging results of 100% sensitivity and specificity rates were not 

reproduceable. This was found to be due to the original researchers not considering 

the limit of detection of lab equipment, producing artifacts in the dataset (37). 
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It has historically been difficult to locate evidence on the analytic validity of 

biomarker tests, due to these results being less likely to be published (38, 39) than 

other validity and utility measures. This is due to commercialisation and data being 

held by laboratories and their related proprietary interests (38). This has led to 

issues with several trials proceeding that were based on weak evidence for the 

biomarker’s analytical validity and its subsequent clinical performance (39). One 

group of authors identified issues with analytic validity that led to oncology trials 

being terminated for patient safety, since the underlying biomarker studies were 

fundamentally flawed (40). 

A biomarker has clinical utility if there is evidence of improved measurable clinical 

outcomes associated with its use (32). Clinical utility is also defined as the health 

outcomes (both positive and negative) associated with testing (28). For example, an 

evaluation of clinical utility for a test for a specific cancer genotype which would 

guide targeted treatment might include assessing the availability of effective 

targeted treatments for that cancer. If none are available, there may not be sufficient 

justification for performing the test – the test would have low clinical utility. 

Clinical validity denotes a test’s ability to detect or predict a clinical status (e.g. 

presence of disease, treatment outcome etc.). A test has clinical validity when there 

is a ‘strong, well-validated association between having the variant and having a 

particular disease or predisposition’ (19, 32). In the case of pharmacogenetics, this 

would mean the test’s ability to predict a treatment response outcome (e.g. 

developing an ADR). It is also dependent on the frequency of the allele, and the 

frequency of the ADR. This is explored further in Chapter 4. 

For example, the anti-depressant citalopram is associated with increased side-

effects in patients who are CYP2C19 poor metabolisers (41). The clinical utility of 

this association was shown by Mrazek, et al. (2011) who showed that certain alleles 

are associated with tolerance of citalopram (42). The clinical validity of testing was 

confirmed in a study of citalopram in healthy Swedish volunteers where was 

complete concordance between CYP2C19 genotypes and metabolism phenotypes 

(43).   

A further critical example would be the importance of validating the test in all 

relevant populations (such as ethnicities, genders, and age groups). For example, a 

genetic test that works well in Asian populations may not perform as well in 

Caucasian populations due to different proportions of allele frequencies (44) and 

differing patterns of linkage disequilibrium. 
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Before qualification or clinical use, pharmacogenetic tests need to provide evidence 

to show they meet minimum criteria in each of these domains. The standards 

required to prove these criteria are variable and ill-defined (6). To combat this, 

different groups have produced methods for evaluating biomarkers and the 

evidentiary standards they should meet. These frameworks are distinct from 

regulatory approval frameworks but may be used in conjunction with each other. 

2.2.1 Existing frameworks for biomarker evaluation 

There have been several frameworks produced for the evaluation of biomarkers 

(45). Below, I have profiled several. ACCE was the earliest and arguably most 

influential framework (45). From the perspective of industry, I have profiled a 2007 

meeting of industry and regulatory figures into the evidence required for evaluation 

(13). Finally, an overview is presented of the Pharmacogenomics Knowledge Base 

(PharmGKB) and Clinical Pharmacogenetics Implementation Consortium (CPIC) 

systems of classification (46, 47). 

A full literature review of frameworks for the evaluation of genetic tests was 

published in 2018 by Pitini, et al (45). I have located some more recent frameworks 

and placed these in context with the older ACCE framework.  

2.2.1.1 ACCE 

One of the earliest frameworks for biomarker evaluation was the ACCE framework, 

established from 2000 to 2004 (28, 48). ACCE is an acronym denoting four 

components – Analytic validity, Clinical validity, Clinical utility, and Ethical, legal and 

social implications (Figure 2.2). ACCE provides a framework to evaluate tests by 

using 44 specific questions nested within the four components (28, 49-51). When 

using the ACCE framework, evidence used to reach conclusions about each 

question should be specified, including an assessment of the quality of that 

evidence and possible bias (30). 



37 
 

 

Figure 2.2 - ACCE framework, used to evaluate tests through questions in each of these domains. 

ACCE stands for Analytic validity, Clinical validity, Clinical utility, and Ethical, Legal, and Social 

Implications. Adapted from Haddow and Palomaki (2004) (28). 

ACCE was developed from previous work by Wald and Cuckle (1989) with support 

from the US Centers for Disease Control and Prevention (CDC) (49, 52). Influential 

in the development of ACCE was a 2000 US committee formed to advise on the 

medical, scientific, ethical, legal, and social issues of genetic testing (although 

ACCE is not itself specific to genetic tests) (53). ACCE was later adapted (adding 

specific methodological guidance and details of family testing (30)) for use in 

genetic tests in the UK by the Genetic Testing Network Steering Group (30, 54). 

ACCE continues to be significant for regulation – a 2018 review found that 13 

national evidence evaluation initiatives for genetic tests were based on ACCE (45). 

ACCE later led to the 2005 formation of the Evaluation of Genomic Applications in 

Practice and Prevention (EGAPP) initiative (55). EGAPP was an independent body 

that issued reports and recommendations on the integration of genetic tests into 

practice for clinicians and other stakeholders (32). Their last recommendation, in 

2015, was regarding the use of Oncotype DX tumour gene expression profiling in 

breast cancer (56).  
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While ACCE succeeded at the time, it became increasingly challenging to use as an 

evidence framework due to the expansion of biomarker complexity across disease 

areas, biomarker types, and contexts of use (57). The limited evidence available in 

some areas of genetic testing has also curtailed the use of ACCE (30).  

2.2.1.2 Frameworks by industry for biomarker evaluation 

Biomarkers are valuable for industry. Drug toxicity is a major reason for drug failure 

at the clinical trial stage  (7, 58). Biomarkers that could predict this would be very 

valuable, however there are risks associated with their use in drug development.  

Biomarker qualification is susceptible to two types of error, type I and type II. In the 

context of biomarker qualification, these can be described as follows. In a type I 

error, the biomarker is judged to be useful even though it is not (false positive). In 

type II, a potentially useful biomarker is not qualified (7). The risks associated with 

each of these occurrences are perceived differently by different stakeholders such 

as patients, regulators, and industry (59).  

Williams, et al. (2006) argued for a framework that evaluates biomarkers both in 

terms of their risk and cost-effectiveness (24). They argued that biomarkers are too 

often evaluated through perceived consequences of their failure, and this is not 

balanced sufficiently with the potential benefits of their implementation. The ‘dread’ 

of rare but serious consequences leads to overestimation of their frequency. 

Equally, the frequency of less serious events is underestimated (Figure 2.3).   
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Figure 2.3 - How risks are perceived. The blue line can represent the true situation – events of high 

severity are rare, whereas events of low severity are more common. The dashed line represents 

perception – we tend to overestimate the frequency of high severity events and underestimate the 

frequency of low severity events. From Williams et al. (2006) (24) 

 

Around the same time as this paper, another industry-authored paper provided a 

fuller perspective on biomarker validation (12). This paper provided some key 

recommendations for biomarker validation in several areas, but mainly focussed on 

analytic validity. The paper also recommended that the rigour of validation should 

be ‘fit-for-purpose’, meaning that early, exploratory biomarkers should require less 

rigour than one to be used for critical decision making. This is similar to the 

previously mentioned FDA perspective (10).  

A more recent survey of industry perspectives on biomarker qualification found that 

regulatory complexity was seen as a bigger barrier to qualification than technical or 

scientific complexity (60). In this survey, participants were also asked to select 

which evidentiary standards should support biomarker regulatory qualification. 

Literature reviews and confirmatory studies were the most common types chosen. It 

would be interesting to take this work further by comparing and contrasting its 

conclusions with the views of patients and regulators to see whether those 

stakeholders desire different evidentiary standards for biomarker qualification. This 

sort of comparative evaluation was completed by a 2007 committee in the US (13). 
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2.2.1.2.1 Case study: PhRMA committee 2007 

A committee of the Pharmaceutical Research and Manufacturers of America 

(PhRMA) produced a framework for the evaluation of biomarkers that incorporates 

patient, regulator, and industry perspectives (13). This process utilises a similar 

framework as Williams, et al. (2006), arguing for full evaluations of the benefits and 

harms of true and false positives/negatives. Once the purpose and specific context 

(e.g. for use in a life-threatening disease area) of use of the biomarker is agreed, 12 

qualitative assessments are carried out. Here, the views of patients, regulators, and 

industry are sought to determine an overall value of truth and harm of falsehood for 

the biomarker (Figure 2.4A). This ‘tolerability of risk’ defines the next step, an 

evidence map which aims to outline the type and strength of evidence needed for 

biomarker qualification.  

This evidence map step consists of seven domains (Figure 2.4B): theory on 

biological plausibility; interaction with pharmacologic target; pharmacologic 

mechanistic response; linkage to clinical outcome of a disease or toxicity; 

mathematics replication and confirmation; accuracy and precision (analytic 

validation); and relative performance. Evidence should be provided for each 

relevant domain. The map enables the grading of the quality of this evidence from 

grade D (least relevant evidence) to grade A (most relevant).  

This approach provides a labour-intensive but individualised approach for defining 

evidentiary standards. The authors note that the process was tested in a July 2007 

workshop, attended by key stakeholders. Untrained participants were able to 

complete assessments within one day. Further use of the process could not be 

located. Moreover, the framework does not include an assessment of the risk of 

bias. This is an important part of assessing evidence and is discussed later in this 

chapter.  
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Figure 2.4 – Process proposed by the Pharmaceutical Research and Manufacturers of America 

(PhRMA) for determining the evidence required by a biomarker for qualification. Once the biomarker 

purpose and specific context of use is defined, 12 qualitative assessments are carried out to determine 
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the value and harm of biomarker testing outcomes. The evidence map is then used to create an 

evidentiary framework for qualification (13). 

2.2.1.2.2 Personalised Precision Medicine Special Interest Group 

 

A similar process was recently undertaken by the multi-national Personalised 

Precision Medicine Special Interest Group (59). This work, within a precision 

medicine context, aimed to describe the perspectives of patients, clinicians, 

hospitals, industry, regulators, payers, and policy makers on the evidence required 

for evaluating the value of a genetic biomarker. The information was taken from 

published literature and discussions in professional societies from 2010 – 2019.  

Common to all groups were concerns about safety, efficacy, and affordable care. 

Patients were additionally concerned about privacy in relation to genetic data, 

something that echoes throughout the literature (61-65). Perspectives from 

clinicians focussed more on evidence. The availability of comparative evidence of 

utility across different tests was important, as was evidence-based decision support 

on test use and interpretation. Regulatory perspectives included the importance of 

evidence for test safety and efficacy, and opportunities for real world evidence from 

post-market surveillance. From these perspectives, the Group proposed some novel 

considerations for evidence in precision medicine, including potential for harm 

associated with a genetic test, payment requirements, and the wider health system 

effects of precision medicine. This includes the use of new technologies such as 

artificial intelligence and machine learning and their role in drug development and 

safety.  

A specific framework for evidentiary standards was not provided in this article, but 

the authors did provide important considerations that should be taken into account 

by authors of future frameworks. 

 

2.2.1.3 Summarising the evidence: PharmGKB and CPIC 

The Pharmacogenomics Knowledge Base (PharmGKB) (66) and the Clinical 

Pharmacogenetics Implementation Consortium (CPIC) were set up from groups 

within the Pharmacogenomics Research Network (PGRN) (47). These groups both 

aim to summarise the evidence for utility of genetic biomarkers into easy-to-use 

resources, accessible to clinicians and researchers. They use similar systems of 

categorisation to define required evidence as the previously mentioned frameworks.  
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PharmGKB is an online resource that reviews and summarises pharmacogenetic 

evidence to support clinical annotation of variants, summarise biomarker-drug 

pathways, and publication of pharmacogenetic guidelines (46, 67-69). PharmGKB 

has over 4000 clinical annotations to date, and has 34 VIPs (‘very important 

pharmacogenes’) as ‘Tier 1’ genes – these are considered the most urgent and 

serious of the associations (70) (see Appendix Table 1). These have ‘substantial 

evidence to support their importance in pharmacogenomics’. New genes are 

regularly added to the database. Each variant-drug interaction is curated by at least 

two reviewers (70). This process has produced a key resource for researchers and 

clinicians (46), but is labour-intensive and time-consuming. A new alternative is the 

automated text-mining process outlined by Lever, et al. (2020) (71). This will further 

improve PharmGKB as a source of pharmacogenetic information by allowing the 

automated addition of new research. The guidelines produced by PharmGKB are 

influential and they are widely used by clinicians and triallists (46). 

PharmGKB collects and summarises evidence on genetic variant-drug associations 

(67). The evidence is rated on a six-point scale (Figure 2.5). Each level is well-

defined with strict criteria. As of October 2020, the majority of genetic variant-drug 

combinations are in the Level 3 category (3525, or 77.4%), with 182 (4.0%) in the 

top evidence categories (Levels 1A and 1B). The quality of studies used as 

evidence is indirectly assessed using cohort size, effect size, and significance (p-

value) as heuristics (72). There is no specific mention of assessing studies’ risk of 

bias.  
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Figure 2.5 - PharmGKB levels of evidence assigned to clinical annotations. The table shows the 

number of variant-drug combinations that are supported by each level of evidence, as of October 2020. 

*These data obtained from “Variant and Clinical Annotations Data”, located at 

https://www.pharmgkb.org/downloads (67). 

The CPIC was set up in 2009 to provide specific guidance to clinicians and 

laboratories on pharmacogenetic testing in order to improve the difficulty of 

translating genetic results into clinical practice (73, 74). CPIC guidelines are written 

in collaboration with PharmGKB (68). Evidence from PharmGKB is chosen to be 

used in a guideline in a process based on clinical need, availability of strong 

supporting evidence, and the availability of genetic tests in a clinical setting (74, 75). 

All CPIC guidelines work from the underlying assumption that clinicians will one day 

have access to patients’ genotypes before prescription as a matter of routine (74). 

As of November 2020, CPIC has produced guidelines relating to 25 biomarker-drug 

pairs (76). Each guideline adheres to a standard format and synthesises information 

https://www.pharmgkb.org/downloads
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from multiple sources on genes (including genetic test interpretation), drugs (link to 

genetic variability), and dosing. The quality of the evidence linking genotype to 

phenotype is also graded (77). Quality is assessed using a three-point scale (26): 

• High: evidence includes consistent results from well-designed, well-

conducted studies (although no standard for assessing this is provided) 

• Moderate: evidence is sufficient to determine effects, but the strength of 

evidence is limited by the number, quality, or consistency of the individual 

studies, generalisability to routine practice, or indirect nature of the evidence 

• Weak: Evidence is insufficient to assess the effects on health outcomes 

because of limited number or power of studies, important flaws in their 

design or conduct, gaps in the chain of evidence, or lack of information. 

Despite the existence of this scale, specific details of how each category is 

assessed (e.g. what constitutes an ‘important flaw’ in a study?) could not be located.  

Once these assessments are completed, the level of evidence is used to assign 

CPIC levels to specific gene-drug combinations. CPIC levels range from A to D 

(Table 2.2) (77), with higher grades for stronger recommendations based on higher 

quality evidence. Guidelines are normally only written for recommendations in levels 

A-B, although guidelines are sometimes published for those in level C (78). 

As an example of this process, the association between HLA-B*15:02 and 

carbamazepine is rated as level A, indicating that the evidence is so strong (and of 

good quality – although again, the methods for assessing this are not explicitly 

stated) that testing should be required before prescription (79). In contrast, level D 

includes an association between metformin and C11orf65, an association with little 

evidence for an association between variant and drug phenotype. This association 

is on Level 4 of the PharmGKB levels (80). 
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Table 2.2 - CPIC levels. *Number of recommendations in each category as of November 2020. The 

action recommended in this table is a change in prescribing. There are also levels between those 

shown. These are used at preliminary review stages. As of November 2020, there were 16 

recommendations in A/B, 69 in B/C, and 5 in C/D. Data obtained from https://cpicpgx.org/genes-drugs/ 

(47). 

2.3 Regulatory bodies’ views on biomarkers 

The growth in the use of genetic biomarkers has strained regulatory processes that 

were designed for very different types of interventions (19). The complexity of 

regulatory processes has presented a significant barrier to industry in biomarker 

usage (60, 81). 

A 2021 mini review outlined the views of the FDA and European Medicines Agency 

(EMA) on predictive biomarkers (82). The current recommendations given by the 

FDA focus on the amount of evidence for drug-biomarker pairings, sufficient to 

support medical decision making. This may involve decisions about safety, efficacy, 

and pharmacokinetics. Discussion of the EMA recommendations is briefer, as new 

regulations are due within 2022. 

2.3.1 Medicines and Healthcare Products Regulatory Agency (MHRA), UK 

The MHRA is responsible for the regulation of medicines, medical devices, and 

blood components for transfusion in the UK (83). The remit of the MHRA includes 

monitoring side-effects, reviewing evidence, and inspecting clinical trial sites (84). 

Presently, the MHRA works very closely with the EMA (85). The general regulatory 

framework currently used by the MHRA for biomarkers is based on the European in 

vitro Diagnostic Medical Devices Directive 98/79/EC (86).  

https://cpicpgx.org/genes-drugs/
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The MHRA considers biomarkers and genetic tests as medical devices (3). A 

medical device is defined by the MHRA as “any instrument, apparatus, appliance, 

software, material or other article used alone or combined for humans to: diagnose, 

prevent, monitor, treat or alleviate disease; diagnose, monitor, treat, alleviate or 

compensate for an injury or handicap; investigate, replace or modify the anatomy or 

a physiological process; control conception” (87).  

Three categories of medical device are defined: active implantable medical devices, 

general medical devices, and in vitro diagnostic medical devices (IVDs) (87). The 

first two of these are classified by the level of risk associated with their use (Figure 

2.6B), assessed using 18 rules that assess invasiveness, local or systemic effects, 

and duration of use (14). These categories range from low risk, class I (everyday 

items such as plasters) to high risk, class III (implantable cardiac catheters). IVDs 

(under which most genetic tests and biomarkers fall) are grouped into four 

categories based on risk and specific usages (Figure 2.6B). Different evidentiary 

standards are required for the different categories.  
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Figure 2.6 - MHRA risk categories for A) general medical devices and active implantable devices and 

B) IVDs. Black boxes contain examples, from the MHRA, of devices that fit within each category. 

Considerations box describes factors that go into the decision-making process (88). IVD = in vitro 

diagnostic. 

The lowest risk category of the four is for ‘self-test’ items, such as home pregnancy 

tests. In contrast, the highest risk category contains devices for the assessment of 

blood groups and of blood borne diseases (89). These require additional evidence 

and scrutiny because many of the diseases are infectious and  notifiable (need to be 

reported to the UK government since they present a significant risk to human 

health) (90). This is important for the assessment of biomarkers for monitoring HIV 

and hepatitis.  

All IVDs must be registered with the MHRA (87). All categories other than ‘general 

IVDs’ must also have a conformity assessment carried out by a notified body. These 
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bodies are expected to assess whether manufacturers and medical devices meet 

the requirements set out in the legislation (91).  

Despite being classed as IVDs, genetic tests are not specifically referred to in this 

list of devices. New guidance is clearly required, and these guidelines are currently 

being replaced by the new regulations, the Medical Device Regulation (MDR) and 

the In Vitro Diagnostic Medical Device Regulation (IVDR). These will be fully in 

place from 2022 (92). These regulations map existing categories into new 

classifications (Figure 2.7). Most biomarkers will now fall into the category of in vitro 

diagnostic medical devices. The available guidance suggests that most genetic 

tests will fall into Class C.  

 

Figure 2.7 - new MHRA medical device and in vitro diagnostic medical device categories (92) 

The approval of a notified body is still required for devices in classes B, C, and D. 

This approval requires a conformity assessment, which includes calibration, testing, 

certification, and inspection (92). Details of the technical requirements for receiving 

this approval can be found in Chapters I and III of Annex IX of the Regulation 

2017/746 of the European Parliament (89). Class C and D devices are also required 

to submit periodic (at least annual) safety update reports throughout the lifetime of 

the device. This should include analyses of post-marketing surveillance data and 

details of the usage of the device (93). 
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The MHRA collaborates closely with the EMA (85). However, the uncertainty around 

the UK’s exit from the EU (‘Brexit’) has made it difficult for regulators to plan for the 

future (94). The MHRA has published some advice on this, including general advice 

(covering marketing authorisations, import/export, and pharmacovigilance) (95) and 

advice specific to medical devices (96). Based on an amendment to the Medical 

Devices Regulations 2019 (EU Exit) (2019) the MHRA participation in the European 

regulatory network would end. However, some EU Directives on medical devices 

(directives 90/385/EEC, 93/42/EEC, and 98/79/EC) have already been transposed 

into UK law under the Medical Devices Regulations 2002 (97). So, although 

regulation post-Brexit is unclear, some EU directives are likely to still apply. The 

Medicines and Medical Devices Bill was introduced to parliament in 2020 (98). This 

bill will give the UK government powers to update existing regulatory frameworks.  

The EMA published specific guidelines on pharmacogenetics and genetic 

biomarkers during the drug life cycle in 2013 (99, 100). The exact format for a 

submission package for biomarker qualification varies depending on the biomarker 

context, but in general includes several key attributes (Table 2.3) (100), based on 

requirements of the International Council for Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for Human Use (ICH) (101). 

These do not explicitly specify that participant ancestry should be included in the 

evaluation, and the importance of this is further discussed in Chapter 3.  

Summary of the ICH guideline E16 on genomic biomarkers related to drug 

response: context, structure, and format of qualification submissions 

Section 1: Regional 

Administrative 

Information 

Documents specific to each region. This can be specified by relevant 

regulatory authorities 

Section 2: 

Summaries 

2.2.1. Biomarker qualification 

overview 
2.2.2. Overall summaries 

Introduction,  

Context of use,  

Data description,  

Critical appraisal of data and 

methods,  

Any additional data needed, 

Justification for the context of use 

Analytical, non-clinical, clinical (as 

appropriate),  

Synopses of individual studies  

Section 3: Quality 

reports 
Product quality and manufacturing data 
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Section 4: 

Nonclinical reports 

 

Section 5: Clinical 

reports * 

Full study reports for biomarker qualification 

Information on compliance with GCP 

Number and classification of patients in study,  

Performance characteristics of the biomarker test used,  

Variables impacting on assay validity and interpretation, 

Methods used for analysing raw data, 

Criteria for determining sample quality, 

Methods used for determining gene expression, 

Criteria used for selection of candidate genes, 

Results of analyses of genomic biomarkers to international standards, 

Expert statements 

Evaluation reports issued by regulatory authorities 

Manufacturer technical descriptions 

Published articles in peer-reviewed journals (including meta-analyses) 

Table 2.3 - The information in this table comes from (100). *Nonclinical and clinical reports are listed 

together in the guidance.  

GCP = good clinical practice 

Evidence for the performance characteristics of the biomarker test can be based on 

retrospective and/or prospective correlation with either nonclinical or clinical data 

(100). While submitters are required to provide a justification for the biomarker 

context of use, no examples are given of what information would be sufficient for 

this purpose.  

However, a 2011 reflection paper published by the EMA acknowledged that 

evidentiary burdens are different depending on the circumstances of genomic 

biomarker usage (27). However, they state that “confirmation of findings obtained 

from early signal generating studies in a prospective pivotal clinical trial is 

expected”. The EMA also states that where such a trial is not possible, evidence 

from well-conducted case control studies, observational or epidemiological studies 

“might also serve the purpose” (27). In situations where the main evidence for a 

biomarker is retrospective, there are four requirements for the evidence to be 

persuasive: 

1. The strength of the association should be high 

2. The biological plausibility for the interaction should be strong 

3. The marker status of the majority of the subjects in the dataset should be 

known, to avoid bias 
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4. The diagnostic performance of the marker for the measured outcome should 

be of acceptable level (27).  

This paper also notes that bias is more likely in retrospective studies and needs to 

be reduced with proper study design and execution. Selection bias and 

measurement bias are singled out as particular risks. The authors also warn that a 

large sample size alone is not sufficient to remove bias (27).  

These guidelines, only applicable where a prospective pivotal trial is not possible, 

provide a good basis for triallists planning trials for submission to European 

regulators. The evidentiary standards detailed above could be met using 

combinations of in vitro work and observational studies. However, this guidance is 

now almost a decade old, necessitating an update to reflect newer technologies. An 

update to these regulations is due in May 2022 (82), which will clarify the risk-based 

classification system, improve transparency, and enforce a unique device identifier 

system (102). Manufacturers have until May 2025 to fully comply. However, these 

guidelines also do not comment on any necessary quality of evidence, or 

assessment for risk of bias, something that is an essential additional check on a 

biomarker’s readiness for trials or clinical use (103).  

In the UK, many trials are run through the National Health Service (NHS). Policies 

from the NHS, Health Research Authority (HRA), and Department of Health are 

therefore influential in designing research. The UK Policy Framework for Health and 

Social Care Research, enacted in 2017, defines 19 principles to be followed by 

interventional health and social care research (104). Principle 16 states that any 

intervention must be “adequately supported by the available information (including 

evidence from previous research)” (104). This is the responsibility of the Chief 

Investigator, the research team, and the sponsor. While there is no specific 

guidance on what evidence is appropriate, the NHS Health Research Authority 

(HRA) recommends a systematic review is undertaken before setting the research 

question for a project. The information gathered should then be used in the design 

of the project (105). 

2.3.2 Food and Drug Administration (FDA), USA 

The FDA regulates medicines, medical devices, vaccines, food, cosmetics, tobacco, 

and other products in the United States (106). It is an agency within the US 

Department of Health and Human Services (107). As the regulator for the largest 

national drug market in the world by value (108), the FDA has a significant influence 

on drug regulation around the world. In 2004, the FDA issued a landmark report that 
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highlighted the potential of biomarkers to “drive rapid clinical development” and the 

importance of biomarkers in drug safety and effectiveness (109). This was followed 

up by the Biomarker Qualification program (see below) and guidance on biomarker 

qualification in drug development (31, 110, 111). 

The Biomarkers, EndpointS, and other Tools (BEST) resource was then produced in 

2016 by an FDA-NIH Working Group (25). The site includes FDA-approved 

definitions of biomarker-related terms, as well as information on the different types 

of biomarker and their application. The FDA uses the 2001 Biomarkers Definitions 

Working Group definition of a biomarker (112). The agency further defines a 

composite biomarker as “several individual biomarkers that are combined in a 

stated algorithm to reach a single interpretive readout” (113).  

The FDA categorises biomarkers by their context-of-use (COU) (10, 25). The COU 

is the most important factor used to determine the level of evidence needed for 

biomarker qualification (114, 115). As previously discussed, the required level and 

quality of evidence also increases when there are greater risks associated with the 

biomarker’s use, or if it will be used to make critical decisions (10, 116). There are 

several ways to reach this required level of evidence. 

Diverse types of data have been used for biomarker qualification. Data can be 

“retrospective or prospective, registry data, and/or randomised controlled trial data 

and should include an exploratory dataset and a confirmatory dataset” (117). A 

2014 FDA paper stated that data for a premarket application may come from 

“clinical trials, appropriately curated databases, published literature, and/or other 

sources of valid scientific evidence”, and offered an example of a rare cystic fibrosis 

variant given clearance based on the use of a “well-curated third party database” (5, 

118).   

There are two ways a biomarker may then be accepted by the FDA for use in drug 

development (Figure 2.8).  
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Figure 2.8 - FDA biomarker process, with two options for submitters. The first is the traditional option 

for using a biomarker in a single drug development program. The second is the dedicated Biomarker 

Qualification Program. BLA = Biologic Licence Application. BQ = biomarker qualification. IND = 

investigational new drug. NDA = new drug application. From Amur, et al. (2015) (10). 

 

In the first pathway (left), a drug developer may reach an agreement with the FDA 

during the drug development process to allow the use of the biomarker clinically 

(10). In this pathway, developers present data through existing investigational new 

drug (IND), new drug application (NDA) or biologic licence application (BLA) 

processes. Full data submissions are required where biomarkers will be used for 

decision making in a clinical trial, for safety, efficacy, dosing, or pharmacology, or 

where the biomarker will be used on a drug label (116). This pathway also 

encompasses the Voluntary Genomic Data Submission (VGDS), a process whereby 

the FDA encourages developers to submit data voluntarily where IND approval is 

not required (such as for exploratory or research only biomarkers) (20). This first 

pathway is efficient for the drug developer but does not allow wider scientific 

scrutiny or peer review of the proposed biomarker.  

The second pathway (right) is the Biomarker Qualification Programme (BQP) 

created by the FDA Center for Drug Evaluation and Research (CDER). This was 

created in 2009 to help biomarkers be developed for use in the drug development 
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process as tools by providing guidance and information to industry (114, 115, 119, 

120). One of the aims of the programme is to enable transparency by making 

information on qualification publicly available (110). During this programme, a 

Biomarker Qualification Review Team (BQRT) will guide submitters through the 

initiation, consultation, and review stages of the BQP (114). In the initiation stage, 

the submitter sends a letter-of-intent including information about the biomarker and 

its potential use. The BQRT then makes recommendations for the submitter to 

address, before deciding whether to accept the biomarker into the BQP. If accepted, 

the BQP moves into the consultation stage. Here, the submitter must forward an 

initial briefing package that includes further information on the biomarker. The 

BQRT holds a formal meeting with the submitter to guide further biomarker 

development. The review stage takes place when the submitted data are “complete 

and adequate” (115). A qualification recommendation is made after reviewing the 

data, internal meetings, and possible additional information requests (114). The 

entire BQP process takes 2-3 years and has been criticised as being expensive and 

labour-intensive (110). However, once a biomarker is qualified, it can be used in 

drug development programs under the stated COU (114). Some examples of 

biomarkers approved through this process include plasmodium RNA/DNA 

measurement for the diagnosis of malaria, and total kidney volume as a prognostic 

biomarker for polycystic kidney disease (121). As of October 2020, no 

pharmacogenetic biomarkers have yet been approved through this programme.  

More recent FDA approvals related to biomarkers include pembrolizumab and 

larotrectinib. These are notable as they were approved for any solid tumour 

harbouring specific biomarkers, regardless of tumour histology (34, 122-124). 

Pembrolizumab (Keytruda) was approved in 2016 for any solid tumour with high 

microsatellite instability or mismatch repair deficiency (123). This was the first drug 

approved by the FDA on the basis of mutations rather than a specific type of cancer 

(123) (although pembrolizumab was previously approved solely for metastatic non-

small cell lung cancer (NSCLC) (125)). A 2016 statement by the FDA cited one trial 

that contributed to pembrolizumab’s approval, known as Keynote 001 (125). 

Keynote 001 was a complex Phase 1, open-label trial that included multiple 

amendments to add cohorts and subgroups (126-128). Keynote 001 was primarily a 

dose-escalation study, enrolling 550 NSCLC patients for treatment with 

pembrolizumab. The objective response rate (the proportion of patients with tumour 

size reduction of a predefined amount and for a minimum time period (129)) was 

41% (95% CI 28.6-54.3%) (125). Pembrolizumab was later approved for treatment 
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of microsatellite-instability high (MSI-H) or mismatch repair deficient (dMMR) 

tumours, based on data pooled from five non-randomised enrichment basket trials 

(34, 130). MSI-H and dMMR tumours contain large numbers of mutations, including 

PD-1 and PD-L1, the targets of pembrolizumab. The assays for detecting these 

tumour types were not standardised at the time of this 2017 approval, but was 

justified by the high unmet medical need for drugs targeting these pathways (34, 

130). 

Pembrolizumab was approved through the FDA accelerated approval program and 

granted priority review. A recent analysis of FDA approvals from 1983-2018 found 

that the mean annual number of new drug approvals has increased, while more and 

more drugs are approved through ‘special’ programs like the Orphan Drug Act 

(1983) and the Priority Review program (1992). Submitting drugs through these 

programs allows drugs to be approved with less supporting evidence (131). Drug 

efficacy claims made to the FDA are required to be supported by “adequate and 

well-controlled” trials. Darrow, et al. (2020) argued that this statement has become 

more flexible over the years (131). They provide the example of the 1962 drug 

approval statute requiring two adequate and well-controlled randomised trials, in 

contrast to the 1997 codification of the previously informal practice of accepting just 

one (131, 132).  

A 2014 analysis of drug-biomarker pairs in the FDA Table of Pharmacogenomic 

Biomarkers in Drug Labelling found that only a minority provided convincing 

evidence for clinical utility and validity (9). The authors defined ‘convincing’ evidence 

as a systematic review/meta-analysis of RCTs showing consistency in their results, 

or at least one large RCT. Of 119 drug-biomarker combinations, only 43 (36.1%) 

provided ‘convincing’ evidence of clinical validity, and 18 (15.1%) did the same for 

clinical utility. These data pose the question of whether the FDA biomarker evidence 

evaluation process is fit-for-purpose. The authors proposed that a statement about 

the quality of evidence should be presented in drug labels, and that biomarkers 

should only be included in labels in the first place if ‘compelling clinical utility 

information’ has been generated.  

This analysis was repeated in 2017 with similar results (133). These analyses 

suggest that the minimum standards for approval of biomarkers are unclear and so 

wide variation in levels of evidence is seen. There is a large body of literature on 

evidentiary standards yet no clear guidelines from regulatory agencies could be 
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located. A unified position on these issues is required to ensure patient safety and 

regulatory consistency. 

Draft guidance published by the FDA in 2019 gives guidance on how to 

demonstrate evidence of effectiveness for industry (132). While not specific to 

biomarkers, the guidance offers details on the quality and quantity of evidence the 

FDA may accept for industry to prove the effectiveness of drugs and biological 

products (Figure 2.9). For example, in regards to trial designs, the use of a control 

group ‘generally provides strong evidence of effectiveness’, although bias could be 

introduced if blinding is not adequate. This reduces the quality of the evidence. The 

guidance includes an acknowledgement that just one well-controlled randomised 

trial may be used as evidence, along with appropriate confirmatory evidence. There 

is also provision for situations where RCTs may not be ethical or feasible, such as in 

rare diseases (< 200,000 cases in the USA per year) or conditions caused by toxic 

substances. In these cases, observational studies or work in animals may constitute 

acceptable evidence.  
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Figure 2.9 - FDA recommendations for industry on the quality and quantity of evidence required for 

demonstrating the effectiveness of human drug and biological products. Note that this paper is stated 

to contain ‘nonbinding recommendations’. FDA, 2019 (132). 

However, these recommendations are geared towards the regulation of drug 

products. A similar guidance for the use of biomarkers in clinical practice would be a 

valuable addition to the FDA regulatory arsenal.  

An extreme example of regulatory challenge is the drug milasen, developed in 2019 

for a single patient (134). An FDA editorial describes how the approval process was 

fast-tracked due to the patient’s deteriorating condition (135). One month of animal 

studies and in vitro work were used as evidence for approval. This extreme end of 

personalised medicine also needs to be accounted for in regulatory development. 

2.4 Challenges with genetic biomarker use in clinical trials contexts 

As shown, regulators normally require clinical trial evidence prior to the approval of 

biomarkers for clinical use, and many innovative trial designs have been proposed 

for this purpose (15, 82, 136-139).  
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Freidlin, et al. (2012) proposed four potential designs for phase III trials after a 

biomarker has been shown to be useful in phase II trials (140). These designs 

(along with many others) are explored further in the online tool Biomarker-Guided 

Trial Designs (www.BiGTeD.org) (136). This tool, based on systematic reviews of 

the literature (141, 142), was developed to aid in the design and analysis of 

biomarker-guided trials by providing interactive overviews of trial characteristics, 

methodology, and evaluation of their advantages and disadvantages. The designs, 

based on systematic data extraction from 211 papers, are divided into adaptive and 

non-adaptive designs. Adaptive designs allow planned modifications during the trial, 

while non-adaptive are more traditional, fixed designs (Table 2.4) (136).  

Adaptive design Non-adaptive 

Pros Cons Pros Cons 

✓ Efficiency 

improvements 

(time, 

recruitment, 

costs) (143) 

✓ Can increase trial 

attractiveness to 

participants (143) 

✓ Optimise 

resource 

utilisation (144) 

✓ Possibly more 

ethical (144) 

 Greater design 

complexity (143) 

 Risk of type I/II 

error if trial is 

stopped early 

(145) 

 Some negative 

ethical 

implications (144)  

 Effective and 

specific trial 

infrastructure 

required (143) 

 Possibility of 

selection bias in 

investigators 

(144) 

✓ Are often simpler 

to run (143) 

✓ Better for long-

term outcomes 

(143) 

✓ Simpler to 

present to 

participants (144) 

 

 Cannot easily 

adapt to new 

information (145) 

 Can be less 

efficient (time, 

recruitment, 

costs) (143) 

 More participants 

may receive 

ineffective 

interventions 

(144) 

Table 2.4 - advantages and disadvantages of adaptive and non-adaptive trial designs 

An example of adaptive design is the multi-arm, multi-stage (MAMS) design (Figure 

2.10A). In a MAMS trial, there can be as many trial arms as needed, each 

evaluating a different intervention. In a biomarker context, patients within each arm, 

with a specific biomarker, are randomised to receive the experimental treatment or a 

control (which may be common to all arms). Each arm is effectively a ‘mini-trial’. 

Results are analysed at pre-defined interim analysis points, and any arm where the 

experimental treatment is inferior can be dropped, while the larger trial continues. A 

successful example is the ongoing STAMPEDE trial in prostate cancer, which has 

enrolled over 11,000 participants over 11 trial arms (146, 147).  
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An example of a non-adaptive design is an enrichment trial (Figure 2.10B). In an 

enrichment trial, a population is screened and the study population is selected from 

those who possess the required biomarker (137). In this way, the study population is 

enriched, particularly useful when the biomarker of interest is a rare variant. This 

design is also used when there is evidence that a treatment is beneficial only in a 

biomarker subgroup. Strong evidence for the biomarker’s utility is required before 

choosing this design (34). The SHIVA trial is an example of an enrichment design. 

In SHIVA, patients with any cancer type were screened and entered into the trial 

only if their tumours possessed a mutation in one of three available pathways. 

Patients were then randomised 1:1 to receive biomarker-guided or physician-guided 

treatment (17). 

 

Figure 2.10 – Example of two BiGTeD designs. A) Multi-arm, multi-stage (MAMS) trial design, used for 

evaluating multiple interventions at once. B) Enrichment design, where only patients with the biomarker 

are randomised to receive the intervention or control, and those without the biomarker do not progress 

with the study. R = randomisation. From www.bigted.org (136). 

Despite the many different options for designing a biomarker-guided trial, 

conducting clinical trials in pharmacogenetics can often prove difficult. One difficulty 

http://www.bigted.org/
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is that genetic biomarkers are often very rare, meaning that demonstrating clinical 

validity and utility can quickly become impossible as a variant’s rarity increases (5, 

19, 148-152). Early examples of personalised medicine (e.g. trastuzumab in HER2+ 

breast cancer) had the advantage of having large populations for testing (8). The 

rarer the mutation, the more difficult it is to design and recruit for a study with 

sufficient power and for extremely rare variants, even a trial cohort of 1 million 

people would be too small to establish validity (19).  

Further issues with trials using biomarkers include: increased costs, ethical issues 

(including disclosure to participants, incidental findings), recruitment problems, and 

the need for specialist staff (for a full review see Antoniou, et al. (2019) (153)). While 

RCTs are the ‘gold standard’ of evidence (154-156), they are not always suitable for 

pharmacogenetics. Questions have also been asked about the ethics of 

randomising patients who carry known actionable mutations to a drug or dose that 

could cause an ADR (151). For this and other reasons (mainly in scenarios where a 

variant or phenotype is very rare), an RCT is not always an appropriate tool (150, 

151). There are other methods for assessing the utility of a genetic biomarker, and 

this issue is discussed further in Chapter 4.  

The BiGTeD project is one example of trial methodologies adapting to the new 

challenges of pharmacogenetics. These sorts of biomarker-guided trial designs 

often fall into the definition of ‘complex clinical trials’ used by the Clinical Trials 

Facilitation and Coordination Group (CTFG), a group within the European Heads of 

Medicines Agencies (HMA), an independent network that advises the EMA (157, 

158). A complex clinical trial is defined as a design consisting of separate parts, that 

would themselves constitute individual clinical trials, and/or one that has extensive 

prospective adaptations planned (such as the addition of trial arms) (157). These 

are often defined by the inclusion of biomarkers. A 2019 recommendation by a 

working group of the HMA stated eight key recommendations for the design and 

conduct of complex clinical trials (157) (Table 2.5). These recommendations are 

likely to become widely used in the European Union, and stakeholders conducting 

biomarker-guided trials should ensure compliance. 

Additionally, a 2020 consensus statement by a group of UK researchers provided 

10 recommendations for the conduct of complex innovative design (CID) cancer 

trials (159). These are also applicable to other disease areas. Both of these sets of 

guidelines make similar recommendations, valuing patient and public involvement, a 

priori trial planning, and encouraging dissemination of results (Table 2.5).  
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HMA CTFG (157) UK CID trials working group (159) 

Clearly describe and justify design Engage with regulators 

Maintain scientific integrity Standards for protocol development 

Ensure quality of trial conduct and 

optimise clinical feasibility 
Patient and public involvement 

Ensure safety of trial subjects 
Standards for patient-facing 

documentation 

Maintain data integrity 
Statistical considerations, heavier 

workload 

Reassess benefit-risk balance at critical 

steps throughout clinical trial 
Define leadership and oversight 

Validate companion diagnostics Disseminate results 

Consider data transparency Consider higher levels of staff training 

 
Regulators to consider post-marketing 

commitments from manufacturers 

 

 
Public health impact analyses 

Table 2.5 - Comparison of HMA CTFG and UK CID trials working group recommendations for complex 

trial designs. CID = complex innovative design. CTFG = Clinical Trials Facilitation and Coordination 

Group. HMA = Heads of Medicines Agencies. 

These new frameworks will form the foundation of regulatory processes in the 

future, particularly as trials continue to become larger and more complex (122, 160). 

2.5 Discussion 

This review of the methods available for assessing genetic biomarkers and the 

views of regulatory authorities reveals shortcomings in the available guidance. 

While many working groups and committees have formulated guidance, the 

resulting guidelines form a patchwork of conflicting guidance that is a significant 

barrier to the wider implementation of biomarkers and pharmacogenetics (12).  

The ACCE guidelines provided an excellent basis for many national and 

international assessment efforts (45). This was built on and considered by many 

other groups, including the PhRMA committee (13). These efforts paved the way for 

the creation of the PharmGKB and CPIC resources, used for detailing and 

summarising the totality of the evidence behind genetic biomarkers (47, 67).  
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A lack of clear regulatory standards is a significant barrier to the wider 

implementation of pharmacogenetics (21, 161-164). Regulatory opinions on 

biomarker evidence standards were more difficult to locate and examine. From 

analyses of the levels of evidence behind FDA drug labels, it is clear that there is 

significant heterogeneity in the evidence that has allowed biomarkers past the 

approval process (9, 133). These studies raise further questions about the suitability 

of current regulatory processes for modern biomarker research. For example, the 

rapid changes in these fields require faster approvals and subsequent drug label 

updates (133).  

There are many challenges involved in regulating genetic biomarkers. Firstly, 

although evidence standards are unclear, trials of some kind are undoubtedly 

required. Designing trials that are able to incorporate biomarkers and adapt to rapid 

changes as the research evolves is one of the central challenges of evidence 

gathering in this area (153, 165, 166). Precision medicine necessitates the 

recruitment of smaller populations with specific characteristics. This is a challenge 

for designing trials that will be sufficiently powered to detect meaningful effect sizes. 

Innovative trial designs are required (136, 153), as is regulatory approval of these 

sorts of trials. There needs to be sufficient flexibility in the evidence requirements in 

cases where full randomised trials are not possible (150, 151). An example of this is 

when an outcome or variant is very rare. In these cases, it is not always possible to 

collect the RCT data normally required for regulatory approval. Combining data from 

well-conducted observational studies is a potential method of solving this problem 

(167, 168). I have explored this issue further in Chapter 4.  

Secondly, there is a need for guidance that is applicable internationally, to reflect 

the multinational drug market and trial recruitment areas (169, 170).  At present, 

different regulatory agencies and frameworks use different terminologies and criteria 

to describe biomarkers, evidence, and trial standards. This may even require 

agencies to produce two sets of guidelines – one for drug development, and another 

for clinical implementation.  

Third, there is very little discussion of the quality of evidence or risk of bias in any of 

the listed frameworks. The framework produced by the PhRMA committee includes 

assessment of quality in their evidence map, but there is no discussion of the risk of 

bias of that evidence (13).  PharmGKB provides details of how quality is assessed, 

but not risk of bias, and CPIC guidelines provide neither. The EMA guidelines for 

evidence where RCTs are not possible does account for the quality of evidence and 
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takes steps to address the risk of bias. Since a regulator does assess these issues, 

and because of the relevance of such an assessment to the reliability of any 

estimates of effect, it would clearly be useful for PharmGKB and CPIC, widely used 

frameworks, to incorporate these into their work.  

Finally, the cost and cost-effectiveness of many of these interventions needs to be 

considered, particularly in a wider societal context (13, 24). Calculating the 

monetary values of these costs and benefits is difficult in practice (13, 171). This 

necessitates the development of a framework that, while acknowledging cost-

effectiveness, is not defined by it. The ACCE framework did include an economic 

evaluation domain, which assesses the costs associated with testing and the 

economic benefits associated with testing (28). However, this is a small part of the 

overall evaluation of the biomarker, in a societal sense. Industry and drug 

developers clearly have a strong interest in cost. Frameworks proposed by these 

groups focus heavily on the cost associated with the usage (or non-usage) of 

biomarkers in trials or clinical practice (13, 24).   

This conflict echoes more widely throughout the field of evidence gathering. There is 

a clear incentive for industry to suggest genes as ‘actionable’ with weaker evidence 

than other stakeholders would require. Actionable tumour genes are found in 

industry trials more often than in government-funded trials (8, 172). This underlines 

the need for regulatory intervention in industry-focussed evaluations of biomarkers. 

One possible solution to these issues would be the setting of minimum standards. A 

regulator could provide a unified evidence framework similar to that of the 2007 

PhRMA Committee, and state that a biomarker under prognostic, predictive, 

diagnostic, or response categories should meet at least, e.g. Grade B. Flexibility 

could be granted in certain settings such as in diseases with unmet clinical need. 

Ideas from rare disease regulation could be applied to biomarker-guided trials, 

where the biomarker positive population is small. For example, the FDA allows one 

RCT to be used as evidence (as opposed to the usual two) in some cases. They 

also allow observational studies or in vitro work to be used as sole evidence where 

an RCT is not ethical or feasible (132). 

A 2014 FDA paper discussed the clearance of a variant for clinical testing based on 

a “well-curated third party database” (5, 118).  The term “well-curated” is key here – 

evidence needs to be of sufficient quality to be applicable. However, the standard of 

this quality is not formally defined by the FDA, leaving applicants unclear about 

requirements. 
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A unified framework, based on a full systematic review of existing frameworks, 

would make the process of evidence gathering clear and transparent to triallists, 

clinicians and industry. The well-designed and validated work of PharmGKB and 

CPIC should be used to frame recommendations. The framework would also need 

to include provision for frequent updates as the field progresses. Innovative and 

well-designed trials will form the cornerstone of this framework. International 

considerations, including testing in multiple ancestry groups, would also form part of 

this framework, as would cost-effectiveness calculations. The creation of this 

framework by an influential regulatory agency such as the FDA or EMA would be 

the impetus for its use in other parts of the world.  Importantly, the assessment of 

study quality and risk of bias should be incorporated into this unified framework. 

It is also ethically and clinically important to account for the preferences of patients 

and the general public when making regulatory decisions. The PhRMA committee 

included patients in its discussions (13), and the FDA have stated their belief that 

patient experiences can help evaluate the benefit-risk profile of new interventions 

(173). Policy making around patient preferences benefits from quantitative methods, 

such as the discrete choice experiment (DCE) (173-175). I have explored this 

further in Chapters 6 and 7. 

There is evidence that the regulatory environment is changing. The approval of 

pembrolizumab by the FDA for use in any tumour showing a particular mutation is 

an important development (34). While the minimal evidence used in this approval is 

notable, it is also important to realise the shift that has taken place in the approval of 

a histology-agnostic drug. The indication for pembrolizumab being defined by 

biomarker is a new direction for regulatory authorities that will undoubtedly become 

more common in the future (34). 

 

2.5.1 Strengths and Limitations 

This review focuses on methods available for the assessment of biomarkers and 

published regulatory views of biomarkers. I include discussion of frameworks 

developed by both academics and industry, and provide an overview of the widely 

used PharmGKB and CPIC resources. This combination of resources provides 

several powerful options for assessing biomarker evidence.  

Another strength of the review is the focus on clinical trials and evidence, a 

discussion missing from many reviews of evidence gathering. While the need for 



66 
 

trials as evidence is often discussed, the unique challenges of conducting trials with 

genetic biomarkers are often not addressed.  

One of the limitations of this chapter is the focus on the UK and US regulatory 

systems. Other systems may have very different methods for assessing biomarkers 

and/or provide more detailed guidance about their use. However, I focussed on the 

UK as this is my home system. I additionally included the US FDA as this has been 

called the “most powerful regulatory agency in the world” (176). Further, the focus 

on EU regulations applies to the systems of many European countries.  

This project was not a full systematic review of all available regulatory guidance. A 

full systematic review would be a challenging but worthwhile project in the future. 

This would allow an unbiased view of current guidance and show any gaps in 

regulatory systems. A piece of work similar to that of Pitini, et al. (45) but also 

incorporating the perspectives of multiple stakeholders (including patients, 

clinicians, regulators, and industry) could form the basis of recommendations.  

 

2.6 Conclusion 

Ultimately, the lack of a standardised evaluation framework or pathway for 

biomarker qualification leaves individual clinicians and institutions as the decision-

makers (8). This introduces bias into decisions that should be objective, and leaves 

inherent inconsistencies in the process. There is a balance to be struck between the 

need for patient safety and the need for innovative new biomarkers.  

In the next chapter, I will investigate how existing trials have justified inclusion of 

their genetic biomarkers, and provide recommendations on how future trials can 

better provide evidence for including the biomarker in their trial design. I will later 

propose one solution to the problem of how evidence can be collected for an 

extremely rare biomarker, without conducting a full RCT. Final chapters discuss the 

views of the general public on the levels of evidence required for biomarker 

implementation into clinical practice.  
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Chapter 3: Evidence to support the inclusion of 

pharmacogenetic biomarkers in randomised controlled 

trials 

Parts of this chapter have been published in: 

Johnson D, Hughes D, Pirmohamed M, Jorgensen A. Evidence to Support Inclusion 

of Pharmacogenetic Biomarkers in Randomised Controlled Trials. J Pers Med. 

2019;9(3):42. Published 2019 Sep 1. doi:10.3390/jpm9030042  

3.1 Evidence base in pharmacogenetics 

As discussed, pharmacogenetics has the potential to impact healthcare in improving 

drug efficacy, reducing drug side-effects, and improving drug cost-effectiveness. 

However, the full potential of pharmacogenetics is not currently being exploited (1). 

One study of prescriptions in a US health system over 3 years found that of 8718 

medication orders with recommended or required testing, only 129 pharmacogenetic 

tests were performed (1.5%) (2).  

As far back as 2003, a White Paper by the UK Department of Health laid out the 

potential for pharmacogenetics to improve healthcare in the National Health Service 

(NHS) (3): preventing disease, preventing adverse drug reactions; and as predictors 

of drug response. This paper predicted that new pharmacogenetic products would be 

common in the NHS within 5 years. Almost 20 years later, the implementation of 

pharmacogenetics has not lived up to expectations. 

There are many reasons for this, including the regulatory hurdles discussed in 

Chapter 2 (4-11). A review of 229 published papers also found that issues with 

information technology and scientific barriers were the most common obstacles 

hindering the wider implementation of pharmacogenetics (5). These technology 

obstacles included: alert fatigue by clinicians receiving frequent pharmacogenetic 

information on prescribing, lack of infrastructure for decision support, and 

incompatibility with existing electronic health records. Scientific barriers to 

pharmacogenetics included: long turnaround time of tests leading to treatment 

delays, cost, and a lack of randomised controlled trials (RCTs) demonstrating the 

efficacy and utility of pharmacogenetic testing (Figure 3.1) (5). Other barriers 

identified were education (of both clinicians and the general public), 
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ethical/legal/social/regulation issues, and reimbursement (in terms of national health 

system payers or health insurance) (5).  

There are also significant geographical disparities in implementation. A 2017 review 

of pharmacogenetics implementation found that pharmacogenetics projects were 

mostly based in North America and Europe, but highlighted significant ongoing work 

in Australia, Japan, and South Korea (5).  Implementation is also complex in low- 

and middle-income countries. Challenges such as under-resourced health systems, 

a relative lack of research infrastructure, and socio-cultural barriers contribute to 

these disparities (12, 13).   

 

 

Figure 3.1 -Information Technology and Scientific barriers to the wider implementation of 

pharmacogenetics (5) 

Over a decade ago, McKinnon, et al. (2007) wrote about the barriers to 

pharmacogenetics implementation (14). One of these was cost - a barrier that has 

been significantly lowered by the falling cost of sequencing since then (1, 15). 

However, a more recent publication by Hippman & Nislow (2019) divides barriers 

into two categories: whether testing should be performed at all, and challenges to 
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pharmacogenetic integration into clinical systems (1). Lack of evidence for 

pharmacogenetic testing forms the majority of the first category. If there is 

insufficient good quality evidence for a pharmacogenetic test, there may be negative 

utility associated with its use – e.g. wasting time and resources. A lack of robust 

evidence of clinical utility is the largest impediment to the wider implementation of 

pharmacogenetics (5, 8, 16-18), since a lack of well-designed trials limits the ability 

of regulators and payers to evaluate the evidence for a biomarker’s efficacy (9, 17-

20). 

McKinnon, et al. (2007) also called for large, randomised controlled trials of 

pharmacogenetic approaches, in multiple ethnic groups (14) which is essential for 

the clinical implementation of pharmacogenetics. However, before any trial can take 

place, there needs to be sufficient evidence that there is an association between the 

pharmacogenetic biomarker and clinical outcome. This is to ensure time and money 

invested into a trial are not wasted, but more importantly, participants are not put at 

undue risk.  

The evidence that trials do cite can take many forms. For biomarker-guided trials, 

specific evidence of the biomarker’s clinical utility and analytic validity is required (9, 

21-24). Clinical utility (the risks and benefits associated with a biomarker’s 

introduction to practice) (25), and analytic validity (the ability of the biomarker to 

accurately assess genotypes)(25, 26) are distinct concepts that require different 

evidence. While analytic validity can be shown in in vitro or observational studies, 

clinical utility often requires an RCT (27).  

Despite the importance of this evidence gathering prior to commencing a biomarker-

guided trial, the nature and extent of evidence required, and how it should be 

compiled, is unclear. Although a biomarker assay is an integral component of many 

trials, there exists more guidance on the evidence required for the inclusion of the 

actual intervention than the biomarkers themselves (24, 28). Trialists have therefore 

been left to justify biomarker inclusion in their own ways. 

Since there appears to be no specific guidance on how evidence of a biomarker’s 

validity should be compiled before proceeding to a clinical trial, I conducted a review 

with the aim of identifying how existing RCTs have justified inclusion of biomarkers 

within their trials. I chose 5 different trials that each represented a different area of 

biomarker use – prevention of adverse drug reactions (ADRs), improving drug 

efficacy, choosing targeted therapies, improving medication adherence, and 

improving patient’s health-related quality of life. I explored the extent and nature of 
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the evidence used to justify biomarker inclusion, and reflected on how evidence 

could be compiled by those planning biomarker-guided trials in the future. Parts of 

this work were published in the Journal of Personalised Medicine in 2019 (10). 

3.2 Methods 

For this review, I identified five trials that explored different genetic biomarker 

applications – prevention of ADRs (29), improving efficacy (30), choosing targeted 

therapies (31), improving medication adherence (32, 33), and improving health-

related quality of life (34).   

The first trial (TPMT: AZA Response to Genotyping and Enzyme Testing, TARGET, 

2011) explored whether TPMT genotyping helped prevent ADRs associated with 

azathioprine (29, 35).  A second trial (European Pharmacogenetics of Anticoagulant 

Therapy, EU-PACT, 2013) tested whether a genotype-guided approach to 

calculating therapeutic dose of the anticoagulant, warfarin, led to improved efficacy 

and reduced the incidence of ADRs (30). The third trial (SHIVA, 2015) explored the 

utility of an approach that used genotyping to match patients to molecularly targeted 

therapies (31). A fourth trial (Genotype-guided statin therapy, GIST statin trial, 2018) 

explored whether using genotype testing improved medication adherence and 

subsequently statin efficacy (32, 33, 36). The final trial (NCT02664350) investigated 

the use of genotyping to reduce pain associated with cancer (34) (Appendix Table 

2). Since I wanted to evaluate what evidence for each biomarker’s validity was 

available when the trial was planned or commenced, I used published protocols or 

design papers where available. Where trials did not have this information, I 

contacted trial authors or personnel to obtain protocols. 

This review focussed on RCTs as they are the ‘gold-standard’ of evidence (37) and 

are likely to be considered highly by regulators compiling evidence for a biomarker’s 

approval (38, 39). The review does not consider trial results, and whilst they are 

reported here for completeness, trials were not specifically chosen to favour a 

pharmacogenetics approach to treatment.  

For each trial, each piece of evidence referenced in the introduction section of the 

published protocol or design paper that justified including the biomarker in the trial 

was identified. Where meta-analyses were cited, I evaluated whether these meta-

analyses assessed studies for quality before inclusion. This was used as a proxy of 

quality of the meta-analyses themselves.   
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For each trial, details of the publication year, study design, drug of interest, 

biomarker used, sample size, country of origin, and the age, gender, and ethnicity of 

participants were also extracted. For TARGET protocols were located by contacting 

the authors. For SHIVA, the protocol was contained in the supplementary 

information of the results paper. Figures were made using RStudio (version 1.1.453, 

RStudio Team, Boston MA) (40), particularly the ‘formattable’ package (41). 

 

3.3 Results 

The timings of the evidence used by each trial were evaluated. Trials published 

evidence from varying time periods, but all cited evidence from within at least 3 

years of their publication or protocol date (Figure 3.2). The full lists of evidence for 

each trial are included in Appendix Tables 3-7.  

 

Figure 3.2 - Timings of publications cited by each trial in this review. Stars indicate the year of 

publication of the paper or protocol references were extracted from. Note that results from 

NCT02664350 are not yet published. 

 

3.3.1 TARGET 

3.3.1.1 Background 

The TARGET trial (ISRCTN30748308) used TPMT genotyping to guide azathioprine 

treatment of patients with inflammatory disease (29, 42). Azathioprine is a thiopurine 

immunosuppressant medication that can cause profound neutropenia as a side-
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effect of treatment (43). Patients that have TPMT*2, TPMT*3A, and TPMT*3C 

alleles are more likely to suffer neutropenia due to a deficiency of the TPMT enzyme 

(44). The TPMT gene is now recognised as a ‘very important pharmacogene’ by the 

Pharmacogenomics Knowledgebase (PharmGKB) (45). 

While measurement of enzyme activity is a regular part of clinical practice, it has 

several limitations. Measurement can be affected by recent blood transfusions, and 

several common drugs can affect the result (such as aspirin and sulphasalazine) 

(46). Genotyping the TPMT gene instead removes these limitations.  

Recruitment to TARGET began in 2005, and a protocol was published 

contemporaneously (35). This protocol was used to evaluate the evidence available 

at the time of the trial. 

3.3.1.2 Methods 

TARGET used a biomarker strategy design without biomarker assessment in the 

control arm (47). A total of 333 participants recruited from rheumatology and 

gastroenterology were randomised 1:1 to genotyping or non-genotyping arms (35). 

In the genotyping arm, the patient’s TPMT status was revealed to their clinicians. 

This was accompanied by information on how this status would affect azathioprine 

dosing. In the non-genotyping arm, participants’ clinicians did not receive this 

information and dosing was calculated according to standard procedures.  

3.3.1.3 Results 

Patients in the genotyping arm received significantly lower starting azathioprine 

doses than those in the non-genotyping arm. However, there was no significant 

difference between arms in rates of stopping treatment due to ADRs. A later cost-

effectiveness analysis found that genotyping was associated with a cost saving, but 

also a slight negative effect on health status (42). 

3.3.1.4 Evidence used to justify biomarker 

The evidence used to justify the use of the TPMT biomarker spanned from 1980 to 

2003 (Figure 3.3). The oldest evidence cited was a 1980 observational cohort study 

that first proposed a monogenic inheritance pattern for the TPMT enzyme (48). A 

1989 case-control study comparing TPMT enzyme activity in patients with ADRs 

from thiopurines to a control group was also cited (49). 

Eleven observational studies were cited, consisting of 9 cohort studies (44, 48, 50-

56), 1 case control study (49), and 1 study of enzymatic assay use in the UK (57). 
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The cohort studies show the progression from enzymatic testing to genetic testing. 

A paper from 1994 compared TPMT enzyme activity across black and white 

populations, finding lower median activity in black subjects (51). The same group 

performed a similar study in 1999, using genetic testing to determine TPMT allele 

frequencies in children with leukaemia (53). From this point, most of the 

observational studies focussed on genotype over enzymatic studies. 

One systematic review was cited, but this was a general pharmacogenetics review, 

not specific to azathioprine or TPMT (58). This was cited to underline the utility of a 

pharmacogenetics approach.  

 

Figure 3.3 - Evidence cited by the TARGET trial to justify inclusion of the TPMT biomarker. The 

numbers at the top represent years relative to the publication of the protocol in 2005 (35).  

The most recent citation was a 2003 expert opinion from a paediatric 

gastroenterologist on the use of TPMT to monitor azathiopurine levels in patients 

with inflammatory bowel disease (59). Other evidence included: a 2002 cost-

effectiveness analysis of TPMT genotyping (60), a 1997 questionnaire of UK 

clinicians on azathioprine usage (61), and a case study of a patient with 

azathioprine ADR and TPMT mutant alleles, from 2000 (62). A guideline by the 

British Society of Rheumatology from 2000 was also cited, but could not be located 

online for evaluation. 

3.3.1.5 Discussion 

Overall, the TARGET trial cited a variety of evidence types to justify inclusion of the 

biomarker within its trial, from a wide time range. The citations spanned the longest 

time frame of all the trials included here. For this trial, I investigated the evidence 

cited in a trial protocol provided by the authors. It is important to note that whilst the 

trial protocol was investigated for evidence cited, due to character and reference 

limits from the funders or sponsors, the authors may have been unable to include all 

relevant references used to justify biomarker inclusion.   
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3.3.2 EU-PACT 

3.3.2.1 Background 

EU-PACT (NCT01119300) was a single-blind, randomised European trial of 

genotype-guided warfarin dosing (30, 63-66). Warfarin is an antiplatelet drug used 

for the treatment of: rheumatic heart disease, atrial fibrillation, patients with 

prosthetic heart valves, venous thrombosis, pulmonary embolism, and transient 

ischaemic attacks (67). It is widely used in the UK, particularly in older populations 

(68). Warfarin works by inhibiting the synthesis of clotting factors, reducing the risk 

of blood clots (69). However, warfarin patients require regular monitoring due to the 

drug’s narrow therapeutic window (69, 70). Dosing of warfarin to maintain this 

therapeutic range is complex and depends on clinical algorithms that incorporate 

interacting medications, food, and alcohol, among others (71-74). Too high a dose 

increases the risk of bleeding, while too low a dose increases the risk of 

thromboembolic events (68, 70) (Figure 3.4). Warfarin is a common causative agent 

in hospital admissions due to ADRs (75). 

 

Figure 3.4 - warfarin dosing and the importance of the therapeutic window (67, 68, 71). Adapted from 

Blann, et al. (2003) (70). INR = International Normalised Ratio, a measure of intensity of 

anticoagulation.  

More recently, there has been research into genetic factors that can affect warfarin 

dosing (76). Over 30 genes have been identified as being linked to the warfarin 



85 
 

mode of action, but CYP2C9 and VKORC1 have been acknowledged as the most 

important (74, 76-78). Both CYP2C9 and VKORC1 are now included in 

PharmGKB’s list of very important pharmacogenes (79, 80). 

Patients with CYP2C9*2 and CYP2C9*3 alleles have reduced metabolism of 

warfarin, requiring a lower daily dose (76, 81, 82). Those with variants in VKORC1 

also have different warfarin requirements (76, 82). These genes, combined with age 

and height, account for 55% of the variance in warfarin dosage requirements (68, 

83). 

The EU-PACT trial was a 2013 RCT that compared genotype-guided dosing to 

conventional dosing. A protocol was published in 2009 and recruitment began in 

2011 (30, 66). 

3.3.2.2 Methods 

Participants in the UK and Sweden were randomised 1:1 to genotype-guided or 

conventional dosing (control) groups, stratified by centre and treatment indication. 

Those in the genotype-guided group were genotyped for CYP2C9 and VKORC1 

and dosed according to an algorithm including both genetic and clinical factors. The 

control group received a standard dosing regimen. All participants had not received 

previous warfarin treatment and suffered from either atrial fibrillation or venous 

thromboembolism (30). EU-PACT used a biomarker strategy design without 

biomarker assessment in the control arm (47). 

3.3.2.3 Results 

In the 427 participants, genotype-guided dosing was associated with an increased 

percentage of time in therapeutic range, a key measure of anticoagulation success 

(7.0% increase, 95% CI 3.3-10.6, p<0.001). Participants in the genotype-guided 

group also reached this therapeutic range faster than those in the control group 

(1.43 days faster, 95% CI 1.17-1.76, p<0.001). There were fewer dose adjustments 

required in the genotype guided group (4.9 compared to 5.4 in the control group, 

p=0.02) (30).  

3.3.2.4 Evidence used to justify biomarkers 

The published 2009 protocol cited mostly observational studies as evidence (Figure 

3.5). These consisted of 19 cohort studies (77, 83-100) and 4 case-control studies 

(101-104). The cohort studies included various anticoagulants with similar 

mechanisms of action to warfarin. They investigated the association between 

warfarin dosing and CYP2C9*2, CYP2C9*3, and VKORC1. One paper also included 
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GGCX (77). Many studies were testing algorithms that included both clinical (age, 

body surface area, smoking status) and genetic factors (83, 96-98, 100). One 

examined the incidence of over-anticoagulation in one anticoagulation clinic (85). 

Another compared the efficacy of algorithms across black and white populations 

(96). 

The authors also cited a 2009 genome-wide association study (GWAS) that showed 

the implications of specific CYP2C9, VKORC1, and CYP4F2 genes on warfarin 

dosing (94).  

Also cited were editorials (68, 105), cost-effectiveness analyses of genotype-guided 

vs standard dosing of warfarin (87, 106), and a literature review of economic 

evaluations of warfarin dosing (107).  No previous RCTs were cited. 

 

 

Figure 3.5 - Evidence cited by the EU-PACT trial to justify inclusion of the biomarkers. The numbers at 

the top represent years relative to the protocol publication date of 2009 (66). 

3.3.2.5 Discussion 

EU-PACT was a large, international undertaking and one of the first RCTs to 

investigate genotype-guided dosing of warfarin. Other RCTs had been published by 

2009 (108, 109) but had shown little or no benefit to genotype-guided warfarin 

dosing (110). Daly (2013) proposed that this was due to these studies being 

underpowered to detect all genetic effects (110). No pharmacogenetic studies of a 

similar size to EU-PACT had been published by 2009. The amount of observational 

evidence cited as justification for including biomarkers within this trial provides 

strong rationale for the RCT. 

3.3.3 SHIVA 

3.3.3.1 Background 

SHIVA (NCT01771458) was a French phase II trial of targeted agents in oncology, 

published in 2015 (31, 111, 112). The trial was histology-agnostic, meaning it 

recruited patients with any tumour type, but with the molecular mechanism being the 
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inclusion criteria (113). For example, patients were recruited to SHIVA if they had 

tumours with mutations in the hormone receptors pathway, regardless of the tissue 

(31).  

3.3.3.2 Methods 

SHIVA included drugs previously approved in France for targeted use: erlotinib, 

sorafenib, imatinib, dasatinib, vemurafenib, everolimus, abiraterone, letrozole, 

tamoxifen, trastuzumab, and lapatinib. The study protocol was included in the 

supplementary data of the 2015 results paper (31). After analysis of their tumour, 

patients with mutations that matched one of these drugs’ targets were randomised 

1:1 to receive the targeted treatment, or to receive their physician’s choice of 

treatment. Randomisation was stratified by signalling pathways and prognoses (31). 

Drugs were assigned based on an algorithm, taking into account the possibility of 

multiple mutations in each patient. The primary outcome of SHIVA was progression-

free survival (PFS).  

SHIVA used an enrichment trial design (47), where only patients with actionable 

biomarkers were randomised into the trial.  

3.3.3.3 Results 

While 716 patients underwent tumour sampling, only 293 had tumours with 

actionable mutations and were enrolled in the trial. Breast adenocarcinoma was the 

most common tumour type. There was no significant different in median PFS in the 

experimental group compared to the control group (hazard ratio 0.88, 95% CI 0.65-

1.19, p=0.41) (31). Median PFS was not significant in subgroup analyses by 

molecular pathway. There was also no statistically significant difference in rates of 

adverse events between groups. 

3.3.3.4 Evidence used to justify biomarkers 

The evidence cited in the protocol ranged from 1998 to 2011 (Figure 3.6). Four 

RCTs were cited (114-117). Two of these were trials of gefinitib in lung cancer (114, 

115). Another RCT cited was an investigation of trastuzumab in HER2+ breast 

cancer patients, a combination that was investigated in SHIVA (116). The final RCT 

was the BATTLE trial, which was an adaptive biomarker-based study in lung cancer 

patients (118). This trial was similar to SHIVA in that patients received treatments 

based on their biomarkers, but was specific to lung cancer. 

Two observational studies were cited. The first examined patients with metastatic 

colorectal cancer for KRAS mutations (119). The second was a pilot study with 
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similar traits to the SHIVA protocol – 66 patients with metastatic cancer were 

matched to targeted agents based on their tumour molecular profile. This small 

study reported an improvement in PFS, using patients’ previous regimens as 

controls (120). SHIVA authors also cited a contemporaneous editorial commenting 

on this study (121).  

The paper reporting on the results of this trial included an ‘Evidence before this 

study’ box (31). This detailed a literature search performed prior to the start of the 

trial, which identified several additional observational cohort studies (120, 122-125) 

and RCTs (126-128) . These were not the same papers cited in the protocol as 

evidence for the inclusion of the biomarkers. 

 

Figure 3.6 - SHIVA trial evidence cited for biomarker justification. The numbers at the top represent 

years relative to the publication of the 2014 protocol (included in Supplementary of a 2015 paper (31)). 

RCT = randomised controlled trial 

 

3.3.3.5 Discussion 

Due to the number of targeted agents evaluated, it would have been difficult for the 

SHIVA trial to provide extensive evidence for each genetic marker-drug 

combination. However, the amount of evidence cited in the trial protocol is sparse 

and only concerns a small number of drugs. Since at least some evidence for each 

drug is likely available, the authors could have presented this in a table or 

supplementary figure. The limited scope of a protocol clearly constrained the full 

citation of justifications, as further justifications are included in the results paper.  

3.3.4 GIST 

3.3.4.1 Background 

The US SLCO1B1 genotype informed statin therapy (GIST) trial (NCT01894230) 

investigated the utility of using genotyping to increase adherence to statins and 

promote lower cholesterol in patients with cardiovascular disease and a history of 

statin-induced side effects (32, 33, 36). 
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Non-adherence to statins in patients with cardiovascular disease is a known 

problem (129, 130). Non-adherent patients face higher risks of hospitalisation and 

mortality (adjusted hazard ratio 1.36, 95% CI 1.34-1.38 in the least adherent 

patients compared to the most adherent) (131). While some have reported 70-80% 

adherence in clinical trial settings (132, 133),  real-world usage results in much 

lower rates of adherence (134, 135). 

The aim of the SLCO1B1 GIST trial was to improve adherence by showing patients 

that treatment includes an assessment of the risks (real and perceived) of statin-

induced side-effects (32). A trial protocol with rationale and design details was 

published in 2016 (32), and the results published in 2018 (33). 

3.3.4.2 Methods 

Recruitment to the trial focussed on patients that had previously discontinued statin 

therapy due to suspected side-effects. Patients were genotyped for SLCO1B1 and 

then randomised 1:1 to receive genotype information as part of their care, or to 

receive usual care alone. The trial was unblinded and the primary outcome was 

patient-reported adherence to therapy. Secondary outcomes included low-density 

lipoprotein cholesterol (LDLc), number of new statin prescriptions, and patient-

reported quality of life.  

The trial used a biomarker strategy with biomarker assessment in the control arm 

design (47). 

3.3.4.3 Results 

While the trial initially recruited 159 participants, only 62 were available for analysis 

of adherence at 3 months (higher numbers were available for analysis of other 

outcomes). There was no statistically significant difference in patient-reported 

adherence between the genotype and control arms (p=0.96). This remained true at 

the 8 month time point. However, LDLc levels were significantly lower in the 

genotyped group compared to the control group at 3 months (131.9 vs 144.4, 

p=0.05). Analysis of the total study population revealed an interaction between 

SLCO1B1 status, randomisation, and LDLc. This may indicate a psychological 

effect of having an ‘actionable’ test (positive result, adjustment of statin dosage 

according to genotype) compared to a reassuring but negative test result.  

3.3.4.4 Evidence used to justify biomarker 

The trial cited a large number of references, dated from 2002 to 2015 (Figure 3.7).  
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Five sets of guidelines from four separate bodies were cited (136-140). These 

included two Clinical Pharmacogenetics Implementation Consortium (CPIC) 

guidelines on statin therapy in patients with the SLCO1B1 polymorphism rs4149056 

(from 2012 and 2014) (136, 137), broad guidelines on lowering cardiovascular risk 

(138), on statin treatment (139), and European guidelines on statin-induced 

muscular symptoms (140). 

Also included was a report on heart disease and stroke epidemiology from the 

American Heart Association (141). Seven literature reviews were cited (129, 142-

147), alongside two editorials regarding lowering cholesterol (148) and statin effects 

on muscular ADRs (149) . This trial also cited the largest number of observational 

studies, a total of 11 (consisting of 1 case control study (150), 9 cohort studies (151-

159), and 1 cohort/meta-analysis study (160)). These included a large study in the 

US, defining how many people would be eligible for statins under current guidelines 

and the impact of this (151). There were 4 cohort studies that examined the 

relationship between statin adherence and cardiovascular outcomes (152-155). 

Also included was a small cohort study that served as a pilot for GIST (157). Two 

cohort studies were in healthy participants, examining the genetics of statin-induced 

myopathy (156), and how the pharmacokinetics of two common statins differs 

between people of different ancestries (159). 

In contrast to the large amount of observational study evidence, the trial cited only 

one RCT (161). However, two further references were genetic sub-studies of larger 

RCTs (162, 163). A 2013 Cochrane review was also cited (164). 

 

Figure 3.7 – Evidence cited by the GIST statin trial to justify inclusion of the SLCO1B1 biomarker. The 

numbers at the top represent years relative to the publication of the trial protocol in 2016 (32). 

The authors cited one systematic review (165) and three meta-analyses (166-168).  
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The systematic review of adherence in statin patients (165) assessed the quality of 

included studies using guidelines from the International Society for 

Pharmacogenomics and Outcomes Research (169).  

Two meta-analyses were published by the Cholesterol Treatment Trialists’ 

Collaborators (CTTC) group (166, 167), a group established in 1994 to perform 

meta-analyses of long-term and large-scale trials of lipid intervention therapies 

(170). These analysed the risk of major vascular events in statin users (166), and 

compared the risk of vascular events between male and female statin users (167). 

The final meta-analysis was about the risk of statin-related myopathy (168) and 

evaluated quality using the Newcastle-Ottawa scale (171). 

The meta-analyses by the CTTC group were both done on the same large data set 

of n=174,149 participants from 27 RCTs investigating the impact of statins on 

cardiovascular risk (166, 167). Each RCT had to have a recruitment target of >1000 

participants, and have a minimum 2-year treatment duration. Whilst these meta-

analyses did not assess the quality of the included studies, they both collated 

individual participant data (IPD). 

3.3.4.5 Discussion 

Even though GIST did not find that pharmacogenetics improved statin adherence, a 

modest effect on LDLc was observed. The group observed for adherence was 

small, especially compared to the original sample size. The reason so few patients 

completed adherence data was not addressed in the paper. The authors considered 

that there may be other, unobserved barriers to adherence. There are also known 

issues with using self-reported measures of adherence (172).   

GIST cited the highest quantity of evidence out of the included trials. This also 

included high-quality evidence in the form of meta-analyses and a Cochrane review. 

This is a clear case where high-quality supporting evidence did not guarantee a 

significant result when testing the biomarker-guided treatment approach within a 

clinical trial.  

SLCO1B1 is designated as a very important pharmacogene by PharmGKB (173). 

The PharmGKB summary paper of this addition was published in 2010, which would 

have provided additional high-quality evidence for this trial. 
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3.3.5 Precision Medicine Guided Treatment for Cancer Pain 

3.3.5.1 Background 

This trial (NCT02664350) investigated the effect of pharmacogenetic information on 

the treatment of pain with opioids in cancer patients (34). The trial used the 

CYP2D6 gene as a biomarker. This gene encodes the CYP2D6 enzyme, one of the 

most widely investigated liver enzymes (174). It has been estimated that this 

enzyme affects metabolism of approximately 25% of marketed drugs (174, 175). As 

of 2020, there are over 300 known variations in CYP2D6 linked to specific 

phenotypes (176). In relation to opioids, patients can be categorised by the number 

and functionality of their CYP2D6 alleles (Table 3.1) (34). 

Phenotype Genetics Enzyme activity Clinical outcome 

Ultra-rapid 

metabolisers 
Multiple gene copies Many times more active 

Increased production of 

metabolites associated with 

toxicity (177, 178) 

Normal 

metabolisers 

At least 1 fully functional 

allele or 2 partially 

functioning alleles 

Normal Normal dosing (179) 

Intermediate 

metabolisers 

1 loss-of-function allele and 

1 reduced function allele 
Significantly impaired  

Risk of decreased analgesia 

and ADRs (180, 181) 

Poor 

metabolisers 
No functional alleles Little to no active enzyme 

Greater risk of decreased 

analgesia and ADRs (179, 

180) 

Table 3.1 - Different CYP2D6 phenotypes and their underlying genetics and enzyme activity (34, 179). 

This trial used CYP2D6 genotyping to guide the dosing of opioids for treating cancer 

pain in patients with metastatic solid tumours. The trial began in 2016, and was 

completed in 2019, but results have not yet been published (182).  

3.3.5.2 Methods 

The trial aimed to recruit 200 participants with metastatic solid tumours and pain 

scores >=4 on a scale of 1-10 (Brief Pain Inventory scale) (183). Participants were 

randomised 1:1 to receive either CYP2D6-guided or conventional selection of pain 

medication. All participants were genotyped, but only those in the first group had 

their results entered into their electronic health record, accessed by their physician. 

This was accompanied by an interpretation of how their genotype would affect their 
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opioid metabolism and a recommendation for changes to usual prescribing. Those 

in the control group received standard of care cancer pain treatment. Pain 

questionnaires were completed at baseline, 2, 4, 6, and 8 weeks, with change in 

pain severity the primary outcome.  

The trial used a biomarker strategy without biomarker assessment in the control arm 

design (47). 

3.3.5.3 Results 

The results of the trial have not yet been published (182). In response to an email 

enquiry, the authors stated that the results are currently being written up and 

prepared for publication (September 2020) (184). The results were not yet published 

as of June 2021.  

3.3.5.4 Evidence used to justify biomarker 

The authors cited evidence ranging from 1998 to 2017 (Figure 3.8). The oldest 

evidence was a 1998 RCT (185), that randomised healthy volunteers to high and 

low doses of opioids, stratified by their CYP2D6 genotypes. This was cited 

alongside four other RCTs that investigated the effects of randomised doses of 

opioids in healthy participants with varying CYP2D6 genotypes (186-189), and an 

RCT of palliative care in patients with metastatic lung cancer (190). 

The most recent evidence was 2017 guidelines on adult cancer pain from the 

National Comprehensive Cancer Network (191). Interestingly, the trial cited three 

case studies; one in a patient with the poor metabolizer phenotype (192), and two 

with patients with the ultra-rapid metabolizer phenotype (193, 194). No evidence for 

normal or intermediate metabolism was presented. 

 

Figure 3.8 – Evidence cited by the Precision Medicine Guided Treatment for Cancer Pain trial to justify 

inclusion of the CYP2D6 biomarker. The numbers at the top represent years relative to the publication 

of the protocol in 2008 (34). 
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3.3.5.5 Discussion 

This trial is an interesting example of using pharmacogenetics to improve patient 

quality of life. Although the results of this trial are not currently available, a similar 

trial published results in 2019 (180). This trial, also using CYP2D6-guided dosing 

but in patients with any chronic pain, found a significant reduction in pain scores in 

genotype-guided vs. conventional dosing groups (p=0.016). This was more 

pronounced in intermediate/poor metabolisers than in normal metabolisers. The 

previously performed RCTs cited by this trial are all from more than 5 years prior to 

its start. There is therefore a rationale here for an updated trial, although a meta-

analysis of the previous trials should have been conducted where appropriate. 

CYP2D6 was designated a ‘very important pharmacogene’ by PharmGKB in 2015 

(195). This would have provided additional high-quality evidence for its inclusion in 

this trial. 

 

3.4 Discussion and Recommendations 

There does not appear to be a standard approach for gathering evidence for 

justifying biomarker inclusion within a biomarker-guided trial, and the trials in this 

review all used different approaches to do so. Of the trials examined, all cited 

evidence from within at least 3 years of their publication, but evidence was also 

cited from much earlier than that (Figure 3.2).  The oldest evidence compared to 

trial start date was cited by the TARGET trial, which cited work from 25 years prior 

to its 2005 protocol date (48). 

The evidence types used included systematic reviews/meta-analyses, RCTs, 

qualitative research, guidelines, recommendations, editorials, and case studies. 

According to national and international guidelines (37, 196-198), the randomised 

controlled trial (RCT) is the ‘gold standard’ of evidence. Regulatory bodies still 

usually require high quality RCT evidence as a minimum to accept a new 

technology. For example, of 795 European Medicines Agency (EMA) approvals 

from 1999-2004, only 44 (5.5%) were products for which there were no RCT results 

(39).  

A hierarchy of evidence was used by Concato, et al. (2000) (199), referencing an 

older US guideline (200). In this guideline, the top grade of evidence is that obtained 

from “at least one properly randomised, controlled trial”. Lower tiers include trials 

without randomisation, cohort and case-control studies, and time series, with clinical 
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opinions and case reports at the bottom. However, Concato, et al. demonstrated 

that the results of non-randomised trials often correlate closely with those from 

RCTs (199). This is explored further in Chapter 4.  

The traditional ‘evidence pyramid’ is often used to rank evidence types, with meta-

analyses and systematic reviews at the top, and case studies and in vitro evidence 

near the base (Figure 3.9A) (201). However, this has seen some modification in 

recent years, notably the viewing of evidence through the ‘lens’ of systematic 

reviews and meta-analyses, ensuring that the quality of included studies is 

evaluated (202). The rest of the evidence should then be viewed through the lens of 

these studies – using them as “tools to consume and apply the evidence” (202) 

(Figure 3.9B). In this iteration, a meta-analysis based on weak evidence, suffering 

from bias, is not automatically seen as superior evidence to a well-conducted 

observational study. 

 

 

Looking at these pyramids, one might expect that most or all of the trials cited here 

would include a systematic review or meta-analysis in their justification for 

biomarker inclusion. In practice, only two of the trials did (TARGET and GIST). 

Further, only two of the trials cited existing RCTs as evidence (SHIVA and GIST). 

Observational studies were the most common evidence type cited. This category 

encompasses any non-randomised trial, including cohort, retrospective, and case-

control studies.  

Figure 3.9 – A) Traditional pyramid of evidence and B) An updated version put forward by Murad et al (2016). 
RCTs = randomised controlled trials. SR/MA = Systematic review/meta-analysis 
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To explore the type and extent of evidence compiled to justify including biomarkers 

in previous biomarker-guided trials, I have examined the previous literature on 

biomarker associations referenced within the trial design paper or protocol. This 

represents a relatively straightforward method of assessing the evidence used to 

justify a biomarker’s inclusion in a trial, however, it has some inherent limitations.  

First, this method will not necessarily capture the entire evidence base upon which 

inclusion of the biomarker was justified, since the authors may not have provided a 

complete and accurate snapshot of the evidence they explored and used. Second, 

journal rules on the number of references in a paper and word count restrictions 

could mean that the references included do not represent the totality of evidence 

used. Similar restrictions on references and word counts may limit the 

representation of the literature in protocols. 

Publicly available published protocols were used as a source for evaluating 

biomarker evidence for three trials in this review (EU-PACT, GIST, and 

NCT02664350). For the TARGET and SHIVA trials, formal protocols, obtained from 

the authors, and from supplementary sections of papers were used. Protocols like 

these are primarily used for reference by triallists and while they should be publicly 

available, they are not always made so (203). While there are guidelines for writing 

protocols, they do not usually have a set structure. The Standard Protocol Items: 

Recommendations for Interventional Trials (SPIRIT) checklist, published in 2013, 

specifically recommends that protocols include a section describing the ‘justification 

for undertaking the trial, including summary of relevant studies (published and 

unpublished) examining benefits and harms for each intervention’ (204). All trials 

examined fulfilled this brief to some extent. The question remains, what forms 

should this justification take in order to provide sufficient evidence for beginning a 

clinical trial? The SPIRIT checklist does not provide specific guidance in this regard.  

3.4.1 Limitations 

In this review, I aimed to look at the evidence available at the time the trial began. 

Only one of the included trials included their own systematic review of the evidence. 

To get a true picture of the evidence available before a trial started, I may have 

considered conducting systematic reviews of the evidence available for each, 

setting the trial start date as a cut-off. This was considered unfeasible in light of the 

wider PhD aims. Furthermore, I believe the method used is one that could easily be 

reproduced by other researchers reporting on trials.  



97 
 

At the outset of this review, I initially planned to conduct a thorough systematic 

review of all previously conducted genetic biomarker-guided trials. Preliminary 

scoping searches yielded over 20,000 results and after narrowing the selection by 

title and abstract screening, when around 500 papers still remained for full text 

evaluation, the approach was abandoned as not feasible. The decision was made 

that a better approach would be to use the collected list of trials to choose five RCTs 

representing different biomarker applications, and perform an in-depth analysis of 

these trials’ evidence for biomarker inclusion.  

3.4.2 Recommendations 

While the ideal level of evidence prior to proceeding to a biomarker-guided clinical 

trial is a well-conducted meta-analysis/systematic review of good quality RCTs, 

including a rigorous assessment of their quality, this is not always available or 

feasible. In particular, where a biomarker is very new, there may be limited previous 

evidence to underpin its use. This evidence may take the form of case series or 

previous case studies. If this is the only evidence available, then this may be the 

‘best’ evidence to justify including the biomarker in a trial. It would be important to 

consider, in such circumstances, whether the proposed RCT would be premature 

and that the science should first of all be allowed to mature.  

It may be that different standards of evidence are necessary for different biomarker 

types (196, 205). For example, evidence standards could be based on risk, with 

biomarkers for lower risk applications requiring less evidence and regulatory 

oversight than those for high risk applications (196). Recommendations could also 

be based on the disease being treated, similar to how orphan drugs for rare 

diseases are given accelerated approvals (206, 207). Biomarkers used for more 

serious indications could be allowed to proceed to trial with less or lower quality 

evidence than biomarkers for less serious conditions. Novelty of the biomarker will 

also influence the extent of evidence available – a biomarker first utilised in 1980 is 

likely to have accumulated much more evidence than one first described in 2015.  

In the UK, a 2018 workshop attended by academics, representatives of CPIC and 

PharmGKB, and clinicians evaluated the barriers to implementation of 

pharmacogenetics in the NHS (8). Variability in the evidence for the effectiveness of 

testing for different gene-drug combinations was identified as a key barrier. The 

group proposed that initially only associations with the best evidence are phased 

into clinical practice, with others being released if the evidence for their use 

improves. They acknowledged the difficulty that can be inherent in conducting RCTs 
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in pharmacogenetics (18, 208, 209), and recommended the use of novel study 

designs (including the use of real-world electronic health data).  

It is also important to ensure that genetic biomarkers are not subject to higher 

evidentiary requirements than other types of biomarkers. This ‘genetic 

exceptionalism’ and the higher burden of evidence for genetic tests has been shown 

to be a significant barrier to clinical implementation (9, 205, 210, 211). The level of 

evidence required for a genetic biomarker before its use in a trial should be the 

same as an equivalent non-genetic biomarker. Finally, biomarkers that are integral 

to a trial’s conduct require more evidence than biomarkers used on an exploratory 

basis (see Chapter 2) (24).  

With these factors in mind, my recommendations related to compiling evidence to 

justify proceeding to a genetic biomarker-guided trials consist of three steps: a 

systematic review before embarking on a trial: more guidance from regulatory 

authorities; and the need for all stakeholders to consider diversity in recruiting to 

trials.  

1. Systematic review before embarking on a trial 

I would recommend an initial systematic review is undertaken prior to the start of 

any trial. While other authors have also recommended this (204, 212, 213), few 

RCTs include systematic reviews of the evidence for their choice of intervention 

(212). The Lancet journal now requires all research papers to include a ‘Research in 

Context’ panel that shows the evidence available prior to the study, and how the 

authors searched for this information (214, 215). Many top journals require authors 

to follow and submit a Consolidated Standards of Reporting Trials (CONSORT) 

checklist (see below) with the trial publication (Table 3.2).  

Journal 
Policy last 

updated 
Summary of policy 

PLOS One Not found (216) 

Trials must adhere to the CONSORT statement 

(217). Does not explicitly require a systematic 

review.  

The New England Journal of 

Medicine 
Not found (218) 

Allows up to 40 references. Asks authors to 

include a trial’s protocol with submission, but no 

specific reference to systematic reviews. 

Annals of Internal Medicine Not found (219) 

Allows up to 75 references. Endorses the 

CONSORT statement for reporting RCTs(217). 

Does not explicitly require a systematic review. 
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The Lancet 
November 2015 

(215) 

‘Research in context’ panel required, that should 

include ‘a description of all the evidence that the 

authors considered before undertaking this 

study’. This also states that authors should 

include the search terms used, 

inclusion/exclusion criteria, and an evaluation of 

the quality of that evidence. A meta-analysis of 

the evidence should also be included if 

appropriate. 

Reports should also conform to the CONSORT 

guidelines (217). 

The BMJ May 2018 (220) 

All papers should include a summary box, that 

incorporates 2-3 single sentence bullet points on 

the state of scientific knowledge on the topic, 

before the study started. 

Clinical trial submissions should use the 

CONSORT statement (217). Does not explicitly 

require a systematic review. The TIDieR 

checklist is also recommended (221). 

JAMA: The Journal of the 

American Medical 

Association 

October 2020 (222) 

Authors must include a copy of the trial protocol 

and should use the CONSORT statement (217). 

Does not explicitly require a systematic review. 

Nature Not found (223) 

30-50 references, as a guide. A completed 

CONSORT checklist must be included with all 

clinical data submissions (217). 

Neurology Not found (224) 
Limit of 50 references. Authors must submit a 

CONSORT checklist (217). 

Proceedings of the National 

Academy of Sciences of the 

United States of America 

August 2020 (225) Limit of 50 references. No other details found. 

Science Not found (226) 

Expected to contain about 40 references. 

Reports should include a completed CONSORT 

checklist. RCTs not conforming to CONSORT 

guidelines may be returned to authors for 

revision. 

Table 3.2 - Policies of journals on evidence required for randomised controlled trials. Top ten journals 

as cited by Jemielniak et al 2019 (227). Cochrane Database of Systematic Reviews excluded as it 

does not publish RCTs, replaced with the next highest ranking, across three time periods, not already 

included (Science).  

CONSORT guidelines include provision for ‘explanation of rationale’ (217). However, this does not 

explicitly require a systematic review. 
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The CONSORT statement includes a requirement that papers should ‘explain the 

scientific background and rationale for their trial’ (217). While the CONSORT 

checklist is essential for ensuring reportability and reproducibility in trials, journals 

should consider explicitly stating the need for a quality systematic review of the 

evidence available prior to a trial’s start date. Funding sources also have a role to 

play in enforcing this in applications and grants. 

Further, if the systematic review reveals a sufficient number of previous RCTs or 

observational studies, authors should consider conducting a meta-analysis to 

assess the current evidence quantitatively. This would help ascertain whether there 

was sufficient uncertainty surrounding the current evidence to justify the planned 

RCT. An example of where this could have been implemented is in the fifth trial 

examined (34). Authors can also utilise funnel plots to examine any potential bias in 

the publication of included studies (228), and explore any heterogeneity between 

studies. They can also incorporate their new data into the analysis, putting their 

work into context amongst the literature. This was completed successfully in a 

prospective study and meta-analysis by Genin, et al. (2013) (229). 

Regardless of the type of evidence identified in the systematic review, it is 

recommended that the quality of that evidence is also assessed when justifying 

including the biomarker, and I suggest that design-specific tools are used for this 

purpose (e.g. the Cochrane Collaboration’s Risk of Bias tool for RCTs) (230). 

Several study type-specific methods for doing this are available (171, 197, 230-233) 

and have been reviewed by Zeng, et al. (2015) (234). Additionally, the quality of 

pharmacogenetic studies should be assessed using the guidelines proposed by 

Jorgensen and Williamson (2008) (18). Wang, et al. (2014) accepted a systematic 

review/meta-analysis as ‘convincing’ evidence only when there was consistency in 

the results (235). Reviews showing heterogeneity were downgraded to ‘adequate’ 

evidence. This is a useful heuristic for the evaluation of data, although as discussed, 

it is important to also consider the quality of included papers.  

Authors should also consider including an analysis where their trial data is 

incorporated into the existing literature using a meta-analysis. This has been used 

successfully in several trial reports (160, 236-238), but remains rare. A 2010 review 

of 29 RCTs (not all in pharmacogenetics) found that only 1 contained an updated 

systematic review integrating the RCT results (212). This approach should be more 

widely used. 



101 
 

When synthesising evidence already existing from previous studies, it is also 

important to consider the age and ethnicities of the populations of the previous 

studies compared to the proposed trial’s population to ensure that the evidence is 

relevant. This is further explored below. 

2. Guidelines are required 

Given the lack of standardisation across biomarker trials in terms of how inclusion of 

biomarkers is justified, I recommend that guidelines are developed to aid 

researchers in compiling and presenting evidence to justify their inclusions. This will 

not only ensure that sufficient evidence exists prior to embarking on a biomarker 

trial, thus avoiding waste of resources, but will also serve as a useful guide to those 

planning a biomarker trial and provide transparency in the trial report.  

As previously discussed in Chapter 2, there is little guidance from regulatory bodies 

on the evidence required before proceeding to a pharmacogenetic trial. Biomarkers 

should undergo validation before their use in a clinical trial. This process is not well-

defined by regulators, however public and private consortia have developed various 

guidelines that might help in this regard. 

For example the CPIC provides guidelines for the implementation of 

pharmacogenetics (11). The guidelines provide a grading of the level of evidence 

given in support of the biomarker’s implementation (‘high’, ‘moderate’ or ‘weak’) 

(239). The CPIC levels are based on PharmGKB criteria, where the evidence for a 

gene-drug association is rated on a six-point scale between 1A (guidelines 

endorsed by a medical society or major health system) to 4 (in vitro, case study, or 

nonsignificant study evidence) (21). This scale is based on clinical annotations 

obtained from PubMed, produced by manually combining and summarising 

associations from several publications (240). These clinical annotations are then 

given a ‘level of evidence’ score based on replication of the association, P-value, 

and odds ratio. The score is determined by PharmGKB curators (21). This process 

has produced excellent results, but is labour-intensive and time-consuming. A new 

alternative is the automated text-mining process outlined by Lever, et al. (2020) 

(241). In time, this will further improve PharmGKB as a source of pharmacogenetic 

information. The guidelines produced by PharmGKB are influential. The database is 

widely used by clinicians (240), and this will include principal investigators for 

potential pharmacogenetic trials.  

Whilst these guidelines are for implementation of biomarkers into clinical practice, a 

similar approach could be developed for justification of inclusion in an RCT. One 
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paper was located that discussed the incorporation of biomarkers into early phase 

clinical trials (24), but I recommend that this needs to contribute to the formation of 

formal guidelines for biomarker trials similar to CPIC guidelines for biomarker 

implementation. 

 

3. Diversity in clinical trials 

If most pharmacogenetic studies are conducted in just one ancestry group, any 

resulting clinical data will have limited usage in other groups. This must be 

considered when compiling the evidence for a biomarker’s use in a trial. While 

equity of access is important in all research, this is an especially important 

consideration in pharmacogenetics, since groups of different ancestries will have 

different frequencies of actionable alleles (12, 242-244). The genomes of African 

populations are the most underrepresented in genetic research (12, 242, 245, 246). 

Bentley, et al. (2017) provided an overview of why genomic research in diverse 

populations is important, including: the potential to gain novel insights into health 

disparities and human biology, improving clinical care, informing genetic diagnoses, 

and promoting a better understanding of human history (247).  

A 2010 study underlined the importance of including diverse cohorts in 

pharmacogenetic studies (248). The authors compared the performance of 

published pharmacogenetic warfarin algorithms by using them to calculate dosage 

in a database of warfarin-treated patients. Algorithms derived from studies in mixed-

ethnicity populations outperformed those from non-mixed populations. None of the 

selected algorithms were derived from African American populations. Accordingly, 

the algorithms all had their highest mean absolute error when applied to African 

American patients.  

A cohort study of 274 warfarin treated African Americans found similar dosing errors 

when using standard algorithms (249), and found that genetic markers associated 

with warfarin dose requirements in African Americans were not captured in 

pharmacogenetic dosing algorithms developed in cohorts including patients from 

other ethnic groups.  

Clearly, stronger evidence for some ‘established’ biomarkers (such as CYP2C9 and 

VKORC1 in warfarin pharmacogenetics (248-250)) is needed in certain ethnic 

groups. There are particular challenges with implementing pharmacogenetics in the 

developing world (5, 7). While under-resourced health systems are a leading factor 
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in this, the surplus of pharmacogenetic data in European and Asian populations 

makes further study in other populations more difficult (12, 248). Novel variants are 

harder to predict and are subsequently under-researched (12).  

A study of pharmacogenetics in 141 Ghanaian warfarin patients did not detect any 

non-wild type CYP2C9*2 or *3 alleles (251), two alleles commonly used in other 

dosing algorithms (252).  A similar study in Caribbean Hispanic Puerto Ricans found 

that the rs2860905 variant in CYP2C9 was a stronger predictor of warfarin dosing 

than the other, more well-known CYP2C9 alleles (253).  

Trials that include patients from traditionally underserved areas are therefore 

required to provide high-quality evidence for pharmacogenetics use in these 

populations. The GUARDD-US trial (NCT04191824) is recruiting participants in the 

USA with African ancestry to determine the effect of providing pharmacogenetic 

knowledge to participants and clinicians on blood pressure management (254). 

Other upcoming trials and initiatives (such as H3Africa, a biobanking initiative (255) 

and the War-PATH study in warfarin pharmacogenetics (256)) should improve 

access to pharmacogenetics. This will allow the construction of a strong evidence 

base that includes multiple ethnic groups.  

 

3.5 Conclusion 

This work has shown that there is currently no standard approach for collecting 

evidence to justify the inclusion of a biomarker in a biomarker-guided trial. Each of 

the trials here took a different approach. GIST was able to rely on large and robust 

meta-analyses for evidence, while there was less evidence cited by SHIVA for all 

their drug-gene combinations.  

This variability underlines the need for guidelines for trialists on how to compile 

evidence to justify the inclusion of a biomarker within a trial. Best practice should 

include a systematic review of the evidence before a trial commences, and a meta-

analysis where appropriate. Trials also need to be conscious of differences between 

ethnic groups, and to ensure that the evidence is based on the same ethnic groups 

as those being studied within the trial.  

It is clear that the full potential of pharmacogenetics cannot be unlocked without 

significant work to remove barriers to implementation. Many commentators have 

identified a lack of well conducted studies demonstrating clinical utility of 

personalised approaches to treatment as one of the largest roadblocks to 



104 
 

implementation (4-6, 12, 257-259), and the gold-standard for demonstrating such 

clinical utility is the randomised controlled trial. With these recommendations, it is 

hoped that such trials will be based on a strong and robust evidence base, thus 

ensuring that biomarker-guided trials are only conducted when there is sufficient 

preliminary evidence that the biomarker may be useful in personalising treatment. 

This will increase the chance of success whilst minimising waste in resources.  

Finally, the conclusions and recommendations above assume that a trial is indeed 

required. It is possible that when compiling the evidence to justify inclusion of a 

biomarker in a trial that it is so overwhelmingly in favour of the biomarker’s clinical 

utility that it may be unethical to restrict its use to a randomised trial. This loss of 

clinical equipoise is something important to consider and indeed clinical 

implementation may be recommended and accepted without the need for a 

biomarker trial in such cases. This is a consideration that has been explored by 

several authors (260-263) and is considered further in Chapter 4. 
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Chapter 4: Systematic reviews and a simulated 

prospective trial 

4.1 Introduction 

4.1.1 SJS/TEN, HLA genotypes, and carbamazepine 

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are 

cutaneous adverse drug reactions (cADRs) that consist of rash, fever, and 

epidermal detachment from the dermis (1-6). SJS is the diagnosis when less than 

10% of the body surface area is affected, TEN when more than 30% is affected (1, 

7, 8). Within this range, the condition is known as SJS/TEN. Mortality for these 

conditions is high, ranging from 1-5% in SJS up to 25-40% in TEN, with a high risk 

of associated morbidities (1, 5, 6, 9, 10). Around 30% of patients with severe 

reactions die (11, 12). Related hypersensitivity reactions include drug reaction with 

eosinophilia and systemic symptoms (DRESS) and maculopapular exanthema 

(MPE) (2, 13-15).  

These reactions are associated with many drugs, the main causative agents being 

allopurinol (16, 17), lamotrigine (15, 18), and carbamazepine. The link between 

carbamazepine and SJS/TEN was first quantified in a 1995 international case-

control study (19). Over a 4-year period, 245 cases of SJS/TEN were recruited and 

compared to 1147 controls (patients admitted to hospital for acute conditions or a 

procedure not related to medication use). The relative risk of SJS/TEN in patients 

exposed to carbamazepine compared to control patients was calculated to be 12 

(95% CI 3.5 – 38), with the highest risk within the first 2 months of treatment (19). A 

further review of Canadian health records in 1997 found a risk of 6.2 per 10,000 

new users of carbamazepine (95% CI 2.5 – 14.1 per 10,000) (21). A 2015 analysis 

in a UK setting (based on UK and wider Northern European datasets) estimated a 

risk of SJS/TEN of 1.18 per 10,000 carbamazepine patients (24). 

In 2004, the first link between carbamazepine-induced SJS/TEN and the HLA-

B*15:02 allele was quantified (27). HLA-B*15:02 is a human leukocyte antigen 

(HLA) of the class I major histocompatibility complex (MHC) gene cluster (28). MHC 

class I molecules are expressed in all nucleated cells (29). They present 

intracellular proteins to T-cells via CD8 for antigen processing, and effector cell 

activation (29-31) (Figure 4.1A). This can be useful for pathogen and abnormal cell 

detection, but can be deleterious, causing autoimmune and hypersensitivity 
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reactions (29, 31, 32). The antigen presented by cells in response to 

carbamazepine is unknown (33, 34). However, cross-sensitivity to other drugs in the 

same class has been reported (33, 35), suggesting a common mechanism (33).  

HLA alleles have a designated syntax to describe their specific types (Figure 4.1B). 

 

Figure 4.1 - HLA explainer. A) The process of antigen presentation by the MHC Class I molecule. 

Antigens from intracellular sources are taken up and processed into peptides. They then enter the 

endoplasmic reticulum through the TAP and are loaded on to MHC class I molecules. These molecules 

migrate to the plasma membrane and present the antigen to CD8+ T-cells via the TCR  (29, 30, 32, 36, 

37). HLA = human leukocyte antigen. MHC = major histocompatibility complex. TAP = transporter 

associated with antigen presentation. TCR = T-cell receptor. Created with BioRender.com.  
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As of 2020, >6000 HLA-A and >7000 HLA-B alleles have been identified (38). While 

many of these alleles have been linked with disease or ADRs, the link between 

HLA-B*15:02 and SJS/TEN is one of the strongest associations seen between an 

allele and an ADR (2, 3, 39). Presence of the HLA-B*15:02 allele is associated with 

carbamazepine-induced SJS/TEN and odds ratios of between 47.67 (95% CI 2.55 – 

890.45) (18) and 1357.00 (159.84 – 11520.40) (40) have been found in various 

populations (2). 

4.1.1.1 Chen et al 2011 prospective interventional study 

The benefit of screening for HLA-B*15:02 in an Asian population was proven with a 

2011 prospective study in Taiwan (3). A total of 4877 patients requiring 

carbamazepine were recruited and genotyped for HLA-B*15:02. Of these, 372 

(7.7%) tested positive for the allele and were advised not to take carbamazepine 

and to instead take an alternative medication. Those testing negative continued with 

their carbamazepine prescription. The authors calculated, based on the historical 

incidence of SJS/TEN in Taiwan, that in the absence of genetic testing 10 cases of 

SJS/TEN would have been expected in a group of patients of this size being treated 

with carbamazepine. The benefits of genotyping were clear, with no cases of 

SJS/TEN among any participants in the study (p<0.001 when comparing to 

assumed incidence based on historical records).  

4.1.1.2 HLA-A*31:01  

There is a large amount of evidence for the association between HLA-B*15:02 and 

carbamazepine (CBZ)-induced SJS/TEN (2, 41). However, this allele is much more 

common in Asian (and mainly Han Chinese) populations compared to the rest of the 

world (42). A UK study of Caucasian SJS/TEN patients found none were positive for 

HLA-B*15:02 (43). 

While HLA-B*15:02 is the most common causative risk allele for CBZ-induced 

SJS/TEN in Asia (Figure 4.2A) (44), the most common causative gene in the rest of 

the world is HLA-A*31:01 (Figure 4.2B) (45, 46).  
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Figure 4.2 - Frequency of the A) HLA-B*15:02 and B) HLA-A*31:01 alleles worldwide. Areas without 

colour indicate no data available. Created based on data from allelefrequencies.net (47).  

 

However, whilst meta-analyses have found odds ratios (ORs) of 3.9 (95% CI 1.4 – 

11.5) (48) to 9.45 (95% CI 6.41 – 13.93) (2) for the HLA-A*31:01-carbamazepine-

SJS/TEN link in mixed Asian/Caucasian cohorts, the association is much less well-

studied (2, 24, 45) than that with HLA-B*15:02.  
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4.1.2 Prospective studies in rare conditions 

As previously discussed, the randomised controlled trial (RCT) is considered the 

gold standard for establishing the clinical validity and utility (Chapter 3) of a 

genotype-guided approach to treatment (49-51). Such trials have demonstrated the 

benefits of genotyping to guide treatment with drugs such as abacavir (52), and 

warfarin (53).  However, it can be difficult to perform well-controlled RCTs in very 

rare conditions (54-56) such as SJS/TEN, due to the large sample size required to 

ensure sufficient statistical power (54, 56-59). In addition, there are circumstances 

where conducting an RCT is not appropriate. For example, there are ethical issues 

associated with randomising patients to a drug if it is known that they carry an allele 

known to confer a heightened risk of ADR on that drug (60-65). 

In these cases, data from sources other than RCTs is required to demonstrate 

clinical validity and utility. Data from observational studies such as case-control 

studies, disease registries, and n-of-1 trials can be useful tools (54, 56, 63, 64, 66, 

67). These are becoming more accepted as sources of evidence by regulatory 

agencies (see Chapter 2) (68, 69). Further, in their study of the effectiveness of 

screening for HLA-B*15:02 prior to carbamazepine treatment, whilst opting for a 

prospective, interventional study design, Chen et al. did not conduct an RCT, but 

rather compared results from their prospectively recruited cohort to historical 

records. Nonetheless, even with this non-randomised design, it was necessary to 

recruit a large sample size of almost 5000 patients.  

It is often overlooked that several well-designed observational studies can provide 

strong evidence when their data are combined (65, 70, 71). Concato, et al. (2000) 

identified five interventions where separate meta-analyses had been completed first 

including only RCT data, and second including only observational data (70). For all 

five interventions, the summary estimates calculated from RCT data were very 

similar to those calculated from observational data (Figure 4.3A). More recent work 

by Golder, et al (2011) examined the differences in ADR risk reported in 

observational vs RCT data (65). When comparing RCTs to cohort studies, the 

reported confidence intervals overlapped in 100% of cases. When comparing RCTs 

to case-control studies, they overlapped in 90% of cases. The discrepancies 

between observational and RCT data followed a symmetrical distribution, providing 

evidence against any systematic bias (Figure 4.3B). Similar work by Benson & Hartz 

(2000) used individual study data, instead of meta-analysis data (71). In 17 out of 19 

studied treatment areas, the effect estimated from observational studies was very 
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similar to those calculated from RCTs, with overlapping confidence intervals (Figure 

4.3C).  
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Figure 4.3 - meta-analyses including only RCTs produced similar estimates of relative risk or odds 

ratios to those including only observational data. A) Data from observational (open circles) and RCTs 

plotted by Concato et al (2000) (70). Solid circles are RCTs and open circles are observational studies. 

The adjacent table shows sample sizes and effect sizes (with 95% confidence intervals) for each 

intervention. The black rows are RCTs and the white rows are observational studies. The results of the 

observational studies in cholesterol levels and death due to trauma were not individually reported so 

could not be plotted. B) shows a funnel plot of the log discrepancies between meta-analyses of RCT 

and observational data, plotted by Golder et al (2011) (65). Each dot represents one study. The y-axis 

(1/standard error) illustrates precision of the estimate. Studies lower down the y-axis have less 

precision. C) Confidence intervals of odds ratios of RCT and observational data results as plotted by 

Benson and Hartz (2000). Cardiac interventions only. CABG = coronary artery bypass graft surgery. 

CAD = coronary artery disease. CASS = Coronary Artery Surgery Study.  lnROR = log ratio of odds 

ratios. OR = odds ratio. PTCA = percutaneous transluminal coronary angioplasty. RCT = randomised 

controlled trial. SE = Standard error.   

These studies show that effect estimates obtained from observational data are often 

comparable to those obtained from RCT data, and for this reason, it is reasonable to 

consider using observational data as an alternative to prospective, interventional 

studies when exploring the benefits of a genotype-guided approach to treatment 

where outcome is a rare event such as SJS/TEN.  

However, effect estimates (for example in the form of odds ratios, ORs) alone are 

not sufficient evidence for a test’s utility (67). The clinical validity also needs to be 

considered. Clinical validity is determined by the discriminative accuracy and 

predictive value of a test. Discriminative accuracy consists of sensitivity and 

specificity, and is defined as the ability of a test to discriminate between the 

presence and absence of an outcome (67). Predictive value is the ability of a 

genetic test to predict an outcome from the presence or absence of a variant (67). It 

consists of positive predictive value (PPV) and negative predictive value (NPV). The 

PPV of a genetic test is the probability of an outcome (e.g., an ADR) when a genetic 

variant is present. NPV is the probability of the outcome not occurring when the 

genetic variant is not present. 

It is important to estimate these measures of clinical validity, when considering the 

true impact of genetic testing in the wider population. The measures are important 

to allow translation of pharmacogenetics knowledge into practice and to allow for 

the measurement of clinical utility, the ability of the test to improve health outcomes 

(67, 72, 73).  

Effect estimates (such as OR) for gene-ADR associations are often calculated from 

case-control studies. Measures of clinical validity generally improve when OR is 
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higher. However, a higher OR does not automatically translate into higher values for 

all measures of clinical validity. These values also depend on the frequency of the 

genetic variant and of the ADR of interest.  

Tonk, et al. (2016) showed that sensitivity, specificity, PPV and NPV of a genetic 

test can be estimated from case-control studies if estimates of the frequency of the 

genetic variant and the frequency of the ADR are incorporated into the calculations 

(67) (Figure 4.4).  

 

 

Figure 4.4 - Method for calculating the effect estimates (OR), discriminative accuracy (sensitivity and 

specificity), and predictive value (PPV and NPV) of a genetic test, given the variant frequency and the 

ADR frequency are known. Adapted from Tonk et al 2016 (67). ADR = adverse drug reaction. NPV = 

negative predictive value. OR = odds ratio. PPV = positive predictive value.  

Figure 4.4 depicts the 2x2 table from a typical case-control study of a genetic 

association between a genetic variant and adverse event, with 𝑎 = proportion of 
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patients who are variant carriers and have the ADR; 𝑏 = proportion of patients who 

are variant carriers but do not have the ADR; 𝑐 = proportion of patients who are 

variant non-carriers but have the ADR; 𝑑 = proportion of patients who are variant 

non-carriers and do not have the ADR.  According to Tonk, et al., if the genetic 

variant frequency (𝑝) and the ADR frequency (𝑞) are known, the values of 𝑎-𝑑 can 

be calculated as follows (67): 

𝑎 =

 
(𝑝∗𝑂𝑅+(1−𝑝)+𝑞∗(𝑂𝑅−1))− √((−𝑝∗𝑂𝑅−(1−𝑝)−𝑞∗(𝑂𝑅−1))

2
−4∗(𝑂𝑅−1)∗𝑝∗𝑞∗𝑂𝑅))

2∗(𝑂𝑅−1)
  

  

𝑏 = 𝑝 − 𝑎 

𝑐 = 𝑞 − 𝑎 

𝑑 = 1 − 𝑎 − 𝑏 − 𝑐 

Given that it is possible to estimate measures of clinical validity from observational 

case-control studies, here I propose to answer the question: will a prospective 

interventional clinical trial allow the estimation of the clinical validity of a genetic 

marker with better precision than observational case-control data, if that genetic 

marker already has good evidence of association in those observational studies?  

In order to explore this, I chose a rare ADR, SJS/TEN, well known to be associated 

with 2 genetic variants (HLA-B*15:02 and HLA-A*31:01). I wished to compare the 

precision of clinical validity measures and ORs obtained from prospective, 

interventional studies to those obtained from observational studies of the 

associations. For the HLA-B*15:02 variant, I compared the precision of effect 

estimates and clinical validity obtained from the previously conducted prospective 

study of Chen, et al. (2011) to data from observational studies, synthesised within a 

random-effects meta-analysis. For the HLA-A*31:01 variant, there were no previous 

prospective studies testing its clinical validity and therefore I simulated a prospective 

study with similar characteristics to Chen, et al. but assuming HLA-A*31:01 

genotyping instead of HLA-B*15:02. The effect estimates and clinical validity from 

the simulated study were then compared to those obtained from data on the same 

association from previous observational studies, again synthesised within a random-

effects meta-analysis. I hypothesise that with full and effective use of observational 
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data, along with estimates of allele frequency and ADR frequency, prospective, 

interventional studies may not be required to demonstrate the benefits of testing for 

the HLA-A*31:01 allele prior to commencing carbamazepine. Since prospective 

studies are generally expensive (in both time and money) and may be difficult to 

generalise to wider populations (70, 74, 75), observational studies provide valuable 

and easier to collect data that can be used to determine clinical validity. 

 

4.2 Methods 

4.2.1 Previous meta-analyses of observational studies 

Before undertaking these systematic reviews and meta-analyses, I examined the 

literature for previous reviews in this field in order to inform my methods. 

Four previous reviews were located (2, 48, 76, 77) (Table 4.1). One of these only 

included HLA-B*15:02 (76), another only HLA-A*31:01 (48). The others contained 

analyses for both alleles (2, 77). I referred to these previous reviews to help refine 

the search terms and outcome measures prior to conducting my own reviews. The 

ancestries of participants in these reviews were majority Asian, mostly Han Chinese 

and Japanese.  
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4.2.2 Protocol development 

A protocol was developed to guide the systematic reviews and meta-analyses for 

both HLA-B*15:02 and HLA-A*31:01. The protocol (see Appendix 4.1) was 

developed in accordance with the 2015 Preferred Reporting Items for Systematic 

reviews and Meta-Analyses for Protocols (PRISMA-P) statement (78). Both reviews 

were conducted in the same manner. Reporting of the methods for these reviews 

follows the PRISMA 2020 reporting guidelines for systematic reviews (79). This 

protocol was registered on The International Prospective Register of Systematic 

Reviews, PROSPERO, on 9th December 2019 (CRD42019161000) (80). 

4.2.3 Search strategies 

The first systematic review examines the association between HLA-B*15:02 and 

carbamazepine-induced adverse drug reactions (including SJS/TEN). I aimed to 

include all studies to date that examined this association, including retrospective, 

prospective, case-control, and RCT designs. To be included, studies had to include 

participants exposed to carbamazepine, assessed for HLA-B*15:02, and with cases 

of any hypersensitivity reaction (including SJS, TEN, SJS/TEN, DRESS, MPE, etc). 

Studies also had to include a comparator group (of carbamazepine-tolerant controls, 

or healthy volunteers) also genotyped for HLA-B*15:02. Literature reviews, case 

studies, non-human studies, and any papers that were only an abstract were 

excluded.  

The second systematic review was conducted in a similar manner. It examined the 

association between HLA-A*31:01 and carbamazepine-induced adverse drug 

reactions. The same inclusion and exclusion criteria as above were applied, but with 

HLA-A*31:01 in place of HLA-B*15:02.  

The primary outcome of interest was the development of SJS/TEN in response to 

carbamazepine. Secondary outcomes were development of (in response to 

carbamazepine): any hypersensitivity reaction, SJS, TEN, DRESS, or MPE. Details 

of any outcomes defined by papers’ authors as a carbamazepine-related ADR were 

also extracted.  

Table 4.1 - previous systematic reviews and meta-analyses of carbamazepine-induced SJS/TEN including HLA-B*15:02 
or HLA-A*31:01. CBZ cases are those that developed the ADR when exposed to carbamazepine. CBZ controls did not 
develop the ADR when exposed (CBZ-tolerant). Numbers in ancestries only include the number of patients for each 
allele, so may not sum to the total number of participants where other alleles were investigated. ADR = adverse drug 
reaction. CBZ = carbamazepine. CI = confidence interval. SJS/TEN = Stevens-Johnson syndrome/toxic epidermal 
necrolysis. *In Asian (Han Chinese/Thai/Malaysian patients only. ▲ number of risk allele positive patients who 
experienced the ADR/total number of patients who experienced the ADR.  
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Searches were not limited to English results only, but found that any non-English 

papers did not pass initial screening processes. Conference abstracts meeting 

eligibility criteria were included, and used to locate full relevant journal articles. If a 

full article could not be located, the conference abstracts were excluded as they did 

not contain enough information to inform the systematic review and meta-analyses. 

For the HLA-B*15:02 review the Medline database was searched on 7th January 

2020 (Table 4.2). No filters or limits on dates or publication type were used when 

searching. 

# Search term Notes 

1 HLA-B Antigens  MeSH term 

2 “HLA-B*15:02” Free text (.mp) 

3 Carbamazepine MeSH term 

4 “tegretol” Free text (.mp) 

5 Stevens-Johnson Syndrome MeSH term 

6 “toxic epidermal necrolysis” Free text (.mp) 

7 “SJS” Free text (.mp) 

8 “TEN” Free text (.mp) 

9 “SJS/TEN” Free text (.mp) 

10 
“drug reaction with eosinophilia and systemic 

symptoms” 

Free text (.mp) 

11 “DRESS” Free text (.mp) 

12 “maculopapular exanthema” Free text (.mp) 

13 “MPE” Free text (.mp) 

14 
Drug Hypersensitivity OR “hypersensitivity reaction” MeSH term/Free text 

(.mp) 

15 “cutaneous adverse drug reaction” Free text (.mp) 

16 
Drug-Related Side Effects and Adverse Reactions 

OR “cutaneous ADR” 

MeSH term/Free text 

(.mp) 

17 1 OR 2 Combining 

18 3 OR 4 Combining 

19 
5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 

13 OR 14 OR 15 OR 16 

Combining 

20 17 AND 18 AND 19 
Combining 
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Table 4.2- HLA-B*15:02 review search terms Medline. ‘.mp’ denotes a search of the Medline fields: 

title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol supplementary concept word, 

rare disease supplementary concept word, unique identifier, synonyms. MeSH = Medical Subject 

Headings, used to index articles.  

For the HLA-A*31:01 review, the Medline database was searched on 25th February 

2020, using very similar search terms to the HLA-B*15:02 search (Table 4.3). No 

filters or limits were used when searching. 

# Search term Notes 

1 HLA-A Antigens  MeSH term 

2 “HLA-A*31:01” Free text (.mp) 

3 Carbamazepine MeSH term 

4 “tegretol” Free text (.mp) 

5 Stevens-Johnson Syndrome MeSH term 

6 “toxic epidermal necrolysis” Free text (.mp) 

7 “SJS” Free text (.mp) 

8 “TEN” Free text (.mp) 

9 “SJS/TEN” Free text (.mp) 

10 
“drug reaction with eosinophilia and systemic 

symptoms” 

Free text (.mp) 

11 “DRESS” Free text (.mp) 

12 “maculopapular exanthema” Free text (.mp) 

13 “MPE” Free text (.mp) 

14 
Drug Hypersensitivity OR “hypersensitivity 

reaction” 

MeSH term/Free text 

(.mp) 

15 “cutaneous adverse drug reaction” Free text (.mp) 

16 
Drug-Related Side Effects and Adverse Reactions 

OR “cutaneous ADR” 

MeSH term/Free text 

(.mp) 

17 1 OR 2 Combining 

18 3 OR 4 Combining 

19 
5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 

13 OR 14 OR 15 OR 16 

Combining 

20 17 AND 18 AND 19 
Combining 

 

Table 4.3 - HLA-A*31:01 review search terms Medline. ‘.mp’ denotes a search of the Medline fields: 

title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, 
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keyword heading word, organism supplementary concept word, protocol supplementary concept word, 

rare disease supplementary concept word, unique identifier, synonyms. MeSH = Medical Subject 

Headings, used to index articles. 

4.2.4 Screening 

Search results were initially screened by title and abstract by 2 authors. Differences 

were resolved by discussion. Full text screening was then conducted on the 

remaining papers in the same manner. Papers were classified by the type of control 

group: either carbamazepine-tolerant controls or healthy volunteer controls (or 

both). 

4.2.5 Data extraction 

Data was extracted using a standard data extraction form (Appendix 4.2). The form 

was piloted by extracting data from 5 studies, and amending the form as required. 

The form contained sections for study design, patient demographics, as well as 

genotyping results. The number of SJS/TEN cases, controls, and healthy volunteers 

(if applicable) and their genotyping status (HLA-B*15:02 or HLA-A*31:01 positivity) 

were collected. Details of other outcomes were also collected where provided (SJS 

and TEN individually, DRESS, MPE, and any other cutaneous ADRs).  

Data was extracted by DJ, with the extracted data from 10% of studies checked by 

AJ.  

4.2.6 Meta-analysis 

Papers located in the systematic review phase were then used in meta-analyses of 

the association between HLA-B*15:02 and HLA-A*31:01 genotype and 

carbamazepine-induced SJS/TEN. Separate comparisons of cases to 

carbamazepine-tolerant controls, and cases to healthy volunteers was undertaken, 

where the data were available.  

The text of papers included in the systematic review was examined to identify if 

there was an overlap of participants between papers (e.g. “some of these cases 

were previously reported in Smith, et al.”). In these cases, authors were contacted 

to identify details of the overlap. If there was no reply, only the paper with the larger 

number of participants was included in the meta-analysis.  

Three different sets of meta-analyses were undertaken. In each set, one meta-

analysis compared cases to carbamazepine-tolerant controls whilst the other 

compared cases to healthy volunteers. 
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The first set of meta-analyses investigated the association between the HLA-

B*15:02 genotype and susceptibility to carbamazepine-induced SJS/TEN, including 

all identified papers. 

Following this, meta-analyses were conducted where only papers available before 

the publication of Chen, et al. (2011) (3) were included. The rationale for this was in 

order for me to consider whether a prospective study was justified, given the already 

accrued evidence to date from observational studies.  

The final meta-analyses investigated the association between HLA-A*31:01 

genotype and susceptibility to carbamazepine-induced cADRs, including SJS, TEN, 

SJS/TEN, DRESS, and MPE phenotypes (where data available).  

Meta-analyses were performed in R, using the ‘meta’ and ‘forestplot’ packages (81, 

82). Forest plots, odds ratios, and 95% confidence intervals were generated. The I2 

statistic was used to assess heterogeneity. The ‘meta’ package allows for the meta-

analysis of binary outcome data with the ‘metabin’ call. By default, this uses the 

Mantel-Haenzel method to calculate effect estimates. This method has better 

statistical properties for rare events, and is the preferred method used by Cochrane 

reviewers (83). A random effects approach to calculating the pooled effect estimate 

(OR) was chosen since the included studies were heterogeneous (in study design 

and included ethnicities) and so it was assumed that effect estimates would be 

similar but not identical across studies (84).  

Results were also compared to existing meta-analyses, including an assessment of 

any differences in included papers and in effect sizes. Some studies were included 

in the systematic reviews but not in the meta-analyses. Reasoning for these 

decisions was undertaken based on the availability of summary statistics and lack of 

overlap with other included papers. Full details are provided in the full list of studies, 

included in Appendix 4.3.  

4.2.7 Quality assessment 

Each included paper, in both reviews, was also assessed for quality using the 

criteria of Jorgensen and Williamson (2008) (85). These criteria have been used in 

other meta-analyses to assess study quality (2, 86, 87). Study quality was assessed 

by DJ, with AJ checking 10% of papers. Differences were resolved by discussion. 

Full details of study quality assessment are available in Appendix 4.4.  
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Results were represented diagrammatically with a heat map so that the general 

quality of included studies could be visualised, however the results of quality 

assessment were not used to inform any subgroup analyses of the meta-analyses.  

4.2.8 Simulation 

I aimed to simulate a prospective study with the same study design as Chen et al. 

2011 (3), but assuming that treatment was guided in accordance with HLA-A*31:01 

allele carrier status instead of HLA-B*15:02. The details of this trial were analysed in 

the PICO format (Table 4.4) (88, 89). These details were then used to guide the 

design of the simulated prospective study.  

Patients/Population 

4877 Han Chinese patients requiring carbamazepine 

treatment (indications include epilepsy, neuralgia, 

neuropathic pain, tinnitus, psychiatric disorders). Ages 6 

months to 99 years. 

Excluding: carbamazepine allergy, patients who had 

undergone bone marrow transplant, patients not of Han 

Chinese descent 

Intervention 

Genotyping – all patients genotyped at first clinic visit. 

Those who were HLA-B*15:02 positive were given 

information about SJS/TEN and recommended 

alternative drugs.  

HLA-B*15:02 negative patients also received 

information about SJS/TEN but were started on 

carbamazepine. 

Comparison 

Compared to historical incidence of SJS/TEN in Taiwan. 

This was based on records of patients with ICD9 

diagnostic code 695.1 (erythema multiforme) (90). This 

number was modified to calculate the number of patients 

with carbamazepine-induced SJS/TEN according to 

methodology from a previous study in China (91). 

Outcome 
Rates of SJS/TEN and other cADRs. Only SJS/TEN was 

compared to historical data 

Table 4.4 - PICO analysis of Chen et al 2011 (3). ICD9 = International Classification of Diseases 9. 

cADRs = cutaneous adverse drug reactions. SJS/TEN = Stevens-Johnson syndrome/toxic epidermal 

necrolysis 
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It is assumed that the simulated prospective cohort would include patients without 

the HLA-A*31:01 risk allele (non-carriers), who are treated with carbamazepine, as 

well as patients with the HLA-A*31:01 allele (carriers) who are not treated with 

carbamazepine.   

Since all previous studies identified were case-control studies, none provided an 

estimate for the probability of developing SJS/TEN in non-carriers of HLA-A*31:01. 

Bayes’ theory (92) was therefore used to estimate the risk: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵 |𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

where 𝑃(𝐴) is the probability of SJS/TEN when taking carbamazepine and 𝑃(𝐵) is 

the probability of HLA-A*31:01 not being present. 𝑃(𝐵 |𝐴) is the probability of not 

being a HLA-A*31:01 allele carrier given that they have developed SJS/TEN and 

𝑃(𝐴 |𝐵) is the risk of interest (risk of developing SJS/TEN in non-carriers of HLA-

A*31:01).  

𝑃(𝐴) was estimated to be 0.23% (or 0.0023). This was the same historical incidence 

assumed by Chen, et al (3). 𝑃(𝐵) was estimated from allelefrequencies.net (47) 

(Appendix 4.5), to be 0.950411 (this is the weighted mean of all Chinese population 

estimates listed on allelefrequencies.net). 

𝑃(𝐵 |𝐴) was estimated from case-control studies included in the meta-analysis, as 

the proportion of non-carriers amongst cases. This equated to 0.265. This was 

calculated using data from all patients regardless of ethnicity, since there was an 

insufficient amount of data in Han Chinese participants to provide a reliable 

estimate. 

Therefore, using Bayes’ theory (92) there is:  

 

𝑃(𝐴|𝐵) = (0.264535 ∗ 0.0023) / 0.950411 = 0.0006401762 

 

Therefore, the probability of developing SJS/TEN in carbamazepine patients not 

carrying HLA-A*31:01 is estimated as  6.40 ∗ 10−4.  

These and the other estimates used as parameters for the simulation of the 

prospective cohort are summarised in Table 4.5. The ‘event’ in this simulation is 

SJS/TEN.  
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Parameter Description Value Justification 

nPatients 

Number of patients 

in each simulated 

prospective cohort 

5,000 

Chen et al recruited 

around 5000 participants 

(3) 

nSims 
Number of 

simulations 
10,000 

This number is sufficient 

to allow for calculation of 

confidence intervals using 

bootstrapping (93, 94)  

prospective.nc 
Event rate for non-

carriers 
0.0006401762 As per calculation above  

prospective.c 
Event rate for 

carriers 
0 As per justification above 

histinc 

Event rate for 

patients who do not 

receive genotyping 

0.0023 

This is equal to the risk of 

SJS/TEN in the general, 

ungenotyped patient 

population, taken from 

Chen, et al (3), as 

explained above 

allele.freq 

Frequency of being 

a non-carrier for the 

HLA-A*31:01 allele 

in the general Han 

Chinese population 

0.9606 

Taken from 

allelefrequencies.net, as 

explained above (47) 

Table 4.5 – assumptions used in the R code to simulated a prospective interventional study of HLA-

A*31:01 genotyping for the prevention of SJS/TEN. 

Data was simulated for n=5000 patients (nPatients), undertaking 10,000 

simulations each time. To do this, carrier status for each simulated participant in the 

cohort was simulated using the ‘rbinom’ function in R, assuming a probability of 

0.9606 of being a non-HLA-A*31:01 carrier. The outcome for each participant (ADR 

or no ADR) was then simulated, conditional on their allele carrier status. For non-
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carriers, this was again done using the ‘rbinom’ function in R assuming a probability 

of 0.0006401762 of developing the ADR. An event rate of 0 was assumed in 

carriers, since these patients would test positive if genotyped in a prospective trial 

and would not receive carbamazepine.   

Code used for these analyses can be found in Appendix 4.6.   

4.2.9 Comparison of effect estimates and measures of clinical validity 

As I wanted to compare the precision of effect estimates and measures of clinical 

validity (in particular PPV and NPV) between those obtained from observational 

data and a) the prospective trial (Chen, et al. (2011) in the case of HLA-B*15:02; 

and b) a simulated prospective trial in the case of HLA-A*31:01, I first considered 

how the precision of the estimates derived from observational data varied with the 

accrual of cases. To do this, the following steps were taken: 

i) First, the effect estimate (OR) was assumed to be equal to that observed 

in the meta-analysis for HLA-B*15:02/HLA-A*31:01 for the Han Chinese 

population (the same population as that studied in Chen et al. (3)); 

ii) estimating the frequency, p, of HLA-B*15:02 (0.0496) and HLA-A*31:01 

(0.0207) in Han Chinese from allelefrequencies.net and assuming the 

same incidence, q, of SJS/TEN (0.0023) as that assumed in Chen et al. 

(3) I used the approach suggested in Tonk et al. (67) (see Figure 4.4) to 

estimate PPV and NPV; 

iii) since the precision of these estimates will vary with the number of 

SJS/TEN cases, the 95% confidence interval for the OR for 1- 100 cases 

was calculated using the approach outlined below. A total of 500 controls 

were assumed, but I also ran the calculations for 250 and 1000 controls 

to check that this did not impact the conclusions, and no significant 

difference in results was seen. 

 

4.2.9.1 Approach for calculating 95% confidence interval for the OR at various 

numbers of cases 

If we assume the data can be presented in a 2x2 table as follows: 
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  cases Controls Total 

V
a

ri
a

n
t 

+ 𝑎 𝑏 𝑎 + 𝑏 

- 𝑐 𝑑 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 

 

Where: 

    

𝑎 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

𝑏 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

𝑑 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

then, since we already have an estimate for OR, and know that: 

𝑂𝑅 =  𝑎𝑑
𝑏𝑐⁄  

we can create the following equations, assuming an allele frequency of 𝑝 and solve 

the following equations to obtain a 95% confidence interval for a particular number 

of cases: 

𝑏 = 𝑝 ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 

𝑑 = (1 − 𝑝) ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 

𝑐 =
𝑑 ∗ 𝑐𝑎𝑠𝑒𝑠

(𝑂𝑅 ∗ 𝑏) + 𝑑
 

𝑎 = 𝑐𝑎𝑠𝑒𝑠 − 𝑐 

𝑆𝐸 =  √((
1

𝑎
) + (

1

𝑏
) + (

1

𝑐
) + (

1

𝑑
)) 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = exp (log(𝑂𝑅) − (1.96 ∗ 𝑆𝐸)) 

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = exp (log(𝑂𝑅) + (1.96 ∗ 𝑆𝐸)) 

Once estimates for the 95% confidence intervals for the OR at various numbers of 

cases were obtained, we could input the lower limit and upper limit, to replace OR in 
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the earlier equations, to obtain 95% confidence intervals for PPV and NPV at 

various number of cases. The 95% confidence intervals for OR, PPV and NPV, 

were then plotted against number of cases.     

4.3 Results 

4.3.1 HLA-B*15:02 systematic review and meta-analysis 

The search of the Medline database yielded 146 results. The search strategy was 

validated by checking that these results included some key references identified 

from initial literature searching. All the key references were included.  

After screening these results by title and abstract, 51 results remained for full text 

screening. Further evaluation by full text reduced this to 47 papers for inclusion in 

the systematic review (11, 15-17, 40, 43, 48, 95-133) and 19 of these reported data 

in sufficient detail that they could be included in the carbamazepine tolerant controls 

meta-analysis. A total of 12 were included in the healthy volunteer controls meta-

analysis (Figure 4.5).   
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Figure 4.5 – flow of papers included in HLA-B*15:02 systematic review and meta-analysis. * denotes 

meta-analysis with cases and tolerant controls. ** denotes meta-analysis with cases and healthy 

volunteer controls. HVs = healthy volunteers. SJS/TEN = Stevens Johnson syndrome/toxic epidermal 

necrolysis. Flow chart adapted from PRISMA 2020 (79).  

Full details of included papers are shown in Appendix 4.3. Papers were published 

between 2004 and 2018, with peaks in 2011 and 2014 (Figure 4.6A). The most 

common phenotype included was SJS/TEN, with SJS and TEN also being included 

as separate outcomes (Figure 4.6B). The most common design was case control, 

with carbamazepine-tolerant patients as controls (Figure 4.6C). One paper was a 

prospective design, but without any intervention (126).  
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Figure 4.6 - A) Number of papers in HLA-B*15:02 systematic review by year of publication. B) 

Phenotypes included in papers in systematic review. Some papers included more than one phenotype. 

C) Designs of papers included in the systematic review. Case control refers to papers that used 

carbamazepine-tolerant patients as controls. HV = healthy volunteers.  

The mean total sample size was 647.5 (SD 1678.32) and the median total sample 

size was 190.0 (IQR 74.0 – 340.0). A total of 29,137 participants were included in 

total across all papers, of which 2,560 were cases, 10,545 were carbamazepine-

tolerant controls, and 16,032 were healthy volunteers (although there is some 

overlap in participants between papers). 

The mean age of cases and drug-tolerant controls was similar (cases: 36, SD 12.7, 

controls: 35, SD 12.0). The mean age for healthy volunteers was older (42, SD 

10.3), although there was more missing data for this variable. Cases, controls, and 

healthy volunteers were gender balanced (48.8%, 51.5%, and 42.7% male 

respectively).  

The majority of papers performed well on reporting the way genes were chosen for 

genotyping and details of sample size and study design. However, very few papers 

included results of testing for Hardy-Weinberg equilibrium, consideration of missing 

data and how it was dealt with, and how adherence with treatment was assessed 

and adjusted for in the analyses. A diagrammatic overview of study methodological 

quality is shown in Figure 4.7, and full analyses and the criteria used are located in 

Appendix 4.4.  
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Figure 4.7 - quality of studies included in HLA-B*15:02 systematic review, according to criteria of 

Jorgensen and Williamson (2008) (85). Full criteria and data are included in Appendix 4.4.1.  

 

4.3.1.1 HLA-B*15:02 meta-analysis 

The first meta-analysis investigated the association between the HLA-B*15:02 

genotype and susceptibility to carbamazepine-induced SJS/TEN, compared to 

carbamazepine-tolerant controls. A total of 19 papers were included, comprising 

495 cases and 1659 controls (Figure 4.8A). The second analysis was the same, but 

used healthy volunteers as controls. A total of 12 papers were included in this 

analysis, comprising 467 cases and 11336 controls (Figure 4.8B).  
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There was overlap in the patients included in Hung, et al. 2006 and Hsiao, et al. 

2013. While Hsiao, et al. had a larger overall sample size, Hung, et al. had more 

SJS/TEN patients. Hung et al. was therefore included in the  SJS/TEN meta-

analysis and Hsiao et al excluded.  
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Figure 4.8 – Meta-analyses of the association between HLA-B*15:02 and carbamazepine-induced 

SJS/TEN. Studies are divided by ancestry group where >1 paper in that ancestry was located. Papers 

that reported participants of multiple ancestries, but did not break down results by ancestry, are 

reported under ‘Remaining populations’. A) An meta-analysis comparing SJS/TEN cases and 

carbamazepine-tolerant controls. B) A meta-analysis comparing SJS/TEN cases and healthy controls 

(not exposed to carbamazepine). Ethnicity codes in remaining populations: As = Asian, Af = African, 

Ab = Aboriginal, C = Han Chinese, E = European, In = Indian, J/S = Javanese/Sundanese, LAC = Latin 

American/Caribbean, M = Malay, Mix = Mixed, O = Other, T = Thai, U = Unknown, V = Vietnamese. 

In the meta-analysis of cases compared to carbamazepine-tolerant controls, there 

were 10 studies that included Han Chinese patients (n=1294). The pooled OR for 

this group was 59.25 (95% CI 23.94 – 146.55), with high heterogeneity (I2 = 70%). A 

further 2 studies included Indian patients (n=109). The pooled OR in this group was 

16.76 (95% CI 2.76 – 101.90). Heterogeneity was 0%. Two studies included Thai 

patients (n=371). The OR in this group was 62.55 (95% CI 24.93 – 156.96), with I2 = 

0%. The final group of patients represented all remaining populations, and those 

where details of individual populations could not be separated from overall summary 

statistics (n=380). The pooled OR in this group was 30.87 (95% CI 12.81 – 74.37), 

with I2 = 0%.  

The overall OR for all populations in the carbamazepine-tolerant controls meta-

analysis was 45.55 (95% CI 26.52 – 78.23) with low to moderate heterogeneity (I2 = 

46%). 

In the meta-analysis of cases compared to healthy volunteer controls, there were 6 

studies that included Han Chinese patients (n=1363). The pooled OR for this group 

was 65.43 (95% CI 24.52 – 174.63) with low to moderate heterogeneity (I2 = 47%). 

Two further studies included European patients (n=9137). The pooled OR in this 

group was 76.13 (95% CI 7.69 – 753.46, and the I2 was 0%. The remaining 

populations across several ancestry groups produced an OR of 15.05 (95% CI 7.57 

– 29.92), with low heterogeneity (I2 = 3%).  

The overall OR for all populations in the healthy volunteer controls meta-analysis 

was 33.26 (95% CI 17.71 – 62.47), with low to moderate heterogeneity (I2 = 40%).  

4.3.1.1.1 Comparison to other meta-analyses 

Results were compared to the three previous meta-analyses in HLA-B*15:02 and 

carbamazepine-induced SJS/TEN, which I had used to help inform the search 

strategy (2, 76, 77). The comparison is only in carbamazepine-tolerant controls 

compared to cases. 
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The overall OR calculated in this meta-analysis is smaller than any of the previous 

meta-analyses of cases compared to carbamazepine-tolerant controls. The 95% CI 

is also narrower in this analysis (Figure 4.9). The confidence intervals of the 

estimate overlap with the confidence intervals of previously published works. 

 

Figure 4.9 - comparison of odds ratios obtained in current meta-analysis of cases vs carbamazepine-

tolerant controls in carbamazepine-induced SJS/TEN, compared to previously published meta-

analyses. 

Similarly to previous meta-analyses, the majority of my estimate (55.4% weighting) 

came from the Han Chinese population, however there was a smaller and narrower 

confidence interval of OR (31.15, 95% CI 18.03 – 53.82) compared to Grover et al. 

(OR 80.70, 95% CI 45.62 – 142.77), Tangamornsuksan et al. (OR 79.84, 95% CI 

28.45 – 224.06) and Yip, et al. (OR 113.39, 95% CI 51.24 – 250.97). These 

differences can be explained by the inclusion of more and newer data in this meta-

analysis, and some differences in the eligibility criteria that resulted in different 

papers being included in each meta-analysis. For example, Then, et al. (2011) was 

included in the Tangamornsuksan, et al. meta-analysis but excluded from ours as it 
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only reported SJS, not SJS/TEN. This study has a wide confidence interval around 

its estimate (OR 221.0, 95% CI 3.85 – 12694.65), with a 5% weighting on the final 

meta-analysed estimate of the OR. Other similar instances are seen across other 

excluded papers. A full comparison of the papers included in this meta-analysis 

compared to papers included in previous meta-analyses is shown in Appendix Table 

8. One paper included in two meta-analyses was excluded in this meta-analysis at 

the screening stage, as per the inclusion and exclusion criteria, as it is a meeting 

abstract (18). This was felt to not have enough information to assess study quality 

and bias. Other papers were excluded for reporting SJS and TEN as separate 

outcomes since these are clinically recognised as different outcomes to SJS/TEN 

(107, 112, 127). for having no HLA-B*15:02 positive patients (43, 118) (these were 

excluded prior to forest plot stage, while other meta-analyses included them in the 

forest plot but assigned them 0% weighting), and for having cases overlapping with 

another, included paper (109).   

4.3.1.1.2 Comparison to only papers published prior to prospective study 

Next, only papers that were available before recruitment to the prospective Chen, et 

al. 2011 paper began recruiting (July 2007) (3) were analysed. Four papers 

published before 1st July 2007 were located (27, 40, 43, 114). However, one of 

these did not break down their results by drug (114). The authors were contacted 

but no reply was received. Another had no HLA-B*15:02 positive patients so was 

unable to be included in the meta-analysis (43). The remaining two papers had 

overlaps in their included patients (27, 40). Only one of these (the larger and more 

recent (40)) would therefore be included in the meta-analysis.  

I therefore decided to analyse all papers published up to the time Chen et al 2011 

was published (March 2011) (3), rather than the time recruitment started. There 

were seven unique papers for inclusion in this meta-analysis (27, 40, 116, 125, 129, 

130, 133). Five of these included carbamazepine-tolerant patients as controls 

(Figure 4.10A) (40, 125, 129, 130, 133), and five included healthy volunteers as 

controls (Figure 4.10B) (27, 116, 129, 130, 133). 
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Figure 4.10 - Meta-analysis of papers published prior to the March 2011 publication of Chen et al 2011 

(3), with A) Carbamazepine-tolerant controls, B) healthy controls. * this paper was published during 

March 2011.  

In the meta-analysis of cases compared to carbamazepine-tolerant controls, there 

were 4 studies that included Han Chinese patients (n=473). The pooled OR for this 

group was 324.66 (95% CI 90.04– 1170.62), with I2 = 0%. One further study 

included Thai patients (n=84). The OR in this study was 54.76 (95% CI 14.62 – 

205.13).  

The overall OR for all populations in the carbamazepine-tolerant controls meta-

analysis was 167.73 (95% CI 47.21 – 595.91) with low to moderate heterogeneity (I2 

= 38%). 

In the meta-analysis of cases compared to healthy volunteer controls, there were 4 

studies that included Han Chinese patients (n=489). The pooled OR for this group 
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was 203.05 (95% CI 54.83 – 751.92) with I2 = 0%. One further study included Indian 

patients (n=18). The OR in this study was 54.60 (95% CI 2.25 – 1326.20.   

The overall OR for all populations in the healthy volunteer controls meta-analysis 

was 168.03 (95% CI 50.05 – 564.13), with I2 = 0%.  

 

4.3.1.1.3 Comparison to prospective study 

Figure 11 shows a plot of the OR, PPV and NPV and estimated 95% confidence 

intervals against number of cases. Here, the point estimate of the OR is estimated 

from the meta-analysis of tolerant controls against cases in Han Chinese 

participants, only including data from prior to Chen, et al. (324.66). PPV and NPV 

were estimated as 0.0437 and 0.9999 respectively.  

It is clear that the precision of the estimates where there are only 7 cases (solid 

orange line, the number of serious ADR cases in the Chen, et al. study) is much 

inferior to the precision gained from meta-analysis of case-control studies, where 94 

cases were collected in Han Chinese participants (in meta-analysis of studies 

published prior to Chen, et al.) (Figure 4.10A). No SJS/TEN cases were collected by 

Chen, et al., limiting the precision of their estimates. It can therefore be seen that a 

very large prospective study would be required to produce estimates as precise as 

data already collected from observational studies.  
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Figure 4.11 – Change in the width of confidence intervals of the A) odds ratio, B) PPV and C) NPV 

(measures of clinical validity) of genetic testing for HLA-B*15:02 as the number of accrued cases of 

carbamazepine-induced SJS/TEN increases. The dashed red line is the point estimate of OR, PPV, 

and NPV calculated from the meta-analysis (OR = 167.76, PPV = 0.0437, NPV = 0.9998. The orange 

line is the number of cases of serious adverse drug reactions accrued in a previous prospective study 

(Chen, et al. 2011) (3). These diagrams adapted from work by Matt Nelson of GlaxoSmithKline 

(personal communication)   
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4.3.2 HLA-A*31:01 systematic review and meta-analysis 

In this systematic review and meta-analysis, 83 results were obtained from 

searching the literature. As for the previous review, these results were checked if 

they contained previously-identified key references in order to validate the search 

strategy. After screening by title and abstract, 30 papers remained for full text 

screening. After this screening 24 papers remained for inclusion in the systematic 

review (15, 17, 40, 46, 48, 96-98, 101, 102, 104, 105, 107, 111, 115, 118-122, 128, 

134-136), and 8 of these were included in the carbamazepine tolerant controls 

meta-analysis. A total of 4 were included in the healthy volunteers controls meta-

analysis (Figure 4.12).  

 

Figure 4.12 - flow of papers included in HLA-A*31:01 systematic review and meta-analysis. * denotes 

meta-analysis with cases and tolerant controls. ** denotes meta-analysis with cases and healthy 

volunteer controls. HVs = healthy volunteers. SJS/TEN = Stevens Johnson syndrome/toxic epidermal 

necrolysis. Flow chart adapted from PRISMA 2020 (79). 
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Full details of included papers are shown in Appendix 4.3. 

Papers were published between 2006 and 2018, with most being published in 2013 

(Figure 4.13A). The most common phenotype included was SJS/TEN (Figure 

4.13B). The most common design was case control, tolerant controls and healthy 

volunteers as controls (Figure 4.13C). 
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Figure 4.13 - A) Number of papers in HLA-A*31:01 systematic review by year of publication. B) 

Phenotypes included in papers in systematic review. Some papers included more than one phenotype. 

C) Designs of papers included in the systematic review. Case control refers to papers that used 

carbamazepine-tolerant patients as controls. HV = healthy volunteers 

The mean total sample size was 1242 (SD 2302.4) and the median total sample 

size was 334 (IQR 194 – 764). A total of 29,805 participants were included, of which 

1678 were cases, 9606 were controls, and 18,521 were healthy volunteers. The 

mean age of cases (39.3, SD 13.0), controls (36.8, SD 12.5), and healthy volunteers 

(43.8, SD 10.5) were similar. Cases and controls had a fairly even gender split 

(cases 47.4% male, controls 54.5% male), but healthy volunteers were less 

balanced (37.4% male).  

The quality of included papers was assessed according to the criteria of Jorgensen 

and Williamson (2008) (85) (Figure 4.14). A pattern broadly similar to the papers of 

the HLA-B*15:02 papers was observed. Very few papers included assessments of 

Hardy-Weinberg equilibrium, an explanation of how missing data was explored or 
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dealt with, and how adherence was assessed and adjusted for (Figure 4.14).  

 

Figure 4.14 - quality of studies included in HLA-A*31:01 systematic review, according to criteria of 

Jorgensen and Williamson (2008) (85). Full criteria and data are included in Appendix 4.4.2. 
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4.3.2.1 HLA-A*31:01 meta-analysis 

All papers up to February 2020 (date of the search) were included in the meta-

analysis of HLA-A*31:01 and CBZ-induced SJS/TEN.  

A total of 8 papers that compared SJS/TEN cases to CBZ-tolerant controls were 

located (Figure 4.15A) (46, 48, 96, 102, 105, 119, 120, 122). Four papers that 

compared SJS/TEN cases to healthy controls were located (Figure 4.15B) (48, 98, 

120, 136).  

 

Figure 4.15 - Meta-analysis of all papers that examined the risk of carbamazepine-induced SJS/TEN 

associated with HLA-A*31:01 compared to A) carbamazepine-tolerant controls and B) healthy controls 

(not taking carbamazepine). Ethnicity codes: As = Asian, Af = African, Ab = Aboriginal, C = Han 
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Chinese, E = European, In = Indian, J = Japanese, LAC = Latin American/Caribbean, M = Malay, Mix = 

Mixed, U = Unknown. 

In the meta-analysis of cases compared to carbamazepine-tolerant controls, there 

were 4 studies that included Han Chinese patients (n=633). The pooled OR for this 

group was 0.98 (95% CI 0.32 – 3.02), with I2 = 0%. There were 3 studies that 

included European patients (n=571). The pooled OR in this group was 8.14 (95% CI 

2.78 – 23.85) with low heterogeneity (I2 = 20%). The final group of patients 

represented all remaining populations, and those where details of individual 

populations could not be separated from overall summary statistics (n=669). The 

pooled OR in this group was 4.81 (0.73 – 31.57) with moderate heterogeneity (I2 = 

58%). 

The overall OR for all populations in the carbamazepine-tolerant controls meta-

analysis was 3.37 (95% CI 1.34 – 8.49) with moderate heterogeneity (I2 = 50%). 

In the meta-analysis of cases compared to healthy volunteer controls, there were 2 

studies that included European patients (n=9137). The pooled OR for this group 

was 4.07 (95% CI 1.29 – 12.78) with I2 = 0%. Three further studies included patients 

from remaining populations (n=3977). The pooled OR in this group was 3.25 (95% 

CI 0.48 – 22.34) with moderate heterogeneity (I2 = 68%). 

The overall OR for all populations in the healthy volunteer controls meta-analysis 

was 3.42 (95% CI 1.31 – 8.95), with low to moderate heterogeneity (I2 = 38%).  

Outcomes other than SJS/TEN were also analysed for HLA-A*31:01. Only 

outcomes where more than one paper was located with sufficient data were 

analysed.  

For SJS alone, comparing to carbamazepine-tolerant controls, there were 2 studies, 

in Han Chinese and Korean patients (n=305) (Figure 4.16A). The OR in this group 

was 1.68 (95% CI 0.23 – 12.15), with moderate heterogeneity (I2 = 64%). 

For DRESS, there were sufficient papers to compare cases to carbamazepine-

tolerant controls (Figure 4.16B) and to healthy volunteers (Figure 4.16C). In the 

carbamazepine-tolerant control meta-analysis, there were 2 studies in European 

patients (n=294). The pooled OR for this group was 46.59 (95% CI 12.47 – 173.99), 

with I2 = 0%. There were 2 further studies in Han Chinese patients (n=257). The 

pooled OR in this group was 15.81 (95% CI 5.76 – 43.43), with I2 = 0%. There was 

one remaining paper in this group, in Tunisian patients (n=32). The OR in this study 

was 32.0 (95% CI 2.63 – 389.25). The overall OR for all populations within the 
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carbamazepine-tolerant controls meta-analysis was 24.27 (95% CI 11.31 – 52.08), 

with I2 = 0%. 

In the healthy volunteer controls meta-analysis there were 2 studies in European 

patients (n=9129). The pooled OR in this group was 44.99 (95% CI 14.40 – 140.57), 

with I2 = 0%. There was 1 further study, in Han Chinese patients. The OR in this 

study was 26.31 (95% CI 7.17 – 96.53). The overall OR for all populations with 

healthy volunteer controls was 35.64 (95% CI 15.13 – 83.95), with I2 = 0%. 

Finally, the MPE reaction was also evaluated, comparing cases to carbamazepine-

tolerant controls (Figure 4.16D). There were 2 studies in Han Chinese patients 

(n=483). The pooled OR in this group was 2.78 (95% CI 0.86 – 9.03) with I2 = 17%. 

There were 3 studies in remaining populations (n=1103). The pooled OR in this 

group was 6.98 (95% CI 3.86 – 12.62), with I2 = 0%. The overall OR for all 

populations with carbamazepine-tolerant controls was 5.51 (95% CI 3.16 – 9.62), 

with low heterogeneity (I2 = 6%).  

There were insufficient papers to meta-analyse for other outcomes (TEN alone, and 

SJS and MPE compared to healthy volunteers).  
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Figure 4.16 - A) A) SJS in HLA-A*31:01 only, case control (there were no papers with SJS and HVs).  

B) DRESS in HLA-A*31:01 only, case control. C) DRESS in HLA-A*31:01 only, HVs. D) MPE in HLA-

A*31:01 only, case control (no papers with MPE and HVs). 

4.3.2.1.1 Comparison to simulated prospective study 

I simulated a prospective study that used similar estimates as Chen, et al. The 

simulation, run 10,000 times with n=5000 patients each time, estimated that a mean 

of 3 cases of SJS/TEN would be detected if pre-treatment genotyping was 

introduced.  

Figure 4.17 shows a plot of the OR, PPV, and NPV and their estimated 95% 

confidence intervals against number of SJS/TEN cases. PPV and NPV were 

estimated as 0.00735 and 0.99781 respectively.  

The precision of the estimates where there are only 3 cases (solid orange line, the 

number of SJS/TEN cases in the simulation study) is much inferior to the precision 

gained from meta-analysis of case-control studies, where 125 cases were collected 

in Han Chinese participants (Figure 4.16A). It can therefore be seen that a very 

large prospective study would be required to produce estimates as precise as the 

data already collected from observational studies.  
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Figure 4.17 – Change in the width of confidence intervals of the A) odds ratio, B) PPV and C) NPV 

(measures of clinical validity) of genetic testing for HLA-A*31:01 as the number of accrued cases of 

carbamazepine-induced SJS/TEN increases. The dashed red line is the point estimate of OR, PPV, 

and NPV calculated from the meta-analysis (OR = 3.37, PPV = 0.0074, NPV = 0.9978. The orange line 

is the number of cases of SJS/TEN accrued by a previous simulated prospective study, after recruiting 

5000 participants total. These diagrams adapted from work by Matt Nelson of GlaxoSmithKline 

(personal communication 
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4.4 Discussion 

This chapter presents two novel systematic reviews and meta-analyses of rare 

ADRs, and demonstrates how meta-analysis of observational data can provide 

more precise estimates of clinical validity as compared to those obtained from 

prospective interventional studies.  

Genotyping for HLA-B*15:02 before carbamazepine prescription already has strong 

evidence for its clinical use, and is recommended by several national regulatory 

bodies (137).  Genotyping has been shown in a prospective trial to significantly 

reduce the risk of SJS/TEN (3). However, evidence from case-control studies 

conducted prior to the trial can be used to estimate clinical validity of genotype-

guided prescribing, with good precision (OR 324.66 [95% CI 90.04 to 1170.62], PPV 

0.0437 [0.0399 to 0.0453], NPV 0.9998 [0.9997 to 0.9999]). Low PPV is 

characteristic of tests with very rare outcomes and remains low even when 

associations (ORs) are high (67). 

The evidence available for genotyping for HLA-A*31:01 is less strong, despite its 

higher frequency across more populations compared to HLA-B*15:02 (see Figure 

4.2). There is much less research into HLA-A*31:01 and SJS/TEN. Meta-analyses 

confirm the increased risk of SJS/TEN with this allele (OR 3.37 in tolerant controls, 

OR 3.42 in healthy volunteer controls). These analyses consist of 1,873 and 13,114 

participants, respectively. I have shown that these data can provide precise 

estimates of clinical validity (OR 3.37 [95% CI 1.34 to 8.49], PPV 0.0074 [0.0034 to 

0.0154], NPV 0.9978 [0.9977 to 0.9980]). 

This simulated prospective study of HLA-A*31:01 genotyping shows that if 5000 

participants were recruited to a prospective, interventional study with the same 

design as Chen et al. (3), approximately 3 cases of SJS/TEN would be observed. 

With this small number of cases, the estimates of clinical validity (OR, PPV, and 

NPV) are far less precise than those obtained from meta-analysis of observational 

data. 

Testing for HLA-A*31:01 prior to carbamazepine prescription was shown to be cost-

effective in a UK setting in 2015 (24). Using a Markov model, the authors showed 

that the reduction in risk of ADRs (from 780 per 10,000 to 700 per 10,000), and 

subsequent effect on quality of life, meant that the initial cost of genotyping was 

more than recouped over a lifetime. This information, combined with my analysis, 
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provides quantitative evidence for a benefit of HLA-A*31:01 screening prior to 

carbamazepine use.   

There was some difficulty encountered in extracting data from studies. Where I 

attempted to contact authors for further data or clarification, I received very few 

responses. Wider engagement of authors with readers of publications would benefit 

meta-analyses, and is of even greater importance in individual patient data meta-

analyses. Accounting for overlap between patients across studies was another 

challenge. Other meta-analyses have also dealt with this issue. For example, a 

meta-analysis by Tangarosan, et al. states that patients in Wang, et al. (2011) 

overlap with other papers. I found no mention of this in the Wang paper, or the 

others mentioned. There may be some, unmentioned overlap, but without clear 

reporting this cannot be picked up by systematic reviewers.  

One prospective interventional study (similar to Chen, et al.) has been conducted 

into the association between HLA-A*31:01 and SJS/TEN. This study, which only 

recruited Japanese patients, found a benefit of HLA-A*31:01 screening in this 

population (138). A total of 1130 patients were genotyped for HLA-A*31:01 and 

those who tested positive (17.5%) were recommended non-carbamazepine drugs. 

No cases of SJS/TEN were observed in the cohort, which was compared to a 

historical incidence calculated from Japanese BioBank participants (OR 0.60, 95% 

CI 0.36 – 1.0, p=0.048). The authors predicted that 3 cases of SJS/TEN had been 

prevented by introducing pre-treatment genetic testing. This paper had not been 

published when this chapter was planned, hence why I chose to compare the meta-

analysis results to a simulated study. The fact that no SJS/TEN cases were 

detected means that again any estimates of clinical validity obtained from this study 

would have been less precise than those obtained from a meta-analysis of 

observational studies.  

My plots showing the estimates of OR, PPV and NPV from the information derived 

from meta-analyses show that the precision of the estimates peaks at around 50 

cases. This shows that recruiting past this number does not improve the precision of 

estimates of clinical validity. For a rare ADR, a prospective intervention study would 

require a huge number of participants to achieve 50 cases, therefore utilising 

information from observational studies instead is more appropriate.  

PPV was extremely low for both HLA-B*15:02 and HLA-A*31:01 genotyping. This 

was expected due to the rarity of SJS/TEN. PPV is low for rare ADRs, even where 

the OR is high (67). In contrast, NPV was high, showing that almost all of the 
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patients who do not carry the genotype will not experience SJS/TEN. Clinically, this 

is the preferred configuration for these measurements. A low PPV and high NPV 

ensures a conservative approach to prescribing carbamazepine that will minimise 

the risk of SJS/TEN for all patients. The fact that there are other effective drugs 

available for the treatment of epilepsy (and other carbamazepine indications, e.g., 

bipolar disorder) provides further confidence in this conservative prescribing 

strategy. 

Ultimately, both prospective interventional studies and observational studies are 

needed to form a solid base of research. Each method has its own strengths and 

limitations (51, 74, 139). Prospective interventional studies, particularly RCTs, are 

the ‘gold standard’ of evidence (50), but can be expensive, time-consuming, and are 

near-impossible in very rare conditions (54, 56-59). Observational data is generally 

easier to collect, and is appropriate to use with very rare outcomes, or where an 

RCT would be unethical (61, 63, 64, 74). However, observational research can 

suffer from risk of bias and is sensitive to confounders (51). Nonetheless, I have 

shown that combining several observational studies can produce highly precise 

estimates of clinical validity, making this an attractive and feasible alternative to 

conducting a prospective, interventional study where this might be impractical, or 

impossible. 

4.4.1 Limitations 

Observational data can be an excellent alternative when it is not possible to perform 

a prospective interventional study. However, analyses in different disease areas 

have found that observational data can be associated with higher risk of bias and 

changes to the direction and size of effects (140, 141). The methodological quality 

and risk of bias of studies included in the meta-analyses were assessed using the 

criteria of Jorgensen and Williamson (85). This assessment was qualitative, not 

quantitative. The results of this assessment were therefore not used to perform sub-

group analyses of meta-analyses. However, the results can be used to narratively 

describe overall study quality. No studies met all the criteria, indicating that better 

attention to study quality is required in future studies. This finding should be kept in 

mind when evaluating the results of the meta-analyses.  

One paper was excluded in my analysis that other meta-analyses have included in 

their analyses. This paper is an abstract from a 2009 meeting of the American 

Epilepsy Society (18). Even though it is only a meeting abstract, other papers did 
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include Liao et al in their meta-analyses (2, 76). However, this would have involved 

changing this project’s pre-determined inclusion and exclusion criteria.  

One paper was excluded as there were discrepancies in numbers between their 

tables and text (124). I contacted the authors for clarity but did not receive a 

response. However, this paper performed reasonably well on the quality 

assessment. This suggests the checklist was not quite suited for my purposes. A 

stricter checklist, that incorporates measures such as completeness of reporting and 

data availability would be a useful addition to systematic reviewing in this area. This 

is an interesting future avenue of study.  

While I tried to account for overlap of patients between studies by contacting 

authors for details, this was not always possible. This was mitigated by only 

including the study with the larger sample size when overlap was detected, but 

there is a chance that overlap of patients may have occurred. This could potentially 

impact estimates.  

When analysing by type of ADR, SJS and TEN events were not combined into one 

‘SJS/TEN’ event, as other meta-analyses have done (112). Combining them may 

overestimate the number of cases, and indeed SJS, SJS/TEN, and TEN are related 

but separate clinical entities (4, 7). However, these exclusions are important to note 

as a caveat of the final risk estimates.  

My simulation made the assumption that patients who were HLA-A*31:01 carriers 

would have an SJS/TEN rate of 0, since they would test positive if genotyped in a 

prospective trial and so would not receive carbamazepine. This may not hold in a 

clinical scenario. A patient would likely be prescribed an alternative drug for their 

condition. Certainly in epilepsy, many common anti-epileptics have their own 

associated risks of SJS/TEN (142, 143), although these are generally lower than the 

risk associated with carbamazepine (144). Phenytoin and lamotrigine are the only 

drugs with higher risks per 100,000 exposed patients (142). A patient with a positive 

genetic test for a risk allele should be prescribed a different drug (145), and 

presumably not one with cross-reactivity with carbamazepine. However, this 

assumption may still lead to an underestimate of the number of SJS/TEN cases 

expected in HLA-A*31:01 carriers.  

Finally, a further extension of this work would be a comparison of estimates of 

clinical validity from the HLA-A*31:01 meta-analysis to those obtained from a 

published prospective interventional study (Mushiroda, et al. (138)). This is made 

difficult since these authors did not locate any SJS/TEN cases, although their total 
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number of ADRs (47 in total, causality relating to carbamazepine ranging from 

‘definitely’ ‘unlikely’) could be used as an indication instead. This is an interesting 

avenue for future work.  

4.5 Conclusion 

I have shown that observational data can be used in place of prospective data in the 

case of very rare ADRs such as SJS/TEN to provide precise estimates of clinical 

validity. The two meta-analyses also provide a much-needed updated view of the 

field.  

Testing for HLA-A*31:01 has been proven cost-effective (24) but is not currently 

recommended in the UK (146, 147). My analysis provides further, quantitative 

evidence of the benefit of HLA-A*31:01 genotyping prior to the prescription of 

carbamazepine.  
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Chapter 5: Discrete choice experiments in 

pharmacogenetics and adverse drug reactions: a 

systematic review 

 

5.1 Introduction 

Pharmacogenetics uses genetic biomarkers to predict treatment response or 

adverse events (1). Pharmacogenetics also has applications in improving patient 

prognosis, improving the cost-effectiveness of medicines, and in drug development 

(2). Further advancement in pharmacogenetics and personalised medicine depends 

on the acceptance of the technology by healthcare professionals, patients, and the 

general public (3). Individual patient preferences are key for successful 

implementations of new healthcare interventions (4-6). Holding accurate data on 

patient preferences for pharmacogenetic testing and aligning with them can aid in 

optimally configuring genetic testing services and associated treatments, and can 

also be used to increase uptake of such tests  (7-10). 

Preferences can broadly be split into categories of revealed and stated. Revealed 

preferences infer participant’s preferences indirectly by using observations from 

real-life situations (11). For example, this might be a study that infers how often 

people prefer to give blood from a database of blood donations (12). In contrast, 

stated preference methods ask participants directly about their preferences. In this 

same blood donation example, this might be a survey asking how often people 

would prefer to give blood (12). One method of quantifying stated preferences is a 

discrete choice experiment (DCE). DCEs are an efficient and scientifically rigorous 

way to quantify patient stated preferences. The output can be used to estimate 

uptake rates, maximum acceptable risk, and ideal test characteristics. These 

outputs are often used to inform health policy (4, 7, 10, 13-18). Understanding 

patients’ views is essential for the advancement of pharmacogenetics, and DCEs 

are an ideal method for collecting and interpreting these views. 

DCEs are based on random utility theory (RUT), first proposed in 1927 (19), and 

further work by Lancaster (1966) (20) and McFadden (1986) (21-23). RUT assumes 

that participants’ utilities can be summarised in research by systematic (explainable) 

and random (unexplainable) components. This is expressed as: 
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𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜀𝑖𝑛  

where 𝑈𝑖𝑛  is the utility that individual 𝑛 associates with choice 𝑖, 𝑉𝑖𝑛 is the systematic 

component of utility that individual 𝑛 associates with choice 𝑖, and 𝜀𝑖𝑛 is the random 

component of utility individual 𝑛 associates with choice 𝑖 (21, 23, 24). 

DCEs are an attribute-based approach to collect stated preference data (16, 21, 25-

29). DCEs assume that an individual’s choices are rational and can be used to 

reveal their preferences (utilities), and that participants seek to maximise their 

utilities (20, 23, 30). DCEs also assume that interventions can be described by their 

attributes, and that valuation of these attributes depends on their levels (13, 29, 30).  

In a DCE, participants choose between hypothetical scenarios that differ in terms of 

specified attributes and levels. Attributes are characteristics of the scenario, while 

levels are functions of each attribute (29, 31). For example, a DCE asking about an 

ideal disease screening service might assign cost of the test and time to receive 

results as attributes. Levels are then assigned for each of these attributes (e.g. £10, 

£100, £1000 for cost, 1 day, 1 week, 1 month for time). Participants ‘trade-off’ 

between attributes, allowing the DCE to measure the relative importance of each 

attribute (16, 28) in order to estimate the strength of the preferences (32, 33) (Figure 

5.1). Money (or cost), risk, and time are common attribute domains (32). DCEs are 

an in demand method that allow quantification of preferences, willingness-to-pay 

(WTP), and of predicted uptake rates (14). Hall, et al. (2004) recognised the method 

as particularly useful in the evaluation of genetic screening, disease screening (such 

as breast cancer screening) and immunisation (23). Louviere & Hensher (1982) 

published the first paper relating to the theory and use of DCEs (34). The paper 

provides equations for the development of DCEs as well as several examples of 

choices modelled in this way. 
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Figure 5.1 - explanation of the process underlying discrete choice experiments. Given scenario X, a 

person has unknown preferred values for attributes A, B, and C. When they complete the DCE, they 

make choices to maximise their utility for scenario X. They choose within choice sets with different 

combinations of attributes and their levels. When the DCE is completed by many people, an estimate 

of population-level preferences for each attribute can be calculated.   

Although often used interchangeably, DCEs should be distinguished from conjoint 

analysis and conjoint measurement (21, 35). Conjoint analysis is a generic term that 

describes several ways of eliciting preferences. Conjoint measurement is a 

mathematical theory concerned with the behaviour of number systems (21). In 

contrast, DCEs are grounded in utility maximisation and have well-tested links with 

real behaviour (21). 

DCEs are often the best way to ascertain the utility of a service to patients (29, 36-

38) and their use in the published literature has been increasing year on year (14, 

28, 30, 39, 40) (Figure 5.2).  
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Figure 5.2 - The increasing use of the terms “DCE” or “discrete choice experiment” in PubMed and 

Twitter to 2019. Note Twitter was created in 2006.  

Regulatory agencies have provided guidance on using DCEs for assessing patient 

preferences (7, 41). The Food and Drug Administration (FDA) has stated several 

benefits of quantitative research, including selecting patients who will benefit from a 

treatment, defining ‘minimum clinically meaningful benefit’ and in improving the 

generalisability of research (7) (Figure 5.3). There has been interest from licencing 

authorities in using DCEs to evaluate patient willingness to accept therapeutic risks 

(29). It has also been suggested that the UK National Institute for Health & Care 

Excellence (NICE) should use DCEs when evaluating new technologies for National 

Health Service (NHS) use (13). In pharmacogenetics, these could be designed to 

ascertain whether a test should be provided, and/or provide insight on the ideal 

configuration of a testing service (13, 42).  
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Figure 5.3 - FDA perspective on including patient perspective at every stage of a drug development 

program. Patient preferences should be incorporated during all stages of drug or product development, 

from discovery to post-market monitoring. From Patient Preference Information Guidance, FDA 2018 

(7). 

 

DCEs can contribute to health policy and service delivery by allowing quantification 

of preferences and trade-offs, and predicting uptake rates (14, 16, 39). Quantifying 

preferences can guide the implementation of an intervention, and estimates of 

uptake rates allow calculation of the potential overall costs of an intervention. They 

can be used to measure outcomes for inclusion in economic evaluations (16) and 

patient preferences for funding of health programmes (23, 43).  

They are also important for learning about the potential acceptance of interventions 

by patients and the general public. As the use of pharmacogenetics increases (44), 

it is essential that these preferences are measured and incorporated into the 

implementation of new interventions. This may include involvement in the regulatory 

assessment of such interventions (45). This will increase the likelihood of new 

interventions and tests being accepted.  

While qualitative methods are often used to assess patient preferences, quantitative 

methods such as DCEs provide a different perspective, particularly suited to 

complex decisions and scenarios (46). The DCE method is therefore well-placed for 

the evaluation of multifaceted pharmacogenetic interventions. It is the most widely 

used method for the evaluation of stated preferences in healthcare (31). 

Using pharmacogenetics to reduce the risk of adverse drug reactions (ADRs) is a 

well-documented and growing field (47, 48), but public awareness of its potentials is 

low (49, 50) (see also Chapter 6). There has therefore been little work to measure 
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the preferences of the public for pharmacogenetic testing. I therefore planned a 

DCE to measure the preferences of the general public for genetic tests to prevent 

different ADRs. 

The design and implementation of a DCE can be split into stages, from defining the 

problem to analysing policy impacts (Figure 5.4)(13, 26). This chapter focusses on 

the theory of DCEs, and investigates existing DCEs in pharmacogenetics and ADRs 

through a systematic review. Chapter 6 contains details of the extensive qualitative 

work undertaken to inform the selection of my own DCE attributes and levels, and 

details of the design used for my own DCE. Finally, Chapter 7 presents the results 

of my DCE investigating patient preferences for genetic testing and discusses how 

preferences differ between high and low evidence scenarios.   

 

 

Figure 5.4 – DCE stages as defined by Street, et al. (2008) (26), with reference to the chapters of this 

thesis that correspond to each stage. Created using BioRender.com. 
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Prior to the systematic review, I will first discuss some essential DCE design terms, 

and examine how previous systematic reviews of DCEs have conducted their 

searches and analyses.  

5.1.1 DCE design terms 

There are many terms specific to DCEs that first require definition (Table 5.1). 

Additionally, Louviere, et al. (2010) provide a thorough review of the distinctions 

(21). 

 

Term Definition Reference 

Conjoint analysis A generic term to describe several ways of 

eliciting preferences. Is based on conjoint 

measurement 

The implicit values for an attribute of an 

intervention are derived from some overall score 

for a profile consisting (conjointly) or two or more 

attributes 

Louviere, et al. (2010) (21) 

Bridges, et al. (2011) (29) 

Conjoint 

measurement 

A mathematical theory concerned with the 

behaviour of number systems 

Louviere, et al. (2010) (21) 

D-efficiency A measure of design efficiency that minimises 

design error (D-error) 

Vanniyasingam, et al. 

(2018) (51) 

Walker, et al. (2018) (52) 

Dominance tests A method of testing for rationality in a DCE by 

providing choice sets where one alternative is 

clearly superior 

Ryan & Gerard, (2003)(40) 

External validity Comparison of hypothetical and actual behaviour 

in a DCE 

Ryan & Gerard, (2003)(40) 

Orthogonality When the occurrence of any two levels of different 

attributes is uncorrelated 

Each pair of levels appears equally often across 

all pairs of attributes within the design 

Marshall, et al. (2007)(53) 

Reed Johnson, et al. 

(2013) (31) 

Random utility 

theory 

A theory proposing a latent construct of ‘utility’ in a 

person’s head, consisting of systematic 

(explainable) and random (unexplainable) 

components. Underlie DCE theory 

Thurstone (1927) (19) 

Louviere, et al. (2010) (21) 

Stated preference Use of survey methods where individuals are 

asked hypothetical questions about how much 

they would be willing to pay or willing to accept in 

compensation 

A method that is used to elicit an individual’s 

Walley, et al. (2004) (43) 

Louviere, et al. (2010) (21) 

Louviere, et al. (2000) (54) 

Abdullah, et al. (2011) (55) 
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preferences for alternatives (goods, services, 

courses of action) in a survey context 

Contrasted with ‘revealed preference’ which 

focuses on existing markets and systems  

Utility A general index of individual satisfaction 

The value placed on a good or service by any 

individual as a measure of its usefulness 

Marshall, et al. (2007)(53) 

Walley, et al. (2004)(43)  

Validity The extent to which quantitative measures of 

relative importance, or trade-offs, reflect the true 

preferences of patients 

Janssen, et al. (2017) (41) 

Willingness to 

pay 

Method for deriving preferences for treatment 

options based on determining what society is 

willing to pay in monetary terms by asking 

hypothetical questions 

Walley, et al. (2004) (43) 

Table 5.1 - Definitions of terms used in discrete choice experiments 

 

Design is important to consider when planning a DCE. Arguably, the simplest type 

of design to visualise is the full factorial design, where all combinations of 

attributes and levels are presented to each participant (16, 52). However, these are 

rarely used as they can quickly become impractical and costly (25). As the number 

of possible combinations increases so does the number of questions to each 

participant. This increase in participant burden increases the risk of participants 

quitting the DCE (25, 54). One solution is to split questionnaires, but this increases 

costs. Instead using a subset of all possible combinations is known as a fractional 

factorial design (52). These subsets can be chosen randomly, but statistical 

methods are more often used to make the selection. This is the most common 

method for constructing DCEs (4). It is important to measure how efficiently the 

chosen fraction represents all possible combinations (51, 56). An efficient design is 

one that is orthogonal (the levels of each attribute vary independently of each 

other), level balanced, with minimal overlap, and with utility balance (the utilities of 

alternatives within choice sets are the same) (31, 52, 57, 58). D-efficiency is a 

measure of design efficiency that minimises design error (known as the D-error) (51, 

52). Other terms used include main effects (a design that is only able to estimate 

the effect of each attribute independently) and main and interaction effects (a 

design able to estimate main effects and the interactions between attributes) (25).  

The analysis of a DCE may take several forms, including simple linear regression, 

conditional logit, and hierarchical Bayes models (32). The analysis of DCEs is 

considered in more detail in Chapter 7. 
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There are also several methods for measuring the validity of a DCE (the extent to 

which it reflects the true preferences of patients) (41). A detailed overview of validity 

concepts and measurements is provided by Janssen, et al. (2017), and some of the 

important concepts are summarised here. 

Theoretic (or face) validity is the extent to which DCE results are consistent with 

expectations (41). This is a common test for validity, often done as part of DCE 

analysis plans. It is examined by looking at expected directions of effect, comparing 

results to similar DCEs, and ensuring a robust DCE development process with 

sufficient qualitative work. Within-DCE randomisation (e.g. comparing labelled and 

unlabelled choices) may also be part of this assessment (8). 

External validity is the extent to which preference results can be used to predict 

real life choices, outside of the experiment (40, 41). This is not always possible 

since the scenarios examined by DCEs are often hypothetical and/or simplifications 

of real choices. It has been used successfully in retrospective (‘what would you 

have chosen?’) DCEs (59), and in DCEs of policy makers (18).  

5.1.2 Previous systematic reviews of DCEs 

The detailed development of my DCE is covered in Chapter 6. Before beginning my 

own, I reviewed the literature for previous DCEs that evaluated preferences in 

pharmacogenetic testing related to ADRs.  

When systematically searching the literature for DCEs, it is important to include all 

the terms that are used to refer to the method. Therefore, I first looked for existing 

systematic reviews of DCEs to inform the search, and combined search terms from 

these papers to use in the search. These were located by searching the literature 

for ‘discrete choice experiment’, ‘dce’ and ‘systematic review’, and related words.  

Ten previous systematic reviews of DCEs were located, the earliest from 2003 and 

the newest from 2019 (Appendix Table 9). Four systematic reviews were linked, 

each using the same methods to update on the field of health related DCEs (30, 39, 

40, 60). A total of 1142 DCEs were included across the reviews.  

The first of these four was Ryan and Gerard (2003), who systematically reviewed 

DCEs in a health economics context (40). This was the earliest systematic review to 

use the search terms that reflect the different terms used to refer to DCEs. These 

terms were used by updated systematic reviews in 2010 (39) and 2014 (30). The 

review included 34 experimental DCEs in health economics published from 1990-

2000.  
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The next paper, an updated systematic review of DCEs in health economics was 

published by de Bekker-Grob, et al. in 2012 (ePub 2010) (39). This was further 

updated in 2014 by Clark, et al. (30). The updated study located 179 DCEs for 

analysis. The authors categorised DCE attributes into six domains: money, time, 

risk, health status, health care, and other.  

The latest update in this series was in 2019, covering DCEs published 2013-2017 

(60). Soekhai, et al. located 301 papers, showing how the usage of DCEs in the 

literature continues to grow. The authors utilised data from the previous 3 reviews to 

evaluate how DCE methods have changed from 1990 to 2017. Changes include the 

increasing use of software (particularly Ngene) and online survey administration. 

Other systematic reviews covered further specific areas of DCE design or of health 

(Appendix Table 9) (28, 61-65).  

These systematic reviews used many different terms to locate DCEs (Appendix 

Table 10). It was important to include all these terms in the systematic review 

search, in order to capture all relevant literature. These search terms were 

combined to form the final search strategy. 

The aim of this review was to identify and evaluate all DCEs conducted within the 

context of pharmacogenetics relating to adverse drug reactions (ADRs). Studies 

conducted in any population were included, with a focus on examining design 

features of the studies as well as outcome measures, population metrics, and 

disease domains. The aim was to collect this information to inform my own 

subsequent DCE in pharmacogenetic tests for ADRs and highlight potential areas 

where more research is required. The attributes and levels of different DCEs and 

their methodological features were examined, such as the inclusion of a ‘no test’ 

third option and the comparison of multiple DCEs.  I also believe the review will 

provide a useful overview of the field and guide future practice in a patient- and 

public-centred manner.    

  

5.2 Methods 

Inclusion criteria were any previous DCE in pharmacogenetics that considered the 

prevention or management of ADRs. The ADR could be the focus of the included 

pharmacogenetic marker, or an additional attribute. An ADR was defined as any 

adverse consequence resulting from a drug or intervention, either acute or chronic. 

Studies in any population and any language were included. 



194 
 

Papers were excluded if they used non-choice conjoint methods (e.g. rating based, 

best-worst scaling, ranking-based), as were technical/theoretical/methods papers 

without experimental data, and review articles.  

The Medline database was searched on 28th November 2018 using a structured 

search strategy, informed by searches used by previous systematic reviews of 

DCEs. The search included terms to reflect the varied terms used in the literature to 

refer to DCEs as identified in the review of previous systematic reviews, and these 

were combined with words that encompass the range of terms used to refer to both 

pharmacogenetics and personalised medicine (66) (Table 5.2).  These 

pharmacogenetics terms were chosen based on my previous review (Chapter 3). 

The search was repeated (also in the Medline database) on 4th December 2019 

during which one new paper was located (67). No limits or filters were used when 

searching. 

1 “conjoint” 

2 “conjoint analysis” 

3 “conjoint measurement” 

4 “conjoint stud*” 

5 “conjoint choice experiment*” 

6 “part-worth utilities” 

7 “functional measurement” 

8 “paired comparison*” 

9 “pairwise choice*” 

10 “discrete choice experiment*” 

11 “DCE” 

12 “discrete choice mode(l)ling” 

13 “discrete choice conjoint experiment” 

14 “stated preference*” 

15 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 

OR 11 OR 12 OR 13 OR 14 

16 “biomarker*” 

17 “pharmacogenetic*” 

18 “pharmacogenomic*” 

19 “personalised medicine” 

20 “personalized medicine” 

21 “precision medicine” 

22 “stratified medicine” 
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23 “genetic testing” 

24 16 OR 17 18 OR 19 OR 20 OR 21 OR 22 OR 23  

25 15 AND 24 

Table 5.2 - terms used when searching the Medline database for DCEs relating to ADRs in 

pharmacogenetics 

Records were screened against inclusion and exclusion criteria by two reviewers by 

title and abstract (DJ, with AJ checking a random 10%) and then by full text (DJ and 

AJ). Disagreements were resolved by discussion with the two authors. As the aim of 

this systematic review was to learn more about DCEs in pharmacogenetics for the 

purpose of designing a DCE, a third reviewer was not required at this stage to 

resolve disagreements.  

Data was extracted using a standard data extraction sheet prepared for this review 

(Appendix Table 11), and this was also informed by the aforementioned previous 

systematic reviews (28, 30, 39, 40), with added items relating specifically to 

pharmacogenetics. Details of populations, countries of origins, methods of survey 

administration, and of attributes and levels were collected. Details of DCE design 

and methods used to select attributes and choice sets were also extracted.  

Studies were not examined for risk of bias. Summary effect measures were not 

appropriate for this review due to heterogeneity in included studies, but the findings 

have been summarised. The information from all included papers was combined 

into a summary and the details of each paper were then presented individually. This 

allowed me to learn from the methods used in each paper.  

Analysis and figures were completed in R and R Studio (68). 

5.3 Results 

5.3.1 Results of systematic literature search 

The initial search of the Medline database yielded 565 papers, which was reduced 

to 23 after removing duplicates and screening by titles and abstracts. After 

screening by full text, papers were excluded for being technical/theoretical only, and 

for being review papers. A total of 13 papers remained for analysis (Figure 5.5). 

During analysis, two of these papers (MacDonald et al (2016) (69) and Marshall et 

al (2016) (70)) were found to refer to the same survey, consisting of a decisional 

conflict scale (DCS) and a DCE. MacDonald, et al. focuses on the DCS part of the 

experiment, and Marshall, et al. focuses on the DCE. The papers do not refer to 

each other, presumably due to being published close together in time (in different 
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journals). The Marshall et al. (70) paper was retained as this one focussed on the 

DCE rather than the DCS. One extra paper was located in a later search (67). The 

final analysis therefore included 13 papers (59, 67, 70-80). A full detailed list of the 

papers included can be found in Appendix Tables 12 and 13. As some papers 

contained more than 1 DCE (72, 74, 78-80), a total of 19 experiments were 

included.  

 

 

Figure 5.5- PRISMA flow chart (81, 82). Produced with an online tool at 

http://prisma.thetacollaborative.ca/generator (83) 

DCEs represented cancer (59, 70-73, 78), psychiatric disease (67, 76), 

cardiovascular disease (74), autoimmune disease (79), epilepsy (80), and gout (75). 

One paper did not specify a disease area (77). Papers were published between 

2009 and 2018 and were conducted in patients, healthcare professionals (HCPs), 

and the general public. ADRs were mostly considered in terms of risk, although 

http://prisma.thetacollaborative.ca/generator
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some included additional parameters such as ADR severity and duration. Full 

details of the included papers can be found in Appendix Tables 12 and 13. 

5.3.2 Demographic details 

The USA was the most represented country, with 4 papers. Other countries 

represented were the UK, Singapore, Canada, and Denmark. One paper was an 

international collaboration (59). Five papers were in the field of breast cancer (59, 

70-73), with the remaining papers in autoimmune disease (79), cancer (78), 

cardiovascular disease (74), depression (76), epilepsy (80), gout (75), and 

schizophrenia (67). One paper did not examine any particular disease area (77). 

The most commonly recruited population was patients (those with the condition 

being studied), followed by the general public, then healthcare professionals. Most 

surveys were administered online. Several used market research companies to 

collect participants (70-72, 76, 78). The mean sample size was 440 (median 323), 

with a range of 67 – 1096 (Figure 5.6).  
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Figure 5.6 - Basic information on the DCEs included in this review. A) Location of DCEs, B) Population 

included in the DCE as participants, C) Method of DCE administration. ‘Face to face’ refers to where 

the DCE was conducted with support of a researcher. ‘In clinic’ refers to a DCE that gave out 

questionnaires for patients to complete in the clinic, without support, D) Boxplot showing the range in 

DCE sample sizes. Totals may sum to >10 as some papers included more than 1 DCE. HCPs = 

healthcare professionals 

Participant ages and genders were averaged from papers that provided the 

requisite information. The mean age of the participants was 49.3, and 63.5% were 

female. Two studies recruited 100% female participants (59, 70). When these were 

excluded, the average percentage of female participants fell to 54.4%.  
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5.3.3 Attributes and levels 

Attributes were sorted into domains as used by Clark, et al. (2014)(30), de Bekker-

Grob, et al. (2012) (39), and Soekhai, et al. (2019) (60). These domains originated 

with Ryan & Gerard (2003) (40). These are: monetary measures (e.g. cost of test), 

time (e.g. time in hospital), risk or probabilities (e.g. of toxicity, likelihood of benefit), 

health status (e.g. side-effect severity), health care (e.g. route of drug 

administration), and other. Of 68 extracted attributes, risk was the most common 

type (41.2%, 28 attributes) (Figure 5.7). The most common number of attributes to 

include in a DCE was 4 (mean 5.1, range 3 – 7). A no-test option was included in 

46% of papers (6/13). Of these, 3 reported the rates at which participants 

consistently chose no-test (9% (75), 12% (80) and 13.3% (76)). 

 

Figure 5.7 - Domains of the attributes of located DCEs.  

 

The mean response rate, in studies that reported it was 58.6%; however, 5 papers 

did not report response rates. Only one DCE did not report details of qualitative 

work (71). Of the others, interviews, pilot testing, and seeking expert opinion were 

other reported types of qualitative work. These were most commonly performed for 

attribute selection and pre-testing of the DCE (Figure 5.8). Further details of the 
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methods used to choose attributes and levels are included in the discussion of each 

paper in detail.  

 

Figure 5.8 - Qualitative work of DCEs included in the review. A) Types of qualitative work done, B) 

When in the DCE development process that qualitative work was performed. 

In terms of DCE design, the most common choice was a fractional factorial design. 

Four papers did not report their design (71-74). The most common method for 

creating choice sets was the use of D-efficiency. Two DCEs did not report their 

method for this (73, 77). Sawtooth and SAS were the most commonly used software 

for DCE design, and four DCEs did not report which they used (71, 73, 79, 80). 

Around half the DCEs included a ‘no test’ or ‘neither’ option, where participants 
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could choose none of the choices in a question (71, 75-77, 80, 84). The median 

number of choice tasks for each participant was 12 (range 4-26), and 8 was the 

most common number of choice tasks.  

Included DCEs have been split by their target population for reporting. I report full 

details of DCE design, attributes and levels (and their selection), and the learning 

from each paper applicable to my own DCE. These data are summarised in 

Appendix Tables 12 and 13.  

5.3.4 DCEs in patients 

Five DCEs recruited patients as their target population (59, 71-73, 75) – defined as 

those suffering from an illness, including the illness being investigated in the DCE. 

5.3.4.1 Ballinger et al 2017 

This DCE recruited 417 HER2- breast cancer patients in the USA currently 

undergoing treatment and asked them to choose between four different 

chemotherapy regiments with different levels of relative reduction in risk of ADRs 

(Table 5.3) (71). The DCE also incorporated a biomarker analysis by varying the 

risks of each toxicity and the likelihood of benefit based on hypothetical biomarkers 

for peripheral neuropathy and congestive heart failure. Participants could also 

choose to not receive either treatment. The aim was to examine patients’ 

preferences for treatment and determine if they were willing to trade toxicity and 

benefit. The authors did not specify any qualitative work performed to develop the 

DCE. 

 

Attribute Levels 

Peripheral 

neuropathy 

likelihood (%) 

0 10 15 20 40 60 

Relative 

recurrence risk 

reduction (%) 

20 30 35 40 50  

Peripheral 

neuropathy 

severity/ duration 

Severe/ 

during 

treatment 

Moderate/ 

a year 

Moderate/ 

rest of 

your life 

Severe/ 

rest of 

your life 

  

CHF likelihood 

(%) 
0 1 5 10   
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Table 5.3 - Attributes and levels of Ballinger et al 2017 (71). CHF = congestive heart failure 

To prevent bias, this survey did not name the specific drugs used to define the 

levels. Benefit and risk profiles of the drugs were based on previously published 

clinical trial evidence. Prior to the DCE portion of the survey, participants were 

asked to choose their perceived risk of breast cancer recurrence without 

chemotherapy. This perceived risk was then used to customise the subsequent 

DCE so the reduction in risk of recurrence was relative to each participant’s 

perception of their recurrence risk. Participants were also asked about their previous 

experience of chemotherapy and toxicities.  

Details of DCE design were not provided. Choice sets were chosen ‘pragmatically’ 

(details were not provided) and analysis done using a hierarchical Bayesian routine. 

The survey was conducted online. The response rate was not provided. 

Of the participants, 88% were Caucasian and 65% were aged 50 or over. Specific 

details of participants’ ages were not provided, so this DCE was excluded from the 

above calculation of the mean overall age in DCEs. All patients had completed 

chemotherapy and 90% had been diagnosed with breast cancer more than 1 year 

before completing the DCE.  

The largest shifts in preference were caused by recurrence risk reduction and the 

likelihood of peripheral neuropathy. Participants that initially had a higher perceived 

risk of breast cancer recurrence were more favourable towards regimes with greater 

toxicity (and accompanied higher likelihood of benefit). However, participants with 

previous experience of peripheral neuropathy were more likely to choose a 

chemotherapy regime with moderate risk of peripheral neuropathy (and higher 

likelihood of benefit), than one with no risk of peripheral neuropathy.  

Modelling using the hypothetical biomarker data showed that patients homozygous 

for a variant that confers a higher risk of an ADR would be more likely to choose a 

chemotherapy regime with a lower risk of the ADR. This shows that participants are 

able to perceive changes in risks due to pharmacogenetics, and that this modifies 

preferences. This work also shows that previous experience with ADRs affects 

preferences in these scenarios. A question asking if participants have previously 

experienced a disease is a useful addition to a DCE.  

5.3.4.2 Dong et al 2016 

A 2016 DCE in Singapore measured patient preferences for avoidance of a severe 

ADR (Stevens-Johnson syndrome, SJS), in the context of allopurinol treatment for 
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gout (75). Allopurinol is the main treatment for gout but is associated with a risk of 

SJS, particularly in patients with the HLA-B*58:01 allele (85). The authors aimed to 

examine patient preferences for genetic testing in this context in order to inform 

policymakers and clinicians. Attributes were selected after in-depth interviews with 

10 patients and the survey was pre-tested in interviews with a further 50 patients. 

Attributes and levels are summarised in Table 5.4. 

Attributes Levels 

Chance of getting 

severe side-effect 
1 out of 1 million 1 out of 5000 1 out of 1000 1 out of 600 

Cost of genetic test 

(SGD) 
20 200 400 1000 

Cost of gout 

medicines over 2 

years if test positive* 

(SGD)  

250  400  1500 4000 

Your physician’s 

recommendation 
No information 

An alternative is 

the physician 

recommendation 

An alternative is 

not the physician 

recommendation 

 

Most common choice No information 

An alternative is 

the most 

common choice 

An alternative is 

not the most 

common choice 

 

Cost of gout 

medicines over 2 

years if test negative 

† (SGD) 

200    

Table 5.4 - Attributes and levels of Dong et al 2016 (75). SGD = Singapore dollars. *Chance of a test 

positive is 2 in 10. †Chance of a test negative in 8 in 10.  

Patients were asked to choose between two treatment options that included genetic 

testing, and a third treatment choice without genetic testing. One of these options 

was marked with a ‘doctor recommended’ banner. The ‘cost of gout medicines over 

2 years’ attribute was split by probabilities. In the event that the test was positive for 

the risk allele (2 in 10 chance), patients would not be able to use allopurinol to 

manage gout, incurring higher medicine costs for alternative drugs. If the test was 

negative (8 in 10 chance), medication costs would be lower. Patients in Singapore 

pay for healthcare, although it is subsidised by the government (86).  
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The survey was designed using SAS software with a fractional factorial main and 

interaction effects design. Choice sets were created to maximise D-efficiency, and a 

latent class logit model was used for analysis. The survey was conducted in-person 

with the help of an interviewer. The response rate was not reported. 

The authors recruited a convenience sample of 189 diabetic patients from diabetes 

clinics. This population was chosen as they are at a higher risk of developing gout 

than the general population (87), but would not currently be prescribed allopurinol. 

Similarly, males were oversampled (65.6% of the survey population) since gout is 

more common in men. Respondents were 61.4% Chinese, with a mean age of 57.1 

A small number of participants (5.8%) had gout but did not receive medication for it.  

Modelling the results of the DCE revealed two groups of participants – the ‘risk 

averse’ and the ‘cost conscious’. The ‘risk averse’ group, comprising 63% of 

respondents, always preferred to test, with cost of test having a minimal impact on 

their decision. This group were willing to pay up to S$1215 (£675 as of January 

2021) to reduce the risk of developing SJS. Meanwhile, the ‘cost conscious’ group 

were more sensitive to the cost of the test (WTP was not calculated as the risk 

coefficients did not significantly differ from 0). Across both groups, the 

recommendation of a clinician was a significant predictor of test uptake. A 

combination of this recommendation and an option being the most common choice 

amongst other patients increased uptake of the genetic test more than a 75% 

reduction in test cost did.  

A simulation of uptake rates calculated an uptake of 65.1% for the ‘most realistic’ 

testing scenario, but this was significantly different between risk averse (>95%) and 

cost conscious (8.8%) groups. This is very useful for policy making in this context, 

and analysing both groups separately provides a more accurate picture of uptake 

rates. This highly policy-relevant measurement of uptake is a value I will aim to 

output from my own DCE.  

5.3.4.3 Issa et al 2013 

This DCE evaluated the preferences of US breast and colorectal cancer patients for 

diagnostic genetic testing (72). The example used for breast cancer testing was the 

commercial Oncotype DX scoring system. The score is highly correlated with the 

likelihood of breast cancer recurrence, and this is used to guide breast cancer 

treatment decisions (such as the decision to use chemotherapy or more 

conservative treatment options) (88). Individual mutation testing for KRAS and 

UGT1A1 was examined in colorectal cancer. The authors aimed to quantify patient 
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willingness to pay for these tests and examine their preferences for the 

characteristics of these tests. Attributes and levels (Table 5.5) were developed by 

conducting six focus groups with breast or colorectal cancer patients (n=44). These 

results were published in a 2011 paper (89). Participants were broadly in favour of 

pharmacogenetics and personalised medicine, but expressed concerns about the 

evidence behind tests (“I would need more data, specifics, how long has it been 

tested, how many people, … everything. I would like to look at it entirely before I 

agree to [being tested]”). Privacy and data security were also common concerns 

(“Shouldn’t it – who knows the results – be limited to the medical field, healthcare 

providers or something?”).  

Attribute Levels 

Cost of testing 

to you 

personally 

(US$) 

25 100 500 1000 2000 4000 

Chance the test 

will correctly 

predict 

response to 

treatment 

55% 70% 80% 90% 96% 99% 

 

What 

information will 

the test 

provide? 

Recurrence 

risk and 

how likely 

you are to 

benefit from 

chemothera

py and how 

likely you 

are to 

develop 

severe side 

effects from 

chemothera

py 

Recurrence 

risk and how 

likely you are 

to benefit 

from 

chemotherap

y 

Recurrence 

risk and how 

likely you 

are to 

develop 

severe side 

effects from 

chemothera

py 

How likely 

you are to 

benefit from 

chemothera

py and how 

likely you 

are to 

develop 

severe side-

effects from 

chemothera

py 

How likely 

you are to 

benefit from 

chemothera

py 

 

Who has 

access to your 

test results 

Patient and 

doctor 

Patient, 

doctor, and 

Patient, 

doctor, 

insurance 
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insurance 

company 

company, 

and 

employer 

How will your 

test results be 

used? 

Doctor will 

decide how 

best to treat 

you based 

on your 

results 

You will 

decide how 

to use the 

results, 

regardless of 

your risk of 

recurrence 

Your 

insurance 

company 

will use the 

test results 

to determine 

your 

coverage 

 

Table 5.5 - Attributes and levels of Issa et al 2013 (72) 

Both breast cancer and colorectal cancer patients completed the same 

questionnaire. The survey was designed using Sawtooth Software, but the specific 

design was not reported. Choice sets were created using random pairing. The 

analysis model was also not reported. The survey was conducted online, with a 

response rate of 42.2%.  

Of the 300 participants that were recruited, 150 were breast cancer patients and 

150 were colorectal cancer patients. Mean ages were 54.5 years and 42 years, 

respectively. Both populations were majority Caucasian or white. Breast cancer 

patients were more knowledgeable about tumour-specific genes than colorectal 

cancers in a pre-DCE survey. 

Test accuracy was the most important attribute across all patients. Accuracy >90% 

was associated with positive preferences. When it comes to the cost of the test, 

22.5% of patients were willing to pay for testing, with willingness falling when costs 

exceeded $500. Participants had a strong preference for only the patient and doctor 

having access to results, and a strong negative preference for an insurance 

company using their test results to determine coverage.   

This DCE focussed on patient-relevant outcomes and revealed interesting 

similarities in preferences for genetic testing in two different groups of patients. The 

US-centric nature of the DCE, with insurance companies as part of two different 

attributes, limits its use outside of these contexts. However, the finding that patients 

cared highly about test accuracy is important, and underlines the importance of 

communicating this level of detail to patients. The detailed reporting of focus groups 
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used to determine attributes and levels is also useful for my DCE design. The 

themes of evidence and privacy will be interesting to explore from a UK perspective.  

  

5.3.4.4 Liede et al 2017 

This breast cancer DCE was an international study that recruited carriers of the 

BRCA1 and BRCA2 genes to examine preferences for preventative treatments (59). 

Those who are positive for these genes have an increased risk of breast and 

ovarian cancers (90). The aim was to examine preferences for treatments (such as 

hormone therapy and preventative surgeries) that reduce their risk but that may 

have associated ADRs (such as effects on fertility or uterine cancer risk). The 

attributes for this DCE (Table 5.6) were developed by consulting clinical experts and 

the survey was pre-tested in interviews with potential participants. No further details 

of qualitative work to develop the DCE were provided.  

Attribute Levels 

Reduction in risk 

(%) 
90 75 50 40 

How long you take 

the medicine 

(years) 

1 3 5 

 

Effect on fertility No effect 

Cannot get 

pregnant during 

treatment 

Can never get 

pregnant 

 

Effect on female 

hormones 
No effect 

Temporary 

menopause-like 

symptoms 

Early 

menopause 

 

Risk of teeth and 

jaw problems 
No risk 1% 5% 

 

Route of 

administration 
Daily pill 

Injection every 3 

months 

Injection every 6 

months 

 

Risk of uterine 

cancer 
No risk 1%  

 

Table 5.6 - Attributes and levels of Liede et al 2017 (59). 

The attributes and levels represented four treatment options – mastectomy, 

oophorectomy, and two different medications. Participants could also choose to 

receive screening only. Participants were also asked what treatments they had 
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already undergone to reduce their risk of breast and ovarian cancer. The authors 

were able to use this information to test the external validity (if results can 

accurately predict choices outside of the survey (41)) of their DCE. 

The DCE was designed using SAS software in a fractional factorial design. Choice 

sets were created in a D-efficient manner and analysed using a random-parameters 

logit model. The survey was administered online and had a response rate of 53.5%.  

A total of 622 participants were recruited in the USA (56%), Australia (20%), UK 

(19%) and Canada (5%) through research registries and patient organisations. The 

mean age of participants was 41. Details of race or ethnicities were not provided. 

Most participants had taken measures to reduce their cancer risk, including 

mastectomy (49.2%), oophorectomy (52.3%) and the use of prescription medication 

like tamoxifen (5.5%).  

The most important attribute to participants was the reduction in risk of breast 

cancer. However, this differed among the 32% of women who wanted to have more 

children. In these women, the effect of the intervention on fertility was the most 

important attribute. Other attributes had lesser effects on preferences. The effect on 

female hormones, and the risk of teeth and jaw problems, only affected preferences 

at their highest values. The type of ADR can be said to impact on preferences, and 

testing multiple ADRs may better capture clinical realities.  

The DCE showed that women preferred mastectomy to prescription medicines, but 

preferred the medicines to oophorectomy. However, when examining real-world 

choices, women were more likely to have undergone an oophorectomy than to have 

taken any prescription medication. Reasons for this included: their doctor had not 

recommended medication; concerns about side-effects; and the association of the 

medications with cancer treatment. This shows the importance of including external 

validity checks in a DCE in scenarios where this is possible.  

5.3.4.5 Smith et al 2014 

This DCE tested patient preferences for two different chemotherapy drugs 

(paclitaxel and capecitabine) in the USA (73). Metastatic breast cancer patients 

were recruited through patient advocacy organisations. The aim of the DCE was to 

evaluate preferences for drugs with different toxicity profiles and routes of 

administration, while also varying the likelihood of benefit to simulate the use of a 

biomarker to predict benefit and toxicity likelihoods. For example, the likelihood of 

benefit from paclitaxel was 50% when using the biomarker, compared to 20% 
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without the use of the biomarker (Table 5.7). A pilot study in 2010 was the only 

reported qualitative work prior to the DCE. Participants were shown two different 

profiles and asked which treatment they would choose, then asked if they would 

take that treatment over no treatment.  

Attribute 
Levels (paclitaxel) Levels (capecitabine) 

Toxicity BM Benefit BM Toxicity BM Benefit BM 

Route of 

administration 
IV IV Oral Oral 

Likelihood of 

benefit [BM 

range] 

33% 20% [50%] 27% 13% [40%] 

Likelihood of 

toxicity [BM 

range] 

27% [60%] 27% 10% [40%] 10% 

Toxicity type/ 

severity/duration 

Moderate PN, 

1 year 

Moderate PN, 

1 year 

Severe 

diarrhoea, 

during 

treatment 

Severe 

diarrhoea, 

during 

treatment 

Table 5.7 - Attributes and levels of Smith et al 2014 (73). BM = biomarker, IV = intravenous, PN = 

peripheral neuropathy 

This DCE did not report any details of design, software, methods used to create 

choice sets, or analysis. The only analysis reported was the percentage of 

respondents choosing treatment under each scenario. The survey was administered 

online, and the response rate was not reported. 

A total of 641 respondents were recruited, and were 99.7% female and 90.6% 

Caucasian. Most had been diagnosed over 1 year prior to the DCE and were 

undergoing treatment. 47.6% and 43.5% of women had previously received 

paclitaxel and capecitabine, respectively.  

Respondents were more likely to choose a treatment with greater likelihood of 

benefit and lower likelihood of toxicity. Preferences were more sensitive to changes 

in likelihood of benefit than risk of toxicity. Subgroup analyses revealed that women 

who were younger, and those that had children, were more likely to choose 

treatment. Biomarker modelling showed that benefit biomarkers had more influence 

on decision making than toxicity biomarkers. A biomarker predicting benefit from 

capecitabine had the largest individual effect of the biomarkers tested. Overall, most 

respondents indicated they would choose the treatment on offer, regardless of 
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biomarker information. However, the profile of the biomarker (how well it predicts 

benefit and toxicity) has a large impact on this decision. The four biomarkers tested 

all caused a decision change in respondents in the range of 5.4% to 34.1%. This 

shows that participants are able to comprehend and manage decisions in light of 

genetic biomarker information and that both benefit and toxicity are important 

(although prediction of benefit is more important).  

5.3.5 DCEs in HCPs 

One DCE was located that recruited only healthcare professionals (67).  

5.3.5.1 Boeri et al 2018 

This DCE recruited UK psychiatrists to evaluate preferences for prescribing drugs to 

patients with schizophrenia (67). The aim was to determine the overall maximum 

acceptable risk (MAR) acceptable in exchange for an increase in benefit of a 

treatment. This survey was unusual in two ways – firstly, it only included health 

professionals, and secondly, most of the survey attributes were continuous 

variables. The authors did not include full details of the qualitative work but specified 

that they consulted 2 practising psychiatrists (included in the list of authors) for 

attribute and level selection, and pre-tested their survey among psychiatrists. 

Attributes and levels are shown in Table 5.8. 

Attribute Levels 

Patient has hyper-responsiveness 

genotype 
Yes No 

PANSS score change Continuous 3 – 26   

Number of acute treatment days in 

hospital 
Continuous 17 – 45   

Risk of 10 kg weight gain Continuous 30 – 70%   

Table 5.8- Attributes and levels of Boeri et al 2018 (67). PANSS = positive and negative syndrome 

scale. Higher scores indicate more severe symptoms (91). 

Biomarker status was indicated with a binary variable. Participants were asked to 

choose between two different treatments for a patient, and asked to rate their 

confidence in their judgement. The hyper-responsiveness genotype was a 

hypothetical attribute that influenced a patient’s drug response.  
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This DCE was alone in using NGene software for design. The authors used a 

fractional factorial design and maximised D-efficiency. Analysis was performed 

using a random parameters logit model. The survey was administered face to face, 

in professional development meetings. Of 70 psychiatrists invited to participate, 67 

were included in the final sample (response rate of 95.7%). 

The participants were 59% male, with an average of 10 years of clinical experience 

in their speciality. No details of age, race or ethnicity were provided.  

The psychiatrists were significantly more likely to recommend treatment when lower 

(better) Positive and Negative Syndrome Scale (PANSS) scores were achieved. As 

the risk of ADRs (weight gain) or number of days in hospital increased, they were 

less likely to recommend treatment. The MAR of each psychiatrist (the percentage 

increase in risk of weight gain that they were willing to accept in exchange for a one-

unit decrease in symptoms on the PANSS) ranged from 0.5 – 9.5%. Genotype 

information was not found to significantly influence decision making in this context. 

Subgroup analysis revealed that more experienced psychiatrists were less likely to 

consider genotype when making decision than those with less than 1 year of clinical 

experience. This was explored in detail in a separate paper (92). The results of this 

DCE show that HCPs are willing to accept genetic testing for ADRs, but that 

practitioners with less experience may be more likely to use it in practice.  

HCPs were not included in my DCE. However, I included them in the qualitative 

work to choose attributes and levels, in order to ensure that results will be clinically 

meaningful and useful.  

5.3.6 DCEs in the general public 

Three DCEs recruited only members of the general public (70, 76, 77). 

5.3.6.1 Herbild et al 2009 

This second DCE in psychiatry was conducted in Denmark with the general public 

(76). The aim of the survey was to estimate preferences for pharmacogenetic 

testing in treating depression. Depression is treated with antidepressants, all of 

which have similar common associated ADRs (93, 94). Variation in CYP2D6 is 

associated with varying responses to treatment and rates of ADRs (94-96). The 

survey was designed using three patient focus groups, and the results of these were 

published in 2007 (42). Themes of frustration with ADRs (“I don’t really know 

whether I dare change from the product (pharmaceutical) I’m taking now in order to 

hope for less side-effects,[…] could be that I’ll get even worse or return to my 
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depressive state - and that thought is unbearable”), and data privacy (“It might lead 

to some sort of a rollercoaster effect and all of a sudden you won’t be able to get 

yourself a life-insurance”) also appeared in these discussions. 

Expert opinion was also utilised in the design stage. The attributes and levels of this 

DCE are summarised in Table 5.9. 

Attributes Levels 

Price of the 

test (in Danish 

Krone) 

200 600 1000 1500 3000 6000 9000 18000 

Likelihood of 

improvements 

from the test) 

10% 50% 

Number of 

changes in 

antidepressan

t medication 

2 3 

Time with 

dosage 

adjustments 

due to lack of 

effect and/or 

unacceptable 

ADRs 

1 

month 

3 

months 

Table 5.9 - Attributes and levels of Herbild et al 2009. ADR = adverse drug reaction.  

Participants were asked to imagine they had been diagnosed with depression and 

to choose between scenarios representing treatment with antidepressants, with and 

without pharmacogenetic testing included.  

The survey was administered online, with a response rate of 46%. SAS software 

was used to design a DCE with a fractional factorial design, maximising D-

efficiency. Conditional logistic regression was used to analyse the results.  
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A total of 323 members of the Danish general public completed the survey, with a 

gender split of 53% female and 47% male. Age was not reported, although the 

authors note that those aged 18-24 were underrepresented. There were 19 

respondents (5.9%) who did not like the idea of pharmacogenetic testing and would 

never want to be tested. The remaining respondents were willing to pay 1571 

Danish Krona (DKK) (90% CI 809 – 2331) for a 10% likelihood of reducing the 

number of antidepressant changes. The WTP for a 10% likelihood of reducing the 

time with dosage adjustments was DKK604 (90% CI 230 – 986). Subgroup analysis 

showed no significant difference in results in participants previously diagnosed with 

depression.  

The authors concluded that the mean WTP exceeded the usual cost of the 

pharmacogenetic test. However, other costs associated with testing (such as labour, 

materials) were not taken into consideration, and the authors recommended future 

analyses include these assessments. Participants valued reducing the number of 

antidepressant changes higher than reducing the time with dosage adjustments. 

This information is potentially useful for informing a clinical strategy for treating 

depression. The results of this DCE also show that participants living in countries 

with healthcare free at the point of service can consider the impact of cost when 

making decisions. Using WTP as an output in these countries has its limitations (10, 

31), but is beneficial for calculating monetary costs of services and estimating trade-

offs with other attributes. 

5.3.6.2 Marshall et al 2016 

This DCE investigated the impact of gene expression profiling (GEP) on decision 

making for chemotherapy in early-stage breast cancer (70). In this setting, there are 

concerns that many patients are over-treated, since only an estimated 15% of those 

treated with chemotherapy will experience a recurrence of their cancer (97). The 

aim of this DCE was to examine the preferences of Canadian women in the general 

public for chemotherapy, with and without GEP scores as guidance. Extensive 

qualitative work was reported for developing the DCE and results were published in 

journals (98-100). Focus groups and interviews were carried out, recruiting 

oncologists (99), and women with a history of breast cancer (98, 100). Oncologists 

mostly viewed GEP as a tool that enhanced their confidence in risk assessment, 

with one describing the results as a “tie-breaker” in difficult decisions. However, 

patients viewed the test as ‘more scientific’ and ‘magical’. Evidence behind the test 

was also considered, with the fact that the test was covered by insurance being 
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taken as presumed evidence of its validity (“I had no idea there was even another 

world out there that wouldn’t be supporting the test… the fact that’s covered [sic] 

tells me that it’s absolutely supported, right?”) 

After developing attributes from this process, the clinical face validity of these was 

checked by medical oncologists. The survey was then pre-tested in women from the 

focus group, and in the general population. Additionally, the survey was translated 

to French for use in French-speaking areas of Canada. Final attributes and levels 

are shown in Table 5.10. 

Attributes Levels 

GEP test score 

(likely benefit from 

chemotherapy) 

9 (low) 22 (uncertain) 44 (high) 
GEP test not 

available 

Doctor’s estimate 

of cancer returning 

(without GEP test) 

Low Intermediate High  

Trust in doctor Do not trust 
Somewhat 

trust 
Totally trust  

Likelihood of 

temporary side-

effects 

Low Moderate High  

Likelihood of 

permanent side-

effects 

Low  Moderate High  

Table 5.10 - Attributes and levels of Marshall et al 2016 (70). GEP = gene expression profiling  

Since the survey population was the general public, background information on 

breast cancer and GEP testing was presented to respondents prior to the DCE. 

Respondents were asked to imagine they had early-stage breast cancer, and 

indicate scenarios under which they would be most likely to choose chemotherapy. 

These included scenarios with varying GEP test scores, and with no GEP test. 

Other attributes included the likelihood of temporary side-effects (such as nausea, 

vomiting, numbness in fingers, hair loss, fever, and infection) and the likelihood of 

permanent side-effects (leukaemia, heart muscle damage, early menopause). This 

was the only DCE to use categorical descriptions of ADR risk (low, moderate, high). 

The DCE was designed using Sawtooth software with a fractional factorial main and 

interaction effects design. Choice sets were created to maximise D-efficiency and 
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analysed using a hierarchical Bayesian routine. The survey was administered 

online, and authors did not report the response rate.  

A total of 1004 Canadian women with a mean age of 49 were recruited to the 

survey. Respondents were 84% white, and 49% reported having a relative with or 

who had suffered from breast cancer. The DCE indicated that the GEP test score 

had the greatest importance to participants when making decisions about 

chemotherapy. This was considered even more important than an estimate of risk 

given by a clinician. The likelihood of temporary side-effects was the least important 

attribute. 

The authors used the data from the DCE to estimate chemotherapy uptake rates in 

high-, moderate- and low-risk profiles (according to GEP test scores). These uptake 

rates (78%, 55%, and 33% respectively) are important data with a potential direct 

impact on health policy. Use of the GEP score alongside clinician assessments may 

reduce the risk of overtreatment in breast cancer patients. The learning from this 

DCE is the discussion of evidence in the published qualitative work. Patients in 

these groups assumed that if the test was covered by insurance, its validity was 

assured. While this is not necessarily the case, it provides a potentially useful 

shorthand for ‘high’ levels of evidence. In my DCE, I have used a similar shorthand 

– a high evidence test is one that is widely used and recommended by several 

countries’ health authorities.  

5.3.6.3 Marshall et al 2017 

This DCE was contained within a technical paper that focussed on the design 

challenges of estimating preferences for whole genome sequencing (77). The 

authors used a DCE to illustrate some of the issues and offered potential solutions. 

For example, one issue encountered is that genetic testing often offers multiple 

cascading uncertainties e.g., if the test is positive, this cost is encountered, and if 

the test is negative, a different cost is encountered. The authors proposed 

simplifying these problems as much as possible, and randomising patients at 

different decision points. Participants in this DCE were randomised between two 

scenarios before making choices on attributes and levels (Table 5.11). A total of 410 

members of the general public completed the survey. The survey was designed 

using expert opinion and 13 interviews. No details of qualitative methodology or 

results were given. 
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Attribute Levels 

Chance that a side-effect 

makes you unable to do 

everyday activities or 

take care of yourself 

None 5 out of 100 (5%) 20 out of 100 (20%) 

Ongoing out of pocket 

cost 
None 

$50 a month ($600 a 

year) 

$200 a month 

($2400 a year) 

Follow-up requirement 
Check-up every 6 

months 
Check-up every year 

Invasive test every 

year 

Table 5.11 - Attributes and levels of Marshall et al 2017 (77). 

Participants were randomised to receive either a favourable scenario (with a low 

chance of death and better quality of life) or a less favourable scenario (higher 

chance of death, poor quality of life) as context for their decision making. They were 

also randomised between choosing between different medications, or choosing 

between different surgeries. They were then asked to choose between two 

medications or surgeries with differing levels. They could also choose ‘watchful 

waiting’, an option with no interventions but a check-up every 6 months. 

The survey was designed using an SAS algorithm. The method of choosing choice 

sets was not specified. Results were analysed using a random parameters logit 

regression model. The survey was administered online and had a response rate of 

47.0%. The chance of an ADR was presented with pictograms of 100 people, with 

the number of affected coloured in (e.g. 5 coloured in to represent 5%).  

Demographic information of the participants was not reported. Preferences were 

consistent between medicine and surgery options, although participants in the 

surgery arm were more likely to choose watchful waiting over an intervention. This 

DCE was unique in describing the ADR in a functional way (the impact on quality of 

life). This could theoretically allow comparison of different ADRs, that have the 

same impact. Although the scenarios presented here are likely too general to form 

evidence for any specific intervention, this DCE case study is a good example of 

how to present complex information to participants relating to ADR risks and quality 

of life. The pictograms are a good way to present information. I investigated their 

use further in later qualitative work.  
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5.3.7 DCEs in multiple populations 

Four DCEs included multiple populations – patients plus the general public (74, 78), 

and patients plus HCPs (79, 80). 

5.3.7.1 Chan et al 2013 

Warfarin genetics is a well-researched area within pharmacogenetics with several 

studies showing its effectiveness (101-104). This DCE in Singapore investigated the 

WTP of both warfarin patients and the general public for a genetic test for warfarin 

dosing (74). The aim was to quantify the value of genetic testing to discuss its 

suitability for widespread use. Attributes (Table 5.12) were defined using pilot 

testing with patients, and the questionnaire was further piloted in 10 patients before 

wider use. Methods for choosing attributes and levels were not provided in further 

detail. 

 

Attribute Levels 

Cost of test (S$) 100 225 375 600 

Number of INR 

tests needed 

before dose 

stabilisation 

5 13 21  

Risk of serious 

side-effects (% per 

year) 

1 5 9  

Nature of test Genetic Non-genetic   

Table 5.12 - Attributes and levels of Chan et al 2013. INR = International Normalised Ratio. S$ = 

Singapore dollars 

Participants were presented with two hypothetical tests, either genetic or non-

genetic, and asked to choose just one. There was no ‘opt-out’ option. Participants 

were then asked if they would actually take the test they had chosen. 

Sawtooth software was used to create the choice sets, but a specific design type or 

method was not reported. The authors analysed data using a hierarchical Bayes 

method. The DCE was completed online by the general public and in 

anticoagulation clinics by warfarin patients. Response rates were 83.5% (general 

public) and 53.8% (patients).  
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Of the 197 warfarin patients who completed the DCE, the mean WTP for a genetic 

test over a non-genetic test was S$91 (around £50 in January 2021). In contrast, 

the mean WTP in the 187 members of the public who completed a survey was S$20 

(£11). The risk of serious side-effects (major bleeding or clotting) was the most 

important attribute to both groups. Patients and the general public were willing to 

pay S$63 and S$109 respectively, for every decrease in percentage risk of side-

effects. This shows that genetic testing for warfarin dosing may be economically 

acceptable in Singapore, although differences between groups show this is context-

dependent.  

This DCE provides an interesting examination of genetic exceptionalism. 

Participants were willing to pay more for a genetic test over a non-genetic test. 

However, the authors noted that many of their participants had difficulties 

understanding the genetics of testing. Further qualitative work to understand the 

difference in WTP between genetic and non-genetic testing would be a valuable 

addition.  

I have included a warfarin example in my DCE. This paper provides a useful 

blueprint for the presentation of warfarin and associated ADRs for presentation to 

the general public.  

 

5.3.7.2 Najafzadeh et al 2013 

This DCE, conducted in Canada, examined the preferences of the general public for 

a hypothetical genetic test to guide cancer treatment (78). The DCE also included a 

small number of current or former lymphoma patients. The DCE aimed to see how 

preferences differed between these two groups, and how the type of cancer and its 

prognosis affected preferences (Table 5.13). The authors designed the survey using 

expert opinions of physicians who worked with cancer patients, and three pilot 

surveys. These were conducted in patients (n=7) and the general public (n=50) and 

were also used to inform expectations of directions of effect. 

 

Attribute Levels 

Genetic test 

procedure Mouth swab 
Blood 

sample 

Tumour 

biopsy 

Bone 

marrow 

biopsy 

Liver biopsy 
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Untreated 

responders (%) 

[1 – sensitivity] 

5 20 35 50  

Unnecessary 

treatment of non-

responders (%) 

[1 – specificity] 

5 20 35 50  

Genetic test cost 

($) 
50 500 1000 1500  

Severity of side 

effects 
Severe Moderate Mild   

Likelihood of side 

effects (%) 
5 50 95   

Genetic test 

turnaround time 
2 days 7 days 12 days   

Table 5.13 - Attributes and levels of Najafzadeh et al 2013 (78). Untreated responders = % of patients 

that would be cured but will not receive it because of an inaccurate genetic test result. Unnecessary 

treatment of non-responders = % of patients who would not benefit from new medication, but will 

receive it as a result of an inaccurate genetic test result.  

Participants were presented with one of two scenarios to base their decisions within. 

The first was an aggressive, fast-acting, but curable cancer. The second was a 

slow-acting, incurable cancer. The descriptions were similar to different lymphoma 

types, although the scenarios were not linked to any specific cancers, to increase 

generalisability of the results. Participants were then asked to select the 

characteristics of a genetic test they would choose in a given scenario. They could 

also choose not to have a test. The patient group were only ever shown the first 

scenario (curable cancer).  

The authors used Sawtooth software to produce their DCE using a fractional 

factorial design. Choice sets were created to maximise D-efficiency and analysed 

with a conditional logit model. The survey was administered online. Response rates 

were 65% and 69% in the two general public groups, and 64% among the patient 

group. 

A total of 1096 participants were recruited. Mean ages in the general public groups 

were similar (48.2 and 47.6) and the patient group was slightly older on average 

(mean of 58.2). Groups were similar in gender balance. Participant ancestries were 

not reported.  
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Willingness-to-pay for genetic testing was similar between both scenarios 

presented. Among the general public, preferences for levels were also consistent, 

although participants presented with scenario B had stronger preferences for higher 

test sensitivity and specificity. Differences were more pronounced when comparing 

a sample of the general public to patients. These groups received the same 

scenario, but patients had strong preferences for high test sensitivity compared to 

the general public (p < 0.001). In patients, a test with 50% sensitivity was 

associated with a strong negative preference. There were also differences in 

preferences for the genetic test procedure, with patients preferring bone marrow 

biopsies to liver biopsies. The general public found both tests equally unfavourable.  

This study demonstrates an elegant method for comparing the preferences of the 

general public and patients. The differences in preferences present several 

interesting hypotheses for future qualitative work with each of these groups. A 

limitation of this study was the limited sample size, particularly in patients. A larger 

sample size would have enabled comparison of both scenarios across both patients 

and the general public. This was also one of the more complex DCEs located, in 

terms of the information presented to participants. With coefficients all in the 

expected direction, it appears that participants adequately understood the concepts 

of sensitivity and specificity. While this needs to be verified with further qualitative 

work, the knowledge that participants can tolerate this level of information is useful 

knowledge for my own DCE.  

 

5.3.7.3 Payne et al 2011 

This DCE compared preferences for pharmacogenetic testing in both patients and 

healthcare professionals (79). This DCE took place within the previously discussed 

TARGET trial (105). The aim of this DCE was to compare preferences for the 

characteristics of a pharmacogenetic test to predict the risk of an ADR from 

azathioprine treatment. Qualitative work consisted of expert opinion, focus groups 

and interviews, and pilot testing with patients (n=25) and HCPs (n=17). The results 

of this qualitative work were published in 2007 (106). Patients broadly understood 

the concepts involved in pharmacogenetics and were generally supportive. 

Concerns about tests revealing susceptibility to other diseases, and anxieties about 

test results, were also discussed. Both groups also agreed that genetic test results 

should be delivered by someone able to offer a high level of explanation (“I would 

expect someone to give the results back to me who has totally understood the 
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results. I don’t care if it’s the doctor or the nurse, but someone who doesn’t, and 

somebody who can’t answer my questions, I don’t want the results from them 

because it’s a waste of my time and a waste of their time.”)  

A common list of attributes was developed based on this qualitative work, so 

patients and healthcare professionals received the same questionnaire (Table 5.14). 

In total, 159 patients and 138 healthcare professionals were recruited. 

Attribute Levels 

Information given 

to patient about 

the test 

None Low Moderate High 

Predictive 

accuracy 
50% 60% 85% 90% 

How the sample is 

collected 
Blood test Mouthwash Finger prick Mouth swab 

Turnaround time 

of test 
2 days 7 days 14 days 28 days 

Who explains the 

results to the 

patient 

GP Pharmacist Hospital doctor Nurse 

Table 5.14 - Attributes and levels of Payne et al 2011 (79) 

The survey was constructed with a fractional factorial design. The software used for 

this was not specified. The method used for creating choice sets was selected from 

a book (Street and Burgess, 2007) (107), but the exact method was not specified. 

Data was analysed using a random effects probit model. The survey was 

administered through the post, with response rates of 50% in patients and 34% in 

healthcare professionals. 

The mean age of patients was 45.8, and 56% were female. Demographic 

information was not reported for the healthcare professionals. Both groups preferred 

tests with high predictive accuracy and short turnaround times, and preferred a 

hospital doctor to explain the results of the test. Both groups were also willing to 

trade turnaround times for improved predictive accuracy. However, only patients 

were willing to trade longer turnaround times for higher levels of information (19.3 

days compared to 8.9 days for healthcare professionals). An interesting result is that 



222 
 

patients had higher preferences for receiving no information than low levels of 

information.  

This DCE presents an interesting perspective on how patient and healthcare 

professionals’ views can differ. It is clearly important to consider multiple 

stakeholders in pharmacogenetic decision making. The importance of test 

turnaround time has implications for service delivery. This DCE did not include a 

cost attribute, instead using turnaround time as a continuous variable for trading. 

This was due to objections by the TARGET trial ethics committee, and does better 

reflect the UK NHS free health care model. However, omitting a cost attribute may 

limit the use of these results in contexts outside of the UK. Conversely, including a 

cost attribute could reduce the generalisability of the results, since UK participants 

would be unfamiliar with healthcare costings. This shows that the inclusion of a cost 

attribute is not a straightforward decision, and there are methodological and ethical 

issues to consider. This is something explored in the ethics application for this study 

and was not met with any objections by the University of Liverpool committees. 

 

5.3.7.4 Powell et al 2015 

The final paper in this review was a UK study including two DCEs, one in clinicians 

and one in epilepsy patients. The aim of the DCE was to compare the preferences 

of each group for HLA-A*31:01 testing prior to the prescription of carbamazepine. 

This gene is a known risk factor for carbamazepine-induced ADRs, including 

Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) (108-111). Unlike 

in the previous work, qualitative work prior to this DCE found no common list of 

attributes that could be used for both patient and clinician DCEs. Distinct attributes 

and levels were therefore developed separately (Table 5.15). This qualitative work 

consisted of semi-structured interviews with clinicians (n=8) and patients living with 

epilepsy (n=56). Further work to develop the clinicians’ DCE was done with 

attributes chosen from a previous DCE (79), and interviews with 12 neurologists. 

Attributes Levels 

Clinician’s DCE 

Cost of test (£) 35 100 200 

Time to result (days) 2 4 7 

PPV 2 25 70 
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NPV 70 85 99 

Coverage of test Severe ADRs only Severe and mild ADRs  

BNF  
Test not included in 

BNF 

Test is included in 

BNF 

 

 

Patient’s DCE 

Probability seizures 

stop 
5 in 10 3 in 10 1 in 10 

Probability of fewer 

seizures 
3 in 10 1 in 10  

Probability of mild skin 

rash 
1 in 100 26 in 100  

Probability of memory 

problems 
1 in 100 7 in 100  

Probability of 

potentially life-

threatening reaction 

Rare: more than 1 in 

10,000 

Uncommon: more 

than 1 in 1000 
 

Table 5.15 - Attributes and levels of Powell et al 2015 (80). BNF = British National Formulary. NPV = 

negative predictive value. PPV = positive predictive value 

Clinicians were asked to imagine a scenario where they had decided to prescribe 

carbamazepine to an epileptic patient. They were given the attributes and levels 

describing different genetic tests and asked if they would order the test before 

prescribing carbamazepine, or proceed with prescribing carbamazepine blindly. 

Patients were given the choice between two epilepsy medications, representing 

carbamazepine (with a higher risk of SJS) and an alternative.  

A fractional factorial design was generated. The authors did not specify the software 

or method used to do this. For the clinician questionnaire, the choice sets were 

generated by pairing with a constant comparator – in this case, not ordering the test. 

The method of generating choice sets for the patient questionnaire was not 

specified. Data was analysed using a random effects logit model. Surveys were 

administered online and response rates were not reported. 

The 83 clinicians in the questionnaire were mainly adult neurologists, and most 

(83%) had prescribed carbamazepine within the past month. Most (80%) stated that 

they had ‘no/superficial awareness’ of pharmacogenetic testing. The attribute that 

had the largest impact on whether clinicians chose a pharmacogenetic test or not 

was if the test was included in the British National Formulary (BNF). A tests’ 
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inclusion increased the odds a participant would choose testing by 58%. Cost also 

had an impact on decision making. The odds of choosing to test decreased by 1% 

for every £1 increase in the cost of the test. The uptake rate for testing in the base 

case scenario was estimated at 49.9%. 

The 82 epilepsy patients recruited were 66% female and 90.2% white, with a 

median age of 38. A third had previously taken carbamazepine, and one had 

experienced a severe skin reaction. In general, patients were willing to accept a 

reduction in medication efficacy in exchange for a reduced risk of side effects. This 

was consistent across all the side-effects in the survey (mild skin rash, memory 

problems, SJS/TEN), with the greatest reduction in efficacy tolerated for a reduced 

risk of memory problems. The uptake rate in a real-world scenario was estimated at 

61%. Coefficients from this DCE were used in a utility model to compare utility 

across different scenarios. For example, where the cost of the test was £100, the 

probability of uptake was 49.9%. If this cost was reduced to £35, the probability of 

uptake increased to 68.1%. This sort of analysis provides an excellent DCE output 

that is easy for those without specific DCE knowledge to understand. This is 

therefore a potentially very useful policy output. I have therefore chosen to use this 

same strategy for my DCE analysis (Chapter 7).  

This DCE is unique in comparing patients to healthcare professionals. That common 

attributes for both populations could not be decided upon shows the importance of 

qualitative work in all populations to be included in the final DCE.  

 

5.4 Discussion 

This review shows that DCEs are actively being used in pharmacogenetics and has 

provided valuable information about previous DCEs that I am able to use in my own 

DCE. Something that has become clear is the large gaps in the literature. With a 

large percentage of identified papers focussing on breast cancer, there is a clear 

need for experiments in other disease areas. Another takeaway is that where 

participants are given the option to choose ‘no test’, they choose this at a rate of 

around 10%, showing that a majority of people are open to genetic testing to 

prevent ADRs.  

The majority of papers located came from the UK and USA. Only one paper was an 

international collaboration (59). This corresponds to the results of a recent published 

systematic review of DCEs in genetic testing (6). Papers focussing on one country 
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and its health system are useful in their context, but may struggle for wider 

generalisability in other populations. There is also a clear lack of research in Africa, 

South America, and Oceania. Some of this is explained by a relative lack of 

pharmacogenetic research in these populations, which is an ongoing and well-

documented issue (112, 113).  

Most DCEs were in patients (those suffering from the illness being investigated). A 

minority were in HCPs, but this included some papers that provided interesting 

comparisons between patients and HCPs (79, 80). These approaches offer new 

perspectives that are relevant to policy makers in their respective areas. This 

quantitative measurement of patient preferences is a particular strength of the DCE 

method, and should be used to influence characteristics of pharmacogenetic 

services. Results can also be used to estimate the uptake of these tests. Surveys in 

the general public also have their place in this, and this population can be viewed as 

‘potential patients’ for future usage of pharmacogenetic testing.  

There was a broad range of sample sizes in the included DCEs, with a mean of 440 

(range 67 – 1096). Few papers included details of sample size calculations. This 

suggests that many are utilising the ‘rule of thumb’ for DCE sample size estimation 

(114), or indeed no calculation at all (see Chapter 6).  

A recent systematic review examined the use of DCEs in genetic testing (6), a 

broader application than my focus on genetic testing and ADRs. These authors 

located 38 papers, of which 36 were DCEs (the remainder were conjoint analysis). 

Nine of my included papers were in this analysis (70, 72, 74-80). The reasons for 

the exclusion of the remaining 4 papers (59, 67, 71, 73) are not clear, since the 

authors of this review did not provide details of their inclusion criteria.  

Several of my findings correlate with theirs. They found a dominance of European 

and USA/Canada analyses, and similar proportions of their papers included 

patients, HCPs, and the general public. The most common number of attributes of 

papers included in their review was 5 (range 3 – 12), compared to my 4 (3 – 7). 

Their work found that cost was the most common type of included attribute. It was 

not as common in my located papers, although this may not be significant due to the 

smaller number of included papers.  

I have also learned several things that I can apply to my own DCE. The importance 

of thorough qualitative work is unmistakeable. There are also lessons about DCE 

design and analysis that can be utilised. Finally, there are several practical issues 

with delivering the experiment that can be addressed.  
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5.4.1 The importance of qualitative work 

Qualitative research in DCE development is under-used (16) and is an essential 

part of planning a DCE (23, 28, 40). Researchers and clinicians will rarely 

understand attributes in the same way that patients and the public do (23). A 2014 

systematic review of DCEs found that reports of qualitative work were decreasing, a 

trend the authors called ‘worrying’ (30). 

Most studies did report their qualitative research, to varying degrees of detail. Only 

one did not provide any detail (71). The most frequent method used was expert 

opinion, and this was almost always combined with other methods (such as focus 

groups and individual interviews). Five DCEs reported conducting pilot studies 

before launching a full DCE. Three papers published separate papers with full 

details and results of qualitative work (72, 76, 79). This should be prioritised when 

restrictions are applied to the word count or level of detail in the published DCE.  

Many insights can be gained from reading these published papers. In focus groups, 

themes of data security and privacy concerns around genetic testing were common. 

Level of evidence was also considered. In one discussion, it was assumed that if a 

test was available with insurance coverage, it would be valid and have high levels of 

evidence behind it (70). This assumption (translated to a regulatory approval for UK 

participants) provides a useful potential shorthand for explaining high and low levels 

of evidence to participants, without additionally having to explain concepts of RCTs, 

observational studies, and statistical significance.  

As shown by Powell et al 2015 (80), it is essential to perform qualitative work in all 

populations that the final DCE will be tested in. In this case, the authors planned to 

conduct a DCE in both healthcare professionals and patients. However, qualitative 

work with these groups made it clear that there was little overlap between relevant 

attributes between the groups. The authors then made the decision to produce 

separate DCEs for each group. While this makes it harder to directly compare 

across groups, it does make the results from each DCE more applicable and 

relevant within groups. It also limits the burden on patients since concepts familiar to 

healthcare professionals (such as PPV, NPV) did not need to be explained.  

In this review, many useful potential attributes and levels were located. For my initial 

qualitative work when designing my own DCE, I decided to incorporate many of 

these and get feedback from healthcare professionals. The previous studies also 

informed my other qualitative work, including the choice of focus groups, expert 
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opinions, and consultation with patients. The methodology and results from my 

qualitative work are detailed in Chapter 6.  

 

5.4.2 DCE design and analysis 

There are many methods for designing DCEs. The DCEs included in this review 

mostly used D-efficient fractional factorial designs. These have been previously 

found to be the most common method used for constructing DCEs (4). 

None of the located DCEs used full factorial designs. Though these designs are 

often seen as impractical, Lancsar & Louviere (2008) pointed out that grouping 

questions into blocks and randomising participants to a block can make these 

designs feasible in some situations (16). 

Around half of my DCEs included an opt-out or ‘no test’ option. Including an option 

to reject both choices is important for the accuracy of conclusions drawn from a 

DCE (18, 115), however this can be difficult in a healthcare setting (116). This has also 

been used to estimate uptake rates of screening (53). When no ‘opt-out’ or ‘no-

choice’ option is provided, but this would be a realistic choice in real-life, this is a 

‘forced-choice’ design (14). Harrison, et al. (2014) recommended that opt-out 

options should be used if they reflect real-life situations (64), and others have 

suggested their use if the aim of the DCE is to derive welfare measures (16). The 

inclusion of an ‘opt-out’ or ‘no-choice’ option can reduce design efficiency, but this is 

offset by improved generalisability and real-world applicability of the results (16). 

Using a ‘no test’ option is important if this reflects the reality of the scenario being 

modelled (16). However, it needs to be carefully phrased and fully reflect that 

choosing none of the choices means a zero value for all attributes (117). 

Differences in wording can significantly alter respondent preferences for the ‘no test’ 

option, and more concerningly, the other options in a DCE (117). A recent 

systematic review found that 28.2% of DCEs in genetic testing included an ‘opt-out’ 

option (6), a lower rate than my located papers. The authors of this paper 

recommend the use of opt-out alternatives since genetic testing is normally optional. 

Not including an opt-out can therefore overestimate the demand for genetic testing 

(6). 

There is a delicate balance to be struck between cognitive burden, efficient design, 

and market realism when designing a DCE (42). There was a median of 12 choice 

tasks per participant. The number of choice sets impacts on respondents choices 
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(118) . It is important to balance between optimising the statistical efficiency and not 

providing respondents with too much cognitive burden (25, 118). As cognitive 

burden increases, participants are more likely to make choices at random (25, 54). 

However, increasing the number of choice tasks increases D-efficiency (51). 

Only one DCE looked at external validity (59). This is a powerful tool for evaluating 

DCE performance but is only possible in some scenarios. The example here 

recruited women with high-risk genotypes and a history of interventions to reduce 

breast cancer risk, then asked them to choose an intervention for reducing risk. 

They were then able to compare this to their previous choices and found that 

preferences differed to actual choices.  

I will use a fractional factorial design for my DCE, and maximise D-efficiency. These 

were common choices in the included papers and are well-validated methods 

recommended by several authors and DCE guides (10, 25, 26, 56, 119). 

I will also include an ‘opt-out’ option since this reflects real practice, where a patient 

would be able to opt-out of genetic testing. The assessment of external validity 

would be a good addition to this project, with funding for longer term follow-up of 

participants. A group of participants could be followed and their uptake of genetic 

testing in the future could be linked with their DCE responses. This is outside the 

scope of this PhD but would be an interesting challenge.  

The analysis of a DCE allows for several potential outputs, such as WTP, MAR, and 

uptake. Examples of each of these were located in this review. I chose to base the 

analysis on that conducted by Powell, et al. (2015) (80). Coefficients obtained in this 

DCE were used to calculate the probability of test uptake in different scenarios. This 

output is policy-relevant and easy to understand. It also allows comparison across 

different potential genetic tests.  

5.4.3 Practical issues 

The majority of studies recruited participants that were older, white, and female. 

This is likely due to the high proportion of papers that focussed on breast cancer. 

The average age of participants, where reported, was 48.0. Considering that older 

people may be more likely to develop disease in general, this may be representative 

of the wider patient population. However, this does indicate a gap in the research for 

the preferences of younger populations. Genetic testing is an intervention relevant 

for more age groups, so I will aim to recruit a sample representative of the UK 

population. 
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Not reporting response rates is “unacceptable” (40) although this may not be 

reportable in some studies (e.g. when approaching people at random as in Severin, 

et al. (2013) (120) did at a conference). It is also harder to define ‘response rate’ if a 

survey is online with an open link. Around half of the studies did not report response 

rates. I will aim to report them if the online platform allows the recording of the 

number of participants that begin the study but do not complete it.   

Online DCEs were the norm, continuing the trend observed by Soekhai, et al. 

(2019) from a series of 4 analyses (60). Only one survey was delivered by post (79). 

Post is historically a poor choice as it suffers from low response rates (121, 122), 

and the risk that participants may not fully understand the exercise (25). It may 

therefore be more suitable for surveys of healthcare professionals. Web-based 

designs are also hypothesised to be better for recruitment for longer DCE designs, 

as respondents cannot see the length of the questionnaire (118). A more recent 

analysis found that the device used by participants to access the questionnaire 

online does not affect outcomes, providing further evidence for the implementation 

of surveys online (123). Online administration was the most common method in a 

systematic review of DCEs in genetic testing (6). I am planning to conduct my DCE 

online for ease of recruitment and design.  

Communication of risk to the general public can be difficult (124-126). It is important 

to consider how different people may interpret the same risks. Numeracy of 

participants is also a factor to consider (124). Visual aids can help in overcoming 

these issues (126). One paper in the systematic review successfully used 

pictograms to represent risks (77). As there are similar levels of risk with the ADRs 

in my study, I will use pictograms to communicate that risk where practical.  

A final consideration is that participant preferences can change depending on their 

previous experience of disease or ADRs. This was seen in the DCE published by 

Ballinger, et al. (2017) (71). Participants without previous experience of the ADRs 

were more concerned about avoiding future ADRs, while those who had previously 

suffered them were more willing to risk suffering them again. With this in mind, I 

have incorporated an optional question into my DCE to ask if participants have 

previously suffered from the disease discussed in the scenario. I will also ask 

participants if they have previously had a genetic test.  

5.4.4 Limitations 

This systematic review has some limitations. The scope of this review is quite 

narrow, focussing on DCEs in pharmacogenetics that included ADRs in their 
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analysis. While this makes the results very useful for my own DCE, it limits the 

generalisability of the findings to wider pharmacogenetics. A systematic review 

focussing on broader genetic testing applications published in 2021 has several 

similarities with my results (6).  

The 2013 International Society for Pharmacoeconomics and Outcomes Research 

(ISPOR) checklist provided a well-validated set of guidelines for the design and 

analysis of DCEs (31). Ideally, all DCEs should follow these guidelines. With further 

time and resources, I may have considered evaluating these DCEs for compliance 

with this checklist. Studies were also not assessed for quality or risk of bias. This is 

normally an important step when conducting a systematic review. It was not 

included since my systematic review is not of an intervention. This assessment is 

also not within the scope of the ISPOR checklist. There is the possibility that bias in 

this review will affect my DCE, but any bias is likely to be corrected by further 

qualitative work (Chapter 6). 

DCEs also have more general limitations. The method can be difficult to apply. Use 

of the DCE method without a full understanding of the theory, methods and 

interpretation (16) can lead to false assumptions of preferences and has the 

potential to negatively affect health policy. DCEs can also be time-consuming to 

design and interpret, and their generalisability to wider policy has been questioned 

(16). External validity, or the correlation between what participants say they will do 

with what they actually do, is difficult to measure. A study by Lambooij, et al. (2015) 

investigated the link between people’s plans to be vaccinated, and their actual 

vaccination behaviour (127). Although DCE responses could predict behaviour 

correctly 80% of the time, this means that DCE results may not accurately predict 

behaviour in 1 in 5 people.  

WTP in a DCE also differs from real-life behaviour. A DCE asking people’s WTP for 

an asthma intervention found that 38% of people would purchase the intervention at 

any price. However, given an opportunity to purchase the intervention, only 12% of 

people in a comparable group actually did (128). 

5.5 Conclusion 

The use of DCEs within healthcare and pharmacogenetics is likely to increase in the 

future (16). It is therefore essential that the theory and methods of this technique are 

fully understood. This powerful tool for assessing patient preferences is particularly 

useful for examining WTP (in money, or other measures), estimating uptake rates 

and determining the ideal characteristics of a service (14).  
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I completed this systematic review prior to my DCE, as I recommended when 

planning future RCTs in Chapter 3. I have learned several important points that will 

inform my own DCE. The importance of extensive qualitative work is made clear. 

Full details of qualitative work will be presented in Chapter 6. Examining DCE 

design led me to consider the use of an ‘opt-out’ option in my own DCE, to more 

accurately reflect real world scenarios. I have also learned about the practicalities of 

conducting DCEs, including the advantages of recruiting online, and the importance 

of a diverse pool of participants (where appropriate).  

I have directly used some of the attributes identified here as a starting point for my 

qualitative work. This is discussed in full in Chapter 6.  
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Chapter 6: DCE development 

6.1 Introduction 

Patient involvement in research is increasing (1-4), particularly within the National 

Health Service (NHS) (1). This involvement is important when moving forward with 

new technologies and services, such as genetic testing. The NHS Genomic 

Medicine Service, launched in January 2019, provides access to gene panel testing 

to eligible patients through their clinicians (5, 6). The use of this is expanding and is 

predicted to soon be a routine part of clinical practice (7). The potential cost of this 

service is a concern. However, the cost of adverse drug reactions (ADRs) to the 

NHS is also significant (8), with 92,114 emergency hospital admissions due to 

ADRs in 2014/2015 (9). The use of genetic testing to prevent ADRs has the 

potential to reduce these costs and improve patient care. 

Another challenge in the implementation of this service is patient acceptance. For 

example, data security is one major concern (6, 10, 11). A successful Genomic 

Medicine Service must incorporate the preferences of patients and the general 

public for genetic testing. 

Discrete choice experiments (DCEs) have been extensively used to quantify the 

stated preferences of individuals and stakeholders for goods and services (12-19). 

The method allows for the calculation of utility, uptake rates, willingness-to-pay, and 

other highly policy-relevant outcomes (20-22). However, alongside this power 

comes the importance of rigorous development and pre-testing. For a DCE to be 

relevant and its findings to be generalisable, qualitative work with the target 

population during development is essential (17, 19, 23-25).  

Street, et al. (2008) defined six stages of designing a DCE, from identifying the 

problem to analysing the impact of results on policy (Figure 6.1) (26). After defining 

the problem the DCE will address, the attributes and levels need to be defined. 

There are several methods for choosing attributes, and published DCE studies vary 

in the level of detail provided on this process (24, 27). Louviere remarked in 2006 

that “the level of knowledge and understanding of statistical design theory exhibited 

in most published DCE papers is very low and/or exhibits significant errors.”(28) 
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Figure 6.1 - DCE stages as defined by Street, et al. 2008 (26), with reference to the chapters of this 

thesis that correspond to each stage. Created using BioRender.com.  

 

Attributes need to be:  

• factors important to both patients and policy makers,  

• have plausible levels that can be evaluated,  

• be able to be traded (27).  

There are many available methods for choosing attributes (24) but qualitative work 

to develop them is “highly recommended”.(24, 27, 29) Street, et al. also provided a 

list of the minimum information that should be reported to show the development of 

attributes for a DCE. A further standard for DCE development was published by the 
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International Society for Pharmacoeconomics and Outcomes Research (ISPOR) in 

2013 (19). 

Qualitative research can be used in any stage of the DCE process to inform 

development. This may include attribute/level development, pre-testing, and 

debriefing (23, 30). Its use is increasingly advocated in order to improve the quality 

of choice experiments (30, 31). In my systematic review of previous 

pharmacogenetics DCEs (Chapter 5), I identified several methods used for 

qualitative research. These included surveys of healthcare professionals (HCPs) 

and patients, focus groups, and eliciting expert opinions.  

I have chosen to design a DCE to quantify the preferences of the general public for 

genetic testing to prevent ADRs. In order to ensure the results of the DCE are 

generalisable and relevant, I have undertaken a programme of qualitative work that 

elicits the views of HCPs, patients, and the general public.  

 

6.2 Methods 

6.2.1 Overview 

The importance of qualitative work has been explored in the previous chapter. I 

planned an extensive series of qualitative work in multiple groups to fully inform my 

DCE design (Figure 6.2).  
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Figure 6.2 - Timeline of DCE qualitative work. HCPs= healthcare professionals. NWC-CRN = North 

West Coast Clinical Research Network. Created with BioRender.com 

In the systematic review, I found that expert opinion was the most commonly used 

qualitative method in the development of DCEs. I began my work with this. It is also 

important to incorporate the views of patients, and the views of the population to be 

used for the final survey. I therefore planned surveys and focus groups in these 

populations.  

The results of the qualitative work were used to inform the final DCE design. I 

conducted further reviews of the evidence to estimate the risk of ADR associated 

with each drug chosen for the final design.  

This work was approved by the University of Liverpool Health and Life Sciences 

Research Ethics Committee (Human participants, tissues and databases), reference 

4736.  

6.2.2 Qualitative work: Survey of healthcare professionals 

6.2.2.1 Aim 

The aim of this survey was to gain an overview of some potential attributes for a 

DCE in pharmacogenetics, from healthcare professionals and academics in the 
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field. The previous systematic review (Chapter 5) informed the attributes included in 

this initial survey. 

6.2.2.2 Methods 

The scenario used in this survey was an early idea for the final DCE scenario. 

Participants were asked to imagine a scenario where a patient underwent a 

pharmacogenetic test and then had a choice between two medications – one which 

their genetic test indicated they were at a high risk of a severe ADR, and one that 

was less effective but also had a lower risk of the ADR. Participants were then 

asked to choose the most important characteristic for this genetic test, from groups 

of related possible attributes identified from the systematic review (Table 6.1). The 

survey was distributed in October 2019 using the SurveyMonkey platform (32), and 

was sent to academics and clinicians, working in pharmacogenetics, located 

through the networks of supervisors Professor Andrea Jorgensen, Professor Dyfrig 

Hughes, and Professor Sir Munir Pirmohamed. A link to the survey was also 

distributed at the International Clinical Trials Methodology Conference 2019 (33). 

There was no compensation provided for this survey. The full survey is provided in 

Appendix 6.1 (survey of healthcare professionals).  

Test 

characteristics 

Medication 

choices 

Test information Practicalities 

Time to result Efficacy of first- 

and second-

choice 

medications 

Information on 

specific gene 

polymorphism(s) 

How sample is 

collected (saliva, 

blood, etc) 

Cost of the test Risk of severe 

ADRs 

A panel of several 

pharmacogenes 

Who is involved 

in ordering, 

interpreting and 

explaining 

results to 

patients 

Level of evidence 

for testing 

Risk of mild 

ADRs 

Whole genome 

sequencing 

Privacy of test 

results 

Coverage of the 

test 

Cost/cost-

effectiveness 

Easily 

understandable 

interpretation of 

test result 
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PPV   

NPV 

If test included in 

BNF 

+ Reasons for selection 

Table 6.1 - potential attributes for discrete choice experiment included in the survey of healthcare 

professionals. The list of attributes was split into 4 groups to ease participant burden. Each group also 

included an ‘Other’ option where participants were invited to write in their own answer. Participants 

were also given a free text section to explain the reasons for their selection (optional). BNF = British 

National Formulary. NPV = negative predictive value. PPV = positive predictive value. 

6.2.2.3 Results 

The final sample size was n = 17. Most participants were recruited from academia 

(n = 8, 47.1%). Out of all participants, the majority had never ordered a genetic test 

themselves (n = 10, 58.8%). Just over half had used the results of genetic testing to 

inform prescribing or treatment of a patient (n = 9, 52.9%) (Figure 6.3A). Note that 

the survey did not confirm if all participants were prescribers. 
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Figure 6.3 - A) details of participants in healthcare professionals survey (n=17), including whether they 

had ordered a genetic test for a patient or used the results of a genetic test (ordered by themselves or 
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others) to inform prescribing or treatment or a patient. Those that answered ‘Other’ were ‘pharmacy’, 

‘consultant clinical scientist’, and ‘older people’s medicine’. B) Participant preferences for test 

characteristics. C) Participant preferences for medication choices. D) Participant preferences for test 

information. E) Participant preferences for the practicalities of genetic testing. ADRs = adverse drug 

reactions. BNF = British National Formulary. NPV = negative predictive value. PPV = positive 

predictive value.  

In the first group of attributes (test characteristics), ‘level of evidence for testing’ was 

strongly favoured over other potential attributes (Figure 6.3B). In the second group 

(medication choices), ‘efficacy and effectiveness of first- and second-choice 

medications’ and the ‘risk of severe ADRs’ were the most important attributes 

(Figure 6.3C). In the third group (test information), ‘easily understandable 

interpretation’ was strongly favoured (Figure 6.3D). In the final group (practicalities), 

participants were most concerned about ‘who is involved in 

ordering/interpreting/explaining results to patients’ (Figure 6.3E).  

Participants were also asked to provide brief rationales for their choices. Level of 

evidence was highly valued:  

“If I was ordering a test, I would want to know that it was clinically relevant unless I 

was ordering a test as part of a research study or clinical trial” 

“Data from RCTs critical as to the absolute involvement of mutation in a gene(s) 

leading to ADR.” 

In relation to ADRs, participants indicated that reducing the risk of severe ADRs was 

a high priority: 

“Do no harm. Better to prescribe slightly less efficacious if reduction in severe 

adverse effects” 

“Risk of severe ADRs and efficacy/effectiveness of treatments are most important 

but preventing severe ADRs would be a priority.” 

“do no harm” 

Finally, participants were asked to add any further characteristics they thought were 

important but had not yet been mentioned. These are shown in Table 6.2. 

Any further characteristics 

Speed of test result availability. This might be less of a problem in primary care but much 

more problematic in secondary care if for example the test takes 3-4 days to come through 

as the patient could have been discharged by then. 
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In mental health there has been less research into pharmacogenetics. This is hindering 

clinical uptake. And the limited clinical use in turn makes it harder to get pgx research funded 

in this area. It's a catch 22 situation that reflects how far we are from parity of esteem with 

physical health. 

 

Would be good to find out how the public prioritises potential health benefit gained from pgx 

testing versus cost of testing. 

 

Level of evidence for testing - Sensitivity/specificity of the test - Reports with clear 

interpretation - Health professional must explain to patients to maximise compliance 

 

Cost of test - in terms of saving to the NHS 

 

With most drugs genetics only plays a part in explaining efficacy/safety. There are also other 

patient and clinical characteristics (e.g. age, body size, sex, concurrent illness and drugs) 

that need to be considered as potential contributors. 

 

Table 6.2 - Responses given by healthcare professionals when asked to define any further 

characteristics they thought were important in a genetic test. NHS = National Health Service.  

These results provided an important basis for future work. I now wished to compare 

these views of professionals with those of patients.  

6.2.3 Qualitative work: Survey of patients 

6.2.3.1 Aim 

The aim of this piece of work was to gain a perspective on pharmacogenetic testing 

from people with long term conditions (‘patients’). This is a group that have 

experience of interacting with health systems, and are more likely to have suffered 

ADRs, since they are more likely to be taking medications. Patient-centred research 

ensures greater research quality and relevance (34), and is a prerequisite for many 

research grants (34, 35). 
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6.2.3.2 Methods 

In November 2019, I contacted the North West Coast Clinical Research Network 

(NWC-CRN) to gain a patient’s perspective on genetic testing for the prevention of 

ADRs. There is a group within the network made up of people with long-term 

conditions who are willing to be involved in research (36). There was no 

compensation provided for this survey. The full survey is provided in Appendix 6.2 

(survey of patients). 

Participants were presented with a simpler version of the survey given to HCPs, 

with a choice between medicines A and B, with varying risks of severe ADRs, and 

an accompanying genetic test (Figure 6.4A). They were asked to choose the top 5 

things that were most important to them about the hypothetical genetic test, and the 

most important thing to consider when deciding whether or not to use the test (from 

a smaller list) (Figure 6.4B).  

I also tested different ways of communicating risks (Figure 6.4C-F), to help inform 

this display in the final DCE. The survey was also conducted on the SurveyMonkey 



251 
 

platform (32).
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Figure 6.4 - A) Diagram presented to patients of the risk of an ADR (painful skin rash) with medications 

A and B. The test and medications presented here are hypothetical. B) A list of genetic test 

characteristics that patients were asked to choose between. They were asked to choose the most 

important characteristic, and the top 5 most important characteristics. C-F show different ways of 

representing the same level of risk. Patients were asked to choose which they thought was the 

clearest. C) pictogram, D) pie chart, E) written, F) boxes.  

6.2.3.3 Results 

A total of 20 patients were recruited. Only 1 had previously had a genetic test, 1 did 

not know, and 2 preferred not to answer. The group was 55% male, and 75.0% of 

the participants were over the age of 55 (Figure 6.5A). This was as expected due to 

the known composition of the group. 



253 
 

 



254 
 

Figure 6.5 - A) characteristics of patients recruited for this survey. B) Choices made by patients when 

asked to choose the top 5 most important attributes. C) Choices made by patients when asked to 

choose the single most important attribute.  

When asked to choose the top 5 most important things from a list of attributes, the 

highest number of participants were concerned about the evidence to show that the 

genetic test worked (Figure 6.5B). When asked to choose the single most important 

thing about the hypothetical genetic test, the severity of the underlying disease was 

the most important attribute. 

Participants were also asked to provide brief rationales for their choices.  On the 

level of evidence to show a test works to predict the risk of a side-effect: 

“I feel that if I was to consider the test I would like to be appropriately informed 

before I decided to go ahead.” 

“I would hope that there would be an action resulting from having a genetic 

test....either to give or not to give a particular medication, otherwise there would be 

no point in undertaking the test.” 

The severity of the disease being treated was also a consideration: 

“If genetic testing could have predicted this problem I would have been regularly 

tested and at the first sign of trouble it could have been treated.” 

“If one sees another family member suffering badly, then I believe I would brave 

enough to have a test.” 

Other concerns included privacy and cost: 

“The sharing of the information could be more damaging than the disease being 

treated.” 

“Cost & time taken to develop the test and administer it need to have a significant 

impact.” 

Participants were also asked which ways of communicating risk were clearest. 

Pictograms and pie charts were the most popular choices (Figure 6.6). As there was 

no clear answer, this was tested further in focus groups.  
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Figure 6.6 - Testing which method of presenting risk is most preferred by patients (n=20). 

6.2.4 Qualitative work: Focus groups with the general public 

6.2.4.1 Aim 

Focus groups allow wider discussion of topics, and may generate more information 

than might be gathered from a single individual (37, 38). Two focus groups with 

members of the general public were conducted in early March 2020. Further groups 

were planned but unable to take place due to the COVID-19 pandemic. 

6.2.4.2 Methods 

Participants were given a brief presentation explaining genetic testing, and how it 

can be used to predict drug response (focusing on the prevention of ADRs). They 

were asked to imagine a hypothetical genetic panel that would test for 12 genes. 

The results of testing one of these genes would be immediately used, some would 

be useful in the future, and some would never be used (Figure 6.7A). Sessions were 

recorded and transcribed with full consent of participants. Discussions were 

categorised into themes using NVivo 12 software (QSR International) (39). 
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Results 

Two groups were recruited (n = 6 and n = 3). This was done so that two dates could 

be offered for participants to attend. Details of participant ages or genders, or 

whether they had previously had genetic tests, were not collected. Participants 

received a £10 voucher for participation.  
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Figure 6.7 – A) Diagram shown to focus group participants to explain how a genetic panel test could 

produce results with different outcomes – in this hypothetical panel of 12 genes, 1 test result is useful 

now, some are useful in the future, and some results will never be needed. B) Number of instances of 

each category of discussion in focus groups conducted March 2020 (n=9). Groups were coded from 

transcripts using NVivo software (39). Number of instances refers to the number of sections where the 

topic was discussed, across both focus groups.  
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Privacy concerns dominated both discussions (Figure 6.7B). This was also seen in 

focus groups used in development of other DCEs (Chapter 5) (40, 41). Some 

concerns include: 

“it depends how its stored, where its stored, who has access to it. If its anonymised 

then you’re just a number.” 

“Cause if its just your doctor that has access to that information, that’s very different 

than if they’re sharing it with all insurance companies and everyone.” 

“I’ve worked in an NHS setting and seen what data security looks like. Or not looks 

like” 

Other concerns were around societal impacts of genetic testing:  

“In a hundred years time, people will probably be thinking, why on earth weren’t we 

doing it 100 years ago?” 

and risks associated with drugs and testing: 

“anything that’s above a 50 50 chance. Then I’d probably wanna know about it”. 

Level of evidence was less discussed in these groups. If it had been possible to run 

further focus groups, I would have tried to guide the conversation more in this 

direction. Other reports of focus groups also provided guidance in this area (40, 42, 

43). Some participants also brought up the altruistic value of ‘donating’ their data to 

research and this was generally positively received.  

Participants were also asked their opinions on representing risk, using the same 

diagrams as in the previous survey. Pictograms were the most preferred (7/9 

participants) followed by pie charts. I therefore decided to use pictograms to 

represent risk going forward.  

6.2.5 Initial choice of attributes and levels 

Following this set of work, a set of 5 attributes and their accompanying levels were 

chosen, as shown in Table 6.3.These were based on results from each of the above 

sets of work (survey of healthcare professionals, survey of patients, focus groups 

with the general public), along with the previously discussed results of the 

systematic review. 

 



259 
 

Attribute Rationale Levels Rationale 

Cost of the test to 

the NHS 

Allows quantification 

of preferences (21, 

23) and is based on 

a recommendation 

from a supervisor 

(DH) 

£20 
These levels are 

based on Illumina 

sequencing (44) and 

a personal 

communication (DH) 

£40 

£60 

Use of your data for 

further research by 

universities and 

researchers 

Reflects the 

importance of 

privacy, particularly 

to focus group 

participants 

Yes, and they can 

contact me (linked to 

medical record) 

Allows the 

incorporation of 

altruistic donation of 

data for research, 

discussed in focus 

group 

Yes, but no contact 

(anonymous) 

No 

Number of drugs the 

test can be used to 

inform 

This will capture the 

use of panel vs 

single gene testing 

1 
These levels chosen 

based on a personal 

communication (DH)  

25 

50 

Number of genetic 

tests, besides this 

one, that you might 

require over the next 

10 years 

Similarly to the 

above, this captures 

whether a single 

gene test is 

sufficient for future 

use 

0 

These levels chosen 

based on a personal 

communication (DH) 

1 

2 

Chance of serious 

side-effect from any 

treatment over the 

next 10 years 

The risk of a serious 

ADR is the main aim 

of this DCE.  

1 in 10 

These levels chosen 

arbitrarily for now. 
1 in 100 

1 in 1000 

Table 6.3 - Attributes and levels used in a pilot test of the DCE. ADR = adverse drug reaction.  

I also decided to include a choice of two different tests, and allow participants to 

choose 'neither', or ‘no test’. This option more closely reflects clinical practice. 

6.2.6 Qualitative work: Pilot testing 

6.2.6.1 Aim 

The aim of pilot testing is to understand any issues in the DCE design that should 

be modified before its final deployment. An online pilot test was conducted in a 
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small group of participants from the focus group that consented to further contact. 

This also included some participants that had expressed interest in participating in 

the focus groups but were unable to attend on the times and dates offered. 

The more specific aim of this work was to test a group of 5 potential attributes that 

were chosen based on the results of the previous sets of qualitative work (see 

above). I also wanted to check the wording of the explanations provided to 

participants.  

6.2.6.2 Methods 

In this survey I tested whether participants would trade in two choice tasks, and 

checked the level of understanding for explanations of different potential levels. 

Initially, participants were asked to imagine they had been diagnosed with a type of 

colorectal cancer and their doctor had recommended capecitabine. Details of a 

capecitabine ADR and a genetic test to predict their risk were provided. Information 

about each potential attribute was provided. Participants were then asked to choose 

between two tests (or no test) described by the 5 different attributes from Table 6.3. 

Only two choice tasks were used, so the remainder of the survey could be used to 

examine participant views about the survey introduction and explanations. 

Participants were asked if they understood the explanation of each attribute, and 

asked to rank (on a scale of 0 to 100, where 0 is not important and 100 is the most 

important) the importance of each attribute in their decision making during the 

choice tasks. This would allow measurement of whether each attribute was 

considered important, and to gain an initial idea of their relative importance. In 

exchange for participation, participants were entered into a prize draw to win a £10 

voucher.  

6.2.6.3 Results 

A total of 16 participants were recruited, mostly aged 25 to 34 (43.8%) and 50% 

male (Figure 6.8A). Overall, participants found the questions easy to complete. No 

participants found the survey ‘very difficult’ to complete (Figure 6.8B). Participants 

were then asked about their understanding of each attribute, and the importance of 

each attribute on a numerical scale (from 0 to 100).  

Each attribute was well understood. No participant indicated they did not understand 

any attribute. The risk of ADRs, and the number of drugs the test could be used to 

inform were the most important attributes on a 1 (not important) to 100 (the most 

important) scale (Figure 6.8C). 
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Figure 6.8 - Results of pilot testing (n= 16). A) Participant age groups and genders. B) Participant 

ratings of the ease of completing choice tasks. C) Importance of each potential DCE attribute to 

participants on a scale of 0 (not important) to 100 (the most important). Number of drugs is the number 

of drugs the test can be used to inform, number of tests is how many genetic tests that participants 

may require over the next 10 years.  

The risk of an ADR over 10 years was rated the most important attribute (mean 

82/100). Participants were less concerned about the cost of genetic testing to the 

NHS (39/100). Privacy was not rated as important as expected based on the focus 
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group opinions (58/100). The ‘number of drugs’ attribute was rated as more 

important than ‘number of tests’. As these represent similar characteristics of a 

genetic test, I decided to keep only the ‘number of drugs’.  

Informal feedback from this survey received by email also indicated that some 

people who wished to participate were put off by the subject matter (colorectal 

cancer) because of its severity and risk of death. I chose to continue with potentially 

distressing scenarios, but to provide warnings before starting the DCE, further 

stress the hypothetical nature of the test, and provide links to support telephone 

numbers and websites.  

6.3 Results: DCE design 

6.3.1 Design and choice of attributes and levels 

Upon reviewing the results of pilot testing and combining this with results of the 

other qualitative work, along with further email consultation with experts (since it 

was not possible to run further focus groups), the choice of attributes was amended 

to bring the risk of serious ADRs into greater prominence and still incorporate issues 

of genetic panel testing and level of evidence.  

I wanted to examine how level of evidence would inform DCE decision making. 

However, there was uncertainty about how to incorporate this into an attribute 

without having to explain concepts such as RCTs, meta-analyses, and quality of 

evidence to participants, which would make the DCE too long which could put 

participants off completing it. It was therefore decided to produce 2 sets of DCEs, 

one with ‘high’ levels of evidence for their genetic test, and one with ‘low’ levels. 

High levels of evidence were defined as Level 1 (A or B) in the Pharmacogenomics 

Knowledgebase (PharmGKB) clinical annotations (45, 46). This is the top level of 

evidence in PharmGKB and is awarded to variant-drug combinations that have been 

recommended in a clinical guideline (46). Low levels of evidence were Levels 2 to 4 

(the lowest level).  

I decided to produce 8 different DCEs, each with different gene-drug-ADR 

combinations. Half of these would be gene-drug combinations with high levels of 

evidence, and half with low levels of evidence. Participants were then randomised to 

receive one of the eight DCEs. These would also each have their own ADRs and 

associated risks, which would varied within a specific attribute.  
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I reviewed PharmGKB and consulted with experts to choose the gene-drug-ADR 

combinations (Table 6.4). I chose a high evidence and low evidence example for 

each of 4 indications: HIV treatment, cancer, epilepsy, and cardiovascular disease. 

 

Gene(s) Drug Indication ADR 

Evidence 

(clinical 

annotations) 

Evidence (drug label 

annotations) 

High 

evidence 
 

HLA-B*57:01  Abacavir HIV 

Abacavir 

hypersensitivity 

syndrome 

Level 1A 

Testing required 

(FDA) 

Testing required 

(EMA) 

Testing required 

(Canada) 

Testing required 

(Swiss) 

Informative PGx 

(Japan) 

DPYD Capecitabine Cancer Neutropenia Level 1A 

Testing 

recommended 

(EMA) 

Actionable PGx 

(FDA) 

Actionable PGx 

(Japan) 

Actionable PGx 

(Canada) 

Actionable PGx 

(Swiss) 

HLA-A*31:01  Carbamazepine 

Epilepsy, 

pain, 

others 

SJS/TEN Level 1A 

Testing 

recommended 

(Swiss) 

CYP2C9/ 

VKORC1 
Warfarin 

Cardio-

vascular 
Bleeding Level 1A 

Actionable PGx 

(FDA) 
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Actionable PGx 

(Canada) 

Low evidence  

CYP2B6 Efavirenz HIV DILI Level 2A *† 

Actionable PGx 

(FDA) 

Actionable PGx 

(EMA) 

Actionable PGx 

(Japan) 

Actionable PGx 

(Canada) 

Actionable PGx 

(Swiss) 

UGT1A1 Irinotecan Cancer Neutropenia Level 2A 

Testing 

recommended 

(Japan) 

Actionable PGx 

(FDA) 

Actionable PGx 

(EMA) 

Actionable PGx 

(Canada) 

Actionable PGx 

(Swiss) 

HLA-A*24:02  Phenytoin Epilepsy SJS/TEN Level 3 None 

SLCO1B1 Atorvastatin 
Cardio-

vascular 
Myopathy Level 3 

Actionable PGx 

(Swiss) 

Table 6.4- Gene drug ADR combinations used. Clinical annotations are assigned by PharmGKB to 

describe the level of evidence for a variants phenotypic impact.  Drug label annotations are referenced 

on PharmGKB, collated from USA, European, Swiss, Japanese, and Canadian health bodies. *Level 

2A for prevention of ADRs, other levels for other uses. † Since this study was conducted, this has been 

upgraded to Level 1A. ADR = adverse drug reaction. DILI = drug-induced liver injury. EMA = European 

Medicines Agency. FDA = Food and Drug Administration (USA). PGx = pharmacogenetics. SJS/TEN = 

Stevens-Johnson syndrome, toxic epidermal necrolysis.  
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For each combination, an estimate of the risk of each ADR with and without genetic 

testing was required. These estimates would then be incorporated into an attribute 

(and its levels) unique to each indication, i.e., both epilepsy DCEs would have the 

same levels. The levels should encompass the range of each set of estimates. 

These estimates would also be used at the analysis stage to calculate the utility of 

single gene vs gene panel testing. To obtain these estimates, I searched the 

literature and conducted mini meta-analyses where appropriate. 

6.3.1.1 Developing risk estimates: risk of serious side-effect from this medication 

The risk of the ADR associated with each drug, without genetic testing, was 

calculated using cohort studies (where unselected patients receiving the drug of 

interest were followed to identify those developing the ADR). The risks from these 

studies were meta-analysed (where appropriate) to provide an estimate of the risk 

of each ADR where testing is not done. ADRs were chosen based on ADRs that 

were known to have a pharmacogenetic component within each drug.  

The risk of the ADR when genetic testing was in use was calculated using studies 

that evaluated patients receiving each drug by genotype. The risk for all patients 

was assumed to be the same as the risk as patients with low-risk genotypes, as 

these patients would still receive the drug if genetic testing was used. Patients with 

high-risk genotypes would not be given the drug (or in some cases, a reduced dose 

of the drug instead).  

However, where a trial of genotyping vs not genotyping existed, this data was used 

directly as the risk estimate. Where existing systematic reviews or meta-analyses 

were available, these results were used to calculate risk estimates. PharmGKB 

resources were used as a further source of data. Where possible, data collected in 

UK or European populations was used, as variant gene frequency varies across 

different populations. 

The 95% confidence intervals for estimates were obtained using the BinomCI R 

package from DescTools (47).  

 

6.3.1.1.1 Abacavir – HLA-B*57:01 – AHS 

Abacavir hypersensitivity syndrome (AHS) is an abacavir ADR causing fever, chills, 

rash, vomiting, and fatigue (48, 49). The reaction occurs in 4.3% of patients 

receiving abacavir (50), and can be fatal (49). AHS is strongly associated with the 

HLA-B*57:01 allele (51).  
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Calculating the risk for this gene-drug combination was straightforward since an 

RCT of genotyping vs no genotyping was available, the PREDICT-1 trial (52). The 

trial randomised HIV patients requiring abacavir to receive HLA-B*57:01 results 

prior to prescription, or to receive prescription without knowing HLA-B*57:01 

screening results. Patients were mostly White (82.8 and 82.9% in screening and 

control groups), with a mean age of 42. There were also more males than females 

in the trial. Patients positive for HLA-B*57:01 did not receive abacavir.  

Hypersensitivity reactions were assessed clinically, and immunologically confirmed 

by patch testing. Rates of clinically confirmed hypersensitivity were used for these 

risk estimates since these are more generalisable to actual clinical practice (51) 

(Table 6.5).  

Mallal et al 2008 

PREDICT-1 (52) 

Outcome n Risk of outcome 95% CI 

AHS/Total  1772 79/1772 = 0.045 0.036 - 0.055 

AHS/ clinically diagnosed, 

screened group 
803 27/803 =0.034 0.023 - 0.048 

AHS/ clinically diagnosed, 

control group 
847 66/847 = 0.078 0.062 - 0.098 

AHS/ immunologically 

diagnosed, screened 

group 

802 0/802 = 0 - 

AHS/ immunologically 

diagnosed, control group 
842 23/842 = 0.027 0.018 – 0.041 

Table 6.5 – A previous randomised controlled trial of HLA-B*57:01 and abacavir hypersensitivity 

syndrome where patients were randomised to genotyping or not prior to prescription. The abacavir 

hypersensitivity syndrome could be clinically diagnosed or immunologically diagnosed. Clinical 

diagnosis was used as this is more generalisable. AHS = abacavir hypersensitivity syndrome. 

Using these data, the risk of AHS without genetic testing is 0.078 (95% CI 0.062 – 

0.098), and the risk with genetic testing is 0.034 (95% CI 0.023 – 0.048).   

6.3.1.1.2 Capecitabine – DPYD – Neutropenia 

Neutropenia (a low neutrophil count) increases mortality by leaving patients more 

vulnerable to infection (53, 54). It can also compromise and delay treatment of the 

underlying cancer (54). Neutropenia is associated with capecitabine treatment (55-

57).  
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Capecitabine is first metabolised to its active form, fluorouracil. This active form is 

an antimetabolite that slows tumour growth (58).  Fluorouracil is metabolised into 

inactive components by the enzyme dihydropyrimidine dehydrogenase (DPD). This 

enzyme is encoded by DPYD (58, 59). Patients with DPD deficiencies are more 

likely to suffer from ADRs in capecitabine treatment, including neutropenia (59). 

A safety and cost analysis of DPYD genotyping in Dutch patients treated with 

fluoropyrimidine-based chemotherapy calculated the risk of grade >=3 toxicity with 

and without genotyping (60). The risks were calculated using data from a 

prospective cohort study combined with historical controls located in the literature. 

The majority of participants received capecitabine (90%), the remainder received 

fluorouracil.  

Participants (n=2038) were prospectively genotyped for the DPYD*2A risk allele. 

Wild-type (WT) patients received standard dosing, and patients with the risk allele 

received reduced doses of capecitabine (Table 6.6). Of the patients that received 

therapy (n=1631), 134 experienced a grade >=3 neutropenia. This (0.082) is the risk 

of neutropenia with genotyping.  

For the risk without genotyping, data from this paper was also used. Of the total 

population, 98.8% were WT and 1.2% had DPYD*2A polymorphisms. In total, 

23.12% of the WT population experienced a toxicity of grade >=3. In the DPYD*2A 

population, 72.9% experienced this. 

From another piece of supplementary data to this paper, neutropenia was found to 

represent 35.1% of all toxicities grade 3 and above in WT patients. In the DPYD*2A 

population, this proportion was 60%. Combining all this information allows the 

calculation of the probability of grade >=3 neutropenia: 

(0.988 ∗ 0.2312 ∗ 0.351) + (0.012 ∗ 0.729 ∗ 0.600) = 0.0854 

 

Deenen et al 2016 (60)  

Outcome n Risk of outcome 95% CI 

Neutropenia/ Total in a 

genotype-guided approach 
1631 134/1631 = 0.0822 0.070 – 0.096 

Table 6.6 – Previous studies of DPYD and neutropenia in patients receiving capecitabine.  
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6.3.1.1.3 Carbamazepine – HLA-A*31:01 – SJS/TEN 

 

Data from Plumpton, et al 2015 (61) was used to obtain an estimate for the utility of 

testing for HLA-A*31:01 in carbamazepine patients. This was an economic analysis 

using a decision analytic model to estimate the cost-effectiveness of screening for 

HLA-A*31:01 in epilepsy patients. The estimates were produced by incorporating 

data from an RCT of treatments for epilepsy (the SANAD trial) (62) and a genome-

wide association study in Northern Europeans (63). This data was used as it was a 

robust analysis that incorporated many of the data sources that would have been 

used in this analysis, in the manner of the other drug-gene-ADR sets listed here. 

The risk of SJS/TEN without HLA-A*31:01 screening was 1.18 per 10,000 patients. 

With screening, this was 0.87 per 10,000. 

Data from a cohort study in Japan that examined the utility of HLA-A*31:01 testing 

to prevent cutaneous ADRs was also evaluated for inclusion (64). This study in a 

Japanese population is less relevant to my DCE population than the Plumpton, et al. 

paper, that used Northern European data. Therefore, only included the estimates 

from the Plumpton paper were used as the risk estimate (Table 6.7).  

 

Plumpton et al 2015 (61) 

Outcome n Risk of outcome 95% CI 

SJS/TEN in epilepsy 

patients, without genetic 

testing 

n/a 0.000118 - 

SJS/TEN in epilepsy 

patients, with genetic 

testing 

n/a 0.000087 -  

Table 6.7 – Results of a previous study of HLA-A*31:01 and SJS/TEN in patients receiving 

carbamazepine. 

 

6.3.1.1.4 Warfarin – CYP2C9/VKORC1 – bleeding ADRs 
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The anticoagulant warfarin is associated with bleeding events which may require 

blood transfusions (65) and is the cause of around 10% of hospital admissions 

related to ADRs (8). Bleeding events are a result of incorrect dosing, causing under-

coagulation. Dosing is traditionally done using clinical algorithms, but algorithms 

based on pharmacogenetics are becoming more widely used (66-68). The genes 

CYP2C9 and VKORC1 are associated with warfarin response and are used in 

genetic dosing algorithms (68-70).  

Two previous RCTs were located that compared genotype-guided and clinical 

dosing of warfarin (68, 71). However, neither of these trials were powered to detect 

bleeding events. An older RCT with a similar design had the same problems (72). 

Estimates were therefore based on the 2017 GIFT RCT of genotype guided 

(CYP2C9, CYP4F2, VKORC1) vs clinically guided warfarin dosing (73). The primary 

endpoint of GIFT was a composite outcome that combined bleeding, clinical, and 

laboratory outcomes. Each outcome was also evaluated individually as secondary 

outcomes (Table 6.8). 

GIFT randomised 1650 patients planned to undergo hip or knee arthroplasty 

(replacement), who required treatment with warfarin. Patients were 90% white with 

a mean age of 72. There were 87 patients in the genotype-guided and 116 in the 

clinically-guided group that experienced at least 1 composite end-point (p = 0.02).  

 

Gage et al 2017 (73) 

GIFT trial 

Outcome N Risk of outcome 95% CI 

Composite primary end 

point/ total 
1597 203/1597 = 0.127 0.112 - 0.144  

Composite primary end 

point/ genotyped group 
808 87/808 = 0.108 0.088 – 0.131  

Composite primary end 

point/ clinical-guided 

group 

789 116/789 = 0.147 0.124 – 0.173 

Major bleeding/  

total 
1597 10/1597 = 0.006 0.003 – 0.011 

Major bleeding/ 

genotyped group 
808 2/808 = 0.0020 0.0007 – 0.0090 
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Major bleeding/ 

clinically-guided group 
789 8/789 = 0.010 0.005 – 0.020 

Table 6.8 – Previous study of genetics-guided and clinically-guided warfarin treatment and the rates of 

a composite primary endpoint (including major bleeding), and major bleeding alone.  

For the final risk estimates, I relied upon the major bleeding outcome of the GIFT 

trial. This is a simpler outcome than the primary composite outcome and was 

chosen for use here as it would be simpler to explain to DCE participants in the 

scenario. The risk of major bleeding in patients with risk alleles was 0.010 (95% CI 

0.005 – 0.020), and the risk in patients without risk alleles was 0.0020 (95% CI 

0.0007 – 0.0090). 

The risk with genotyping was 0.0020 (0.0007 – 0.0090). The risk without genotyping 

(in the clinically guided group) was 0.010 (0.005 – 0.020).  

 

6.3.1.1.5 Efavirenz – CYP2B6 – DILI 

 

Drug-induced liver injury (DILI) is a syndrome that causes hepatic necrosis, 

jaundice, and abdominal pain (74). It is the most common cause of acute liver 

failure in the United States (74, 75). DILI is a diagnosis based on exclusion of other 

causes of liver injury (76). DILI has an annual incidence of 14-19 per 100,000 

persons, and is a leading cause of attrition in drug development (77). There are no 

specific diagnostic markers for DILI, but patterns of elevated liver enzymes that 

resolve when the drug is stopped or the dose is lowered. DILI is associated with the 

HIV drug efavirenz, particularly in patients with the CYP2B6*6/*6 allele (78). 

PubMed was searched for studies that recruited efavirenz patients and evaluated 

them for DILI. The search terms were: ("drug induced liver injury"[All Fields]) AND 

("efavirenz"[All Fields]). No RCTs were located that randomised patients between 

genotyping and non-genotyping for efavirenz treatment. There were also no meta-

analyses located. Three studies were used to calculate the risk estimate (Table 6.9). 

A prospective cohort study in Ethiopia recruited anti-retroviral naïve HIV-positive 

participants to evaluate predictors of drug-induced liver injury (DILI) (79). DILI was 

defined according to criteria of the Council for International Organizations of 

Medicine Science (CIOMS) criteria (80). Participants received anti-retroviral 

therapies based on efavirenz (stavudine/lamivudine/efavirenz, or 

zidovudine/lamivudine/efavirenz, or tenofovir/lamivudine/efavirenz). Participants 
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with high liver enzymes before starting the study were excluded from analysis. Of 

the 261 remaining patients, 41 (15.7%) developed DILI after efavirenz-based 

treatment. DILI was associated with the different CYP2B6*6/*6 alleles.  

A further study in Ethiopia recruited 4 groups of patients into a cohort study, one of 

these being patients with HIV receiving efavirenz-based regimens alone (81). In this 

group, 24 out of 273 patients experienced DILI. This study did not genotype 

participants.  

A cohort study in Tanzania by Mugusi, et al. included and genotyped 253 patients 

with HIV only and 220 HIV/TB patients (82). The first group received efavirenz-

based regimen, the second also received rifampicin-based therapy. In total, 37 

patients suffered DILI. In the HIV-only group, 15 patients developed DILI. 

Genotyping data was only provided with these groups combined.  

Yimer et al 2012 (79) 

Outcome n Risk of outcome 95% CI 

DILI/ Total 261 41/261 = 0.157 0.118 – 0.206 

DILI/ CYP2B6*1*1 (WT) 111 12/111 = 0.108 0.063 – 0.180 

DILI/ CYP2B6*1/*6  114 20/114 = 0.175 0.117 – 0.256 

DILI/ CYP2B6*6/*6 (high 

risk) 
20 5/20 = 0.250 0.112 – 0.469 

Mugusi et al 2012 (82)    

DILI/ Total HIV-only 

patients 
253 15/253 = 0.059 0.036 – 0.096 

DILI/ Total HIV and TB 

patients 
473 37/473 = 0.078 0.057 – 0.106 

DILI/ CYP2B6*1/*1 (WT), 

HIV and TB patients 
147 6/147 = 0.041 0.019 – 0.086 

DILI/ CYP2B6*1/*6, HIV 

and TB patients 
148 16/148 = 0.108 0.068 – 0.168 

DILI/ CYP2B6*6/*6 (high 

risk), HIV and TB patients 
54 6/54 = 0.111 0.052 – 0.222 

Yimer et al 2014 (81) 

DILI/ Total 273 24/273 = 0.088 0.060 – 0.127 



272 
 

Table 6.9 - Previous studies of CYP2B6 and DILI in patients receiving efavirenz. DILI = drug induced 

liver injury. 

Using these data in a proportion meta-analysis, the risk of DILI with genetic testing 

is 0.07 (0.03 – 0.13). The risk without testing is 0.10 (0.07 – 0.15) (Figure 6.9).  

All three of these studies were conducted in African countries, potentially making 

the data less applicable to my DCE population. However, the frequency of the high 

risk CYP2B6*6/*6  allele is comparable across European and African populations 

(3.4% and 5.8% respectively) (83). Similar risk profiles can therefore be assumed in 

this case. 

 

 

Figure 6.9 - Efavirenz meta-analysis A) risk of DILI without genetic testing, B) with genetic testing. DILI 

= drug-induced liver injury. 

6.3.1.1.6 Irinotecan – UGT1A1 – neutropenia 

 

Irinotecan, used for the treatment of colorectal cancer (84), is associated with the 

development of neutropenia (85, 86). UGT1A1 variants (particularly 

UGT1A1*28*28) are associated with increased risks of neutropenia (86). This is 

also dependent on dosage. A 2007 meta-analysis of irinotecan haematologic toxicity 
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(grade III and IV by Common Terminology Criteria [CTC]) found that the risk of 

toxicity increased with increasing irinotecan dose in patients with the 

UGT1A1*28/*28 genotype, but not with the UGT1A1*1/*1 genotype (87). 

For neutropenia in irinotecan treatment, two meta-analyses were located (Table 

6.10). Also located was a Cochrane review that compared the efficacy and safety of 

irinotecan monotherapy and irinotecan in combination with other drugs (85). From 

this, data on neutropenia in irinotecan monotherapy was extracted. Doses used in 

the irinotecan-only arms of the trials varied from 125 mg/m2 to 350 mg/m2. The 

effect of dose was not considered in the meta-analysis. Grade 3/4 neutropenia (by 

CTC guidelines) affected 129 out of 672 patients in the irinotecan-only arm. This 

meta-analysis did not consider the genotypes of the participants.  

One further meta-analysis of irinotecan and neutropenia was located. This meta-

analysis included trials investigating the link between UGT1A1 variants and 

toxicities (88). The genetic analysis included 2334 patients across 30 studies. All 

trial types were included in this analysis. Neutropenia was defined as grade >=3 

using varying validated criteria. Doses of irinotecan varied from 50-375 mg/m2. The 

numbers of participants used in these meta-analyses were extracted.  

Wulaningsih et al 2016 (85) 

Cochrane review (systematic review and meta-analysis) 

Outcome n Risk of outcome 95% CI 

Neutropenia/ Total (5 

RCTs) 
672 129/672 = 0.192 0.164 – 0.223 

Yang et al 2018 (88) (systematic review and meta-analysis) 

Neutropenia /Total 4075 737/4075 = 0.181 0.169 – 0.193 

Neutropenia/ UGT1A1*1/*1 

(WT) 
2334 382/2334 = 0.164 0.149 – 0.179 

Neutropenia/ 

UGT1A1/*28/*28 (risk 

variant) 

275 82/275 = 0.298 0.247 – 0.355 

Neutropenia/ UGT1A1*6 

AA genotype (variant) 
144 48/144 = 0.333 0.262 – 0.414 

Neutropenia/ UGT1A1*6 

GG genotype (variant) 
1322 225/1322 = 0.170 0.151 – 0.191 

Table 6.10 – Previous meta-analyses of UGT1A1 and neutropenia in patients receiving irinotecan. 

RCTs = randomised controlled trials. 
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To calculate the risk of neutropenia without genetic testing, these studies were 

combined in a random effects meta-analysis (Figure 6.10). The risk of grade >=3 

neutropenia without testing is 0.182 (0.172 – 0.194). The risk with genetic testing 

was taken as the risk in WT participants in the Yang, et al. study (88). The risk with 

testing is 0.164 (0.149 – 0.179). 

 

Figure 6.10 - risk of grade 3 or above neutropenia in patients receiving irinotecan, without genetic 

testing.  

 

6.3.1.1.7 Phenytoin – HLA-A*24:02 – SJS/TEN 

 

Phenytoin is mainly used in the treatment of seizures (89-91). Treatment is 

associated with  SJS/TEN (91), and there is some evidence that patients with HLA-

A*24:02 variants are at increased risk of this ADR (92). 

Searching Medline and Google Scholar, I did not locate any RCT or meta-analysis 

data on the link between HLA-A*24:02 and phenytoin-induced SJS/TEN. Results 

were instead combined from three case population studies in Spain (93), South 

Korea (94), and Germany (95), that examined SJS/TEN cases in patients newly 

prescribed phenytoin (Table 6.11). None of these papers genotyped participants. 

 

Rodríguez-Martín et al 2019 (93) 

Outcome n Risk of outcome 95% CI 

SJS/ New users of 

phenytoin 
10162 7/10162 = 0.0007 0.0003 – 0.0010 

Chung et al 2020 (94) 



275 
 

SJS/ New users of 

phenytoin 
50978 51/50978 = 0.0010 0.0008 – 0.0013 

Mockenhaupt et al 2005 (95) 

SJS/ New users of 

phenytoin 
36171 30/36171 = 0.0008 0.0006 – 0.0011 

Table 6.11 – Details of SJS/TEN in previous trials of patients receiving phenytoin.  

The combined risk of SJS/TEN associated with phenytoin use (the risk in patients 

without genetic testing) was 0.0009 (95% CI 0.0007 – 0.0011) (Figure 6.11).  

 

Figure 6.11 - Proportion meta-analysis of phenytoin and SJS/TEN 

Only one paper was located that explored the risk of SJS/TEN in phenytoin users 

with respect to HLA-A*24:02 (92). This was a case-control study that enrolled 91 

SJS/TEN patients (13 induced by phenytoin) and 322 drug-tolerant controls (40 to 

phenytoin). Out of the phenytoin-induced SJS/TEN cases evaluated for HLA-

A*24:02, 6 were positive (46.2%), compared to 5/40 (12.5%) in the drug-tolerant 

control group (OR 6.0, 95% CI 1.42 – 25.27, p = 0.027).  

To produce an estimate of the risk of SJS/TEN when genetic testing is used, this 

information was combined with details of the risk of HLA-A*24:02 in the population. 

This risk is assumed to be the same as the risk of ADR in non-carriers of HLA-

A*24:02, since this population would still receive phenytoin after a genetic test.  

Where;  

𝑎 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝐻𝐿𝐴𝐴2402 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 

𝑏 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑛𝑜𝑛 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 

The OR from the case-control study was 6.0 (92), which can be used as a risk 

estimate since the outcome is rare (96). Then: 
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 𝑎/𝑏 = 6 

The frequency of HLA-A*24:02 was calculated from datasets held in the 

allelefrequencies.net database (97). Two English datasets gave the frequency as 

13.8% and 12.3%. The median of these (13.05%) was used as the frequency of 

HLA-A*24:02. The frequency of non-carriers is therefore 86.95%. 

Therefore; 

(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 ∗ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑟𝑖𝑠𝑘 𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠)

+ (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑛𝑜𝑛𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 ∗ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑛𝑜𝑛 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠)

= 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 

(0.1305 ∗ 𝑎) + (0.8695 ∗ 𝑏) = 0.0009 

Solving these equations (using 𝑎/𝑏 = 6) gives the probability of ADR in non-carriers 

as 0.000545 (95% CI 0.000168 – 0.001043). This is the risk of SJS/TEN with 

genetic testing.   Confidence intervals were obtained by performing the same 

analysis with the highest and lowest values given for the risk in users of phenytoin 

and the relative risk in HLA-A*24:02 carriers. 

6.3.1.1.8 Atorvastatin – SLCO1B1 – Muscle ADRs 

 

Statins are associated with several muscular ADRs, including pain, aching, 

stiffness, and more serious ones such as weakness, myopathy, and rhabdomyolysis 

(98, 99). Statin-induced rhabdomyolysis led to the withdrawal of cerivastatin in 2001 

(100). Reporting of muscle symptoms is highly heterogeneous (98, 99, 101). 

SLCO1B1 encodes the OATP1B1 protein, responsible for statin transport into 

hepatocytes (102). While the mechanism of statin-induced myopathy is not clear, 

the presence of SLCO1B1 variants increases the risk of these ADRs (103). 

Genotyping before prescribing statins is not widely practiced (104, 105).  

Clinically diagnosed myopathy (biochemical abnormality like rhabdomyolysis or 

necrotising myositis) was chosen as the atorvastatin ADR. While patient-reported 

myalgia is a more common ADR, a large proportion of myalgia in statin patients is 

not due to the statin (106-108). One 2017 meta-analysis found no difference in rates 

of muscle symptoms between patients on statins and those on placebo (OR 1.2, 

95% CI 0.88 – 1.62, p = 0.25) (108).  
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After exploring the literature, very little data for atorvastatin alone was located. The 

studies that were located were heterogeneous in their results (109-112). For this 

reason, it was decided to base the estimate upon a large systematic review and 

meta-analysis that included 94,283 patients across a mostly Caucasian population 

(113). This study found 1938 cases of myopathy over 120,094 person-years in 

patients receiving placebos. The rate of myopathy (individual trials’ own definitions 

were used) was therefore 0.016 (95% CI 0.015 – 0.017) over one year. However, 

since a pharmacogenetic test would be used to inform the first prescription of a 

statin, then an approximation of the probability of myopathy in one month (assuming 

constant risk) would be: 

𝑃_𝑚𝑦𝑜𝑝𝑎𝑡ℎ𝑦 = 1 − exp 〖− 0.16 /12〗 = 0.00134 

The authors calculated a relative risk of myopathy in statin users of 1.08 (95% CI 

1.01 – 1.15) compared to placebo. The risk in statin users, over one month, is 

therefore 0.00134*1.08 = 0.00145. This is the risk of ADR without genetic testing. 

The 95% confidence intervals were calculated using the confidence intervals for 

each estimate, producing a final estimate of the risk of ADR without genetic testing 

of 0.00145 (0.00126 – 0.00163).  

For the risk of ADR with genetic testing, data from a 2019 UK meta-analysis was 

used, which found a non-significant increase in the risk of severe myopathy with 

atorvastatin in patients with a SLCO1B1 risk allele (rs4149056, T521C) compared to 

those with SCLO1B1 WT (OR 1.49, 95% CI 0.79 – 2.84, p = 0.2133) (103).  

The same methods as for phenytoin were used to calculate the probability of ADR 

with genetic testing (the risk of ADR in non-carriers). This risk is assumed to be the 

same as the risk of ADR in non-carriers of SLCO1B1, since this population would 

still receive atorvastatin after a genetic test. 

Where;  

𝑎 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑆𝐿𝐶𝑂1𝐵1 𝑟𝑖𝑠𝑘 𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 

𝑏 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑛𝑜𝑛 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 

The risk ratio from the previous systematic review and meta-analysis was 1.08 (1.01 

– 1.15) (113). Then: 

𝑎/𝑏 = 1.08 
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The frequency of SLCO1B1 was calculated from data contained within the ALFA 

Allele Frequency project (114). The frequency of the SLCO1B1 rs4149056 risk 

variant in a European population was estimated as 0.1586 (the frequency of non-

carriers is therefore 0.8414). No confidence intervals were provided. This data is 

based on data from 251,826 genomes (115). 

The increased risk of myopathy with the SLCO1B1 risk allele was found to be 1.49 

(0.79 – 2.84) in a UK meta-analysis (103). 

Therefore; 

(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 ∗ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑆𝐿𝐶𝑂1𝐵1 𝑟𝑖𝑠𝑘 𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠)

+ (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑛𝑜𝑛𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 ∗ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑛𝑜𝑛 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠)

= 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝐷𝑅 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 

(0.1586 ∗ 𝑎) + (0.8414 ∗ 𝑏) = 0.00145 

 

Solving these equations gives probability of ADR in non-carriers (therefore the 

probability of myopathy in statin users, with genetic testing) as 0.001301 (95% CI 

0.000956 – 0.001637). Confidence intervals for these numbers were obtained by 

performing the same analysis with the highest and lowest values given for the risk in 

users of statins and the relative risk in SLCO1B1 risk allele carriers.  

This is arguably the drug-gene-ADR combination with the least evidence for its use. 

The link between SCLO1B1 and statin-induced myopathy is not consistent (98, 111, 

113, 116-121). These estimates also differ from those produced by a European 

Atherosclerosis Society Consensus Panel, which noted a probability of statin-

associated myopathy in statin users of 1 per 1000 to 1 per 10,000 people (98). 

 

6.3.1.1.9 Summary of risk estimates 

 

Through various methods, estimates of the risk of each ADR associated with each 

drug were obtained, with and without the implementation of genetic testing. The 

estimates for the ‘high evidence’ combinations are likely to be more accurate since 

they rely on more and higher quality evidence than the estimates in the ‘low 

evidence’ combinations.  
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Frequencies were also compared to those stated in the summary product 

characteristics (SPc) for each drug, where available. These use common 

terminology to describe the frequency of events; common (> 1/100 to < 1/10); 

uncommon (> 1/1,000 to < 1/100); rare (> 1/10,000 to < 1/1,000); very rare (< 

1/10,000) (122). These were used to describe the frequencies calculated (Table 

6.12).  
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Combination 

Risk with 

testing (95% 

CI) 

Risk without 

testing (95% 

CI) 

SPc 

prevalence 

Lay 

frequency 

of my 

estimate 

Source(s) 

High evidence   

Abacavir - HLA-

B*57:01 - AHS 

0.034 (0.023 

– 0.048) 

0.078 (0.062 

– 0.098) 
Not stated Common  

RCT of 

genotyping vs not 

genotyping (52) 

Capecitabine – 

DPYD - 

neutropenia  

0.082 (0.070 

– 0.096) 
0.0854  

Common  

(1-10%) 
Common 

Prospective 

study with 

genotyping (60) 

Carbamazepine – 

HLA-A*31:01 – 

SJS/TEN 

0.000087 
0.000118 

1 in 11,800 

Uncommon 

(0.1 – 1%) 

Very rare – 

with test  

Rare - 

without test 

Economic 

analysis (61) 

Warfarin – 

CYP2C9/VKORC1 

– bleeding 

0.0020 

(0.0007 – 

0.0090) 

0.010 (0.005 

– 0.020) 
Not stated Uncommon 

GIFT RCT of 

genotyping vs not 

genotyping (73) 

Low evidence  

Efavirenz – 

CYP2B6 – DILI  

0.07 (0.03 – 

0.13) 

0.10 (0.07 – 

0.15) 

Not DILI 

specific 

Common – 

with test 

Very 

common – 

with test 

Meta-analysis (3 

x cohort studies) 

(79, 81, 82) 

Irinotecan – 

UGT1A1 - 

neutropenia  

0.164 (0.149 

– 0.179) 

0.182 (0.172 

– 0.194) 

Very 

common 

(>10%) 

Very 

common 

Meta-analysis (2 

x MA) and data 

from 1 of these 

on genotype (85, 

88) 

Phenytoin – HLA-

A*24:02 – 

SJS/TEN 

0.0005 

(0.0002 – 

0.0010  

0.0009 

(0.0007 – 

0.0011) 

Not stated Rare 

Meta-analysis (3 

x population 

studies) (94, 95, 

123) plus 

calculations 
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These estimates were used to produce a range of levels for the risk of each ADR 

with and without genetic testing. I wanted to use the same levels across the same 

indications, i.e., both HIV indications would have the same levels. The calculated 

risk estimates provide a suitable range for levels across indications. For example, 

abacavir and efavirenz risk estimates range from 0.023 – 0.15 (including confidence 

intervals), so levels of 0.03, 0.05, and 0.15 were chosen. Using the risk estimates 

above, three levels for each drug-gene-ADR combination were produced (Table 

6.13).  

 

Drug – gene – ADR  
Levels– risk of ADR from this drug 

Level 2 Level 1 Level 0 

High evidence  

Abacavir - HLA-

B*57:01 – AHS 
0.03 (3 in 100) 0.05 (5 in 100) 0.15 (15 in 100) 

Capecitabine – DPYD - 

neutropenia  
0.02 (2 in 100) 0.1 (10 in 100) 0.2 (20 in 100) 

Carbamazepine – HLA-

A*31:01 – SJS/TEN 

Very rare (less 

than 1 in 10,000) 

Rare (less than 1 

in 1000) 

Uncommon (less 

than 1 in 100) 

Warfarin – 

CYP2C9/VKORC1 – 

bleeding 

0.001 (1 in 1000) 

Rare (less than 1 

in 1,000) 

0.005 (5 in 1000) 

Uncommon (less 

than 1 in 100) 

0.01 (10 in 1000) 

Common (less 

than 1 in 10) 

Low evidence  

Efavirenz – CYP2B6 – 

DILI  
0.03 (3 in 100) 0.05 (5 in 100) 0.15 (15 in 100) 

Irinotecan – UGT1A1 - 

neutropenia  
0.02 (2 in 100) 0.1 (10 in 100) 0.2 (20 in 100) 

Atorvastatin – 

SLCO1B1 – 

muscle ADRs 

0.001301 

(0.000956 – 

0.001637) 

0.001439 

(0.001262 – 

0.001628) 

Rare (0.001 

– 0.1%) 
Uncommon 

2 meta-analyses 

(103, 113) plus 

calculations 

 Table 6.12 - Summary of risk estimates of each ADR for each drug, with and without genetic testing. 

This is compared to the stated prevalence of each ADR in the SPc for each drug. The lay frequency of 

my estimate is stated. ADR = adverse drug reaction. AHS = abacavir hypersensitivity syndrome. DILI = 

drug induced liver injury. MA = meta-analysis. RCT = randomised controlled trial. SJS/TEN = Stevens 

Johnson syndrome/toxic epidermal necrolysis. SPc = summary of product characteristics. 
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Phenytoin – HLA-

A*24:02 – SJS/TEN 

Very rare (less 

than 1 in 10,000) 

Rare (less than 1 

in 1000) 

Uncommon (less 

than 1 in 100) 

Atorvastatin – 

SLCO1B1 – muscle 

ADRs 

0.001 (1 in 1000) 

Rare (less than 1 

in 1,000) 

0.005 (5 in 1000) 

Uncommon (less 

than 1 in 100) 

0.01 (10 in 1000) 

Common (less 

than 1 in 10) 

Table 6.13 – Levels produced from risk estimates of the risk of each ADR with and without genetic 

testing, for each drug-gene-ADR combination. ADR = adverse drug reaction. AHS = abacavir 

hypersensitivity reaction. DILI = drug induced liver injury. SJS/TEN = Stevens Johnson syndrome/toxic 

epidermal necrolysis.  

6.3.1.2 Other attributes 

Other attributes and their levels were drawn from the qualitative work and the 

literature. 

6.3.1.2.1 Use of your data for further research by universities and researchers 

The focus group and survey findings indicated the importance of privacy to 

participants. In the focus group especially, privacy was the primary concern 

regarding genetic testing. This concern has also been found by other researchers 

(10, 11). 

For this reason, an attribute and levels were designed that would capture privacy 

and include it in the DCE. A three-tier situation was proposed, where participants 

could choose to link their genetic data to their medical records, where they could 

have their genetic data used anonymously, or decline to have their data used (apart 

from as the results of their genetic test for ADR prediction). Anonymisation was the 

most common requirement of respondents in a recent survey of health data sharing 

(124). In this scenario, this data would only be used by universities and researchers. 

This more fully captures the balance between altruism and privacy reflected in the 

focus group discussions. In the ‘no test’ option, there is no use of data for further 

research.  

Attribute  

Levels 

Level 2 Level 1 Level 0 

Use of your data for 

further research by 

universities and 

researchers 

Yes, and they can 

contact me (linked 

to medical record) 

Yes, but no 

contact 

(anonymous) 

No 
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6.3.1.2.2 Number of medicines the test can be used to inform 

 

This attribute was chosen to reflect the possibility of genetic panel testing in the 

future. Pilot testing revealed that this was very important to participants. Levels were 

chosen based on consultation with experts about potential future panels [personal 

communication, Dyfrig Hughes]. In the ‘no test’ option, the test cannot inform any 

medicines.  

Attribute  
Levels 

Level 2 Level 1 Level 0 

Number of medicines 

the test can be used to 

inform 

50 25 1 

 

6.3.1.2.3 Cost of the test to the NHS 

 

Although cost was not rated as hugely important by participants in the qualitative 

work, it was decided to include it as an attribute to allow the future calculation of 

willingness to pay and the estimation of trade-offs for the other attributes (19, 22). 

This attribute was framed as ‘the cost to the NHS’, since this is the model UK 

participants would be familiar with. The levels for this attribute were based on the 

prices given by Illumina for a global screening array kit (as of December 2020) (44). 

Attribute  

Levels 

Level 2 Level 1 Level 0 

Cost of the test to the 

NHS 
50 30 10 

 

6.3.1.2.4 Risk of serious side-effect from any medicine over the next 10 years, 

excluding this medicine 

 

This attribute also reflects the utility of genetic panel testing vs single gene testing. 

The levels were chosen according to a 2019 paper that calculated the number of 

drugs with pharmacogenetic guidelines a UK primary care patient might expect to 
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be prescribed (125). They predicted a median of 2 pharmacogenetic drugs per 

patient over a 10-year period. After consulting expert opinion based on this paper, 

the average risk of avoidable ADRs across all pharmacogenetic drugs was 

assumed to be 0.05 (1 in 20). The top of the interquartile range for the number of 

drugs a patient might be prescribed was 3. This would give a risk of an ADR of 1 in 

6. A final value of 1 in 5 (0.2) as a level as this is easier to visualise. For the final 

level for this attribute, 1 in 50 (0.02) was chosen.  

Attribute  
Levels 

Level 2 Level 1 Level 0 

Risk of serious side-

effect from any 

medicine over the next 

10 years, excluding 

this medicine 

1 in 5 (0.2) 1 in 20 (0.05) 1 in 50 (0.02) 

 

 

6.3.1.3 Final attributes and levels 

The final DCE attributes and levels are shown in Table 6.14. The levels for the 

‘chance of serious side-effect from this medicine’ attribute for each drug-gene-ADR 

combination were previously shown in Table 6.13. 

Attribute Levels Notes 

Chance of serious side-

effect from this medicine 

 Vary by drug-gene-ADR 

combination. See above for 

calculations 

 

 

Cost of the test to the NHS 

£10  The Illumina prices for a chip 

with 650,000 markers on it 

(44). They work out as £40 a 

sample. No test is £0.  

£30 

£50 

Use of your data for further 

research by universities and 

researchers 

Yes, and they can contact 

me (linked to medical 

record) 

Privacy attribute important to 

focus group. No test would 

correspond to ‘no’.  Yes, but no contact 

(anonymous) 
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No 

Number of medicines the 

test can be used to inform 

1 (corresponds to single 

gene test) These won’t be marked as 

single gene or panel test. 

These will be categorical. No 

test is 0. 

25 (corresponds to smaller 

panel test) 

50 (corresponds to panel 

test) 

Risk of serious side-effect 

from any medicine over the 

next 10 years excluding this 

drug 

1 in 5 

 Displayed as  

’20 in 100’ 

‘5 in 100’ 

‘2 in 100’ 

1 in 20 

 

1 in 50 

 

Table 6.14 - Final attributes and levels in the DCE. 

From the qualitative work, the following order of preferences was hypothesised for 

each attribute: 

• Chance of serious side-effect from this medicine: lowest chance > highest 

chance 

• Cost of test to the NHS: £10 > £30 > £50 

• Use of your data for further research by universities and researchers:  

yes, but no contact > no > yes, and they can contact me (linked to medical 

record) 

• Number of medicines the test can be used to inform: 50 > 25 > 1 

• Risk of serious side-effect from any medicine over the next 10 years 

excluding this drug: 1 in 50 > 1 in 20 > 1 in 5 

 

6.3.2 Sample size 

Sample size calculation in discrete choice experiments is made difficult when the 

strength and direction of preferences are not known (126, 127). The ‘rule of thumb’ 

by Johnson and Orme states that the sample size (N) should be: 

𝑁 >  
500𝑐

𝑡 ∗ 𝑎
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Where 𝑐 is the largest number of levels for any of the attributes, 𝑡 is the number of 

choice tasks, and 𝑎 is the number of alternatives (excluding the no choice option) 

(126, 127). Using this equation, the proposed DCE design leads to a minimum of 50 

participants per DCE: 

  

𝑁 >  
500 ∗ 3

15 ∗ 2
 

𝑁 >  50 

However, one source recommends a sample size of 200 participants per group, to 

be able to compare across groups. These decisions also have to be weighted 

against costs and participant time (126). These equations also assume a large or 

infinite potential population (i.e., the ‘product’ is not a niche that only a small 

population would make choices about) (126). I chose to include 2000 participants, 

randomly allocated between all 8 surveys. This will give a sufficient sample size to 

compare across groups and exceeds the ‘rule of thumb’ minimum. 

There is a fine balance required between obtaining maximum possible data, and 

overworking respondents. Participants are known to be more likely to make choices 

at random as the cognitive burden (which may include length of survey) increases 

(20, 128). One source recommends using the formula: 

3(𝐾 − 𝑘 + 1) 

where 𝐾 is the total number of levels across all attributes and 𝑘 is the number of 

attributes (126). Using this formula, the minimum number of questions should be 33 

per participant: 

3(15 − 5 + 1) = 33  

This is where one needs to mindful of participant burden, and the increased cost of 

reimbursing participants for their time. I therefore chose to design the survey with 15 

questions per participant. This strikes an appropriate balance between data 

collection and cognitive burden for participants. Pilot testing of one DCE located in 

the Chapter 5 systematic review found that participants could complete up to 15 

choice tasks “easily” (129). 

 



287 
 

6.3.3 Final DCE design 

Based on the qualitative work, pictograms were chosen to represent risk. This was 

the option most often chosen by focus group participants, and was also popular in 

the survey of patients.  

I chose to include a ‘no test’ option since this most accurately reflects the clinical 

reality of genetic testing. This is important for the accuracy of conclusions drawn 

from DCE data (130, 131). A genetic test is unlikely to be mandatory, even when 

screening is strongly recommended.  

The final DCE design was generated using Ngene software (132). Three levels in 

five attributes would produce a total of 35 (243) total scenarios. This was reduced to 

a fractional factorial design using a D-efficient multinomial logit (MNL) design. An 

MNL model assumes that the unobserved component (preferences) is uncorrelated 

across choices and individuals (133). The design was developed with constraints on 

which levels could appear together. For example, the cost of the test to the NHS 

could not be £10 where the test could be used to inform 50 medicines.  

Full surveys as shown to participants are located in Appendix 6.3. 

 

6.4 Discussion 

I have completed a comprehensive program of quantitative and qualitative work in 

the development of this DCE. By surveying several different groups (healthcare 

professionals, patients, and the general public), I have gained valuable perspectives 

into problems encountered in the area of genetic testing. This qualitative work 

informed attribute and level selection, and I can be confident that these, as far as 

possible, represent the issues involved in choosing genetic testing. The robust 

methods used to calculate risk estimates are useful on their own, but also ensure 

that each DCE is realistic and relevant in its field.  

An ‘opt out’ option has been included since this most accurately reflects the clinical 

reality of genetic testing. In a German study of patient and physician opinions of 

pharmacogenetic testing for asthma, 95.9% of patients would accept testing (134). 

A similarly high percentage of patients (94.4%) thought it valuable to know their own 

genetic disposition. Patients were hopeful that pharmacogenetics could aid in 

finding the correct drug, dosage, and minimise side effects. I hypothesise that 

similar rates of uptake will be found in the results of this DCE.  
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I knew that I wished to focus on level of evidence in this DCE, but I was unsure if 

patients would use this as a factor in decision making. Qualitative work found that 

the level of evidence for a genetic test was one of the most important attributes to 

patients and healthcare professionals. It was less important to focus group 

participants, but running further focus groups with more discussion focussed on this 

would have potentially yielded more useful insights.  

By making level of evidence an intrinsic part of the survey, with randomisation, 

having to explain the difference between ‘high’ and ‘low’ evidence to participants is 

avoided. This will decrease the cognitive burden to each participant. Instead, by 

randomising patients between DCEs, responses between ‘high’ and ‘low’ evidence 

scenarios in the same therapeutic area can be compared. Participants will receive 

slightly different scenarios depending on which evidence level they are randomised 

to. In a ‘high’ evidence scenario, they will be told that the genetic test is 

recommended by regulatory authorities. In the ‘low’ evidence scenario, they will be 

told that the test is not currently widely recommended for use. It will be interesting to 

see how participants value tests with varying levels of evidence. I hypothesise that 

participants will be willing to accept higher costs if a test has high levels of evidence.  

6.4.1 Limitations 

Although my qualitative work included different populations and methods, it suffered 

from small sample sizes. This was limited by resources, and later, the COVID-19 

pandemic. Although I believe that the existing qualitative work is sufficient for this 

current DCE, larger sample sizes and more extensive testing would have further 

improved the DCE design.  

The limited time available in a PhD project did not allow me to perform full 

systematic reviews and meta-analyses of the evidence behind each gene-drug-ADR 

combination. There will therefore be some error in these estimates. I believe the 

mini-reviews conducted were sufficient for my purposes, but if this project is to be 

replicated, full reviews could be conducted to further refine the estimate. Further, 

although I tried to only include data from UK or European populations (since the 

final survey will mostly be in this group), this was not always possible. Some 

estimates may therefore be less relevant. This will also be a limitation of the final 

analysis of utility.   

If a patient undergoes a pharmacogenetic test that results in a recommendation for 

them to be prescribed an alternative drug, clinicians may also have to consider that 

the alternative drug has its own associated ADRs. This concept was not specifically 
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addressed in the DCE design, to avoid further participant burden. This scenario may 

be useful for further research and could inform policy around incidental findings in 

genetic testing.  

Including the ‘cost to the NHS’ attribute limits the generalisability of the DCE. It may 

be difficult to apply the results in places with different models of healthcare. 

However, the relevance of the results in the UK is enhanced, with the potential for 

large impacts on genetic testing policy within the NHS. It also allows for possible 

future calculation of WTP, which is an important outcome for policy makers (21, 23). 

Finally, only a section of the survey was pilot tested, rather than the full survey. 

Although the final survey was broadly easy to complete, this may have been 

improved through the use of pilot testing and informational interviews.  

6.5 Conclusion 

DCEs are a powerful method for quantifying preferences. However, they are 

complex to design and implement, and require extensive qualitative work to ensure 

their relevance. I have conducted several different types of qualitative work, 

including a systematic review (Chapter 5), in order to inform the DCE. The final 

design was informed by this work, and offers a highly relevant and effective way to 

measure the preferences of the general public for genetic testing in the prevention 

of ADRs. The implementation and results of the DCE are presented in Chapter 7.  
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Chapter 7: DCE results 

7.1 Introduction 

With tens of thousands of hospital admissions every year, adverse drug reactions 

(ADRs) are a major cause of mortality and morbidity (1, 2). One method that may 

help prevent some of these is the use of pharmacogenetics. Genetic testing can 

predict an individual’s risk of an ADR in response to certain medicines. If the 

predicted risk is high, an alternative drug or reduced dose can be prescribed. This 

has been used successfully in the case of abacavir and associated abacavir 

hypersensitivity syndrome (see Chapter 1) (3-5) and capecitabine, DPYD, and 

toxicity (6, 7). The use of pharmacogenetics is increasing and is likely to become 

even more widespread in the near future (8). 

However, patient acceptance is important for the wider implementation of 

pharmacogenetics, and this may be assessed by their preferences for medicines 

and testing services (9, 10). However, measuring these preferences can be difficult, 

particularly in complex situations like those involved in pharmacogenetics, which 

involve choices/decisions concerning the medicine, the disease being managed, the 

sharing of genetic information and the risk of ADR. Incorporating the views of 

patients is becoming increasingly important to regulators and funders, and is an 

invaluable tool to policy makers and healthcare professionals (9, 11, 12). It can 

potentially lead to improved uptake and adherence to treatment among patients (13, 

14). Another element to consider is the level of evidence that matters to patients 

and the general public. There is little research in this area. Level of evidence is a 

complex concept to convey to a lay audience, but knowledge of preferences is 

important for those deciding whether to implement a genetic test (9, 12).  

Genetic testing is moving into an era of panel testing (15, 16). Genetic panel tests, 

including 25+ genes, have been proposed for use in pharmacogenetics (15-23). 

These may be preferred to single gene tests, as the results can be stored and used 

to inform the prescribing of future medications the patient may require. They often 

do not cost significantly more than single gene tests and can even be more cost-

effective per gene tested (15). However, panel tests are normally more complex, 

requiring validation of each included variant (22), and raise questions about data 

security and storage (15, 24, 25). Another issue is the level of evidence. Before a 

variant can be included in a panel test, or its results shared with prescribers for 
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clinical decision making, there should be sufficient evidence behind it for its clinical 

utility and validity (26). The forms that this evidence should take is debated (see 

Chapter 2 for a wider exploration of this issue).  

The discrete choice experiment (DCE) is a method well-suited for measuring stated 

preferences in complex scenarios (27-32). It has been widely utilised in 

pharmacogenetic scenarios (Chapter 5) and healthcare more generally (12, 33-37). 

A DCE allows the measurement of stated preferences for the utility of a good or 

service (28, 38). They are based on Lancaster’s Theory of Economic Value, which 

states how goods and services can be described by their attributes and the overall 

utility of the good or service as a function of its attributes (38). I have chosen this 

method to evaluate the preferences of the general public for genetic testing. A 

complex parameter, level of evidence, was incorporated into the experiment as an 

independent variable by randomising participants between two DCEs in the same 

disease area. One DCE was presented in the context of a ‘high evidence’ scenario, 

e.g. a well established gene-drug-ADR connection, highly rated on the 

Pharmacogenomics Knowledgebase (PharmGKB), and the other in the context of a 

‘low evidence’ scenario, e.g. a newer or less studied gene-drug-ADR connection, 

lower rated on PharmGKB (see Chapter 6 for further discussion). I am not aware of 

any other DCE that evaluates participant preferences including level of evidence as 

a comparator.  

This work has been informed by a systematic review of previous DCEs in ADRs 

(Chapter 5), and extensive qualitative research (Chapter 6). This chapter focusses 

on the analysis and implications of the DCE results (Figure 7.1). 
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Figure 7.1 - DCE stages as defined by Street, et al. 2008 (39), with reference to the chapters of this 

thesis that correspond to each stage. Created using BioRender.com. 

 The aims of this experiment were to: 

• Conduct a DCE in the general public 

• Compare the general public’s preferences for pharmacogenetic testing in 

high and low evidence scenarios 

• Examine preferences for other aspects of genetic testing, including privacy 

and cost 

7.2 Methods 

7.2.1 Participants and administration 

The survey was distributed to an age (18 and over) and gender representative 

sample of the UK population. This was completed through a market research 

company (Bilendi, London, UK (40)). Participants were compensated by Bilendi for 

their time. Safeguarding information (including researchers’ contact details, and 
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contact information for mental health and disease-related charities) was provided at 

the start and end of each survey. Full details are shown in Appendix 6.3.  

In order to measure participant preferences for level of evidence, participants were 

randomised between two different DCE scenarios – one with a ‘high’ level of 

evidence, and one with a ‘low’ level of evidence. This was repeated across 4 

different clinical indications (HIV, cancer, epilepsy, and cardiovascular disease), for 

a total of 8 DCEs (Figure 7.2). The effect of the level of evidence supporting a 

genetic test may then be implied, based on the differences between utility for each 

scenario. 

 

Figure 7.2 - Structure of the 8 DCE experiment, comparing participant preferences for genetic testing 

across high and low evidence. Participants enter the survey and are randomised to one of eight 

surveys, each of which contains a different scenario relating to genetic testing and adverse drug 

reactions. R = randomisation 

Surveys were uploaded to the Jisc survey platform (London, UK) (41). 

Randomisation was set up by University of Liverpool Computing Services Desk. 

Participants were randomised upon indicating their consent to participate in the 

study (from https://ctrc.liv.ac.uk/indevelopment/dce).  

Ethical approval for this study was granted by the University of Liverpool Health and 

Life Sciences Research Ethics Committee (Human participants, tissues and 

databases), reference number 4736.   

https://ctrc.liv.ac.uk/indevelopment/dce
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7.2.2 Attribute and level selection 

The development of attributes and levels was informed by a systematic review 

(Chapter 5) and a set of qualitative work that included surveys of experts and 

patients, focus groups with the general public, and pilot testing (Chapter 6). 

The final list of attributes and levels is shown in Table 7.1. 

Attribute Levels 

Risk of ADR from this medicine * 

Level 0 

Level 1 

Level 2 

Use of your data for further research 

No 

Yes, but no contact (anonymous) 

Yes, and they can contact me (linked 

to medical record) 

Number of medicines the test can be 

used to inform 

1 (corresponds to single gene test) 

25 (corresponds to smaller panel 

test) 

50 (corresponds to larger panel test) 

Cost of the test to the NHS (£) 

10 

30 

50 

Risk of serious ADR from any 

medicine over the next 10 years, 

excluding this medicine 

1 in 5 (0.2) 

1 in 20 (0.05) 

1 in 50 (0.02) 

Table 7.1 - attributes and levels of the discrete choice experiment. *The levels for this attribute differ 

across each of the eight DCEs. ADR = adverse drug reaction.  

 

7.2.3 Experimental design 

The DCE used a fractional factorial design, maximising D-efficiency with a 

multinomial logit (MNL) design. The design was generated in Ngene software (42)  

Full details of the DCE design are provided in Chapter 6.  

All 8 DCEs had the same structure, and only differed on the introductory scenario 

shown to participants. Once randomised to a DCE, participants were given an 

introduction into genetic testing to prevent a specific gene-drug-ADR in that disease 

area. The level of evidence for genetic testing was highlighted (Figure 7.3A). 
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Participants were then given explanations of each attribute with accompanying 

pictograms (Figure 7.3B). 
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Figure 7.3 – Screenshots showing a portion of the DCE as participants saw it. A) First page of the 

abacavir DCE showing the disease scenario (HIV), drug (abacavir), and the adverse drug reaction 

(hypersensitivity). This is an example of a genetic test with ‘high’ levels of evidence, and this is 

represented to participants as ‘testing for this gene is now advised before prescribing abacavir in 

several countries.’ Genetic tests with ‘low’ levels of evidence were represented to participants as ‘there 

isn’t enough evidence to recommend testing anyone who needs to take [drug]’ . B) Second page of the 
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abacavir DCE showing the start of the explanation of each attribute of the DCE, and how risks are 

represented in pictogram form.  

Following these explanations, participants began the choice sets section, consisting 

of 15 forced choice questions. In the choice sets, participants were asked to choose 

between two different genetic tests, shown as ‘Test A’ or ‘Test B’.  

Participants could also choose a ‘no test’ option, indicating that they would not 

choose either of the tests. This option was provided to more accurately reflect 

current clinical practice of genetic testing (true for all gene-drug-ADR combinations 

except abacavir) (43). ‘No test’ was associated with the highest risk of ADR, both 

from the current medicine and in the future. Levels for these were not shown to 

participants in the DCE, but discussed as part of the scenario shown to participants 

(see Appendix 6.3). The levels shown were used in the analysis of each DCE. It 

was assumed that the level for ‘Risk of ADR from this medicine’ would be the 

highest risk level of each ADR without genetic testing, as identified in Chapter 6. 

The level chosen for ‘Risk of serious ADR from any medicine over the next 10 

years, excluding this medicine’ was specified as the highest level for that attribute 

(0.2), It was assumed that those who choose not to be tested may be more likely to 

suffer a future ADR than those who do get tested. Patients who do have a test will 

have pharmacogenetic data in their medical record, and this may be used in future 

prescriptions. Those without this data will be prescribed without this data in their 

record, so may be more likely to suffer an ADR. 

Tests were not labelled to participants as genetic panel tests or single gene tests. 

These were modelled from the data in the later analyses.  

Participants completed 15 choice tasks each. This number was chosen based on 

striking a balance between data collection and appropriate participant burden (31, 

44, 45).  

At the end of the survey, participants were asked to complete details of their age 

group and gender. They were also asked if they had previously had a genetic test, 

and if they had previously suffered from the disease in their scenario. Finally, 

participants were asked to rate the difficulty of completing the questionnaire, on a 

scale of 1 (not difficult at all) to 10 (almost impossible). All these questions were 

optional. Participants were also given the option to provide any additional feedback 

in a free text question at the end of the survey.  
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7.2.4 Analysis 

7.2.4.1 Data coding 

Data was downloaded from the Jisc platform and a data matrix was prepared for 

each DCE using Microsoft Excel. This contains every piece of data and is coded as 

per Table 7.2. The matrix contains multiple observations for each individual, as each 

respondent answers more than one discrete choice question. It also contains 

multiple observations for each choice set, since the choice sets presented to 

individuals contain 3 alternatives (Test A, Test B, no test) (32). 

 

Attribute (name 

in code) 
Levels 

Levels design 

code 

Expected 

direction of 

effect 

Coding 

Risk of ADR 

from this 

medicine 

(adr_today) 

15 in 100 (0.15) Level 0 Least preferred 

Effects coding 
5 in 100 (0.05) Level 1 Mid preferred + 

3 in 100 (0.03) Level 2 
Most preferred 

++ 

Use of your 

data for further 

research 

(privacy) 

No Level 0 Mid preferred + 

Effects coding 

Yes, no contact 

(anonymous) 
Level 1 

Most preferred 

++ 

Yes, can 

contact (linked) 
Level 2 Least preferred 

Number of 

medicines the 

test can be 

used to inform 

(medsno) 

1 1 Least preferred 

Continuous 

25 25 Mid preferred + 

50 50 
Most preferred 

++ 

Cost of the test 

to the NHS 

(cost) 

£10 10 
Most preferred 

++ 
Continuous 

£30 30 Mid preferred + 

£50 50 Least preferred 

Risk of serious 

ADR in the next 

10 years 

(future_adr) 

20 in 100 (0.2) Level 0 Least preferred 

Effects coding 
5 in 100 (0.05) Level 1 Mid preferred + 

2 in 100 (0.02) Level 2 
Most preferred 

++ 
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Table 7.2 - data matrix coding DCEs. Levels for adr_today for abacavir are used here as an example.  

Risk (both today and future) and privacy variables were coded using effects coding. 

Effects coding takes -1, 0, or 1 and effects are uncorrelated with the intercept (46). 

The reference level is -1 and was assigned to the highest risk categories. Level 1 

risks were assigned to 0 and Level 2 (lowest risks) were assigned to 1. Privacy was 

coded similarly, with no further use your data assigned as the reference (-1) level 

and anonymous contact assigned to 0, and data linked to your medical record 

assigned to 1.  

The remaining variables (medsno and cost) were coded as continuous in all DCEs.  

Random effects logistic regression was used to estimate the parameters of the 

utility model given by: 

𝑉 =  𝛽𝐴𝑆𝐶 + 𝛽𝑎𝑑𝑟𝑡𝑜𝑑𝑎𝑦1
+  𝛽𝑝𝑟𝑖𝑣𝑎𝑐𝑦 +  𝛽𝑚𝑒𝑑𝑠𝑛𝑜 + 𝛽𝑐𝑜𝑠𝑡 +  𝛽𝑓𝑢𝑡𝑢𝑟𝑒_𝑎𝑑𝑟 + 𝛽𝑐𝑜𝑛𝑠𝑡 +  𝜀𝑖 

Where 𝑉 is the utility derived from a given choice, 𝜀 refers to the error term, and all 

other variables are defined as attributes (𝛽s are coefficients) (31, 32, 39, 47). 𝛽𝐴𝑆𝐶 is 

an alternative specific constant (ASC) that captures differences in the mean of the 

distribution of the unobserved effects between the ‘no test’ and the other 

alternatives (48). ach parameter estimates the marginal utility of a change in that 

outcome, e.g., the utility of an increase of 1 in the number of medicines the test can 

be used to inform (49). 

The regression was conducted in Stata version 14 (StataCorp, College Station TX, 

USA) (50). Bootstrapping was used to calculate confidence intervals, with 1000 

replications. Under effects coding, the value of the omitted variable was given by 

(46, 49, 51): 

𝛽0 =  −1 ∗ (𝛽1 +  𝛽2) 

where 𝛽0 is the coefficient of the omitted variable, and 𝛽1 and 𝛽2 are the coefficients 

of the included variables.  

7.2.4.2 Demographics and written responses 

Details of participant ages and genders were collected and summarising plots and 

tables were produced in RStudio (52). The same methods were used to plot 

whether participants had previously suffered from the illness described in the 

survey, and if they had ever had a genetic test before.  
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Written responses, an optional free text question at the end of the survey, were 

collected and checked for identifying information. Any entry containing identifying 

information was removed before further analysis. No formal qualitative analysis was 

undertaken, but responses were read and some themes are summarised below.  

7.2.4.3 Stata coding 

Random effects logit (command xtlogit) was used in this analysis (53). This allows 

for multiple observations per participant and per choice set. A bootstrapped sample 

was computed in order to be able to calculate confidence intervals for utility 

estimates.  

The code used in Stata 14 for the analysis can be found in the Appendix 7.1. 

7.2.4.4 Calculation of a preference-weighted utility model 

The utility of each test type was calculated by weighting the 1000 bootstrapped 

results of the regression against base case assumptions of outcomes with panel 

testing, single gene testing, and not testing. The base case is the likely ‘real-world’ 

testing scenario, to which changes can be made to estimate their impact (32). Base 

cases for each gene-drug-ADR combination were constructed using estimates from 

the systematic review (Chapter 5) and from the literature (Table 7.3). 

 

DCE name Attribute Base case value  Rationale 

P
a

n
e

l 
te

s
t 
a

n
d

 s
in

g
le

 g
e

n
e
 t

e
s
t 

Abacavir adr_today   

 

 

 

 

 

 

 

Level 2 (smallest 

risk) 

Lowest level for each 

DCE type. See Chapter 6 

for further details of this 

calculation. 

Efavirenz adr_today 

Capecitabine adr_today 

Irinotecan adr_today 

Carbamazepine adr_today 

Phenytoin adr_today 

Warfarin adr_today 

Atorvastatin adr_today 

P
a

n
e

l 
te

s
t 

All DCEs privacy 
Anonymous data 

sharing (Level 1) 

Current practice and likely 

future practice of data 

sharing in the NHS (54-

56) 
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medsno 25 

The NHSEI and 

Genomics England 

Pharmacogenomics 

Working Group completed 

an evidence review 

(literature up to 2019) and 

defined an initial priority 

shortlist of 29 drug-gene 

pairs with potential clinical 

utility for 

pharmacogenomic testing 

(17) 

cost 50 (Level 2) 

D Hughes (personal 

communication)  

Based on prices given by 

Illumina for a global 

screening array kit (as of 

December 2020) (57). 

future_adr  (Level 0) 

Consulting expert opinion, 

based on Kimpton, et al. 

(2019) (18) and D Hughes 

(personal communication) 

(17). 

S
in

g
le

 g
e

n
e
 t

e
s
t 

All DCEs 

privacy 
Anonymous data 

sharing (Level 1) 

Current practice and likely 

future practice of data 

sharing in the NHS (54-

56) 

medsno 1 
Definition of single gene 

test 

cost 30 (Level 1) 

D Hughes (personal 

communication) 

Based on prices given by 

Illumina for a global 

screening array kit (as of 

December 2020) (57). 
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future_adr  (Level 1) 

Consulting expert opinion, 

based on Kimpton, et al. 

(2019) (18) and D Hughes 

(personal communication) 

(17). 

N
o

 t
e

s
t 

All DCEs 

adr_today 

Highest level in 

each DCE (Level 

2) 

 

privacy 
No data sharing 

(Level 0) 
Nothing to share 

medsno 0 
Cannot inform any 

medicines 

cost 0 No test costs nothing 

future_adr  (Level 2) Based on highest level 

Table 7.3 - Base case assumptions for each type of test modelled in the analysis – a panel test of 

multiple genes, a single gene test, and no test. Base case values for risk represent the highest level of 

available risks for each DCE type. 

Evidence indicates that full understanding of very rare risks by the general public is 

limited (58-61). For these reasons, risks of very rare ADRs (in carbamazepine, 

phenytoin, warfarin, and atorvastatin DCEs) were presented in categories 

(Uncommon, Rare, etc). It was assumed that more common ADR risks (in abacavir, 

efavirenz, capecitabine, and irinotecan DCEs) would be more easily comprehended 

by participants.  

In the analysis, treating more common ADRs as continuous variables led to non-

linearities on the ADR attributes. This meant that it was most appropriate the model 

all risks using effects coding. Consequently, the utility model used the category that 

most closely matched the actual risk for each gene-drug-ADR scenario.  

The total utility for each test type was given by: 

∑( 𝛽𝑎𝑑𝑟𝑡𝑜𝑑𝑎𝑦
∗ 𝑒𝑣𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑎𝑑𝑟𝑡𝑜𝑑𝑎𝑦) + (𝛽𝑝𝑟𝑖𝑣𝑎𝑐𝑦 ∗ 𝑒𝑣𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑝𝑟𝑖𝑣𝑎𝑐𝑦) + (𝛽𝑚𝑒𝑑𝑠𝑛𝑜

∗  𝑒𝑣𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑚𝑒𝑑𝑠𝑛𝑜) + (𝛽𝑐𝑜𝑠𝑡 ∗ 𝑒𝑣𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑐𝑜𝑠𝑡) + (𝛽𝑎𝑑𝑟𝑓𝑢𝑡𝑢𝑟𝑒

∗  𝑒𝑣𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑎𝑑𝑟𝑓𝑢𝑡𝑢𝑟𝑒) +  𝛽𝑐𝑜𝑛𝑠𝑡 +  𝛽𝐴𝑆𝐶 +  𝜀𝑖 

This was repeated across all eight DCEs, using the full range of bootstrapped 

values obtained from Stata. This allowed for the calculation of 95% confidence 
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intervals. This analysis was completed in RStudio (1.4.1106, RStudio Team, Boston 

MA) (52).  

Base case numbers were multiplied by β coefficients generated in Stata. 

Due to heterogeneity in experiment design, the significance of the difference 

between DCEs was compared narratively.  

7.2.4.5 Other statistics 

The rate of participants choosing ‘no test’ was calculated by dividing the total 

number of ‘no test’ responses by the total number of individual responses for that 

survey. The rate of skipping choice sets in one DCE (atorvastatin) was calculated in 

the same way. 

7.3 Results 

7.3.1 Demographics 

A total of 2,019 responses were collected, evenly distributed across the 8 DCEs 

(Table 7.4). There were similar numbers of male and female participants, and a 

small number of other genders (49.7% female, 48.7% male, 0.4% another gender). 

Older age groups were more highly represented in the sample, with the largest 

sample coming from the over 65s (24.8%). This is comparable to the UK general 

population (62). 

Participants were asked to rate the difficulty of the DCE on a scale of 1 (not difficult 

at all) to 10 (almost impossible). Most participants rated the difficulty as 1, with a 

mean difficulty rating of 3.5. 
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Participants were also asked if they had previously had a genetic test, or if they had 

previously suffered from the illness described in their survey. Only a small number 

had previously had a genetic test (6.4%) (Table 7.5A), and even fewer had 

previously suffered from the illness (overall 3.6%) (Table 7.5B). This was highest for 

the cardiovascular DCEs, warfarin and atorvastatin (5.3% and 6.9%).  

Table 7.4 - demographics of DCE sample including gender, age, and difficulty rating for each of the 8 DCEs. 
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Table 7.5 – A) Participant answers to ‘Have you ever had a genetic test before?’, categorised by DCE 

type. B) Participant answers to ‘Have you had the illness mentioned in this survey before?’, 

categorised by DCE type.  

To calculate the rate at which participants chose each option, the total number of 

each response type was summed and divided by the total number of individual 

responses. Rates of choosing Test A and Test B were similar across DCE types. 
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The rates of choosing ‘no test’ were lowest for irinotecan (0.097) and highest in the 

phenytoin survey (0.174) (Table 7.6).  

 

DCE type Test A Test B No test rate 

Abacavir 0.405 0.454 0.141 

Capecitabine 0.424 0.428 0.147 

Carbamazepine 0.416 0.447 0.14 

Warfarin 0.411 0.444 0.15 

Efavirenz 0.434 0.453 0.124 

Irinotecan 0.452 0.451 0.097 

Phenytoin 0.406 0.419 0.175 

Atorvastatin* 0.388 0.455 0.154 

Table 7.6 - rates of each response for each DCE. *Some questions int he atorvastatin DCE were not 

made mandatory due to researcher error. 

7.3.2 Written responses 

Many participants chose to provide feedback in an optional question at the end of 

the survey.  

The issue of cost was the deciding factor for some participants: 

Truth is, NHS needs to save money... And life threatening side effects on a 

(eventually) terminal illness is not such a concern in my mind... 

I felt it was of more value to test for multiple drugs rather than just one, whatever the 

cost. However the cost needs to be considered whenever possible. 

My main concern was the cost to the NHS. 

Many also commented on privacy issues, with some strong feelings on data sharing 

and data privacy: 

I am used to volunteering for this type of testing, I have MS [multiple sclerosis] so 

am well aware of how volunteering for this and offering results to studies help, if 

people don’t take part then researchers don’t make leaps forward in treatments and 

new medicines. 

I mostly choose the options where  my data would be used for research as this 

might lead to further medicines being developed 
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is result of the genetic test held securely? Can an insurance company, for example, 

get a hold of it? Hackers? Sways my answers. 

 

While many positive comments were received, some participants responses raised 

issues with potential misunderstandings of the DCE: 

i thought i was going to get a genetic test from this. shame. 

i really didn't understand why having a test would have any bearing on the chance 

of potential serious side effects of other medications you might take over the next 10 

years, it wasn't properly explained and needs some work. 

Nobody is likely to take a test that may result in severe burns 

7.3.3 Results by disease area 

Data matrices for each DCE can be found in Appendix 7.2. Full β-coefficients and 

details of utility modelling can be found in Appendix 7.3 and 7.4.  

7.3.3.1 HIV: Abacavir and Efavirenz 

7.3.3.1.1 Preferences 

 

Preferences in both abacavir and efavirenz experiments followed the expected 

direction of effect in terms of risk, with lower risk preferred in terms of both the risk 

of ADR from the current drug, and the future risk of ADR. The expected direction of 

effect was also seen for the number of medicines (positive, greater numbers 

preferred) and the cost of the test (negative, lower prices preferred). Anonymous 

data sharing was the most preferred option regarding privacy of data. Full results 

can be seen in Table 7.7. 
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Table 7.7 – abacavir and efavirenz attribute beta coefficients, 95% confidence intervals (generated by 1000 
bootstrap replications), and p-values. *This variable was omitted from the regression model as per effects coding 
(see Bech and Gyrd-Hansen (2005) (45) for more detail on this) and calculated from the other two values in that 
class. ADR – adverse drug reaction. AHS = abacavir hypersensitivity syndrome. ASC = alternative specific 
constant. DILI = drug induced liver injury. 
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7.3.3.1.2 Utility modelling 

The utility of each test type was compared between high evidence (abacavir) and 

low evidence (efavirenz) indications. The ranges of utilities calculated across panel, 

single gene, and no test scenarios shows considerable overlap, indicating there is 

likely to be no difference in utility between high and low evidence scenarios (Figure 

7.4). 

 

 

 Abacavir Efavirenz 

Panel test 0.684 (0.443 to 1.024) 0.773 (0.538 to 1.035) 

Single gene test 0.008 (-0.213 to 0.244) -0.031 (-0.243 to 0.225) 

No test -1.923 (-2.133 to -1.726) -2.026 (-2.247 to -1.829) 

 

Figure 7.4 - Total utility of panel, single gene, and no test scenarios in high evidence (abacavir) and 

low evidence (efavirenz) DCEs. 
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7.3.3.2 Cancer: Capecitabine and Irinotecan 

7.3.3.2.1 Preferences 

 

Preferences followed the expected direction of effect in terms of risk, with lower risk 

preferred in both the risk of ADR from the current drug, and the future risk of ADRs.  

This was also correct for the number of medicines (greater numbers preferred) and 

the cost of the test (lower prices preferred). Anonymous data sharing was the most 

preferred option regarding privacy of data. Full results can be seen in Table 7.8. 
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Table 7.8 - capecitabine and irinotecan attribute beta coefficients, 95% confidence intervals (generated by 1000 
bootstrap replications), and p-values. *This variable was omitted from the regression model as per effects coding 
(see Bech and Gyrd-Hansen (2005) (45) for more detail on this) and calculated from the other two values in that 
class. ADR = adverse drug reaction. ASC = alternative specific constant. 
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7.3.3.2.2 Utility modelling 

The utility of each test type was compared between high evidence (capecitabine) 

and low evidence (efavirenz) indications. The ranges of utilities calculated across 

panel, single gene, and no test scenarios show some overlap, indicating there is 

likely to be little difference in utility between high and low evidence scenarios Figure 

7.5. 

 

 Capecitabine Irinotecan 

Panel test 0.656 (0.421 to 0.906) 1.002 (0.760 to 1.235) 

Single gene test 0.079 (-0.122 to 0.263) 0.273 (0.033 to 0.476) 

No test -1.879 (-2.082 to -1.722) -2.301 (-2.534 to -2.084) 

 

Figure 7.5 – Total utility of panel, single gene, and no test scenarios in high evidence (capecitabine) 

and low evidence (irinotecan) DCEs. 

 

7.3.3.3 Epilepsy: Carbamazepine and Phenytoin 

7.3.3.3.1 Preferences 

Preferences in carbamazepine and phenytoin DCEs followed the expected direction 

of effect. Lower risk was preferred in both the risk of ADR from the current drug, and 

the risk of future ADRs.  The expected direction of effect was also seen for the 
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number of medicines the test could inform (positive, greater numbers preferred), 

and the cost of the test (negative, lower prices preferred). Anonymous data sharing 

was the most preferred option regarding privacy of data. Full results can be seen in 

Table 7.9. 
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Table 7.9 - carbamazepine and phenytoin attribute beta coefficients, 95% confidence intervals (generated by 1000 
bootstrap replications), and p-values. *This variable was omitted from the regression model as per effects coding 
(see Bech and Gyrd-Hansen (2005) (45) for more detail on this) and calculated from the other two values in that 
class. ADR = adverse drug reaction. ASC = alternative specific constant.  SJS/TEN = Stevens-Johnson 
syndrome/toxic epidermal necrolysis. 



329 
 

7.3.3.3.2 Utility modelling 

The utility of each test type was compared between high evidence (carbamazepine) 

and low evidence (phenytoin) DCEs. The range of utilities calculated across panel 

test, single gene, and no test scenarios shows overlap, indicating there is likely to 

be no difference in utility between high and low evidence scenarios (Figure 7.6). 

There was a small difference in utility of in the no test scenario, although these were 

both still negative.  

 

 

 Carbamazepine Phenytoin 

Panel test 0.229 (-0.041 to 0.503) 0.420 (0.200 to 0.673) 

Single gene test -0.458 (-0.683 to -0.252) -0.386 (-0.615 to -0.182) 

No test -1.991 (-2.206 to -1.789) -1.590 (-1.868 to -1.337) 

 

Figure 7.6 – Total utility of panel, single gene, and no test scenarios in high evidence (carbamazepine) 

and low evidence (phenytoin) DCEs. 
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7.3.3.4 Cardiovascular disease: Warfarin and Atorvastatin 

Due to researcher error some of the choice sets in the atorvastatin DCE were made 

optional and were subsequently not completed by some participants. These 

responses (a total of 14/4140 total responses, 0.34%) were removed before final 

analysis. 

7.3.3.4.1 Preferences 

Coefficients in the warfarin and atorvastatin experiments followed expected direction 

of effect.  Lower risk was preferred in terms of both risk from the current drug, and 

the future risk of ADR. The expected direction of effect was also seen for the 

number of medicines the test could inform (positive, greater numbers preferred) and 

the cost of the test (negative, lower prices preferred). Anonymous data sharing was 

the most preferred option in the warfarin experiment, but full data sharing was the 

most preferred in the atorvastatin experiment. However, these values in the 

atorvastatin experiment were not statistically significant. Full details of results can 

be found in Table 7.10. 
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7.3.3.4.2 Utility modelling 

The utility of each test type was compared between high evidence (warfarin) and 
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Table 7.10 - warfarin and atorvastatin attribute beta coefficients, 95% confidence intervals (generated by 1000 
bootstrap replications), and p-values. *This variable was omitted from the regression model as per effects coding 
(see Bech and Gyrd-Hansen (2005) (45) for more detail on this) and calculated from the other two values in that 

class. ADR = adverse drug reaction. ASC = alternative specific constant. 
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gene, and no test scenarios showed considerable overlap, indicating there is likely 

to be no difference in utility between high and low evidence scenarios (Figure 7.7).  

 

 Warfarin Atorvastatin 

Panel test 0.504 (0.217 to 0.799) 0.187 (-0.062 to 0.461) 

Single gene test -0.269 (-0.473 to -0.028) -0.371 (0.574 to -0.129) 

No test -1.695 (-2.030 to -1.436) -1.551 (-1.798 to -1.309) 

 

Figure 7.7 - Total utility of panel, single gene, and no test scenarios in high evidence (warfarin) and low 

evidence (atorvastatin) DCEs. 

7.4 Discussion 

This final chapter details the successful implementation of 8 DCEs that measured 

preferences for genetic testing in the general public. I tested the general public’s 

preferences for genetic panel tests vs single gene tests vs no test, for a number of 

clinical contexts and tests associated with varying levels of supporting evidence. 

There did not appear to be a difference in utility between ‘high’ and ‘low’ evidence 

scenarios. This difference was not formally assessed but overlapping confidence 

intervals of utility strongly indicate this conclusion.   

Panel tests were the most preferred option across all 8 DCEs, followed by single 

gene tests. The utility for each test type (and no test) was broadly consistent across 



333 
 

all test types, indicating good face validity in the description of the tests. In the 

context of the presented scenarios, single gene tests were associated with negative 

or small positive utility. Not testing was associated with strongly negative utilities in 

all DCEs. Participants preferred any test to no test. 

The results of these DCEs showed clear preferences for reduced risks of ADRs, 

both from the ‘current’ medication discussed in the scenario, and any future ADRs. 

This direction of effect was as expected a priori and provides further evidence that 

participants clearly understood the choice tasks.  

The attributes ‘number of medicines the test can inform’ and ‘cost of test’ had small 

β-coefficients but were associated with p-values <0.05, indicating they did have 

small impact on participant choices. It is important to note that the cost of genetic 

testing continues to fall, and the price of panel testing can be comparable to the cost 

of single gene testing in some cases (15, 21).  

Including a monetary attribute in a DCE allows for the estimation of the willingness 

to pay of the other attributes (32). However, the range of costs for genetic testing 

were not as wide as I initially expected when it was decided to include a cost 

attribute. The estimate of these costs was based on the cost of one sequencing 

technology. Further work should involve work with NHS trusts to determine ‘real 

world’ costs that include equipment, consumables, and staff time on testing and 

interpretation. I did not calculate willingness to pay at this stage of analysis, 

although the data is available to do this for future work. However, the inclusion of 

the cost attribute is still important for policy decisions, providing an indication of the 

importance placed on cost by the general public.  

The privacy attribute provides interesting results. The largest positive β-coefficients 

of each of the privacy options were associated with ‘anonymous data sharing’, in all 

DCEs. This result was hypothesised due to the content of the focus group 

discussions (see Chapter 6). Written responses also show the willingness of 

participants to participate in research. Not sharing data was associated with a 

negative β-coefficient, proving that this is not just willingness, but a clear preference. 

This has important implications for policy making in this area. The scenario shown 

to participants indicated that data sharing would be with ‘universities and other 

researchers.’ It was not specified that data would not be shared with companies in 

the private sector, but participants would likely conclude this from the wording of the 

scenario. The preferences for privacy in this survey would likely differ if private 

companies’ access to health data was discussed (63).  
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Participants were asked to rate the DCE on a scale of 1 to 10 (where 1 is ‘not 

difficult at all’ and 10 is ‘very difficult’). Most participants rated the difficulty as a 1, 

indicating that the participants understood the task well enough to complete their 

preferences accurately. This is supported by many of the written responses, an 

optional extra question collected at the end of the choice tasks.  

Data were coded using effects coding. This was chosen over the alternative 

(dummy coding) as it allows the effect of all levels to be estimated (46). Additionally, 

perceptions of risk are notoriously unreliable, more so when very low risks are 

involved (58-61). Effects coding splits risks so they are relative to each other, 

removing the need for participants to fully appreciate the difference between e.g., 1 

in 1,000 and 1 in 10,000.  

There is little previous research on how patients and the general public regard level 

of evidence. This may be due to the phenomenon of publishing bias – negative 

results are less likely to be published than positive ones. Studies finding no effect of 

level of evidence on patient preferences may have been completed but not 

published. It could also be the case that this research question has not been 

previously investigated.  

 

7.4.1 Limitations 

This is likely to be the first DCE that examines preferences for level of evidence in 

the general public, and as such there are several adaptations to the method that 

could be made for future experiments.  

Participants may have struggled to retain the large amount of information contained 

at the start of the survey. This was indicated in some of the written responses. One 

solution used by another DCE was allowing participants to view descriptions again 

by positioning their cursor over text where required (64). Unfortunately, this was not 

available within the JISC software. This would also allow the further emphasis of the 

level of evidence for each test. 

The use of animations to explain scenarios to patients significantly reduces the 

number of random choices, improving choice consistency (65). This is something 

that was considered, but ultimately decided against due to budgetary constraints. 

With hindsight, and considering the written feedback from participants, this would 

have been a useful addition to the DCE.  
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The age groups represented in the survey appear to be broadly representative of 

the UK population (62), however this was not formally assessed.  

Some technical aspects of DCE design and implementation may have been 

improved upon. For example, levels for each gene-drug combination’s risk of ADRs 

were chosen to include the confidence intervals around these estimates. There is 

therefore some uncertainty in these estimates, and therefore also around the levels 

chosen for the ‘risk of ADR from this medicine’ attribute. However, this uncertainty is 

minimised by the use of effects coding, effectively converting risks into ‘high’, 

‘medium’, and ‘low’ in the utility model.  

In one of the DCEs (atorvastatin), researcher error meant that some choice sets 

were not made compulsory. Only a small number of participants subsequently 

skipped choice sets (0.34% of total answers). This error is therefore unlikely to have 

a large impact on the results of this DCE.  

From the optional written responses section of the DCE, some feedback was 

received that indicated some misunderstanding of the survey. While this was a 

small proportion of the overall sample, there is interesting learning here around how 

complex scenarios can be explained to participants. For example, some participants 

believed that the genetic test itself would cause the stated ADR. One way that other 

DCEs have combatted this is to insert a comprehension question before the start of 

choice tasks, to ensure participants fully understand the scenario given (66-69). 

Analysis can then be undertaken including or excluding participants that fail this 

comprehension question. I decided against including this in order to minimise 

participant burden. I would consider adding one in any future DCEs to guard against 

misunderstandings. The fact that most participants rated the difficulty of the DCE as 

‘not difficult at all’ indicates a reasonable level of understanding, but there is room 

for improvement on this. 

Another way of doing this is to explicitly define a dominant choice and define 

participants’ understanding by whether they chose the option with the highest utility 

(30). In this case, the dominant choice was difficult to define. While it was assumed 

that participants would always choose the lowest risk of ADRs, the direction of effect 

for privacy and cost attributes was less clear a priori. More extensive piloting may 

have resolved this issue and allowed the inclusion of a dominant choice.  
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7.5 Conclusion 

The increasing use of pharmacogenetics to prevent ADRs necessitates policy 

changes that need to be informed by the preferences of the general public. 

Incorporating these preferences is essential, not only morally, but may also increase 

uptake and adherence to treatments (13, 14). 

This successful application of the DCE method shows a general positive response 

from the general public on the topic of genetic testing to prevent ADRs. Panel tests 

were preferred, and utility modelling indicated willingness to share data for research. 

However, the level of evidence for a test did not affect the total utility of testing 

among the general public, a finding that held true across test types and DCE 

scenarios.  
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8: Conclusion 

It has long been known that individual patients can respond very differently to the 

same medications. Standard drug choice and dosing does not work for all patients. 

The rise of personalised medicine has enabled greater precision in choosing drugs 

and doses to maximise drug efficacy and minimise the risk of harmful adverse drug 

reactions (ADRs). A notable success story is the one of HLA-B*57:01, HIV drug 

abacavir, and abacavir hypersensitivity syndrome (AHS). The link between this 

gene, abacavir, and AHS was first reported in 2002 (1), and since then genetic 

testing prior to abacavir prescription has become mandatory in many jurisdictions 

(2-5). This has resulted in the near elimination of AHS where genetic testing is 

available (6), improving HIV treatment for all patients.  

Since one of the earliest drugs specifically designed with a pharmacogenetic 

component (trastuzumab) was released in 1998, there has also been a large 

increase in the number of pharmacogenetic drugs prescribed in the UK (7). Chapter 

1 of this thesis discusses how pharmacogenetics is known to reduce the risk of 

ADRs, improve drug efficacy, and can improve the process of drug development. 

However, several impediments exist to the wider implementation of these 

pharmacogenetic advances.  

Aside from the cost of genetic testing (which does continue to fall), and technical 

issues (such as adapting old systems and health records), the main issue impeding 

the progress of pharmacogenetics is a lack of suitable evidence (8, 9). The 

evidence required for clinical use is often at least one randomised controlled trial 

(RCT). This presents three problems, that will be addressed here.  

Firstly, regulatory agencies’ guidelines for the evidence required for the approval of 

a pharmacogenetic test are complex and often out-dated. Regulation is required in 

order to protect patients and the general public but the rapid speed of development 

in the field of pharmacogenetics makes it difficult to keep regulatory guidelines 

relevant. The US Food and Drug Administration (FDA), the world’s largest drug 

regulatory authority, acknowledged that these new technologies place a ‘strain’ on 

its regulatory process (10).  

The regulatory process includes assessment of analytic validity, clinical utility, and 

clinical validity. Several frameworks have been proposed to assess these 

parameters. Chapter 2 of this thesis discusses some of these frameworks (ACCE 

(11), PhRMA (12), Personalised Precision Medicine Special Interest Group (13)), 
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alongside guidelines issued by the UK Medicines and Healthcare products 

Regulatory Authority (MHRA) and the US FDA. I also contacted the MHRA for 

details of upcoming updates to the guidelines for medical devices and in vitro 

diagnostic medical devices (the category for most pharmacogenetic tests). New trial 

designs and statistical analysis plans are also needed at this new frontier. Previous 

work by this group has begun to address this problem (14). Another issue 

confronted by regulatory authorities is the need for patient and public involvement in 

setting regulatory standards. Not only is this correct from a moral standpoint, 

inclusion can also improve the benefit-risk profile of decision making (15).  

It is clear that there is no overall standard for the evidence required for 

pharmacogenetic testing or implementation. The main conclusion from Chapter 2 is 

that there is a need for a unified set of standards, work that could be led by existing 

evidence collectors such as the Pharmacogenomics Knowledgebase (PharmGKB) 

and the Clinical Pharmacogenetics Implementation Consortium (CPIC) (see below).  

This issue is explored further in Chapter 3. Parts of this chapter were published in a 

2019 paper (16).  The lack of regulatory guidance has led to many different 

interpretations of the level of evidence required before including a pharmacogenetic 

biomarker to guide treatment in an RCT. Five such RCTs were evaluated and I 

explored the types and strength of evidence that each one used to justify the 

inclusion of the tested biomarker within the trial. I also discussed the timing of 

evidence compared to the start of, or publication of, the trial. Although labour 

intensive, this was a useful exercise that demonstrated that there is no standard 

approach to collating such evidence, with many different types included. Although a 

previous RCT is the ‘gold standard’ of evidence, this is not possible in many cases. 

Based on the literature review, three recommendations for future work were made. 

First, as explored in Chapter 2, more guidance from regulatory authorities is 

needed. This would ensure rigorous evidence standards are adhered to both before 

implementing pharmacogenetic testing in a trial, and later in clinical practice. 

Second, future work should consider that pharmacogenetic interventions require 

validation in groups from diverse ancestries. Current research is predominantly in 

white and Western populations (17, 18), making the evidence for some 

pharmacogenetic interventions weaker in those from other populations. Finally, it 

was recommended that a systematic review is undertaken before the start of an 

RCT with a pharmacogenetic component. Although labour intensive, this would 

ensure that all the available evidence relating to a pharmacogenetic intervention has 

been evaluated prior to the trial. This review may even form its own evidence, 
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negating the need for a trial. This concept, of observational evidence providing 

output and precision similar to that of a prospective trial, is discussed further in 

Chapter 4.  

A second issue relating to availability of evidence to support pharmacogenetic 

interventions is that RCTs (the evidence ‘gold standard’) can be difficult to perform 

in very rare or complex conditions (19-22). The chapter is based on three key 

papers (Concato, et al. 2000 (23), Golder, et al. 2011 (24), and Benson & Hartz, 

2000 (25)) that show that effect estimates obtained from observational evidence can 

be similar to, and as precise as, those obtained from prospective studies. The other 

key paper of this chapter is Tonk, et al. (2016) (26), who showed that the sensitivity, 

specificity, positive predictive value and negative predictive value of a genetic test 

can be calculated using observational studies by incorporating the frequency of the 

genetic variant and the prevalence of the event it has been designed to predict (e.g. 

the ADR). These important pieces of evidence for the clinical implementation of a 

pharmacogenetic test were calculated alongside effect estimates in the case of 

HLA-B*15:02 and carbamazepine-induced Stevens-Johnson syndrome/toxic 

epidermal necrolysis (SJS/TEN). Through a systematic review of the literature and 

subsequent meta-analysis (much required in this field, as the last that could be 

located was published in 2014) data was pooled from 437 cases and 1,717 controls. 

Estimates obtained from the meta-analysis were compared to the effect estimates 

and estimates of clinical validity from a prospective trial conducted in 2011 (27). The 

precision of these estimates was much higher in the observational data than the 

prospective data, indicating the potential usefulness of observational data in 

evidence gathering. This analysis was taken further with a novel systematic review 

and meta-analysis of HLA-A*31:01 and carbamazepine-induced SJS/TEN. This 

less-studied risk allele had less literature associated with the association, and no 

prospective study. Therefore, estimates from pooled observational data (196 cases 

and 1,677 controls) were compared to a simulated prospective clinical trial, with 

similar parameters to the pivotal Chen, et al. trial in HLA-B*15:02. Again, I found 

that the precision of the effect estimates and measures of clinical validity were 

greater in the observational dataset. These analyses demonstrate a novel way of 

evidence gathering in cases where prospective trials cannot be performed, and 

suggest that in some cases, they do not need to be performed. Wider use of 

observational data in this manner could greatly impact the regulatory and 

implementation challenges of pharmacogenetics. Both regulatory authorities and 
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clinicians should consider the use of observational data for the approval of 

pharmacogenetic testing.  

The third and final issue related to evidence on pharmacogenetic tests is that the 

level of evidence required for a test to be accepted by the general public is not 

known. As the public are the potential primary users of pharmacogenetic testing, 

this information is essential for policy making. The inclusion of these preferences 

can also potentially increase acceptance and test uptake when they are used in 

clinic (15). I chose to illustrate this with examples of pharmacogenetic tests used to 

prevent ADRs. 

This issue was explored using the discrete choice experiment (DCE) method. To 

gain an overview of the field, I first conducted a systematic review of existing DCEs 

in pharmacogenetics. The scope of the review was narrowed to only include DCEs 

with an ADR component, to make the review more relevant to my aims. This 

systematic review was also useful for learning more about the DCE method, one 

primarily used in health economics contexts (28, 29). Chapter 5 presents an 

overview of 13 DCEs located in a systematic search of the literature. After 

summarising the findings, I began examining the design, methods, and results of 

each DCE and extracted useful lessons from each. The qualitative methods of each 

DCE, details of their administration, and how they presented information to 

participants, were particularly useful.  

Details of the qualitative work performed by other DCEs influenced Chapter 6, which 

summarises the qualitative work that underpins my own DCE. An extensive program 

of qualitative work was undertaken that included surveys, focus groups, and pilot 

testing. For example, the most common qualitative work used by DCEs of the 

systematic review was gathering expert opinion. I therefore began my own 

qualitative work with a survey of healthcare professionals and academics (n=17). 

Some valuable insights were gained from those on this side of pharmacogenetic 

testing. Written feedback from participants also provided good starting points for 

further qualitative work, beginning with a survey delivered to patients. Although this 

was a small patient group (n=20), it provided a valuable perspective for the 

development of a DCE that would be accessible and relevant to the general public 

and policy makers. The final DCE conducted was in the general public, but I felt it 

important to also gain the perspective of people with more extensive public 

experience of the healthcare system.  
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From this, I conducted focus groups with my target population, the general public, to 

gauge their current understanding of pharmacogenetic research and their views on 

potential future testing. Although cut short due to the start of the COVID-19 

pandemic, these produced many insights not previously considered, e.g., altruistic 

motivations for sharing healthcare data for research. These groups also highly 

valued data privacy and anonymisation, aspects that were taken forward into the 

final DCE. 

A small pilot study in the general public (n=16) confirmed that participants both 

understood the attributes of the DCE and were willing to trade on them. This also 

provided informal feedback that some potential participants may find the subject 

matter (e.g., imagine you have been diagnosed with a disease) upsetting. From this, 

I ensured to warn participants of this wording in a landing page before they 

consented to participate, and provided information and links to helpful resources.  

The end of Chapter 6 shows how this qualitative work was combined to produce a 

DCE design that indirectly tests how the level of evidence for a pharmacogenetic 

intervention to prevent ADRs affects participant preferences and test utility. Eight 

different drug-gene-ADR combinations were chosen across four indications (HIV, 

cancer, epilepsy, and cardiovascular disease) and a DCE was created incorporating 

each. Combinations with ‘high’ and ‘low’ levels of evidence for their clinical utility 

were paired within each indication. The risk of each ADR was then calculated with 

and without genetic testing, in order to choose levels for this attribute that would 

accurately reflect real world scenarios. An online system was then used to 

randomise participants to one of the 8 DCEs. I also included the choice of genetic 

panel tests, single gene tests, and compared them to not testing, as this is a 

currently highly relevant policy issue. Genetic testing is currently moving into an era 

of panel testing, since in many cases panel tests do not cost significantly more than 

single gene tests while providing more information (30, 31). 

The DCE was launched in May 2021, and Chapter 7 presents the results of these 

experiments. A UK-representative sample of 2,019 participants was recruited. Most 

(87.6%) had never had a genetic test before. The coefficients calculated in a 

random effects model showed the expected direction of effect for all attributes 

across all eight DCEs. Utility was calculated using a preference-weight utility model 

for each DCE pair. Comparing the utility of testing in scenarios with ‘high’ and ‘low’ 

evidence of clinical utility showed considerable overlap, indicating there was likely to 

be no difference in utility between them. Not testing was always associated with 
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negative utility, showing that the general public views genetic testing to prevent 

ADRs favourably. As suggested by the qualitative work, participants’ most preferred 

option for data sharing and privacy was for their data to be shared anonymously for 

research. This was preferred over full data sharing, and also over not sharing any 

data. This is a highly positive finding for policy makers and researchers in the future. 

This DCE did not find any difference in the utility at differing levels of evidence. This 

may indicate that the level of evidence is not as significant to the general public’s 

views of genetic testing as issues of privacy and ADR risk reductions. However, this 

result needs to be confirmed by directly asking participants about level of evidence 

(see below). 

This thesis has explored the issue of evidence gathering in pharmacogenetics from 

three angles – from the perspective of regulatory bodies, the use of observational 

data as evidence, and from the perspective of the general public. I have identified 

issues within the field and recommended improvements and solutions for the future.  

This work provides guidance to policy makers and other stakeholders that will be 

valuable as the use of pharmacogenetics continues to grow. 

8.1 Future directions 

While the field of pharmacogenetics continues to grow rapidly, implementation of 

new technologies at the clinical level has been slow. As one the main reasons for 

this is a lack of suitable evidence (8, 9), several important pieces of future research 

detailed below have the potential to improve the level of implementation of 

pharmacogenetics at the patient level. 

Chapters 2 and 3 detail how a lack of regulatory guidance on evidence has led to a 

patchwork of recommendations, guidelines, and frameworks on the issue, along 

with varied justifications for biomarker use by trials. A thorough systematic review of 

regulatory agencies’ policies on pharmacogenetics would provide a valuable 

overview, allowing researchers to see what is missing in evidentiary standards. This 

research should include the input of regulatory specialists and that of policy makers. 

A qualitative component of this review, interviewing these stakeholders for their 

views on evidence, would be a useful exercise that could identify further relevant 

issues. The work in this thesis focussed on the systems of the UK and USA, but 

with sufficient funding, this research could also include the regulatory bodies of 

many more jurisdictions.  
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In addition to this, the work of PharmGKB and CPIC should be continued to further 

refine and consolidate existing evidence on pharmacogenetic biomarkers. These 

bodies are similarly well-placed to participate in an evidence-setting process with 

regulatory agencies. A unified set of evidence standards, with input from patients, 

the general public, academics, clinicians, policy makers, payers, and regulatory 

bodies would be a ground-breaking addition to the field of pharmacogenetics. These 

standards would inform the development of new pharmacogenetic drugs and 

accompanying tests. Drug companies would have an idea of the costs and duration 

of pharmacogenetic drug development, and both clinicians and patients could be 

reassured that their products have met minimum evidentiary standards.  

A final piece of work that would validate the findings of the DCE is another DCE 

where the general public are directly asked about their preferences for the level of 

evidence for a pharmacogenetic intervention. The ‘high’ and ‘low’ evidence gene-

drug-ADR combinations were compared indirectly, by randomising patients between 

combinations. Although my findings suggest that there is little difference in utility 

between combinations, this should be confirmed with a follow-up survey with direct 

questioning. Extensive planning and qualitative work are required for this project, to 

ensure the concept of ‘level of evidence’ is adequately explained without too high of 

a participant burden.  

As a final point to this thesis, this section presents details of an ongoing trial that I 

believe will have a large impact on future pharmacogenetic practice. This trial, by 

the European Ubiquitous Pharmacogenomics Consortium (U-PGx) is examining the 

effect of implementing pharmacogenetic testing in 7 countries (32). The trial is 

recruiting patients who receive a prescription for one of 41 drugs, chosen because 

of their inclusion in Dutch Pharmacogenomics Working Group guidelines. The trial 

uses a cross-over design, with countries as the unit of randomisation. Each country 

is randomised to use pharmacogenetic-informed prescribing or standard of care for 

18 months, then crossed-over. The primary outcome is the occurrence of ADRs, 

with quality of life, adherence, and health expenditure among some of the 

secondary outcomes. This trial is part of a wider initiative to better integrate 

pharmacogenetics into clinical use, including improving the use of electronic health 

records, clinical decision support systems, and examining the ethical, legal, and 

societal implications of pharmacogenetics (33). This initiative provides a blueprint 

for a complete approach to improve the implementation of pharmacogenetics, while 

also integrating a massive trial with a novel design.  
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