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Abstract

Complex systems, such as infrastructure networks, industrial plants and jet engines, are of paramount importance to modern societies.
However, these systems are subject to a variety of different threats. Novel research focuses not only on monitoring and improving the
robustness and reliability of systems, but also on their recoverability from adverse events. The concept of resilience encompasses
precisely these aspects. However, efficient resilience analysis for the modern systems of our societies is becoming more and more
challenging. Due to their increasing complexity, system components frequently exhibit significant complexity of their own, requiring
them to be modeled as systems, i.e., subsystems. Therefore, efficient resilience analysis approaches are needed to address this
emerging challenge.

This work presents an efficient resilience decision-making procedure for complex and substructured systems. A novel methodol-
ogy is derived by bringing together two methods from the fields of reliability analysis and modern resilience assessment. A resilience
decision-making framework and the concept of survival signature are extended and merged, providing an efficient approach for
quantifying the resilience of complex, large and substructured systems subject to monetary restrictions. The new approach combines
both of the advantageous characteristics of its two original components: A direct comparison between various resilience-enhancing
options from a multidimensional search space, leading to an optimal trade-off with respect to the system resilience and a significant
reduction of the computational effort due to the separation property of the survival signature, once a subsystem structure has been
computed, any possible characterization of the probabilistic part can be validated with no need to recompute the structure.

The developed methods are applied to the functional model of a multistage high-speed axial compressor and two substructured
systems of increasing complexity, providing accurate results and demonstrating efficiency and general applicability.
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1. Introduction

In today’s highly developed societies, complex systems, such
as infrastructure networks, industrial plants and jet engines are
both ubiquitous and of paramount importance to the functioning
of these modern societies. It is evident that these systems are
exposed to a variety of harmful influences of natural, technical
and anthropogenic origin. At the same time, as Punzo et al.
highlight in [1], “It is an undeniable fact that modern day sys-
tems are more integrated, more interdependent, evolve at faster
pace and, in a word, are more complex than the systems of the
previous century [...]”. Considering this high and increasing
system complexity, it is impractical to detect and prevent all
potential negative impacts. Therefore, it is essential that new
developments in engineering focus not only on monitoring and
improving the robustness and reliability of systems, but also
on their recoverability after adverse events [2]. The concept of
resilience encompasses these aspects: analyzing and optimizing
robustness, reliability and recovery of systems, from a technical
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and economic perspective [3, 4, 5]. Applying resilience to engi-
neered systems leads to a paradigm shift. Secure systems cannot
solely rely on strategies to prevent failures, but must include
strategies for efficient recovery in the event of failure as well,
see, e.g., [6, 7].

In engineering, the concept of resilience has steadily gained
popularity in recent years [8, 9, 1]. The notion of “resilience”
appears in various fields such as ecology, economics, and psy-
chology, as well as in the context of mechanical systems, and is
derived from the Latin word “resilire,” which means “to bounce
back.” The concept of resilience was first introduced by Holling
in the field of ecological systems [10]. Although several other
definitions by various scientists followed, most of them have
certain key aspects in common that were already captured by
Holling’s early definition [11, 12, 13, 14, 15]. In [16], Ayyub
provides a literature review and develops a comprehensive def-
inition of resilience in the context of complex systems based
on the content of the Presidential Policy Directive (PPD) on
critical infrastructure security and resilience [17]. His definition
provides a solid foundation for quantifying resilience.

Numerous options exist for improving the resilience of com-
plex systems. However, resources are not unlimited and re-
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silience cannot be increased at will. Therefore, it is essential
not only to be able to distinguish and weigh between a variety
of different resilience-enhancing measures, but to also consider
their monetary aspects [18, 19]. In [20], Salomon et al. present
a method for identifying the most cost-effective allocation of
resilience-enhancing investments by merging the resilience met-
ric of [21] and an adaptation of the systemic risk measure of [22].
Their approach allows for a direct comparison of the effects of
heterogeneous controls on the resilience of a system over an
arbitrary time period in a two-dimensional parameter space.

Additionally, current research in the context of resilience
focuses on improved resilience quantification measures, as pro-
posed in [23], and overarching frameworks for stakeholder
decision-making, e.g., for transportation networks in the pres-
ence of seismic hazards [24]. For a comprehensive literature
review on resilience assessment frameworks that balance re-
sources and performance, see [25]. Other researchers recently
studied the complexity of realistic infrastructure systems, failure
consequences, recovery sequences, and varying external effects.
In [26], for example, the authors revealed the vast complexity of
modern critical infrastructures and their multi-factorial nature as
cyber-human-physical systems and studied appropriate model-
ing and resilience analysis approaches. Further, the works [27]
and [28] are concerned with the effects on decision-making
when considering stakeholder preferences or enhancement and
recovery strategies. External effects and challenges arising from
climate change were studied in the context of resilience, e.g.,
in [29].

Various technical and infrastructural systems in today’s soci-
ety are large and complex in nature. In particular, when system
components have such complexity that they themselves need to
be modeled as systems, so-called systems of systems [30, 31],
resulting in a significantly high number of components. This is
in accordance to Batty, who highlights “A very simple definition
of a complex system is ‘a system that is composed of complex
systems”’ [32]. As each of the subsystems affects the top-level
system under consideration, this causes a significant increase
in computational effort for system analysis and constitutes a
major challenge [33, 34]. Therefore, it is particularly important
to have tools capable of efficiently assessing all three resilience
phases. Typically the reliability phase involves the most sys-
tem evaluations, in particular when various different system
configurations need to be assessed that have an impact on the
probability structure of the subsystems and thus on the overall
system. Therefore, a particularly efficient analysis approach is
required for this phase.

An efficient approach to modeling the reliability of systems
with multiple component types is provided by the concept of sur-
vival signature, introduced and discussed in [35, 36] by Coolen
and Coolen-Maturi. Its major benefit over conventional ap-
proaches is the separation of the system structure from the prob-
abilistic properties of the system components. Once the system
structure has been analyzed, any possible probabilistic charac-
terization can be tested without having to reevaluate any system
states. Consequently, this approach reduces the computational
cost of repeated model evaluations typically required in design
and maintenance processes [37]. Current research is focused

on multi-state components [37], common cause failures [38],
multiple failure modes and dependent failures [39], approxima-
tion techniques for large systems [40] and reliability analysis in
consideration of imprecision [41].

In this paper, theoretical fundamentals are summarized and
the resilience decision-making method introduced in [20] is
extended to multidimensional parameter spaces. Next, a novel
and encompassing methodology is developed, consisting of its
two major ingredients, the extended resilience decision-making
method and the survival signature. This allows for an efficient
and multidimensional resilience analysis of complex, large and
substructured systems. The extension and novel methodology
are then applied to a functional model of a multistage high-
speed axial compressor, an arbitrary complex system as well
as the U-Bahn and S-Bahn system of Berlin, to prove general
applicability.

2. Resilience Decision-Making

Assessing the resilience of complex systems subject to tech-
nical or monetary constraints requires a sophisticated method-
ology to efficiently derive optimal decisions. In [20], Salomon
et al. propose a versatile approach with three key elements,
including a metric for resilience quantification, an adapted sys-
temic risk measure, and a grid search algorithm that increases
computational efficiency.

2.1. Resilience Quantification
A suitable quantitative measure of resilience is a fundamental

prerequisite for assessing resilience in engineering. In [8, 42, 43],
the authors provide a comprehensive overview of resilience met-
rics in a systemic context. While Bergström et al. emphasize
the general concept of resilience in the current literature as a
critical link between increasing complexity of systems and their
risk [8], Sun et al. focus on resilience of infrastructures and
highlight the close link between resilience and functionality
respectively performance measures [43]. Hosseini et al. pro-
posed a general scheme for categorizing resilience quantification
approaches [42]. In summary, performance-based resilience met-
rics are most widely used. These determine the resilience of a
system by comparing its performance before and after a destruc-
tive event. Further subcategories relate to time in-/dependence
and characterization as deterministic or probabilistic processes.

According to [44] and [42], performance-based and time-
dependent metrics are capable of considering the following sys-
tem and transition states before and after a disruptive event:

• The original stable state, i.e., the duration until a disruptive
event occurs, relying on the reliability of the system.

• The system vulnerability, represented by a loss of perfor-
mance after the occurrence of a disruptive event and the
robustness counteracting the vulnerability and mitigating
this performance loss. Both are governed by degradation
characteristics of the system components.

• The system recoverability, characterized by the disrupted
state of the system and its recovery to a new stable state.
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Figure 1: In the evolution of a system before and after the impact of a disruptive
event, different phases can be distinguished: (i) the original stable state, (ii)
disruptive impact, vulnerability, robustness, (iii) disrupted state and recovery;
adapted from [44].
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Figure 2: Resilience triangle; adapted from [45].

An illustration of these phases and transitions is shown in Fig. 1.
The performance level of the new stable state might differ from
the performance level of the original state.

The area of performance loss between original and new
stable state in Fig. 1 refers to the well-known principle of “re-
silience triangle” introduced by Bruneau et al. [45], as illus-
trated in Fig. 2. In their work, Bruneau et al. proposed a time-
dependent, performance-based, and deterministic metric for re-
silience loss of a community due to seismic disasters as follows.
Let t0 be the time a disruptive event occurs and t1 be the time
of completed recovery. Further, Q(t) denotes the quality of the
community infrastructure at time t, specifying the type of system
performance. Then, the metric is defined as:

RBr =

∫ t1

t0
[100 − Q(t)]dt. (1)

Note that the system performance is compared with a time-
independent ideal performance of 100 in the considered interval
of performance loss. The approach forms a strong basis for
several, later proposed metrics in various contexts, see [46, 47,
48].

In [20], Salomon et al. utilize the probabilistic and time-
dependent metric developed by Ouyang et al. [21]. The metric
is defined as the expected ratio of the integral over the actual
system performance Q(t) from 0 to a given time T and the
corresponding integral of a target system performance TQ(t)

over the same time interval:

Res = E[Y], (2)

where

Y =

∫ T
0 Q(t)dt∫ T

0 TQ(t)dt
. (3)

Thereby, the system performance Q(t) is a stochastic process.
The target system performance TQ(t) can be generally consid-
ered as a stochastic process as well, however, for simplicity,
TQ(t) may be assumed as a non-random and constant quantity
TQ. Assuming that the actual system performance does not
exceed the target performance, the metric takes values between
0 and 1. For Res = 1, the system performance is equal to the tar-
get system performance, while Res = 0 indicates that the system
is not functioning during the entire period under consideration.

2.2. Adapted Systemic Risk Measure
In [22], Feinstein et al. proposed a general approach to

measuring systemic risk, e.g., pursued in finance [49]. In [20],
this risk measure was adapted and extended for the applica-
tion to engineering systems as summarized in this section. The
adapted systemic risk measure comprises a descriptive input-
output model and an acceptance criterion that represents norma-
tive resilience standards of a regulatory authority.

Let a system be given with m components i ∈ {1, . . . ,m} of
type ki ∈ {1, 2, . . . ,K} ⊆ N with e properties that influence the
system performance Q(t). These properties, hereafter referred
to as ”endowment properties”, affect system resilience and can
be improved through capital allocations. Then, the component i
is characterized by

(ai; ki) =

(ηi1, ηi2, . . . , ηie; ki) ∈ R(1×e) × N,
(4)

where (ηi1, ηi2, . . . , ηie) are the numerical values of the e relevant
endowment properties. Consequently, the entire system can be
described by a tuple, consisting of the matrix A ∈ R(m×e) and
the column vector z ∈ Nm that captures the component types:

(A; z) =


η11 η12 · · · η1e; z1
η21 η22 · · · η2e; z2
...

...
...

...
ηm1 ηm2 · · · ηme; zm

 . (5)

The system under consideration is defined via a descriptive, non-
decreasing input-output model Y = Y(A;z) that is specified by this
tuple and relates endowment properties to system performance.
With respect to Eq. (2), the model output is specified as Y =
Y(A;z) dependent on the current endowment allocation (A; z).

Further, consider the following specific acceptance set

A = {X ∈ X | E[X] ≥ α} (6)

for a normalized model output X and its expected value E[X]
with α ∈ [0, 1]. Correspondingly, the risk measure is defined as

R(Y) =
{
A ∈ Rm×e | Y(A;z) ∈ A

}
, (7)
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that is the set of all endowment property allocations A such that
the system reaches a resilience value greater or equal to α.

In practice, it might be necessary to impose structural restric-
tions on the matrix in Eq. (5). For example, consider the case that
any component i of a specific type should be configured in the
same way, i.e., the row vectors ai are claimed to be equal. In [22],
Feinstein et al. capture such constraints by monotonously in-
creasing functions gz : Rp → R(m×e), a′ 7→ (A; z) with z ∈ Rm

denoting the component types. Such a function maps a lower-
dimensional set of parameters a′ ∈ Rp to the system description
given in Eq. (5).

2.3. Grid Search Algorithm and the Curse of Dimensionality
According to [22] and [20], the measure of systemic risk

might be determined via a combination of a grid search algo-
rithm and stochastic simulations. The grid search algorithm
operates in the space of all possible endowments, while stochas-
tic simulations are employed to evaluate system resilience for
the endowment allocations according to the grid search algo-
rithm. The probabilistic resilience metric (Eq. (2) and Eq. (3))
is estimated by means of Monte Carlo simulation. The grid
search algorithm given in [22] consists of two phases and can be
recapitulated as follows:

(I) Search along the main diagonal of the space of endowment
properties until the first acceptable combination is found
based on the adapted systemic risk measure.

(II) Identify the Pareto front between the set of acceptable
endowments R(Y) and its complement R(Y)c starting at
the first accepted allocation.

The algorithm allows to compute the entirety of R(Y) while
significantly reducing the computational cost due to the assumed
monotonicity property of the input-output model Y(A;z) given in
Sec. 2.2. For a detailed description of a grid search algorithm
for two dimensional problems, see [22], Ch. 4.

In [20] this algorithm was included in the resilience decision-
making method and applied to case studies with two dimensional
parameter spaces. In their work [22], Feinstein et al. point out
that the grid search algorithm is applicable to higher dimensional
problems “[. . . ] at the price of substantially larger computation
times and required memory capacity.”. However, when analyz-
ing real technical systems, it is often inevitable to consider a
large number of influencing factors and thus a higher dimension-
ality of the parameter space. Therefore, in Sec. 5, an extension
of the previously proposed resilience decision-making methodol-
ogy to n-dimensional problems is applied to a four-dimensional
functional model of an axial compressor and, in Sec. 7, as part
of the novel methodology proposed in Sec. 4, it is applied to
the U-Bahn and S-Bahn system of Berlin, addressing a five-
dimensional problem.

3. Concept of Survival Signature

Introduced in [35], the concept of survival signature allows
to compute the survival function of a system with multiple com-
ponent types and attracted increasing attention for its advanta-
geous features over the last decade. One of its merits is the high

efficiency in repeated model evaluations due to the separation of
the topological system reliability and the probability structure
of system component failures. At the same time, the survival
signature radically condenses information on topology. System
components are of one type if their failure times are independent
and identically distributed (iid) or exchangeable. This differ-
entiation is important when it comes to modeling dependent
component failure times [36]. A brief recap of the concept is
provided in the following subsections. Detailed information
about both the derivation of the concept and further applications
can be found in [35, 36, 50].

3.1. Structure Function

Let a system be given consisting of m components of a
single type. Further, let x = (x1, x2, . . . , xm) ∈ {0, 1}m define the
corresponding state vector of the m components, where xi = 1
indicates a functioning state of the i-th component and xi = 0
indicates a non-functioning state. Then, the structure function ϕ
is a function of the state vector x defining the operating status of
the considered system: ϕ = ϕ(x) : {0, 1}m → {0, 1}. Accordingly,
ϕ(x) = 1 denotes a functioning system and ϕ(x) = 0 specifies a
non-functioning system.

Suppose that a system consists of components of more than
one type, i.e., K ≥ 2. Then, the quantity of system components is
denoted by m =

∑K
k=1 mk, where mk is the number of components

of type k ∈ {1, 2, . . . ,K}. Correspondingly, the state vector for
each type is given by xk =

(
xk

1, x
k
2, . . . , x

k
mk

)
.

3.2. Survival Signature

The survival signature summarizes the probability that a
system is functioning as a function solely depending on the
number of functioning components lk per component type k ∈
{1, 2, . . . ,K}. Assuming the failure times within a component
type to be iid or exchangeable, the survival signature is defined
as:

Φ (l1, l2, . . . , lK) =

 K∏
k=1

(
mk

lk

)−1 × ∑
x∈S l1 ,l2 ,...,lK

ϕ(x), (8)

where
(

mk
lk

)
corresponds to the total number of state vectors xk

of type k and S l1,l2,...,lK denotes the set of all state vectors of the
entire system for which lk =

∑mk
i=1 xk

i . Consequently, the survival
signature depends only on the topological reliability of the sys-
tem, independent of the time-dependent failure behavior of its
components that is described in Sec. 3.3. For more information
on claimed exchangeability in practice, see [36, 41].

3.3. Probability Structure

The probability structure of system components specifies
the probability that a certain number of components of type
k is functioning at time t. Accordingly, Ck(t) ∈ {0, 1, . . . ,mk}

represents the number of components of type k in a functioning
state at time t. Further, assume the probability distribution for
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the failure times of type k to be known with Fk(t), denoting the
corresponding cumulative distribution function. Then,

P

 K⋂
k=1

{Ck(t) = lk}

 = K∏
k=1

P (Ck(t) = lk)

=

K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1 − Fk(t)]lk

(9)

describes the probability structure of the system, regardless of
its topology.

3.4. Survival Function
The survival function describes the probability of a system

being in a functioning state at time t and results from Sec. 3.2
and 3.3 as:

P (Ts > t) =
m1∑

l1=0

. . .

mK∑
lK=0

Φ (l1, l2, . . . , lK)

× P

 K⋂
k=1

{Ck(t) = lk}

 ,
(10)

where Ts denotes the random system failure time. Clearly, the
concept of survival signature separates the time-independent
topological reliability and the time-dependent probability struc-
ture. Thus, the survival signature, calculated once in a pre-
processing step, can be reused for further evaluations of the
survival function, which are necessary, for example, when an-
alyzing a variety of different system configurations that affect
the probability structure given a constant system topology. The
survival signature can be stored in a matrix, thereby summa-
rizing the topological reliability. The utilization of this matrix
circumvents the repeated evaluation of the often computationally
expensive structure function. Note that it is precisely these prop-
erties of the survival signature concept that provide an important
advantage over conventional methods when system simulations
need to be performed repeatedly [37]. In terms of computational
demand, Monte Carlo simulation may be used to approximate
the survival signature of large systems [40].

4. Proposed Methodology

In this section, the proposed methodology for computation-
ally efficient resilience analysis in the context of complex sub-
structured systems is illustrated. The approach integrates the
concept of survival signature described in Sec. 3 into the re-
silience decision-making framework recapped in Sec. 2. First,
the preparation of the complex system by means of a formal-
ized substructuring approach is presented. Second, the novel
methodology is proposed.

4.1. Definition of Substructured Systems
Assume a substructured system S that is composed of a set

of subsystems and a set of components. The subsystems can
again be comprised of further subsystems and components. This
substructuring approach can be conducted for L ≥ 1 levels of

subsystems, where only components exist at level L + 1. Com-
ponents are directly associated with probability distributions
describing their time-dependent probabilistic behavior. Note
that the level 1 relates to the overall system level. Figure 3
illustrates the substructuring concept.

Let there be nv subsystems Sv
1,S

v
2, . . . ,S

v
nv and mv compo-

nents Cv
1,C

v
2, . . . ,C

v
mv at level v = 1, 2, . . . , L. During the analy-

sis, the information on component behavior is propagated from
level L + 1 to level 1 before determining the state s0 of the over-
all system S in dependence on various topological (sub)system
structures. In the context of the resilience framework in Sec. 2,
the state s0 ∈ S ⊆ R+ with state space S of the overall sys-
tem S corresponds to the system performance Q(t) that is basis
for the resilience measure Res, see Eq. (2). Note that multi-
ple resilience analyses might be conducted for various Q(t).
The quantity s0 indicates system functionality from an ordered
perspective and depends on the functionality of its directly sub-
ordinate subsystems and components. Given level v = 1, . . . , L,
the dependency of the (sub)system state sv

j on the state vector
xv

j is modeled via the mapping sv
j = ϕ

v
j(xv

j) ∈ {0, 1}, where
ϕv

j is a structure function, i.e., a topological rule for system
functioning as presented in Sec. 3.1. The state vector is intro-
duced as xv

j = (sw
1 , s

w
2 , . . . , s

w
nw

j
, cw

1 , c
w
2 , . . . , c

w
mw

j
) for the j-th sub-

system at level v with j = 1, 2, . . . , nv and w = v + 1. Thereby,
sw

p , c
w
q ∈ {0, 1} denote the functionality of the p-th subsystem

and q-th component, respectively. Further, nw
j is the number of

subsystems at level w contained in subsystem j at level v and∑nv

j nw
j = nw. Analogously, mw

j has the equivalent interpreta-
tion for components. At level v = 1, the notation reduces to
s0 = ϕ0(x0). The state vectors at level L comprises only com-
ponent states as xL

j = (cw
1 , c

w
2 , . . . , c

w
mw

j
) with j = 1, 2, . . . , nL,

cw
i ∈ {0, 1} and w = L + 1.

The probability distributions governing the component states
cv

i are assumed to be known as CDF Fk(t) for given compo-
nent type k according to Sec. 3.3. Note that different subsys-
tems might rely on the same component types. The assumption
sv

j, c
v
i ∈ {0, 1} is due to the fact that the concept of survival signa-

ture is based on a binary-state consideration. However, multiple
researchers work on extensions of the concept to a discrete or
continuous multi-state consideration, see e.g. [51, 52, 53, 54].

4.2. Extension of the Adapted Systemic Risk Measure

In the resilience analysis of complex, substructured systems,
it may be important that endowments can be formally assigned
not only to system components but to other system structures,
such as subsystems. To enable the incorporation of such en-
dowment assignments in the novel methodology, the adapted
systemic risk measure, cf. Sec. 2.2, is extended as follows.

Let a system, in addition to its m components, be given with
a total of n subsystems j ∈ {1, . . . , n} of b j ∈ {1, 2, . . . , B} ⊆ N
types over all system levels L with d endowment properties that
influence the system performance Q(t). Then, the subsystem j
is characterized by

(S j; b j) =

(ξ j1, ξ j2, . . . , ξ jd; b j) ∈ R(1×d) × N,
(11)
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v = 1 v = 2 v = 3 = L v = 4 = L+1 

Figure 3: Illustration of the proposed substructuring concept.

where (ξ j1, ξ j2, . . . , ξ jd; b j) are the numerical values of the d
relevant endowment properties. The entire system is then, in
addition to the description by the tuple consisting of the matrix
A ∈ R(m×e) and the column vector z ∈ Nm, capturing the compo-
nents, described by the tuple composed of the matrix D ∈ R(n×d)

and the column vector h ∈ Nn, capturing the subsystems:

(D; h) =


ξ11 ξ12 · · · ξ1d; h1
ξ21 ξ22 · · · ξ2d; h2
...

...
...

...
ξn1 ξn2 · · · ξnd; hn

 . (12)

The system under consideration is defined via the descrip-
tive, non-decreasing input-output model Y = Y(A;z),(D;h) that is
specified by both tuples and relates endowment properties to
system performance. Again, with respect to Eq. (2), the model
output is specified as Y = Y(A;z),(D;h) dependent on the current
endowment allocation for components (A; z) and subsystems
(D; h). Then, with the specific acceptance setA from Eq. 6, the
extended adapted systemic risk measure is defined as

R(Y) =
{
A ∈ Rm×e, D ∈ R(n×d) | Y(A;z),(D;h) ∈ A

}
, (13)

that is the set of all endowment property allocations A and D
such that the system reaches a resilience value greater or equal
to α. Note that in this manner, equivalently, any performance-
influencing endowments, of any system structures, or even en-
dowments independent of system structures, can be incorporated
into the resilience decision-making analysis.

4.3. Augmentation of the Resilience Analysis

The system resilience Res is governed by the reliability,
robustness and recoverability of a system as illustrated in Fig. 1.
The magnitude of these quantities is influenced by the en-
dowment allocations that are captured in the tuples (A; z) and
(D; h). The assigned resilience-enhancing endowment properties
(ηi1, ηi2, . . . , ηim) and (ξ j1, ξ j2, . . . , ξ jd) can either relate to a spe-
cific quantity or a subset of the three quantities and correspond
to different implementations in the overall system performance
model, i.e., input-output model Y(A;z),(D;h).

The reliability is typically the most computationally chal-
lenging quantity when evaluating system resilience Res. Thus,
this part of the computation is augmented by the concept of
survival signature with its advantageous separation and compact
storage properties as well as the fundamental substructuring
approach proposed in the previous Sec. 4.1 in order to enable
efficient resilience analyses of large and highly complex systems.

In a pre-processing step, the survival signaturesΦv
j (l1, l2, . . . , lK)

of the n =
∑L

v nv subsystems Sv
j are computed based on the

corresponding structure functions ϕv
j as described in Sec. 3.2.

Subsequently, the survival signatures are utilized to efficiently
retrieve the topological subsystem reliability (online) for varying
endowment configurations.

In order to identify the set of all acceptable endowments
R(Y), repeated evaluations of Y(A;z),(D;h) are required according
to the grid search algorithm – various endowment allocations in
the search space spanned over discretized numerical values of
A ∈ Rm×e with m =

∑L+1
v mv and D ∈ R(n×d) with n =

∑L+1
v nv

need to be evaluated analogous to Sec. 2.3. In each evaluation
N stochastic simulations of Y(A;z),(D;h) have to be performed to
obtain E[Y], see Eq. (2), and corresponding status assignments
according to the acceptance setA in Eq. (6). Given the number
of dimensions that need to be evaluated according to the grid
search algorithm as M, the number of evaluations for Q(t) is
M · N · u with u being the total number of time steps per simula-
tion. Consequently, simulating system resilience is a complex,
demanding and repeating challenge.

Computing the resilience directly relates to the computation
of at least one structure function that can be any function that
expresses the relation of interacting elements. The structure
function can correspond to simple logical expressions, such as
Reliability Block Diagrams (RBD) or fault trees, up to sophis-
ticated simulation models, e.g., when assessing the network
efficiency of a graph. In fact, such models often become ex-
tremely challenging in the context of real world systems. The
evaluation of a global structure function including the entirety
of all components at once might even be computationally unfea-
sible. In contrast, given a system in a substructered form S as
proposed in Sec. 4.1, the computation of the system functional-
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ity splits into the evaluation of multiple hierarchically ordered
structure functions. Such a consideration enables a wider range
of application in terms of system size and complexity, especially
when the computational capacity is limited.

The computational efficiency is further enhanced by appli-
cation of the survival signature. Given a system, substructered
according to Sec. 4.1 with L ≥ 2, the computation of subsys-
tem reliabilities can be propagated from level L to level 1 by
evaluating the survival functions of subsystems Sv

j based on the
survival functions of Sw

p instead of computing sv
j = ϕ

v
j(xv

j) for
each level. Coolen et al. proposed a methodology to merge
survival signatures of specifically arranged subsystems in the
context of substructured systems [55]. However, note that this
approach differs from the one developed in the current paper.
The survival function P(Tsv

j
> t) of the j-th subsystem at level

v is then computed according to Eq. (10) w.r.t. the survival
signature Φv

j (l1, l2, . . . , lK). At top-level 1, the failure rates of
the subsystems S1

j with j = 1, 2, . . . , n1, utilized to sample sub-
system functionality, can then be obtained via the cumulative
hazard function and its derivative:

λs1
j (t) = −

d ln P(Ts1
j
> t)

dt
. (14)

This enables to sample the subsystem state s1
j for time step

(th, th+1) online with significantly reduced computational effort
when evaluating the system resilience Res. The computation
of Res then only involves n1 + m1 instead of

∑L+1
v mv elements.

In addition, significantly increased computational efficiency is
achieved due to the separation of system topology and proba-
bility structure, the latter determined by the current endowment
allocation. While the component probability structure varies, the
topological reliability, independent of the endowment allocation,
is captured in the survival signature in a compact manner and
can be retrieved repeatedly with close to no costs. Note that
subsystems of the same type share the same survival signature.
This can be exploited for increased efficiency as well. In fact, the
computational advantage of the proposed approach scales with
size and complexity of the considered system S. The developed
and employed algorithm is outlined in Alg. 4.3 for illustrative
purposes.

In order to prove efficiency and general applicability, the
novel approach is applied to an arbitrary complex system in
Sec. 6 and to the U-Bahn and S-Bahn system of Berlin in Sec. 7.

Algorithm 4.3.

Step A Computation of the survival signatures for all subsystem
Sv

j with v = 1, 2, . . . , L and j = 1, 2, . . . , nv.
Step B Identification of the Pareto front by executing the grid

search algorithm; each endowment allocation is evalu-
ated by performing the following steps:
Step B1. Generation of the failure rate matrix with

dimensions n1 × T based on Eq. (14) for
each subsystem and each timestep th with
h = 1, 2, . . . , u and generation of the failure
rate matrix with dimensions m1 × T for each
component and each timestep; if L ≥ 2, the

failure rate matrix for v = 1 for each subsys-
tem is generated recursively from bottom to
top by computing the survival functions.

Step B2. Perform N samples with time th = 0:
a) Evaluate the system performance Q(th).
b) Sample possible failures of subsystems S1

j

for j = 1, 2, . . . , n1 and components C1
i for

i = 1, 2, . . . ,m1 based on the failure rate
matrices computed in Step B1.

c) Check if any failed subsystem/component
has recovered; if a subsystem/component
recovers, set the time counter of its specific
failure rate to 0.

d) Set th = th+1 = th + ∆t and repeat Steps a)
– d) until th = T , i.e., the maximum time is
reached.

Step B3. Obtain Res for the current endowment config-
uration via Eq. (2) and Eq. (3) over all time
steps u and all samples N.

The complete algorithm has been implemented in the Julia
package ResilienceDecisionMaking.jl and made publicly avail-
able on Github [56].

5. Multistage High-Speed Axial Compressor

Axial compressors are complex, multi-component key ele-
ments of gas turbines. Therefore, it is critical in both design
and maintenance to consider as many factors affecting system
performance as possible to efficiently maximize compressor re-
silience. To address this challenge, the decision-making analysis
proposed in [20] regarding system resilience is extended in order
to deal with components, respectively factors, of different types.

5.1. Model

In [57], the authors present a functional model of a four-
stage high-speed axial compressor from the Institute of Turbo-
machinery and Fluid Dynamics at Leibniz Universität Hannover,
Germany, depicting its functionality as well as reliability char-
acteristics. For detailed information about this particular axial
compressor see [58, 59, 60].

The model captures the dependence of the overall perfor-
mance of the compressor, i.e., the total-to-total pressure ratio and
the total-to-total isentropic efficiency, on the surface roughness
of the individual blades. These are arranged in rotor and stator
rows. The model is based on the results of a sensitivity analysis
of an aerodynamic model of the compressor and the so-called
Relative Important Indices, cf. [50]. A network representation
of the functional model is shown in Fig. 4. Each component
represents either a stator (S1 - S4) or rotor (R1 - R4) row.

The rows are classified into K = 4 component types ki ∈

{1, 2, 3, 4} ∀i ∈ {1, . . . , 8}. This classification, as well as the
arrangement of the components, is based on the resulting effect
of their blade roughness on the two performance parameters
of the compressor. More precisely, an interruption between
start and end implies that a roughness-induced performance
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Figure 4: Functional model of the multistage high-speed axial compressor.

variation of at least 25% is exceeded, corresponding to a non-
functional compressor. This defines the system performance
Q(t) of the functional model for subsequent application of the
resilience decision-making method. The system performance is
determined at each time point th and is 1 if there is a path from
start to end and 0 if this connection is interrupted. More detailed
information about the functional model and its derivation can be
obtained from [57].

For the resilience analysis, it is assumed that each row, i.e.,
each component of the functional model, is characterized by two
endowment properties, a roughness resistance re and a recovery
improvement rec, such that a component is fully described by
(ai; ki) = (rei, reci; ki). In this context, the roughness resistance
can be interpreted as a qualitative coating that counteracts the
roughening of the blade surfaces. Both the roughness resistance
rei and the recovery improvement reci of each row i are assumed
to be functions of the component type ki, i.e., rei = rei′ , reci =

reci′ if ki = ki′ .
Each component of the functional model can fail randomly

after system performance is calculated at time th. A failed com-
ponent is considered as no longer being part of the model and
does not contribute to the overall system performance at time th+1
and at all subsequent times until it is completely recovered. The
failure probability of a component i in the time interval (th, th+1)
is assumed to be constant in time, cf. [57], and is specified by

P
{
(ai; ki) fails during (th, th+1)

}
= ∆t · λi (15)

with
λi = 0.8 − 0.03 · rei, (16)

where λi is the time-independent failure rate. Increasing the
roughness resistance of a blade row reduces the degradation of
the surface and consequently the corresponding failure rate λi.

When a component i fails, its functionality is assumed to be
immediately and completely recovered after a certain number of
time steps, according to

r = rmax − reci with reci < rmax (17)

where rmax is an upper bound on the number of time steps for
recovery and reci is the recovery improvement that reduces the
recovery duration. Note, that this recovery model corresponds to
a one-step recovery profile and various alternative characteristic
profiles of recovery are possible as well, cf., [16] and [4].

5.2. Costs of Endowment Properties

Optimal endowment properties are related to the quality
of the components, and an increase in their production quality
is associated with increasing costs. This should be taken into
account in resilience decision-making. As discussed in [61],
increasing the reliability of components in complex networks
can be associated with an exponential increase in cost.

Increasing the endowment property of roughness resistance
reduces the failure rate of blades in a row and thus improves
reliability, see Eq. (15) and Eq. (16). Thus, its total cost is
assumed to be

costre =

8∑
i=1

pricere
(rei;ki) · 1.2

(rei−1), (18)

where rei is the roughness resistance value of component i, ki

its type and pricere
(rei;ki)

an arbitrary common basic price. Ac-
cordingly an exponential relationship is assumed for the cost
associated with recovery improvement:

costrec =

8∑
i=1

pricerec
(rec;ki) · 1.2

(reci−1). (19)

The total cost cost(A;z) of an endowment is the sum of these
costs:

cost(A;z) = costre + costrec. (20)

5.3. Scenario

In order to apply the decision-making method for resilience-
enhancing endowments to the multistage high-speed axial com-
pressor, the model parameter values and simulation parameter
values shown in Tab. 1 are considered.

In a first step, the set of all acceptable endowments corre-
sponding to a resilience value of at least Res = 0.85 over the con-
sidered time period is determined. Since any axial compressor
blade improvement involves costs, the second step is to identify
the most cost-efficient acceptable endowment, denoted as Â. The
recovery improvement rec is assumed to be fixed for all compo-
nents, regardless of the type, reci = 11 ∀i ∈ {1, . . . ,m} and the
roughness resistance re is examined over rei ∈ {1, . . . , 20} ∀i ∈
{1, . . . ,m}. The roughness resistance values may be interpreted
in ascending order as increasing quality levels of coatings.
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Parameter Scenario

Acceptance threshold α 0.85
Number of time steps u 200
Length of a time step ∆t 0.05
Maximum time T 10
Base failure rate λ 0.8
Roughness resistance re rei ∈ {1, . . . , 20}
Roughness resistance price:
pricere

(rei;ki)
800e ∀ki ∈ {1, 2, 3}
500e ∀ki = 4

Maximum recovery time rmax 21
Recovery improvement rec 11
Recovery improvement price:
pricerec

(rec;ki)
600e

Sample size N 500

Table 1: Parameter values for the resilience decision-making method for the
functional model of the multistage high-speed axial compressor.

Figure 5 illustrates the results of the grid search algorithm.
It shows the roughness resistance combinations contained in
R(Y), i.e., all combinations that lead to a satisfying system re-
silience of at least Res = 0.85. It can be clearly seen that the
roughness resistance of the blades of the fourth stage (compo-
nent type 3) has the greatest influence on the system resilience.
Combinations with coating qualities of rei ≤ 15 at the fourth
stage are generally not sufficient to achieve an acceptable level
of resilience, regardless of the endowment property values of
the other component types. In addition, the roughness resistance
of the four stators (component type 4) has the least influence on
system resilience of all types. Here, a minimum coating quality
of rei = 1 as endowment is in various combinations already
sufficient to achieve acceptable resilience values. The same ap-
plies to the rotors of component type 1 and type 2. However,
the components of the other types require significantly higher
coating qualities compared to the stators in order to compensate
for the small roughness resistance values in these both types.

The design, maintenance and optimization of complex sys-
tems, such as an axial compressor, are invariably subject to
monetary limitations. It is crucial for decision-making to be able
to take these financial constraints into account. Therefore, Fig. 6
shows only those roughness resistance combinations included
in R(Y) that result in an acceptable system resilience of at least
Res = 0.85 and are less expensive than a predefined cost limit
for the total roughness resistance, that is arbitrarily assumed to
be costre = 40 000e in this case study.

The results reveal that only configurations with low coating
qualities for stators (component type 4) are below the cost limit.
On the one hand, this is due to their aforementioned low influ-
ence on system resilience, and on the other hand to the high cost
of the quality levels for the stators. Although the base price of
500€ is rather low, it is significantly higher in terms of cost for
the entire component type than for the other types due to the
higher total number of components of this type. In addition, only
configurations that provide the highest quality levels of rei ≥ 18
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Figure 5: Numerical results of the 4D grid search algorithm for the functional
model of the axial compressor with explored roughness resistance values.

for the type 3 rotor are acceptable and below the price limit. The
roughness resistance of this rotor has such a large impact on
system resilience that at lower quality levels, compensation by
higher quality levels of the remaining stages would exceed the
given budget. Although the roughness resistance of the rotor of
component type 2 has a lower influence on the system resilience
than that of component type 3, minimal quality levels of the
coating can not be compensated by high qualities of the other
components. Therefore, at least rei = 5 for ki = 2 is required to
fulfill the acceptance criterion.

The grid search algorithm is able to reduce the numerical
effort for the calculation of R(Y) by about 98%. As a result, only
2% of the potential combinations of roughness resistance values
need to be evaluated.

Taking into account the base prices in Tab. 1, the most cost-
efficient endowment is characterized by roughness resistances
of rei = 7 for ki = 1, rei = 13 for ki = 2, rei = 19 for ki = 3
and rei = 1 for ki = 4 for the respective components. In Fig. 6
the corresponding configuration is highlighted in blue. The
final cost results from Eq. (20) as cost(Â;z) = costre + costrec =

35 209e + 29 720e = 64 929e.
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Figure 6: Numerical results of the 4D grid search algorithm for the functional
model of the axial compressor with explored roughness resistance values and a
cost threshold for roughness resistance of 40 000e.

6. Complex System

In [37] and [41] the authors apply their introduced simula-
tion approaches for reliability analysis on an arbitrary complex
system. In order to demonstrate the wide applicability and ef-
ficiency of the proposed methodology developed in this paper,
this complex system is considered, adapted by means of sub-
structuring, and an efficient resilience decision-making analysis
is conducted.

6.1. Model

The arbitrary complex system consists of n = 14 subsystems,
each assigned to one of B = 6 subsystem types. Figure 7 illus-
trates the complex system and the assignment of subsystems to
their types. A connection between start node and target node
indicates a functioning state and an interruption of this connec-
tion indicates a non-functioning state of the overall system. This
defines the system performance Q(t) of the functional model
for subsequent application of the resilience decision-making
method. The system performance is determined at each time
point th and is 1 if there is a path from start to end and 0 if this
connection is interrupted. Note that the complex system is thus
formally an RBD. For illustration and simplicity, it is assumed
that there is only one level of subsystems, i.e., l = L = 1, and
thus xs = (s1, s2, . . . , s14), S1

j = S j, and λs1
j (t) = λs j (t). Figure 8

illustrates the structure of the six subsystem types. These are
formally RBDs as well. It is assumed that each subsystem of
the same type is represented by the same RBD. A subsystem S j

is considered to be functional if a connection exists from start
to end and non-functional if this connection is interrupted, i.e.,

s j ∈ {0, 1} ∀ j ∈ {1, . . . , 14}. Depending on the type, the sub-
systems consist of seven to ten components. Thus, the overall
system is composed of m = 106 individual components.

The components are classified into K = 2 types ki ∈ {1, 2}
∀i ∈ {1, . . . , 106}, i.e., 50 components of type 1 and 56 com-
ponents of type 2. For the resilience analysis, each component
of the model, is assumed to be characterized by an endowment
property, that is the reliability improvement rel, such that a com-
ponent is fully described by (ai; ki) = (reli; ki). Note that the
reliability improvement reli of each component i is assumed to
be function of the component type ki, i.e., reli = reli′ if ki = ki′ .
Further, each component type, and thus each component, is
characterized by a specific time-dependent failure behavior. In
practice, the underlying distribution functions, describing this
behavior, need to be derived from existing operational data.
However, the consideration of real data is often highly chal-
lenging due to the inherent uncertainty caused by, e.g., lack of
data, measurement inaccuracies, subjective expert knowledge,
small sample sizes, etc. New developments in the context of
the survival signature as introduced, e.g., in [41], allow for the
efficient consideration and propagation of uncertainties through
the entire model. They will be incorporated into the proposed
methodology towards an imprecise resilience approach in future
work of the authors. However, for the purpose of proof of con-
cept and applicability, exponential distributions are considered
for both component types in this case study as

Fi(t; λi(reli)) = 1 − e−λi(reli)t for t ≥ 0, (21)

with
λi(reli) = λi,max − ∆λi · reli, (22)

being the failure rate of component i of type k depending on
the corresponding reliability improvement reli. λi,max is the
maximum failure rate and ∆λi denotes the failure rate reduction
per reliability improvement reli that is assumed to be constant
for each component type, leading to equidistant failure rate
variations.

The simulation can be summarized as follows: after the
system performance has been computed at time th, each sub-
system S j of the complex system can fail at random based on
the extracted and time-dependent failure rate λs j (th) from cor-
responding survival function, cf. Eq. (14). A failed subsystem
is treated as no longer present in the model and does not con-
tribute to the overall system performance Q(t) at time th+1 and
all subsequent time points until it is fully recovered. The failure
probability of a subsystem S j in the time interval (th, th+1) is

P
{
S j fails during (th, th+1)

}
= ∆t · λs j (th). (23)

If a subsystem S j failed, its functionality is assumed to be im-
mediately and fully recovered after r time steps, again corre-
sponding to a one-step recovery profile. It is assumed that a
repaired subsystem and thus all components of the subsystem
are in as-new original condition after repair. Note that this is an
assumption for the sake of demonstration, and in reality deviat-
ing states might be obtained after repair, possibly depending on
further endowment properties that affect the duration and quality
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Figure 7: Representation of the arbitrary complex system with 14 components, adapted from [37].
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Figure 8: Representation of the B = 6 subsystem types of the complex system.
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of recovery. After recovery, the survival function of a subsystem
is time-zeroed, such that the resulting failure rate per simulation
step λs j (th) evolves over time equivalent to that of a subsystem
in new condition.

6.2. Costs of Endowment Properties
The improvement of endowment properties is inevitably

associated with costs. Increasing the endowment property “relia-
bility improvement” reduces the failure rate of components and
consequently of corresponding subsystems. Again, an exponen-
tial relationship between costs and improvements is assumed.
Then the total costs can be defined as

cost(A;z) = costrel =

106∑
i=1

pricerel
(reli;ki) · 1.2

(reli−1), (24)

where (reli; ki) is the reliability improvement value of component
i, ki its type and pricerel

(reli;ki)
is an arbitrary common basic price.

6.3. Scenario
The considered model parameters and simulation parame-

ters values for the application of the resilience decision-making
method for complex and substructured systems to the arbitrary
complex system illustrated in Fig. 7, are shown in Tab. 2. The
recovery is assumed to be fixed with r = 20 time steps for all
subsystems, regardless of the type. The reliability improvement
reli is explored over reli ∈ {1, . . . , 10} ∀i ∈ {1, . . . ,m}.

In a pre-processing step, the survival signatures of all 14
subsystems are determined. As an example, Tab. 3 depicts the
survival signature values of subsystem type 5 of the complex
system. For clarity, only the non-trivial survival signature values
are shown, i.e., all values that are neither zero or one. Then the
analysis starts as follows: In a first step, the set of all acceptable
endowment configurations R(Y), corresponding to a resilience
value of at least Res = 0.9 over the considered time period, is
determined according to Algorithm 4.3. Since any improvement
of the system components is associated with costs, the second
step is to identify the most cost-efficient acceptable endowment
Â.

Figure 9 illustrates the results of the grid search algorithm.
It shows the reliability improvement combinations contained
in R(Y), i.e. all combinations that lead to a satisfying system
resilience. It can be seen, that the reliability improvement of
components of type 1 is more important, i.e., has a higher impact
on the overall system resilience than the reliability improvement
of components of type 2. For maximum reliability improvement
values for type 1, i.e., reli = 10 for ki = 1, even low reliability
improvement values for type 2, i.e., reli = 2 for ki = 2, are
sufficient in order to fulfill the acceptance criterion and reach
system resilience values of at least Res = 0.90. On the other
hand, with maximum reliability improvement for components
of type 2, i.e., reli = 10 for ki = 2, a moderate reliability
improvement for type 1 of at least reli = 4 for ki = 1 is required
to meet the acceptance criterion.

These results are plausible, since a detailed examination of
the subsystem types and their topology, cf. Fig. 8, reveals that
components of type 1 hold a total of six so-called bottleneck
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Figure 9: Numerical results of the 2D grid search algorithm for the complex
system with explored reliability improvement values.

positions within the subsystems, i.e., positions where the failure
of a single component interrupts the functioning of the entire
subsystem, while components of type 2 occupy only three of
these positions. This results in a higher influence of component
type 1 on the functionality of the subsystems and thus ultimately
in a higher influence on overall system resilience. Accordingly,
the quality of reliability improvement of component type 1 is
more relevant than that of component type 2. Looking at the
probabilistic structure of the components, it is noticeable that
the failure rate reduction for components of type 2 is greater
than for components of type 1, i.e., the increase in reliability
improvement for type 2 probabilistically generates a higher sur-
plus value compared to improvements of type 1. However, this
obviously cannot balance the influence gradient between both
types and thus underlines the critical topological importance of
type 1 components.

The design, maintenance and optimization of complex sys-
tems is typically restricted by economic limitations. It is crucial
for decision-making to be able to take these monetary constraints
into account. Assuming the arbitrary base prices in Tab. 2, the
most cost-effective acceptable endowment Â is specified by a
reliability improvement configuration of reli = 8 for ki = 1 and
reli = 4 for ki = 2 for the respective components. In Fig. 9,
the corresponding configuration is highlighted. Note that due
to the monotonicity of the input-output model and the mono-
tonically increasing endowment costs, the most cost-efficient
endowment can only be located on the dominant vertices of the
Pareto front. Therefore, only these configurations need to be
examined in terms of cost. The final cost results from Eq. (24)
as cost(Â;z) = 372 695e.

Due to the utilization of the grid search algorithm, the numer-
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Table 2: Parameter values for the resilience decision-making method on the arbitrary complex system.

Parameter Scenario

Acceptance threshold α 0.90
Number of time steps u 200
Length of time step ∆t 0.05
Maximum time T 10
Maximum failure rate λi,max λi,max = 0.15 for ki = 1

λi,max = 0.20 for ki = 2
Failure rate reduction ∆λi ∆λi = 0.014 for ki = 1

∆λi = 0.019 for ki = 2
Reliability improvement reli reli ∈ {1, . . . , 10} for ki ∈ {1, 2}
Reliability improvement price pricerel

(reli;ki)
pricerel

(reli;1) = 1 000e
pricerel

(reli;2) = 2 000e
Recovery time steps r 20
Sample size N 500

Table 3: Non-trivial survival signature values of subsystems with b j = 5 of the
complex system, shown in Fig. 7 and Fig. 8.

l1 l2 Φ (l1, l2)
2 4 1/25
3 3 3/50
2 5 3/25
4 3 3/20
3 4 9/50
2 6 1/5
5 3 11/50
6 3 3/10
3 5 3/10
4 4 33/100
3 6 2/5
5 4 23/50
4 5 12/25
6 4 3/5
4 6 3/5
5 5 16/25
6 5 4/5
5 6 4/5

ical effort required to compute R(Y) is reduced. Only 23% of all
possible configurations of reliability improvement values need
to be evaluated. This reduction effect scales with the size and
dimensionality of the endowment search space. By means of the
novel resilience decision-making method, the considered com-
plex system could be reduced from its entirety of 106 individual
components to 14 components on the top-level with respect to
the resilience analysis and the associated identification of all
acceptable endowment configurations, which drastically reduces
the computational effort. Nevertheless, all 106 components and
their influence were considered by incorporating and propagat-
ing the subsystems’ survival functions. Again, this effect scales
with increasing complexity and size of the investigated systems.

7. U-Bahn and S-Bahn System of Berlin

About two thirds of the total of 1.5 billion passengers per
year are transported by Berlin’s subway U-Bahn and suburban
trains S-Bahn [62, 63], making these two transport services the
most used means of public transport in Berlin and thus of ut-
most importance for the German capital. Key infrastructures
that are of such significant social and economic relevance to
modern societies obviously and inevitably need to be as resilient
as humanly possible. The applicability of the methodology de-
veloped in this work to large complex systems is demonstrated
on a comprehensive model of the Berlin U-Bahn and S-Bahn
system. The objective is to identify suitable resilience-enhancing
properties for all stations in the system, taking into account mon-
etary constraints. This allows the characterization of acceptable
endowments for the system in terms of reliability, robustness,
and recoverability. This approach can be applied not only to
any phase during the life cycle of existing systems, but also to
systems in the design phase, in order to optimize their resilience.

7.1. Model

Berlin’s U-Bahn and S-Bahn systems are highly intercon-
nected systems that are linked by numerous stations. According
to [64], they may therefore be considered as a unified system,
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hereafter referred to as “metro system”. In [20] the authors apply
their introduced approach for resilience decision-making to a
model of the Berlin metro system. In order to demonstrate the
wide applicability and efficiency of the proposed methodology
developed in this work, this model is considered, extended and
adapted by means of substructuring, and an efficient and multi-
dimensional resilience decision-making analysis is conducted.

In [65], Zhang et al. proposed how mapping of metro net-
works into topological graphs can be conducted. Based on this,
the Berlin metro system consists of 306 nodes for 306 metro
stations and 350 edges for 350 connections between these sta-
tions. For simplicity, parallel connections are mapped to single
edges in the model, and are assumed to be undirected. These as-
sumptions reduce the complexity of the metro system. Figure 10
illustrates the graph representation.

The functionality of systems depends on the functionality
of its components. However, the functionality of these compo-
nents often depends again on the functionality of a variety of
subcomponents, etc. A major challenge in modeling is therefore
determining an appropriate level of detail.

The resilience decision-making methodology proposed in
this paper allows for the incorporation of such subsystem struc-
tures by live propagation of corresponding reliability character-
istics up to the top-level. Therefore, for the resilience analysis
of the metro system, each metro station is modeled as a subsys-
tem with own functionality and performance function. Again,
for illustrative purposes and sake of convenience, assume that
there is only one level of subsystems, i.e., l = L = 1, and thus
xs = (s1, s2, . . . , s306), S1

j = S j and λs1
j (t) = λs j (t) with n = 306

subsystems respectively metro stations.
In terms of reliability modeling, subcomponents could corre-

spond to structural elements, such as stairs, columns, ceilings,
station rails as well as electric facilities, such as railway power
supply, elevators, escalators, ventilation plants, information sys-
tems and illuminations. These subcomponents can be subdivided
in terms of their functionality and relevance to the metro station,
such as in rail operations related components and user accessi-
bility related components. For illustrative purpose, the analysis
is restricted to reliability modeling of metro stations. Therefore,
functional models are defined for the metro station subsystems
that are, as in the previous case study, formally RBDs. Again, a
subsystem S j is considered to be functional if a connection from
start to end exists and non-functional if this connection is inter-
rupted, i.e., s j ∈ {0, 1} ∀ j ∈ {1, . . . , 306}. Figure 10 illustrates
three of these subsystems for three different metro stations as an
example. The metro stations are classified into B = 6 types, de-
pending on the number of their connections to direct neighbors,
i.e., stations with only one connection form subsystem type 1,
stations with two direct neighbors form subsystem type 2, etc.
For the analysis, each subsystem is assumed to be characterized
by an endowment property, that is the recovery improvement
rec, such that a metro station j with type b j is described by
(S j; b j) = (rec j; b j). Note, that the recovery improvement rec j

of each metro station is assumed to be a function of the station
type b j, i.e., rec j = rec j′ if b j = b j′ . For simplicity, it is assumed
that each metro station of a type is represented by the same RBD.

Figure 11 displays the structure of all six subsystem types and
Fig. 12 tabulates the number of individual metro stations per
type.

Depending on the type and thus with increasing complex-
ity related to the number of direct neighbors, also known as
node degree, the subsystems consist of four up to twenty-one
components. Taking into account the information from Fig. 12,
the overall system therefore consists of a total of m = 2776
considered individual components.

The components are classified into K = 4 types ki ∈

{1, 2, 3, 4} ∀i ∈ {1, . . . , 2776}. For the analysis, each component
is assumed to be characterized by an endowment property, that
is the reliability improvement rel, such that a component is
fully described by (ai; ki) = (reli; ki). Note, that the reliability
improvement reli of each component is assumed to be a function
of the component type ki, i.e., reli = reli′ if ki = ki′ . Further,
each component is characterized by a specific time-dependent
failure behavior. For the purpose of proof of concept and ap-
plicability, for component type 1 and 3, i.e., ki = 1 and ki = 3,
exponential distributions are considered according to Eq. (21)
and Eq. (22). For component type 2 and 4, i.e., ki = 2 and
ki = 4, two parametric gamma distributions are considered. The
cumulative distribution function of the gamma distribution can
be derived based on its probability density function that is given
in terms of the rate parameter λi(reli) depending on the current
reliability endowment value reli of component i of type ki as

f (t;αi, λi(reli)) =
tαi−1e−λi(reli)tλi(reli)αi

Γ(αi)
, (25)

for t, αi, λi(reli) > 0, where αi is the shape parameter, λi(reli) is
the rate parameter, and Γ(αi) is the well-known Gamma function.
Consequently, the cumulative distribution function can be ob-
tained by integration and with respect to the current endowment
of component i it can be formulated as

F(t;αi, λi(reli)) =
∫ t

0
f (u;αi, λi(reli))du. (26)

λi(reli) is again a function of the component specific reliability
improvement and given by Eq. (22).

In order to perform a resilience analysis, the definition of an
appropriate system performance measure for the metro system is
imperative. As in [65] and [20], in this case study, the so-called
network efficiency E f is adopted as the relevant performance
measure, i.e., Q(t) = E f (t). Zhang et al. justified in [65] their
choice by stating that connectivity between individual metro
stations is an essential criterion for evaluating metro operations.
As described by Latora and Marchiori in [66], network efficiency
is a quantitative indicator of network connectivity and is defined
as:

E f =
1

n(n − 1)

∑
u,v

1
duv

(27)

with n the number of subsystems, i.e., metro stations in the net-
work and duv the path length between metro station u and metro
station v, i.e., the shortest distance between these stations. A
comprehensive overview of algorithms to efficiently determining
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Figure 10: Topological network for the Berlin metro system.
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Subsystem Type 3 Subsystem Type 4

Subsystem Type 5 Subsystem Type 6

Component Type 1

Component Type 2

Component Type 3

Component Type 4

Figure 11: Representation of the B = 6 station types of the Berlin metro system.
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Figure 12: Number of individual metro stations per type.

the path length duv between stations, such as the algorithms of
Floyd, Dijkstra’s, or Bellman-Ford, is provided in [67] and [68].

The simulation procedure corresponds to that from the pre-
vious case study and the failure probability of a subsystem S j,
i.e., metro station, in the time interval (th, th+1) is defined by
Eq. (23). Unlike in the previous case study, a failed metro sta-
tion is not entirely removed from the system, but remains in the
set of metro stations; however, their node degree becomes 0, i.e.,
all existing connections to direct neighbors are removed. This
assumption is essential, as the computation and interpretation
of the system performance network efficiency depends on the
number of nodes. The case study therefore relies on the fact that
the number of nodes is constant.

If a subsystem S j failed, its functionality is assumed to be
immediately and fully recovered after a certain number of time
steps r:

r = rmax − 2 · rec j with rec j < rmax, (28)

where rec j is the recovery improvement specific to the station
S j and rmax is an upper bound for number of time-steps for
recovery. After recovery, all previous connections to other metro
stations are assumed to be restored, unless these are in a state of
failure. As each time-step has a specific length of ∆t = (T/u),
the duration of the recovery process is r · (T/u). Again, this
recovery model corresponds to a one-step recovery profile and
as mentioned before, various alternative characteristic profiles
of recovery are possible as well. A repaired station and thus all
components of the station are assumed to be in a as-new original
condition after repair. This is an assumption for the sake of
demonstration, and deviating states are possible. After recovery,
the survival function of a metro station is time-zeroed, such that
the resulting failure rate per simulation step λs j (th) evolves over
time equivalent to that of a station in new condition.

7.2. Costs of Endowment Properties
The improvement of both endowment properties, “reliability

improvement” and “recovery improvement”, is inevitably asso-
ciated with costs. Again, exponential relationships between total
costs and improvements are assumed:

costrel =

2776∑
i=1

pricerel
(reli;ki) · 1.2

(reli−1), (29)

where reli is the reliability improvement value of component
i, ki its type and pricerel

(reli;ki)
an arbitrary common basic price.

Accordingly an exponential relationship is assumed for the total
cost associated with recovery improvement:

costrec =

306∑
j=1

pricerec
(rec j;b j) · 1.2

(rec j−1), (30)

where rec j is the recovery improvement value of station j, b j its
type and pricerec

(rec j;b j)
an arbitrary common basic price. The total

cost cost(A;z),(D;h) of an endowment is the sum of these costs:

cost(A;z),(D;h) = costrel + costrec. (31)

In practice, it is crucial to include the economic aspects of
failure and recovery processes in detail in the resilience assess-
ment. Mitigating resilience losses through system improvements
imposes direct costs on stakeholders, such as improving com-
ponent properties. Note, however, that for a comprehensive
analysis, it is important to also consider indirect costs to the
affected population and businesses, when the performance of a
key system declines, as stated in [28]. Further, it is reasonable
to incorporate the subjective preferences of stakeholders into
the resilience assessment, as suggested in [27]. These considera-
tions have the potential to significantly influence the outcome
of a resilience decision-making process. Therefore, they should
be integrated into the proposed methodology in future work by
including additional cost conditions and discount rates for the
corresponding deterioration and recovery sequences.

7.3. Scenario
In order to apply the resilience decision-making method

to the Berlin metro system illustrated in Fig. 10, the model
parameter and simulation parameter values, shown in Tab. 4,
are considered. The recovery improvement rec j is explored
over rec j ∈ {1, . . . , 10} ∀ j ∈ {1, . . . , 306}, but considered to be
equal for each station, regardless of the type b j. The reliability
improvement reli again is explored over reli ∈ {1, . . . , 10} ∀i ∈
{1, . . . , 2776} for ki ∈ {1, . . . , 4}.

In a pre-processing step, the survival signatures of all 306
metro stations are determined. As an example, Tab. 5 illustrates
the non-trivial survival signature values, i.e., Φ (l1, . . . , l4) , 0
and Φ (l1, . . . , l4) , 1, of station type 2 of the metro system.
Then, the set of all acceptable endowment configurations R(Y),
corresponding to a resilience value of at least Res = 0.99 over
the considered time period, is determined according to Algo-
rithm 4.3. Further, as any improvement of the system compo-
nents and stations is associated with costs, the most cost-efficient
acceptable endowment, denoted by the tuple (Â, D̂), is deter-
mined.

In Fig. 13 the results of the grid search algorithm are illus-
trated. It shows the accepted endowments contained in R(Y), i.e.
all combinations that lead to a satisfying resilience of the metro
system. It is clearly visible that type 1 components as well as
the recovery improvement of the metro stations have the greatest
influence and thus the highest importance for the metro system.
Only endowments with a reliability improvement of at least
reli = 8 for type 1 components and endowments with a recovery
improvement for all metro stations of at least rec j = 8 lead to a
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Table 4: Parameter values for the resilience decision-making method on the metro system of Berlin.

Parameter Scenario

Acceptance threshold α 0.99
Length of time step ∆t 0.05
Number of time steps u 200
Maximum time T 10
Shape parameter gamma distribution αi αi = 1.2 for ki = 2

αi = 2.6 for ki = 4
Maximum failure rate λi,max λi,max = 0.34 for ki = 1

λi,max = 0.43 for ki = 2
λi,max = 0.36 for ki = 3
λi,max = 0.66 for ki = 4

Failure rate reduction ∆λi ∆λi = 0.03 for ki = 1
∆λi = 0.04 for ki = 2
∆λi = 0.034 for ki = 3
∆λi = 0.051 for ki = 4

Reliability improvement reli reli ∈ {1, . . . , 10} for ki ∈ {1, . . . , 4}
Reliability improvement price pricerel

(reli;ki)
pricerel

(reli;1) = 100e
pricerel

(reli;2) = 200e
pricerel

(reli;3) = 200e
pricerel

(reli;4) = 400e
Maximum recovery time rmax 22
Recovery improvement rec j rec j ∈ {1, . . . , 10}
Recovery improvement price pricerec

(rec j;bi)
pricerec

(rec j;1) = 100e
pricerec

(rec j;2) = 200e
pricerec

(rec j;3) = 300e
pricerec

(rec j;4) = 400e
pricerec

(rec j;5) = 500e
pricerec

(rec j;6) = 600e
Sample size N 500
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Table 5: Non-trivial survival signature values of stations with b j = 2 of the
metro system, shown in Fig. 11.

l1 l2 l3 l4 Φ (l1, . . . , l4)
2 2 1 1 1/4
2 1 1 2 1/4
2 2 2 1 3/8
2 2 1 2 3/8
2 1 2 2 3/8
3 2 1 1 1/2
2 3 1 1 1/2
2 1 3 1 1/2
3 1 1 2 1/2
2 3 1 2 1/2
2 1 1 3 1/2
2 2 1 3 1/2
2 3 1 3 1/2
2 2 2 2 9/16
3 2 2 1 3/4
2 3 2 1 3/4
2 2 3 1 3/4
3 2 1 2 3/4
3 1 2 2 3/4
2 3 2 2 3/4
2 1 3 2 3/4
2 1 2 3 3/4
2 2 2 3 3/4
2 3 2 3 3/4
3 2 2 2 7/8
2 2 3 2 7/8
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Figure 13: The set of all accepted endowments R(Y) evaluated via the 5D
grid search algorithm for the Berlin metro system with explored reliability
improvement and recovery improvement values.

system resilience meeting the acceptance criterion. In addition,
type 2 components are of considerable relevance. Here, only
endowments with a reliability improvement of at least reli = 6
are acceptable. The reliability improvements of type 3 and 4
components, on the other hand, are of less significance. For both
types of components, there are numerous acceptable configura-
tions that include minimum reliability improvement values for
one of these types.

These results again prove to be plausible, as in the previous
case study, upon closer examination of the topological structures
of the metro system and its subsystems. Several U-Bahn and
S-Bahn lines start and end in long chains of directly intercon-
nected type 2 stations, see Fig. 10. The resilience analysis of the
Berlin metro system published in [20] revealed that especially an
interruption of these chains has a major negative impact on the
network efficiency and thus on the resilience of the metro system.
Accordingly, the importance of type 2 stations is particularly
high not only due to their multiplicity in the system, but due to
their topological contribution in terms of connectivity as well.
Consequently, components of this station type have a significant
impact on the resilience of the overall system. An examination
of the type 2 subsystem model, see Fig. 11, shows that type 1
components take on a predominant position. Once both type 1
components in this subsystem fail, the entire metro station fails.
No other components of a single type can cause this in station
type 2.

The significant influence of type 2 components can easily be
explained by examining the type 3 and 5 station systems, see
again Fig. 11. Of all stations, only here bottleneck positions
exist, where the failure of a single component interrupts the
functioning of the entire station. Both of these positions, in type
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Figure 14: Dominant Pareto front endowments of the 5D grid search algorithm
for the Berlin metro system with explored reliability improvement and recovery
improvement values and the most cost-efficient endowment (Â, D̂) is highlighted.

3 and type 5 stations, are occupied by type 2 components. Since
both station types have three and five direct connections to other
stations, they can be considered to be particularly interconnected
and thus of high relevance to network efficiency and thus of high
relevance to system resilience.

Type 3 and 4 components, on the other hand, do not occupy
any particularly significant positions in the stations’ systems.
This explains their low influence. The enormous influence of the
recovery improvement is intuitively explainable. As resilience
is established via the integral of the actual system performance,
each recovered metro station contributes directly and immedi-
ately to the network efficiency and thus to the resilience of the
system. Therefore, improvement of this property results in an
immediate and intuitive increase in resilience.

Assuming the arbitrary base prices in Tab. 4, the most cost-
efficient acceptable endowment (Â, D̂) results from a reliability
improvement configuration of reli = 10 for ki = 1, reli = 9 for
ki = 2, reli = 7 for ki = 3, reli = 2 for ki = 4 for components of
type 1 to 4 and a maximum recovery improvement configuration
of rec j = 10 for b j ∈ {1, 2, 3, 4}, i.e., all stations, regardless
of their type. In Fig. 14, the corresponding configuration is
highlighted. Due to the monotonicity of the input-output model
and the assumed monotonically increasing endowment costs,
only the endowment configurations on the dominant vertices
of the Pareto front have to be examined for the identification
of the most cost-efficient endowment. Therefore, only these
endowment configurations are shown in Fig. 14. The resulting
costs are given by Eq. (29, 30, 31) with cost(Â,D̂) = 1 700 829e+
361 185e = 2 062 014e.

Due to the utilization of the grid search algorithm, the com-
putational effort could be significantly reduced in this case study

as well – only 0.159% of all potential endowment configurations
had to be examined in order to assign a distinct state to each
configuration in the search space as accepted or not accepted.
By means of the novel approach, the metro system could be
reduced from its entirety of 2776 individual components to 306
components on the top-level with respect to the resilience analy-
sis, drastically reducing the computational effort. Nevertheless,
all 2776 components and their influence were considered. As
in the case study of the axial compressor, not only the most
cost-efficient endowment configuration can be identified but also
investigations on configurations that are below certain budget
limits can be conducted.

Note that, in this case study, as well as in the previous ones,
various complexity variations such as so-called cascading fail-
ures, see [69, 70, 71], are possible to implement due to the
time-step-accurate simulation. In the case of infrastructure sys-
tems, e.g., the increasingly frequent natural disasters can thus
be considered, that typically have an impact as local phenomena
and affect stations that are geographically close to each other. It
has already been shown in [20] that these can be taken into ac-
count in the resilience decision-making analysis of infrastructure
systems.

8. Conclusion and Outlook

This paper addresses the challenge of efficient multidimen-
sional decision-making for complex and substructured systems
between resilience-influencing parameters. By merging an ex-
tension of the resilience framework proposed in [20] with the
survival signature, an efficient and novel methodology is derived.
The approach allows for direct comparison of the impact of
heterogeneous controls on system resilience, such as failure pre-
vention and recovery improvement arrangements, both during
the design phase as well as during any phase in the life cycle of
already existing complex systems.

Due to the time-step accurate simulation of the system per-
formance on system level during the resilience analysis, com-
plexity extensions such as cascading failures and other depen-
dency structures can be considered without difficulties. The new
methodology has a high numerical efficiency. The majority of
the endowment properties examined affect the probability struc-
ture of the system components. The numerous changes in the
probability structure caused by constantly changing endowment
properties during the resilience analysis can be ideally covered
with minimal effort due to the separation property of the survival
signature.

The novel approach includes a substructuring approach for
large, complex systems. This and the integration of the survival
signature allow for the propagation of subsystem reliabilities
through any number of system levels to the top-level and lead
to a significant reduction of the computational load. This way,
and with the extension of the adapted systemic risk measure,
it is now possible to analyze systems with a large number of
components in terms of their resilience.

Monetary restrictions can easily be included in the analy-
sis. More precisely, not only the most cost-efficient, accepted
endowment is identified, but subsets of the set of all accepted

20



endowments below defined price levels can be formed. Budget
limits can thus be specifically taken into account in the decision-
making process.

The methodology is applied to three entirely distinct systems:
A functional model of a multistage high-speed axial compressor,
an arbitrary system consisting of numerous subsystems and com-
ponents and a comprehensive substructured model of the metro
system of Berlin, proofing wide and general applicability. All
results obtained are plausible with the corresponding assumed
model parameters. Note, that the approach can be utilized to
systems of any kind.

In the development of our proposed methodology, some sim-
plifying assumptions were made that do not accurately reflect
reality. However, the authors strongly believe that the presented
approach can be considered as a meaningful core development
that, for a reality-based application on highly multifactorial
systems, such as cyber-human-physical systems, should be com-
bined with future as well as existing developments to ensure an
efficient and comprehensive resilience decision-making analysis
taking into account all technical and monetary aspects of modern
socities.

Future work will address the incorporation of various ex-
isting extensions of the concept of survival signature, such as
accounting for uncertainty and propagating it toward imprecise
system resilience and considering multiple state or continuous
component functionality. Further, future work regarding multi-
dimensional parameter spaces must deal with the limitations in
computing time and storage capacity in order to enable applica-
tion to even higher-dimensional problems. Namely, techniques
such as advanced sampling methods, e.g. Subset Simulation,
see [72], must be investigated to further reduce numerical effort.
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