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ABSTRACT

This thesis studies the topology of the Julia set of transcendental entire functions
of disjoint type. It is known that the Julia set of such entire functions may
contain topological objects which could be considered “pathological”. In this
sense, we may ask how pathological the Julia set could become. Here, we prove
the existence of a transcendental entire function of disjoint type for which the
connected components of its Julia set together with infinity are pseudo-arcs.
Furthermore, the disjoint-type entire function can be chosen to have finite lower
order of growth.
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CHAPTER

ONE

INTRODUCTION

The present work belongs to the field of one-dimensional holomorphic dynamics,

which is the study of the behaviour under iteration of holomorphic self-maps

either in the complex plane C, or in the Riemann sphere Ĉ ..= C ∪ {∞}. This

research was originated by the pioneering work of Pierre Fatou and Gaston Julia

in the early 1920s. During their studies, they showed that either C or Ĉ may be

divided into two totally invariant sets: the set of stability, currently known as the

Fatou set –open, possibly empty– and its complement, called the Julia set –closed,

non-empty, perfect– which is the set where the iterates exhibit chaotic behaviour.

More precisely, the Fatou set F(f) of f is defined as the set of points z ∈ C
(respectively z ∈ Ĉ) such that {fn}n∈N form a normal family in a neighbourhood

of z, whereas the Julia set is J(f) ..= C \ F(f) (respectively J(f) = Ĉ \ F(f)).

Following a few decades when research output had been scarce, in the early

1980s the field underwent a resurgence. Some ground-breaking results in rational

dynamics were attained, such as Sullivan’s work [Sul85], showing that there are

no wandering components in the Fatou set of a rational map, and Douady and

Hubbard’s work on the Mandelbrot set. In transcendental dynamics, substantial

contributions were made by Baker, Misiurewicz and Devaney.
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2 Introduction

It is understood that chaotic dynamics often leads to a complicated topology.

For even one of the simplest families of holomorphic functions, for instance, the

quadratic family f(z) = z2 + c, for c ∈ C, it is known that the Julia set may

have a noticeably intricate topological structure. Then, our main motivation is

to understand this type of dynamics in the transcendental setting making use of

topological tools. In particular, we will make use of continuum theory, see §2.2 for

an introduction on this topic.

The Julia set of a polynomial can be totally disconnected; that is, its connected

components are points. Thus, a natural question is whether the Julia set of

transcendental entire functions always contains non-trivial continua, i.e., non-

empty compact connected metric spaces. This question was positively answered by

Baker in 1975 [Bak75, Corollary 1]. Therefore, a second question is the following,

what type of continua can arise as the Julia set of a transcendental entire function?

In 1981, Misiurewicz [Mis81] proved that the Julia set of ez is the whole plane

C, which topologically does not tell us much. Nonetheless, researchers started

to study the exponential family, i.e., Eλ : C → C, z 7→ λez for λ ∈ C \ {0}, for

different parameters. In 1984, Devaney and Krych [DK84] studied the map Eλ

with λ ∈ (0, 1/e), and showed that its Julia set J(Eλ) is a Cantor set of curves.

Moreover, in 1993, Devaney [Dev93] proved that the Julia set of Eλ with λ > 1/e

contains invariant indecomposable continua (see Figure 1.1), which are defined as

follows. A continuum is indecomposable if it cannot be written as the union of

two of its proper subcontinua (see Definition 2.2.7).

Figure 1.1: An illustration of an indecomposable continuum of J(Eλ) with λ > 1/e.
Picture, from [Rem10], provided by Rempe.
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Therefore, the topological dynamics on the Julia set is extremely rich, even

in the case of one of the simplest transcendental entire functions. In spite of

extensive investigations on the exponential family, which still continue to date,

some questions regarding the dynamics of this family remain open [SRG15]. Part

of this significant research can be found in [DT86, EL92, AO93, Rem03].

In the field of dynamical systems, it is common to first study hyperbolic systems,

since their understanding is usually a key step in building a more general theory.

In holomorphic dynamics, a polynomial p is said to be hyperbolic if it is expanding

with respect to a suitable conformal metric defined on a neighbourhood of its

compact Julia set J(p). By [DHL84, Theorem 1, page 21], it is equivalent to

say that every critical value of p belongs to the basin of an attracting periodic

cycle (see Definition 2.4.2, which is stated for transcendental maps, but it also

holds for polynomials). For transcendental entire functions, infinity is an essential

singularity and therefore their Julia sets are no longer compact. However, with

some slight modification on the notion of expansion, i.e. the hyperbolic metric

is defined in a punctured neighbourhood of infinity, it is possible to have an

analogous definition and characterization as in the polynomial case (see [RGS17,

Theorem and Definition 1.3]).

Let us now focus on hyperbolic transcendental dynamics. Let f be a transcen-

dental entire function. The set of singular values S(f) of f consists of the closure

of the union of the critical and asymptotic values of f (see §2.4). The function f

is hyperbolic if S(f) is bounded and every singular value tends to an attracting

periodic cycle of f under iteration (see Definition 2.4.1).

We now take an example and briefly discuss its Julia set. The function

f : z 7→ 4π
3
· (1− cos(z)) is hyperbolic (see Figure 1.2). It has a unique superat-

tracting fixed point at z = 0, which is in fact the only attracting cycle of f . Its

Julia set is locally connected [BFRG15, Corollary 1.9]. This implies that this Julia

set is topologically a Sierpiński carpet (see Figure 2.1(c) for an illustration of the

Sierpiński carpet). In addition, it is known that the Sierpiński carpet contains

a homeomorphic copy of any one (topological) dimensional planar continuum

3



4 Introduction

[Why57].

Figure 1.2: Illustration of the dynamical plane of the function 4π
3 · (1− cos(z)). The

blue region represents the Fatou set, while is drawn in grey the Julia set.
Picture provided by Rempe.

So, clearly in the class of hyperbolic entire functions we can still find an

abundance of continua. Let us now explore a certain subclass of hyperbolic entire

functions, that is, we will now consider the class of disjoint-type entire functions.

Definition 1.0.1. (Disjoint-type entire function).

A transcendental entire function f : C→ C is of disjoint type if there is a bounded

Jordan domain D such that S(f) ⊂ D and f(D) ⊂ D.

Equivalently, f is hyperbolic with connected Fatou set (see [BK07, Lemma 3.1]

and [Rem16, Definition 1.1]). Even though this class has the simplest combinatorial

structure, their properties allow us to build a better understanding of their

dynamics. Furthermore, these maps belong to the well-studied Eremenko–Lyubich

class B, which consists of all transcendental entire functions with bounded singular

set. Conversely, for any map f ∈ B, there exists a sufficiently small positive λ ∈ R
such that the function

fλ : z 7→ λf(z)
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5

is of disjoint type. If f ∈ B and additionally is hyperbolic, thus by [Rem09,

Theorem 5.2], the topological dynamics of f on J(f) can be described using the

topological dynamics of λf on J(λf). Further discussion on the importance of

this class can be found in [Rem16].

It is known that for a disjoint-type entire function f , its Julia set J(f) has

uncountably many connected components, each of which is closed and unbounded.

This motivates the introduction of the following definition.

Definition 1.0.2. (Julia continuum).

Let f be a transcendental entire function of disjoint type and let C be a component

of the Julia set J(f). We say that

Ĉ ..= C ∪ {∞}

is a Julia continuum of f .

Since C is a connected and unbounded set, when we add infinity, we obtain a

compact, connected set, and hence we have a continuum.

Let us now explore some examples. Consider the map Fλ : z 7→ λ sin(z), with

λ ∈ (0, 1) (see Figure 1.3). Note that Fλ is of disjoint type. Indeed, it has two

singular values ±λ (which are the critical values), it has a fixed point at z0 = 0

and all real starting values tend to z0. Thus Fλ(z) is hyperbolic, and its Fatou set

consists only of the immediate basin of attraction of z0 = 0. Hence it is of disjoint

type.

In 1926, Fatou [Fat26] studied this map and showed that J(Fλ) consists of

infinitely many curves which tend to infinity under iteration. This example shows

that the Julia continua of Fλ(z) are arcs, which are the simplest example of

non-degenerate continua.

As a second example of a Julia continuum, in [RRRS11, Theorem 8.4] the

authors showed the following:

5



6 Introduction

Figure 1.3: Illustration of the dynamical plane of the function Fλ(z). The Fatou set is
coloured in blue, while the Julia set is in grey.

Picture provided by Rempe.

Theorem 1.0.3. There exists a transcendental entire function of disjoint type

for which every Julia continuum contains no arcs.

This example may highlight how complicated the Julia continua could become.

So due to the complexity of this example and the existence of the aforementioned

indecomposable continua in certain Julia sets, we can ask whether the Julia

continua may be hereditarily indecomposable, which is defined as follows. A

continuum is said to be hereditarily indecomposable provided that each of its

subcontinua is indecomposable.

The notion of hereditarily indecomposable continua has been studied since

1920. In §1.1, we give a brief outline of the history and comments regarding

this set. A famous example of a hereditarily indecomposable continuum is the

pseudo-arc (see §2.2). So, in particular we may ask whether a Julia continuum of a

transcendental entire function of disjoint type may be a pseudo-arc. This question

was positively answered by Rempe [Rem16, Theorem 1.5]. More specifically, he

proved a more general result which is that any continuum that is homeomorphic to

an inverse limit of a self-map of the interval [0, 1] fixing the origin can be realised

6



7

as an invariant Julia continuum [Rem16, Theorem 2.7]. Furthermore, he proved

the following.

Theorem 1.0.4. There exists a transcendental entire function f of disjoint type

such that every Julia continuum of f is a pseudo-arc.

The goal of this thesis is to give a simpler construction and more direct proof

of Theorem 1.0.4. This will be achieved by following some ideas of a classical

result of Henderson [Hen64]. Moreover, due to the nature of our construction, we

will obtain control of the lower order of growth of the function, which is defined

as follows.

Definition 1.0.5. For a transcendental entire function f , the lower order of

growth of f is

lim inf
r→∞

log logM(r, f)

log r
,

where M(r, f) = max{|f(z)| : |z| = r}.

We furthermore obtain the following:

Theorem 1.0.6. There exists a transcendental entire function f of disjoint type

such that every Julia continuum of f is a pseudo-arc. Furthermore, f can be

chosen to have finite lower order of growth.

We note that the functions constructed in [Rem16] have infinite lower order of

growth. We now describe the strategy of our construction, and remark on some

similarities and differences between our construction and the ones from [RRRS11,

Theorem 1.1] and [Rem16].

From Definition 1.0.1, recall that D is a bounded Jordan domain, we have

that f : V → C \D is a covering map, where V ..= f−1(C \D). The connected

components of V are called tracts of f ; each such tract V of V is simply connected.

Then f : V → C\D is a universal covering. So the general strategy from [RRRS11,

Rem16] and this thesis starts by constructing a suitable simply connected domain

T with T ⊆ H and a conformal isomorphism,

F : T → H,

7



8 Introduction

where T is disjoint from all its 2πi-translates and H denotes the right half plane.

Then the map F is constructed so that

f : exp(T )→ {z ∈ C : |z| > 1}

defined by f(exp(z)) = exp(F (z)) is the universal covering map. For such maps,

we can define the Julia set by

J(f) ..= {z ∈ C : fn(z) ∈ V for all n ∈ N and |fn(z)| ≥ 1}.

Then, using an approximation result (see Theorem 3.1.7), we can obtain a disjoint-

type entire function g such that J(g) is homeomorphic to the Julia set J(f) of f .

Now, in [RRRS11, Theorem 1.1], the tract T is constructed by adding a long

sequence of “wiggles”. Roughly speaking, if we take two real parts r < R then

the tract increases up to R then it turns back to reach r and then it grows again.

More specifically, T traverses (r, R) three times (see Figure 1.4). The proof of

Theorem 1.0.4 in [Rem16] uses a much more complicated construction than this

one; we refer to [Rem16, Figure 9].

Figure 1.4: The tract used in [RRRS11, Theorem 1.1].
Figure provided by Rempe.

In contrast, our proof of Theorem 1.0.4 will use the same type of tracts as

in Figure 1.4. Naturally, the location of the wiggles will have to be chosen very

carefully.

8



1.1 Historical comments on the pseudo-arc 9

1.1 Historical comments on the pseudo-arc

Knaster [Kna22], in his PhD dissertation, constructed the first hereditarily inde-

composable continuum in 1922, giving a positive answer to a question posed by

himself and Kuratowski in 1921.

Previously, in 1920, Knaster and Kuratowski also asked whether a simple

closed curve is the only planar homogeneous continuum, meaning that for every

two points of the space there exists a homeomorphism from the space onto itself

which maps one of the points to the other. In 1924, Mazurkiewicz showed that

the circle is the only homogeneous locally connected planar continuum.

On the other hand, in 1921, Mazurkiewicz asked whether the arc is the only

finite-dimensional, non-degenerate hereditarily equivalent continuum (meaning

that it is homeomorphic to each of its non-degenerate subcontinua). This ques-

tion was formally answered by Moise [Moi48] in 1948, who constructed another

hereditarily equivalent continuum, which he called the pseudo-arc, due to this

property in common with the arc. More precisely, his construction was a family

of topologically equivalent continua in the plane having the property of being

hereditarily indecomposable and homeomorphic to each of their non-degenerate

subcontinua.

In the same year, 1948, Bing [Bin48], inspired by Moise’s continuum, also

constructed “another” hereditarily indecomposable continuum, which he proved

to be a homogeneous continuum. This result was very surprising, intriguing and

non-intuitive among the community. Since Bing’s construction was made using

chainable continua; we will give a brief introduction on this topic in §2.2. Further-

more, because of the complexity and technicality of his proof it was not accepted

immediately. In fact, in 1953 Kapuano [Kap53] claimed that the pseudo-arc is

not homogeneous. Later a flaw was found in his work, so he published an attempt

to correct it. The community seemed to favour Bing’s and Moise’s work over

Kapuano’s. However, Esenin-Volpin, a reviewer of Referativnyi Zhurnal wrote in

1955: “in the light of this, the problem of Knaster and Kuratowski remains open”.

9



10 Introduction

Due to this intriguing situation, Knaster in 1955 asked two of his students A.

Lelek and M. Rochowski, to review Bing’s and Kapuano’s work and verify which

was the correct argument. They did this hard work and concluded that Bing’s

proof was correct. Their work was handwritten in 60 detailed pages in Polish, and

it was never published [Cha98].

Lastly, in 1951, Bing [Bin51a] proved that all hereditarily indecomposable

arc-like continua are homeomorphic. Therefore, Knaster, Moise and Bing’s con-

structions are all homeomorphic, and we call any such continuum a pseudo-arc.

1.2 Structure of the thesis

Chapter 2 establishes the terminology and collects some background results that

we shall require throughout our work. In particular, we give an introduction to

continuum theory focusing on hereditarily indecomposable continua. Then we

introduce some tools from hyperbolic geometry needed to make estimates in the

right half plane. Later, we give a short background on holomorphic dynamics. In

the last section, we present some results on logarithmic coordinates. In Chapter 3,

we introduce the class of conformal isomorphism in which our construction takes

place. We also give sufficient conditions on a function in this class to ensure that

the Julia continuum is a pseudo-arc. In Chapter 4, we introduce a subclass with

certain geometric properties that allows us to have convergence in our tracts in

the sense of the Carathéodory kernel theorem. Chapter 5 is devoted to the proofs

of Theorem 1.0.4 and Theorem 1.0.6.

10



CHAPTER

TWO

PRELIMINARIES

In this chapter, we present some results and notation which are used throughout

the thesis. In §2.1, we introduce general notation. §2.2 presents a general intro-

duction to continuum theory, particularly the concepts of arc-like and hereditarily

indecomposable continua and some of their properties. §2.3 collects some basic

results on hyperbolic geometry. Next, in §2.4, we include general basic results on

holomorphic dynamics. We end in §2.5 by reviewing the logarithmic change of

coordinates, which is an important tool for studying functions in the class B of

transcendental entire functions.

2.1 Notation

Throughout the thesis, C denotes the complex plane, Ĉ denotes the Riemann

sphere, and

H = {z ∈ C : Re z > 0}

is the right half plane. A disc of radius r > 0 around a point z ∈ C is defined by

Dr(z) ..= {w ∈ C : |z − w| < r}.

11



12 Preliminaries

The unit disc centred at 0 is abbreviated as D and S1 = ∂D.

For two non-empty sets A,B ⊂ C, the Euclidean distance between A and B is

denoted by

dist(A,B) ..= inf{|z − w| : z ∈ A, w ∈ B}.

The diameter of A is given by

diam(A) = sup{|z − w| : z, w ∈ A}.

If A is a subset of C, int(A), A and ∂A denote the interior, the closure and the

boundary of A in C, respectively. The cardinality of a set A will be denoted by #A.

Lef f : C→ C be a transcendental entire function. For each n ≥ 1, we denote

by fn the n-th iterate of f , that is,

fn ..= f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

The Fatou set of f , denoted by F(f), is the largest open set where the family

{fn}n∈N is normal. The Julia set of f , denoted by J(f), is the complement in C
of F(f). Finally, we conclude any proof of a claim with the symbol 4, and the

rest of the proofs with the symbol �.

2.2 Introduction to continuum theory

In this section, we give a brief introduction to continuum theory. In particular,

we focus on results regarding heriditarily indecomposable continua, as well as the

notion of arc-like continua. For general texts in continuum theory, we refer to

[NJ92, Mac05].

Definition 2.2.1. (Continuum).

A continuum X is a non-empty compact connected metric space. We say that a

continuum is non-degenerate if it contains more than one point.

12



2.2 Introduction to continuum theory 13

(a) the arc (b) the circle

(d) an arc-like continuum(c) the Sierpinski carpet

Figure 2.1: Some examples of continua. In particular, Figures (a) and (d) are arc-like
continua, while (b) and (c) are not.

Before we introduce the arc-like notion, let us first start with the following

definition.

Definition 2.2.2. (Chainable continuum).

Let X be a continuum. A chain U in X is a finite sequence, U1, . . . , Un of open

subsets of X such that for all i, j ∈ {1, . . . , n},

Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1.

Each Uj is called a link of U; the mesh of U is

mesh(U) ..= max{diam(Uj) : 1 ≤ j ≤ n}.

Given ε > 0, U is said to be an ε-chain if mesh(U) < ε. We say that X is chainable

13



14 Preliminaries

if there exists an ε-chain covering X for each ε > 0.

Now we present a few examples of chainable continua. Let us start with the

arc [0, 1] which is clearly chainable (see Figure 2.2).

0 1

Figure 2.2: The arc [0, 1]. The intersection of the discs shown with the interval X = [0, 1]
form a chain covering X.

Let Y = {0}× [−1, 1]∪
{(
x, sin

(
1
x

))
∈ R2 : x ∈

(
0, 2

π

]}
. Y is called either the

topologist’s sine curve or the sin(1/x)-continuum. Note that Y is also chainable

(see Figure 2.3).

Figure 2.3: The sin(1/x)-continuum. The intersection of the discs with Y forms a chain
covering Y .

Chains (say in C) can also be used to construct chainable continua. Suppose

that we define a nested sequence of chains whose links are topological discs in the

plane, and whose mesh tends to 0. Then the union of the closures of the links

of each chain is a continuum, and their intersection is again a continuum by the

following elementary result.

Theorem 2.2.3. ([NJ92, Theorem 1.8]).

Let {Xi}∞i=1 be a sequence of non-degenerate continua such that Xi ⊃ Xi+1 for

14



2.2 Introduction to continuum theory 15

each i ∈ {1, 2, . . .}, and let

X =
∞⋂
i=1

Xi.

Then, X is a continuum.

An important class of one-dimensional continua is given by arc-like continua

(see Figure 2.1 (a) and (d)). There are several different equivalent definitions. We

now introduce the following notion.

Definition 2.2.4. (Arc-like continuum).

A continuum X is said to be arc-like if for every ε > 0, there exists a continuous

surjective function g : X → [0, 1] such that

diam(g−1(t)) < ε

for all t ∈ [0, 1]. Such g is called an ε-map.

Observation 2.2.5. Let ε > 0 and let g : X → [0, 1] be an ε-map. There

exists δ > 0 with the following property. If U ⊂ [0, 1] and diam(U) < δ, then

diam(g−1(U)) < ε.

Proof. Note that diam(U) = diam(U), then the statement will be proved for a

closed set. Let ε > 0 and suppose, by the way of contradiction, that for every

n ∈ N there is a closed subset Bn of Y such that

diam(Bn) <
1

n
and diam(g−1(Bn)) ≥ ε.

Since X is compact, we can get a subsequence {Bnk
}∞k=1 of {Bn}∞n=1 such that

{g−1(Bnk
)}∞k=1 converges to a closed subset K of X. Observe that diam(K) ≥ ε.

On the other hand, without loss of generality, we can assume that {Bnk
}∞k=1

converges to a closed subset B of Y . Since limn→∞ diam(Bn) = 0, we then obtain

that diam(B) = 0. This implies that there is y ∈ Y such that B = {y}. Therefore,

we have obtained that g(K) = {y} by continuity, and thus

diam(g−1(y)) ≥ diam(K) ≥ ε,

15



16 Preliminaries

which is a contradiction to the fact that g is a ε-map. Hence, the claim is

proved. �

As mentioned above, there are some equivalent definitions of arc-like. The

following result tells us that both classes stated before are equivalent.

Theorem 2.2.6. ([NJ92, Theorem 12.11]).

A continuum X is arc-like if and only if it is chainable.

Remark. Note that the proof that an arc-like continuum is chainable follows from

the definition and Observation 2.2.5.

Indeed, let ε > 0 and let g : X → [0, 1] be an ε-map. By Observation

2.2.5, there is δ > 0 such that for U ⊂ [0, 1] with diam(U) < δ, we have

that diam(g−1(U)) < ε. Let n ∈ N such that 1
n
< δ

2
. Then, we get that{

g−1
(
[0, 2

n

))
, g−1

((
1
n
, 3
n

))
, g−1

((
2
n
, 4
n

))
, . . . , g−1

((
n−3
n
, n−1

n

))
, g−1

((
n−2
n
, 1]
)}

is an

ε-chain of X covering X, and thus X is chainable as claimed.

We now introduce the notion of hereditarily indecomposable continua and give

a few examples, as well as some of their properties.

Definition 2.2.7. (Indecomposable continuum).

A continuum X is said to be decomposable if there are two proper subcontinua

A,B of X such that X = A ∪B. Otherwise, X is indecomposable.

Definition 2.2.8. (Hereditarily indecomposable continuum).

We say X is hereditarily decomposable (indecomposable) if each non-degenerate

subcontinuum of X is decomposable (indecomposable).

Before we present some examples of these concepts, we state the following

result which gives us a useful and basic property of a decomposable continuum.

Proposition 2.2.9. A continuum X is decomposable if and only if X contains a

proper subcontinuum with non-empty interior.

Proof. Suppose X is decomposable, then there are two proper subcontinua A and

B of X such that X = A ∪B. Note that X \A is non-empty and contained in B.

Hence, Int(B) 6= ∅.

16



2.2 Introduction to continuum theory 17

Now, assume A is a proper subcontinuum of X such that Int(A) 6= ∅. If X \A
is connected, this implies that X \ A is a continuum. Therefore, X = A∪ (X \ A).

Hence, X is decomposable.

Suppose X \ A is not connected. Then, there exist two non-empty disjoint

open sets U , V of X such that

X \ A = U ∪ V.

Then X \ (A ∪ U) = V ; this implies that A ∪ U is closed. Therefore A ∪ U
is compact. We now prove that A ∪ U is connected. Otherwise, by way of

contradiction, there exist two non-empty disjoint closed subsets W1, W2 of X such

that A ∪ U = W1 ∪W2. Since A is connected, we can assume that A ⊂ W1. This

implies that W2 ⊂ U , then W2 ∩ V = ∅. Thus,

X = W2 ∪ (W1 ∪ V ),

which is a contradiction, because W2 and (W1 ∪ V ) are disjoint closed subsets of

X. Hence, A ∪ U is connected. This means that, A ∪ U is a subcontinuum of

X. Likewise, A ∪ V is a subcontinuum of X. Therefore X = (A ∪ U) ∪ (A ∪ V ).

Hence, X is decomposable. �

Observe that examples in Figures 2.2, 2.3 are decomposable, in fact, they are

hereditarily decomposable. In the case of the arc, example in Figure 2.2, note

that all non-degenerate subcontinua are arcs, hence the continuum is hereditarily

decomposable. In the case of figure 2.3, X ..= sin(1/x)-continuum, we have two

types of non-degenerate subcontinua. Some subcontinua are arcs and others are

homeomorphic to X. Therefore X is hereditarily decomposable as well.

The Knaster buckethandle, K, is an example of an indecomposable continuum

(see Figure 2.4). It can be constructed as follows. Let us consider the Cantor set,

C, on the x-axis from 0 to 1, now the continuum consists of

1. Every semi-circle in R2 in the upper half plane, with center at the point

(1
2
, 0) and passing through a point of C.

17



18 Preliminaries

2. Every semi-circle in R2 in the lower half plane, which has, for some n ∈ N,

the center at the point ( 5
2·3n , 0) and passes through a point of the Cantor

set lying in the interval
[

2
3n
, 1

3n−1

]
.

Figure 2.4: Knaster buckethandle
Figure provided by Rempe.

Before we give a brief explanation of why K is indecomposable, first we say

that a composant, for some point p, of a continuum X is the set of all of points

x ∈ X such that there is a proper subcontinuum Y ⊂ X containing p and x. It

turns out that the only proper subcontinua of K are arcs, therefore the composants

are equal to the arc components. Furthermore, every arc in K has empty interior.

Hence K is indecomposable by Proposition 2.2.9. There are other techniques

to prove that K is indecomposable, these may be found in [Kur68, Remark of

Theorem 8] and [NJ92, Section 2.9] (this approach uses inverse limits).

We have presented examples of decomposable and indecomposable continua.

As we explained before, the examples in Figures 2.2 and 2.3 are also hereditarily de-

composable continua. As stated in the introduction, due to Bing’s characterization,

we use the following definition.

Definition 2.2.10. (Hereditarily indecomposable continuum).

A pseudo-arc is a hereditarily indecomposable arc-like continuum.

Since the pseudo-arc is arc-like, a common technique to construct it is by

embedding chainable continua via Theorem 2.2.3. We now briefly explain this

18



2.2 Introduction to continuum theory 19

construction. We do not attempt to give all details, we just want to emphasize

the complexity of this continuum and vaguely give an idea of its construction. We

present Bing’s description [Bin48].

A chain V is a refinement of a chain U if each link of V is contained in a link of

U. We say that a chain V = {V1, V2, . . . , Vm} is crooked in U = {U1, . . . , Un} if V

is a refinement of U and any subchain of V passing through at least 4 consecutive

links of U must follow a pattern like a ‘z’, that is, suppose we take 4 links on

U = {U1, . . . , U4}, then a subchain in V has to cross up to U3 then comes back to

U2 and then end in U4 (see Figure 2.5).

Figure 2.5: Illustration of the definition of crookedness.

More precisely, V = {V1, V2, . . . , Vn} is crooked in U = {U1, . . . , Um} if V is a

refinement of U. Further, if k, l ∈ {1, . . . ,m} with k + 3 ≤ l and i, j ∈ {1, . . . , n}
such that Vi ⊆ Uk and Vj ⊆ Ul, then there exist r, s ∈ {1, . . . , n} such that

Vr ⊆ Ul−1 and Vs ⊆ Uk+1 satisfying either i < r < s < j or j < s < r < i; see

Figure 2.6 for an ilustration with 5 links in U.

It is possible to construct a recursive sequence of open connected chains

U1,U2, . . . satisfying:

1. Un+1 is crooked in Un.

19



20 Preliminaries

Figure 2.6: Illustration of crookedness with 5 links.

2. diam(Ui) ≤ 1/2n for every Ui ∈ Un.

3. The first element of Un+1 is contained in the first element of Un, and the

last element of Un+1 is contained in the last element of Un.

Then, X ..=
⋂
j(
⋃

Uj) is an arc-like continuum, and it follows from the definition

of crookedness that it is hereditarily indecomposable. So X is a pseudo-arc.

For a more detailed introduction to these particular topics we refer to [Bin51a,

Bin51b] and to [Lew99] for a survey and further results in heriditarily indecom-

posable, arc-like continua.

2.3 Hyperbolic metric

A powerful tool commonly used in complex dynamics to obtain estimates in simply

connected domains is the hyperbolic distance. Here we give some results about

the hyperbolic geometry of plane domains which we shall require. A more detailed

discussion on this topic can be found in [BM07] and [KL07], for instance.

A model of the hyperbolic plane, commonly known as the Poincaré disc model,

20



2.3 Hyperbolic metric 21

is the unit disk D with the hyperbolic metric given by

ρD(z)|dz| = 2|dz|
1− |z|2

,

where ρD : D→ (0,∞), ρD(z)|dz| is called a conformal metric and ρD(z) = 2
1−|z|2

denotes the density of the hyperbolic metric.

For a simply connected domain X 6= C, the Riemann mapping theorem [BM07,

Theorem 6.1] states that there exists a conformal isomorphism from X onto D.

This allows us to transfer the hyperbolic metric of D to any simply connected

domain X. That is, we can define the hyperbolic metric of X as follows.

Definition 2.3.1. Let f : X → D be a conformal map, mapping X onto D, where

X is a simply connected domain. Then the density of the hyperbolic metric of X

is defined by

ρX(z) = ρD(f(z))|f ′(z)|.

Remark. ρX is independent of the choice of the conformal map f . Let us justify

this, suppose g : X → D is a conformal map. Then g = M ◦ f , where M is a

Möbius self-map of D. Since the hyperbolic metric ρD|dz| is invariant under M ,

i.e., ρD(z) = ρD(M(z))|M ′(z)|, hence we obtain

ρD(g(z))|g′(z)| = ρD(M(f(z)))|M ′(f(z))||f ′(z)|

=
ρD(f(z))

|M ′(f(z))|
|M ′(f(z))||f ′(z)|

= ρD(f(z))|f ′(z)|.

As an example of Definition 2.3.1, we compute the hyperbolic metric of the

right half plane H.

Example 2.3.2. (Hyperbolic metric of H).

To compute the hyperbolic metric of H, let φ : H→ D be a conformal map defined

21



22 Preliminaries

by φ(z) = 1−z
1+z

. Then, we have

ρH(z) = ρD(φ(z))|φ′(z)|

=
2|φ′(z)|

1− |φ(z)|2

=
4|1 + z|2

(|1 + z|2 − |1− z|2)|1 + z|2

=
4

(1 + Re z)2 − (Im z)2 − (1− Re z)2 + (Im z)2

=
1

Re z
.

(2.1)

Let us now introduce the notion of covering maps.

Definition 2.3.3. (Covering and universal covering maps).

Let X, Y ⊆ C be domains.

∗ A local homeomorphism ϕ : X → Y is called a covering if each y ∈ Y has a

connected neighbourhood V such that every connected component of ϕ−1(V )

is mapped by ϕ homeomorphically onto V .

∗ A covering map ϕ : X → Y is called universal if X is simply connected.

A domain U ⊂ C is called hyperbolic if the complement of U contains at

least two points. A generalization of the Riemann mapping theorem is the

Planar uniformization theorem [BM07, Theorem 10.2], which allows us to define

the hyperbolic metric also on a multiply connected domain, that is, if U is a

hyperbolic domain then there exists a holomorphic covering map ϕ : D→ U .

The following result shows us that the hyperbolic metric of D can be transferred

to any hyperbolic domain. A proof of this result can be found in [BM07, Theorem

10.3].

Theorem 2.3.4. Let U be a hyperbolic domain. Let ϕ : D→ U be a holomorphic

universal covering. Then there is a unique metric ρU(z)|dz| such that

ρD(z) = ρU(ϕ(z))|ϕ′(z)|.

22



2.3 Hyperbolic metric 23

Given z, w ∈ U we define the hyperbolic length of a piecewise smooth curve

γ ⊂ U by

`U(γ) =

∫
γ

ρU(z)|dz|

and we also define the hyperbolic distance between two points z, w ∈ U by

dU(z, w) = inf `U(γ),

where the infimum is taken over all piecewise smooth curves γ connecting z and

w in U .

Given a holomorphic function f : U → V between hyperbolic domains, we

denote the hyperbolic derivative of f with respect to the metrics in U and V by

||D f(z)||VU ..= |f ′(z)|ρV (f(z))

ρU(z)
.

If U ⊂ V , then let ι : U → V be the inclusion map, and we define

||D f(z)||VV =
1

||D ι||VU
||D f(z)||VU

= |f ′(z)|ρU(z)

ρV (z)

ρV (f(z))

ρU(z)

= |f ′(z)|ρV (f(z))

ρV (z)
.

and we abbreviate ||D f(z)||V ..= ||D f(z)||VV .

We will often make use of the following result, known as Pick’s theorem, which

provides us properties of the hyperbolic metric when a domain is mapped into

another. A proof of this can be found in [BM07, Theorem 10.5] or [Mil11, Theorem

2.11].

Theorem 2.3.5. (Pick’s theorem).

Let U and V be hyperbolic domains, and let f : U → V be a holomorphic function.

Then the following holds,
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24 Preliminaries

1. f does not increase the hyperbolic metric, i.e., for all z ∈ V ,

|f ′(z)|ρV (f(z)) ≤ ρU(z);

or, equivalently, ||D f(z)||VU ≤ 1.

2. For any z ∈ U , ||D f(z)||VU = 1 if and only if f is a covering map. In this

case, f is a local isometry.

3. If U ( V , then ρU(z) > ρV (z) for every z ∈ U .

There are few cases where we can compute the hyperbolic metric. The following

example will be frequently considered throughout this work. So let us compute

the hyperbolic metric of the strip S̃ of height 2π.

Example 2.3.6. (Hyperbolic metric of S̃).

The hyperbolic metric of S̃ ..= {z ∈ C : | Im(z)| < π} can be computed by using

the holomorphic covering map ψ : S̃ → H given by ψ(z) = ez/2. Then, by Pick’s

theorem 2.3.5 we obtain that

1 =
ρH(ψ(z))

ρS̃(z)
|ψ′(z)|

ρS̃(z) = ρH(ψ(z))|ψ′(z)|

=
|ez/2|

2 Re(ez/2)
.

Now, set z = x+ iy, so by rewriting ez/2 = ex/2 · eiy/2, we have

ρS̃ =
ex/2

2ex/2 · cos(y/2)
=

1

2 cos(Im z/2)
. (2.2)

It will be important to have estimates on the hyperbolic metric of a domain.

The following standard estimate on the hyperbolic density in a simply connected

domain is obtained from the Schwarz lemma and Koebe’s 1/4–theorem. See

[BM07, Theorems 8.2 and 8.6] or [Mil11, Corollary A.8] for more details.

Theorem 2.3.7. (Standard estimate on the hyperbolic density).
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2.4 Background on holomorphic dynamics 25

Let U ⊂ C be a simply connected domain. Then, for z ∈ U ,

1

2 dist(z, ∂U)
≤ ρU(z) ≤ 2

dist(z, ∂U)
. (2.3)

2.4 Background on holomorphic dynamics

This section deals with the most essential definitions and results in holomorphic

dynamics. For general texts in holomorphic dynamics we refer to [Mil11, CG13],

and for an introduction on the iteration of meromorphic and transcendental entire

functions we particularly refer to [Ber93, Sch10]. Additionally, since the main

functions considered in this thesis belongs to the Eremenko–Lyubich class, we

refer to [Six18] for a survey thereof.

Fix a transcendental entire function f : C → C. Recall that fn denotes the

n-th iteration of f , for each n ≥ 0.

Definition 2.4.1. (Periodic points and cycles)

A point z ∈ C is said to be periodic if there exists n ≥ 1 such that fn(z) = z.

The smallest n satisfying this property is called the period of z. A periodic point

of period one is called a fixed point. If z is a periodic point, then

{z, f(z), . . . , fn−1(z)}

is called the periodic cycle of z. A point z ∈ C is preperiodic if fn(z) is a periodic

point for some n ≥ 1, and we say that z is strictly preperiodic if it is preperiodic

but it is not periodic.

A significant part of the local behaviour near these points is determined by the

multiplier. The multiplier of a point z of period n is defined by µ(z) ..= (fn)′(z).

Furthermore, periodic points can be classified in terms of the multiplier as follows.

1. A periodic point is attracting if 0 ≤ |µ(z)| < 1.

2. A periodic point is repelling if |µ(z)| > 1.
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26 Preliminaries

3. A periodic point is indifferent if |µ(z)| = 1.

An attracting point z is called superattracting if µ(z) = 0. Since the multiplier of

an indifferent periodic point is of the form e2πia where 0 ≤ a < 1. We can classify

the point as a rationally indifferent point if a is rational and as an irrationally

indifferent point otherwise.

Definition 2.4.2. (Immediate attracting basin).

Let B ..= {z, f(z), . . . , f p−1(z)} be a periodic cycle of period p which contains

an attracting point z0. The basin of attraction A(B) of B is the open set

A(B) ..=
{
z ∈ C : fnp(z)→ w, for w ∈ B

}
. We say that the immediate attracting

basin is the union of connected components of A(B) containing the points of B.

We now introduce the concept of singular values.

Definition 2.4.3. (Singular values)

Let f be a transcendental entire function. A point c ∈ C is called a critical value

of f if there exists a point z ∈ C such that f ′(z) = 0 and f(z) = c. A point w ∈ C
is called an asymptotic value of f if there exits a curve γ : (0,∞)→ C such that

γ(t)→∞ as t→∞ but f(γ(t))→ w as t→∞. Denote CV (f) and AV (f) as

the set of all critical and of all asymptotic values, respectively. The singular set

of f , S(f), is,

S(f) ..= CV (f) ∪ AV (f).

Its elements are called singular values. Equivalently, S(f) is the smallest closed

set such that

f : C \ f−1(S(f))→ C \ S(f)

is a covering map.

Recall from Chapter 1, that the Fatou set of f is the set of all points that have a

neighbourhood in which {fn}n∈N forms a normal family, and its complement is the

Julia set J(f) ..= C \ F(f). The following result gathers some of the fundamental

properties of the Fatou and Julia sets of a transcendental entire function. A proof

of this may be found in [Ber93, Lemmas 1, 2 and 3 and Theorem 3].
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2.4 Background on holomorphic dynamics 27

We say that a set A is completely invariant if z ∈ A if and only if f(z) ∈ A.

A set X is perfect if it is closed, non-empty and has no isolated points.

Theorem 2.4.4. (Properties of transcendental entire functions).

Let f be a transcendental entire function. Then:

(i) F(f) = F(fn) and J(f) = J(fn) for all n ≥ 1.

(ii) F(f) and J(f) are completely invariant.

(iii) Either J(f) = C or Int(J(f)) = ∅.

(iv) J(f) is perfect.

Let us turn back our attention to singular values since they play an important

role in the dynamics of an entire function. Let us recall that the Eremenko–Lyubich

class is defined as follows,

B ..= {f : C→ C transcendental entire : S(f) is bounded}.

We also introduce the escaping set of a transcendental entire function,

I(f) ..=
{
z ∈ C : lim

n→∞
fn(z) =∞

}
.

Observe that I(fn) = I(f) for all n ≥ 1. Eremenko [Ere89] started the first

systematic study of the escaping set for transcendental entire functions. Part

of this study showed the following properties. The last statement of this result

comes from [EL92].

Theorem 2.4.5. (Properties of the escaping set).

If f is a transcendental entire function, then

J(f) = ∂I(f) and J(f) ∩ I(f) 6= ∅.

Furthermore, if f ∈ B, then J(f) = I(f).

Additionally, as already mentioned in the introduction, for a map f ∈ B, it is

possible to obtain a disjoint-type entire function. In order to prove this, we first
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28 Preliminaries

say that two functions f, g ∈ B are quasiconformal equivalent (near infinity) if

there exist quasiconformal maps ϕ, ψ : C→ C such that

ψ(f(z)) = g(ϕ(z))

for all z ∈ C (whenever |f(z)| or g(ϕ(z)) is large enough).

Observation 2.4.6. Let f ∈ B. Then for all λ ∈ C \ {0} with sufficiently small

modulus, the function g(z) ..= λf(z) is of disjoint type.

Proof. First, note that f and g are quasiconformal equivalent by taking ψ as the

identity map and ϕ(z) = z/λ. Now, since f ∈ B, we can choose R > 0 such

that {S(f), f(0), 0} ⊂ DR(0) For sufficiently small λ, λf(DR(0)) ⊂ DR(0). This

implies that for any such λ, g(DR(0)) ⊂ DR(0). Furthermore, it is not difficult to

see that S(g) = λS(f) ⊂ DR(0). Hence, g is of disjoint type. �

Lastly, note that by Theorem 2.4.4(ii), if U is a connected component of F(f),

then fn(U) is contained in a component of F(f). Thus, this allows us to classify

these components under their orbits.

Definition 2.4.7. (Fatou components).

Let U be a connected component of F(f). We say that U is periodic if, there

exists n ≥ 1 such that fn(U) ⊆ U . We call U preperiodic if fn(U) is periodic for

some n > 1. A component which is preperiodic but not periodic is called strictly

preperiodic. If U is not preperiodic, then U is called a wandering domain.

We now state the classification of periodic Fatou components for transcendental

entire functions, which is essentially due to Cremer [Cre32] and Fatou [Fat19].

For detailed information on the history, we refer to [Ber93].

Theorem 2.4.8. (Classification of periodic Fatou components).

Let f be a transcendental entire function and let U be a periodic Fatou component

of period p. Then one of the following holds:

(a) U contains an attracting periodic point z0. Then U is the immediate attract-

ing basin of z0.
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2.5 Logarithmic coordinates 29

(b) ∂U contains a periodic point z0 of period p and fnp(z)→ z0 as n→∞ for

all z ∈ U . Then (fp)′(z0) = 1 and we call U the immediate parabolic basin

or Leau domain.

(c) There is an analytic homeomorphism ψ : U → D such that ψ(fp(ψ−1(z))) =

e2πiaz for some a ∈ R \Q. In this case, U is called a Siegel disc.

(d) fnp(z)→∞ as n→∞ for z ∈ U . In this case, U is called a Baker domain.

Remark. Recall from Definition 3.1.1 that f is of disjoint type if there exists a

bounded Jordan domain D, such that S(f) ⊂ D and f(D) ⊂ D. First, let us note

that Baker domains lie in I(f), then it follows from Theorem 2.4.5 that f has no

Baker domains. Additionally, it can be deduced from [Ber93, Theorem 7] that f

has no parabolic basin or Siegel discs.

Now, if U is a Fatou component of f , then by Montel’s theorem D ⊂ U . Since

any cycle of an immediate attracting basin contains at least one singular value,

then U is the unique immediate attracting basin of f , by [Ber93, Theorem 7].

2.5 Logarithmic coordinates

A common technique for studying the dynamics in the Eremenko-Lyubich class B

is the logarithmic change of coordinates. This was first used in dynamics in [EL92].

For a more detailed overview of this technique we refer to [RRRS11, Section 2],

[Rem16, Section 3] or [Six18, Section 5].

Definition 2.5.1. (The logarithmic transform).

For a transcendental entire function f ∈ B, fix a disk DR
..= DR(0) ⊂ C with

R > 0, such that S(f) ⊆ DR and additionally f(0) ∈ DR. Consider W ..= C \DR

and define

V ..= f−1(W ).

The connected components V of V are called the tracts of f . By construction, the

restriction of f to each connected component V of V, f : V → W is a universal

covering.
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Let H ..= exp−1(W ) and let T ..= exp−1(V). Since f is a universal covering

on every connected component of V and 0 /∈ W ⊃ V, then we can lift to a map

F : T → H such that the following diagram commutes:

V W

T H

exp

f

exp

F

We call F a logarithmic transform of f , and it can be chosen to be 2πi-periodic.

Furthermore, we call each connected component of T a logarithmic tract of F .

By construction, we have the following properties.

Definition 2.5.2. (Properties of a logarithmic transform).

(a) H is a 2πi-periodic unbounded Jordan domain which contains a right half

plane.

(b) T 6= ∅ is 2πi-periodic, and the real part of points in T is bounded from

below, but unbounded from above.

(c) Each tract T ∈ T is an unbounded Jordan domain that is disjoint from all

its 2πi-translates. The restriction F |T : T → H is a conformal isomorphism

whose continuous extension to the closure of T in Ĉ satisfies F (∞) = ∞,

and we denote the inverse of FT by F−1
T .

(d) The components of T have pairwise disjoint closures and accumulate only

at ∞; i.e., if (zn)n∈N is a sequence of points of T, all belonging to different

components of T, then zn →∞ as n→∞.
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Remark 2.5.3. The class Blog is defined to be those functions

F : T → H

satisfying properties (a)–(d), independently of whether they arise from an entire

function f ∈ B or not. We also denote B
p
log the class of functions F ∈ Blog such

that F is 2πi-periodic. See [Rem16, Definition 3.3].

By the Carathéodory–Torhorst’s theorem [Pom92, Theorem 2.1], for every

T ∈ T the function F |T in (c) can be continuously extended to the boundary of

T . Furthermore, since T is a Jordan domain, this extension is a homeomorphism.

In particular, F |T extends continuously to a homeomorphism between T and H,

and combining this with (d) implies that F extends continuously to T. Then we

denote the Julia set of F

J(F ) ..= {z ∈ T : F n(z) ∈ T for alln ≥ 0},

to be the set of points whose iterates are always contained in T. We say that a

logarithmic transform F is of disjoint type if the boundaries of the tracts of F do

not intersect the boundary of H, that is T ⊂ H. If F ∈ Blog is of disjoint type, in

particular, the Julia set can be defined by

J(F ) =
⋂
n≥0

F−n(T). (2.4)

Remark 2.5.4. If an entire function f ∈ B has a logarithmic transform F which is

of disjoint type, then f itself is of disjoint type, and so

exp(J(F )) = J(f). (2.5)

The notion of external address for functions in the class B
p
log provides us a

partition of J(F ), that is, this concept allows to assign symbolic dynamics as

follows.

Definition 2.5.5. (External addresses).

Let F ∈ B
p
log be of disjoint type. An (infinite) external address is a sequence
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s = T0T1T2 . . . of tracts of F . The external address s is bounded if it contains only

finitely many different tracts.

For each external address s, we then denote

Js(F ) ..= {z ∈ J(F ) : F n(z) ∈ Tn for all n ≥ 0}

= {z ∈ J(F ) : F n(z) ∈ Tn for all n ≥ 0},

and

Ĵs(F ) ..= Js(F ) ∪ {∞}.

The external address s is said to be admissible if Js(F ) is non-empty. Then, in

this case Ĵs(F ) is called a Julia continuum of F .

For n ≥ 0, we denote

F n
s

..= F |Tn−1 ◦ · · · ◦ F |T0 and F−ns
..= (F n

s )−1.

Remark 2.5.6. In the case where F ∈ B
p
log is of disjoint type, we can write Ĵs(F )

as a nested intersection of continua, that is,

Ĵs(F ) =
∞⋂
n=0

(F−ns (T n) ∪ {∞}) (2.6)

Therefore, Ĵs(F ) is a continuum by Theorem 2.2.3. Moreover, note that s1 6= s2,

implies that for some n ≥ 0, the sets Ĵs1(F ) and Ĵs2(F ) belong to different

connected components of F−n(T) (recall that T denotes the domain of F , see

Remark 2.5.3). Hence, every connected component of J(F ) is contained in a single

Julia continuum.

From the above remark, we can consider connected components of the Julia

set of F which remain in the same single Julia continuum. So we conclude this

section with the following concept.

Definition 2.5.7. (Invariant Julia continuum in class B
p
log).

Let F ∈ B
p
log and denote s ..= T0T0 . . .. An invariant Julia continuum is given by

Ĵs(F ) = Js(F ) ∪ {∞} (2.7)
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2.5 Logarithmic coordinates 33

where Js(F ) ..= {z ∈ J(F ) : F n(z) ∈ T 0 for all n ≥ 0}.
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CHAPTER

THREE

DISJOINT-TYPE MODELS AND

REALISATION OF PSEUDO-ARCS

Recall that given a disjoint-type entire function f , we say that a Julia continuum

of f is a connected component of its Julia set, J(f), together with infinity.

In this chapter, we show how a pseudo-arc can arise as a Julia continuum of

a transcendental entire function f . In order to construct such a function f , we

will make use of a technique introduced by Bishop [Bis15] and results of Rempe

[Rem09]. That is, we shall first construct a suitable “disjoint-type model” F (see

Definition 3.1.1) with specific geometric conditions, then approximate this map

by an entire function (see Theorem 3.1.7 for a precise statement).

In the first section, we introduce a class H of “model functions” and show

that any function in this class can be approximated by a transcendental entire

function in a way that preserves the topology of Julia continua. In the following

section, inspired by a result of Henderson (compare [Hen64, Lemma 1]), we give a

sufficient condition for the Julia continuum of a function F ∈ H to be a pseudo-arc.
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36 Disjoint-type models and realisation of pseudo-arcs

3.1 Disjoint-type models

We start by introducing a suitable class H of conformal isomorphisms, which will

be the model functions in our construction. Then, we look at the basic properties

of this class.

Definition 3.1.1. (The class H).

Let T denote the set of all simply connected domains

T ⊂ S := {x+ iy : x > 4, |y| < π}

with 5 ∈ T , and the following properties:

(i) T is unbounded,

(ii) ∂T is locally connected,

(iii) there is only one access to infinity in T ; i.e., any two curves in T connecting

the same finite endpoint to ∞ are homotopic.

If T ∈ T, then there exists a unique conformal isomorphism F : T → H with

F (5) = 5 and such that F extends continuously to ∞ with F (∞) = ∞. The

family H consists of all such functions F .

Remark 3.1.2. We now justify the existence of this function. By the Riemann

mapping theorem, there is a conformal isomorphism F : T → H satisfying F (5) = 5.

This map is unique up to post-compositions with Möbius transformations of H
fixing 5.

By the Carathéodory–Torhorst theorem [Pom92, Theorem 2.1], F−1 : H→ T

extends continuously to H ∪ {∞}. Then (iii) implies that there exists exactly one

point ς ∈ ∂H∪ {∞} such that F−1(ς) =∞. By post-composing F with a Möbius

transformation, we may assume that ς = ∞, then this makes F unique. Since

H ∪ {∞} is compact, then F extends continuously to ∞.

The following result provides uniform expansion for functions in the class H.
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3.1 Disjoint-type models 37

Lemma 3.1.3. (Expansion of F ).

Let F ∈ H. Then |F ′(z)| ≥ ReF (z)
2

for all z ∈ T . In particular, if ReF (z) ≥ 4,

then

|F ′(z)| ≥ 2. (3.1)

Proof. Note that T ⊆ S ⊆ S̃ ..= {x+ iy : |y| < π}. Then by Pick’s theorem 2.3.5,

ρT ≥ ρS̃, which implies

ρT (z) ≥ ρS̃(z) =
1

2 cos(Im z/2)
≥ 1

2
for all z ∈ T. (3.2)

See Example 2.3.6 for the explicit expression of ρS̃(z). On the other hand, F is a

conformal isomorphism, and hence a local isometry between T and H with their

respective hyperbolic metrics. Thus, again by Pick’s theorem 2.3.5, we have

1 = ||DF (z)||HT = |F ′(z)| · ρH(F (z))

ρT (z)
.

Since ρH(F (z)) = 1
ReF (z)

(see Example 2.3.2), we get

|F ′(z)| = ρT (z)

ρH(F (z))
≥ ReF (z)

2
.

Hence, the claim holds. �

Definition 3.1.4. (Julia continuum of F ).

Let F ∈ H. We denote the Julia set of F by

J(F ) ..= {z ∈ T : F n(z) ∈ T for all n ≥ 0} =
⋂
n≥0

F−n(T )

=
⋂
n≥0

F−n(T ).

We also denote Ĵ(F ) = J(F )∪{∞}, which will be called the Julia continuum of F .

Remark. In the definition of the Julia set of F , note that the last equality follows

from the fact that F−(n+1)(T ) ⊂ F−n(T ) ⊂ F−n(T ) for n ≥ 0.
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38 Disjoint-type models and realisation of pseudo-arcs

Additionally, observe that F−n(T )∪{∞} is compact and connected for each n ≥ 0.

Therefore, Ĵ(F ) is a continuum by Theorem 2.2.3.

As a consequence of the expansion property (3.1) of F , two different points in

the Julia continuum must separate under iteration eventually.

Lemma 3.1.5. (Expansion along orbits).

Let F ∈ H and n ≥ 0. Suppose z, w ∈ F−n(T ) and min{ReF n(z),ReF n(w)} ≥ 4.

Then

|F n(z)− F n(w)| ≥ 2n · |z − w|. (3.3)

Proof. For n = 1, let γ be a straight line joining F (z) and F (w), i.e., γ : [0, 1]→ H,

defined by γ(t) = t · F (z) + (1− t) · F (w).

Since {x+ iy : x ≥ 4} is convex, then Re v ≥ 4, for all v ∈ γ. Consider the curve

γ̃ ..= F−1◦γ, and note that γ̃ joins z and w. By (3.1), we have that |(F−1)′(v)| ≤ 1
2
.

Consequently,

|z − w| ≤ `(γ̃) =

∫ 1

0

|γ̃′(t)|dt =

∫ 1

0

|(F−1)′(γ(t))||γ′(t)|dt

≤ 1

2

∫ 1

0

|γ′(t)|dt =
1

2
|F (z)− F (w)|.

Thus, (3.3) is proved for n = 1. Since z, w ∈ F−k(T ), for each k ≥ 0, the points

F k(z), F k(w) belong to T . Hence, we can inductively apply the same argument

as before and (3.3) follows. �

Observation 3.1.6. (Periodic extension of F ).

Let F ∈ H and denote H1
..= {a + ib : a > 1}. We define F̃ : T̃ → H1 where

T̃ = F−1(H1). We also define

T̂ =
⋃
m∈Z

{z + 2πim : z ∈ T̃},

and F̂ : T̂ → H1 by F̂ (z+ 2πim) ..= F̃ (z) for all z ∈ T̃ , m ∈ Z. Then, F̂ ∈ B
p
log in

the sense of Remark 2.5.3. Further, F̂ will be referred to as the periodic extension

of F .
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3.1 Disjoint-type models 39

Moreover, Ĵ(F ) is an invariant Julia continuum of F̂ in the sense of Definition

2.5.7.

Proof. First, since 5 ∈ T , we have T̃ 6= ∅, and thus T̂ 6= ∅. By construction, T̃ is

an unbounded Jordan domain,; this implies that every component T̂ of T̂ is an

unbounded Jordan domain. Observe that T̂ and H are 2πi-periodic by definition.

Furthermore, since T̃ ⊂ T , then for any connected component T̂ ∈ T̂, we have

that

F̂ |T̂ : T̂ → H1

is a conformal isomorphism. Lastly, let (wn)n∈N be a sequence of points of T̂

all belonging to different components, so we can write wn = zn + 2πimn, then

for every n ∈ N, wn is in a different component of T̂. Therefore, wn → ∞ as

n→∞. �

The following result will allow us to deduce Theorems 1.0.4 and 1.0.6 from

corresponding results for functions in H. It states that we can pass from a

conformal isomorphism F ∈ H to an entire function g ∈ B such that both

functions have the same topological structure on their Julia sets. This result

follows from [Rem16, Theorem 3.5] which is a consequence of [Bis15, Theorem

1.2]. Still, for completeness, we include a version adapted to our setting.

Theorem 3.1.7. (Realisation of disjoint-type models).

Suppose F ∈ H. Then there exists a disjoint-type function g ∈ B such that

every Julia continuum of g is homeomorphic to a Julia continuum of the periodic

extension F̂ of F .

In addition, the function g is uniformly bounded on C \ exp(T \ F−1(Re z ≤ ρ))

for ρ > 0.

Proof. Let T̃ = F−1(H1), and let F̃ : T̃ → H1. Now, consider the periodic

extension F̂ of F̃ , then F̂ ∈ B
p
log by Observation 3.1.6.

Now, we define Θ given by Θ(exp z) = exp F̃ (z) for all z ∈ T̃ . Additionally,

let V be the image under the exponential of T̃ , that is V = exp(T̃ ) = exp(T̂).

Furthermore, F̂ also satisfies

Θ(exp z) = exp F̂ (z) for all z ∈ T̂.
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40 Disjoint-type models and realisation of pseudo-arcs

In particular, note that T̃ maps one to one to V under exp. That is, V has one

preimage under the exponential map on each of the logarithmic tracts {T̃ + 2πiZ},
see Figure 3.1.

Figure 3.1: Illustration of the proof

The pair (V,Θ) is a model in the sense of [Bis15, page 2]. Following the

terminology from the aforementioned paper, for ρ > 0 we define

V (ρ) ..= {z ∈ V : Re Θ(z) > eρ},

V (δ, ρ) ..= {z ∈ V : eδ < Re Θ(z) < eρ}.

So by [Bis15, Theorem 1.1], there is a function f ∈ B and a quasiconformal

homeomorphism ψ : C→ C such that

Θ = f ◦ ψ on V (2). (3.4)

Furthermore, the quasiconformal dilatation of the map ψ is supported on the

set V (δ, ρ), and f is bounded on C \ ψ(V (2)). By Observation 2.4.6 we get that
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3.2 Sufficient conditions for Julia continua to be pseudo-arcs 41

g ..= λf is of disjoint type for sufficiently small λ. So, if we take an affine map

φ : C→ C given by φ(z) = λz, then from (3.4) we obtain

φ(Θ(z)) = g(ψ(z))

whenever exp(z) ∈ ψ(V (2)) = T \F−1(Re z ≤ 2). Thus, by the above and [Rem09,

Theorem 3.5], g and Θ are quasiconformal conjugate on a neighborhood of their

Julia sets. More precisely, there is a quasiconformal map ϑ : C→ C such that

ϑ ◦Θ = g ◦ ϑ

on an open set that contains both J(g) and J(Θ). So, now let Ĉ = C ∪ {∞} be a

Julia continuum of F̂ , then, by the above, we have

ϑ(φ(exp(C))) ∪ {∞}

is a Julia continuum of g. Therefore, ϑ(φ(exp J(F̂ ))) ∪ {∞} is the Julia continua

of Ĵ(g). Hence every Julia continuum of g is homeomorphic to a Julia continuum

of F̂ . Since f is bounded and g = λf is of disjoint type, thus g is uniformly

bounded on C \ ψ(V (2)). �

3.2 Sufficient conditions for Julia continua to be

pseudo-arcs

In this section, we develop some geometric conditions on a function F ∈ H that

ensure that Ĵ(F ) is a pseudo-arc. We start by introducing a function of one

real variable associated to a function F ∈ H; this function will encapsulate the

essential mapping behaviour of F .

Definition 3.2.1. (One-dimensional projection).

Let F ∈ H. The one-dimensional projection of F is the map ϕ : [4,∞]→ [4,∞]

given by

ϕ(t) ..= ReF−1(t).
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42 Disjoint-type models and realisation of pseudo-arcs

Lemma 3.2.2. (Properties of ϕ).

Let F ∈ H. Then the one-dimensional projection ϕ has the following properties:

(i) |ϕ(t)− ϕ(s)| ≤ |t−s|
2

whenever t, s ≥ 4.

(ii) ϕ(t) < t whenever t > 5, and furthermore, if t ∈ [4, 5] then ϕ(t) < 6.

(iii) ϕ(t) ≤ 5 + 2(log t− log 5) for all t ≥ 5.

(iv) ϕ(t) < t− 1 for t ≥ 7 and ϕ(t) < t
2

for t ≥ 15.

Proof. Let t, s ≥ 4 be such that t ≥ s, then by Lemma 3.1.3 |(F−1)′(x)| ≤ 1
2

for

all x ∈ [s, t]. Then we obtain

|ϕ(t)− ϕ(s)| = |ReF−1(t)− ReF−1(s)|

≤ |F−1(t)− F−1(s)|

≤ |t− s|
2

.

Hence (i) holds.

Recall that F (5) = 5 by definition, and since F is a conformal isomorphism,

then we have F−1(5) = 5. Now, if t ≥ 5 and by applying (i), we then obtain

|ϕ(t) − 5| ≤ |t−5|
2

. So, in particular, ϕ(t) − 5 ≤ t−5
2

, which implies ϕ(t) ≤ t+5
2

.

Hence ϕ(t) < t.

Now, if |t−5| ≤ 1 and by the previous part, we have |ϕ(t)−5| ≤ (t−5)/2 ≤ 1/2.

Therefore, ϕ(t) < 6. This proves (ii).

Since T ⊂ S̃ = {x+ iy : |y| < π}, then by (2.2) we have that ρT (z) ≥ 1/2 for

all z ∈ T . Let t ≥ 5, then we obtain

|F−1(t)− 5| ≤ 2 distT (F−1(t), 5) = 2 distH(t, 5) = 2(log t− log 5);

this implies that

ϕ(t) ≤ 5 + |F−1(t)− 5| ≤ 5 + 2(log t− log 5).

Hence, (iii) is satisfied.
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3.2 Sufficient conditions for Julia continua to be pseudo-arcs 43

Let us set g(t) = 5 + 2(log t − log 5) for t ≥ 5. Observe that g(5) = 5,

and furthermore g(t) < t for all t > 5. Thus, by (iii), ϕ(t) < g(t) < t. By

this inequality, it is enough to show that g(t) < t − 1 for t ≥ 7. First, note

that the functions g(t) and t − 1 are monotonically increasing real functions.

Then, 5 + 2(log t − log 5) < t − 1, which implies that log(t2/25) < t − 6, then

t2/25 < exp(t − 6). Therefore, for t ≥ 7 we get that g(t) < t − 1, and hence

ϕ(t) < t− 1.

Analogously, we can show that ϕ(t) < t/2 for t ≥ 15. That is, we now want

to check that g(t) < t/2 for t ≥ 15. This implies that 5 + 2(log t− log 5) < t/2,

then log(t2/25) < (t− 10)/2, so we obtain t2/25 < exp((t− 10)/2). Note that if

t = 15, then the inequality t2/25 < exp(t − 10/2) holds. Since again both g(t)

and t/2 are monotonically increasing real functions, ϕ(t) < g(t) < t/2 for t ≥ 15,

and thus (iv) is proved. �

The following result will tell us about the relationship between F−1(z) and

ϕ(Re z) for points z which are not necessarily on the real line.

Lemma 3.2.3. (Relationship between F−1(z) and ϕ(Re z)).

Let F ∈ H and let z ∈ H be such that Re z ≥ 4 and | Im z| ≤ π. Then

|ReF−1(z)− ϕ(Re z)| ≤ 2.

Proof. By assumption and Example 2.3.2, we have

distH(z,Re z) ≤ | Im z|
|Re z|

≤ π

4
< 1.

Recall that ρT (w) ≥ 1/2 for all w ∈ T (see equation (2.2)). Then we have

|ReF−1(z)− ϕ(Re z)| ≤ |F−1(z)− F−1(Re z)| ≤ 2 distT (F−1(z), F−1(Re z)).

Since F is a conformal isomorphism, and thus by Pick’s theorem 2.3.5, F is a

local isometry between T and H, we get

2 distT (F−1(z), F−1(Re z)) = 2 distH(z,Re z) ≤ 2.
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44 Disjoint-type models and realisation of pseudo-arcs

Hence, |ReF−1(z)− ϕ(Re z)| ≤ 2 as claimed. �

Next, in the following result, we see the relation between the iterate on the

one-dimensional projection and the one-dimensional projection of the iterate for a

given point in the tract T .

Lemma 3.2.4. (Relationship between ϕn−m(ReF n(z)) and ReFm(z)).

Let F ∈ H, let n ∈ N and let z0 ∈ H be such that Re z0 ≥ 4. Set zm = Fm(z0)

for m ≥ 0. If 0 ≤ m ≤ n and | Im zm| ≤ π for m = 0, . . . , n, then

|ϕn−m(Re zn)− Re zm| ≤ 4. (3.5)

Proof. Fix z0 and n ∈ N, we prove (3.5) by induction over n−m. Observe that

the case n = m is trivial. Set rm ..= ϕn−m(Re zn), for m = 0, . . . , n. Now suppose

that (3.5) holds for m ∈ {1, . . . , n}, and our goal is to prove it for m− 1. We have

|rm−1 − ϕ(Re zm)| = |ϕ(rm)− ϕ(Re zm)| ≤ 2 (3.6)

by the inductive hypothesis and Lemma 3.2.2(i). Further, we have that | Im zm| ≤ π

by assumption. Then by applying Lemma 3.2.3, we obtain

|ϕ(Re zm)− Re zm−1| ≤ 2. (3.7)

Therefore, by combining (3.6) and (3.7), we have

|rm−1 − Re zm−1| ≤ |rm−1 − ϕ(Re zm)|+ |ϕ(Re zm)− Re zm−1| ≤ 4.

Hence, the claim holds for m− 1 and the proof is complete. �

Definition 3.2.5. (Quadruple).

A quadruple is an increasing four-tuple of real numbers contained in [9,∞). We

denote such a quadruple as Q = [A,B,C,D]. Since A < B < C < D, we also

define the size of a quadruple as follows:

|Q| = min(A− 5, B − A,C −B,D − C).

44



3.2 Sufficient conditions for Julia continua to be pseudo-arcs 45

Additionally, when we refer to the interval of the quadruple, it will be written

as [A,D].

We now introduce the following definition which will be a key property in

order to obtain a pseudo-arc.

Definition 3.2.6. (Interval mapped crookedly).

Let F ∈ H, let J be an interval and let Q = [A,B,C,D] be a quadruple. We

say that J is mapped crookedly over Q by ϕk for k ≥ 1 if ϕk(J) ⊃ [A,D], and

furthermore the convex hull of J ∩ϕ−k(B) intersects the convex hull of J ∩ϕ−k(C)

(see Figure 3.2).

Figure 3.2: Illustration of J mapped crookedly over Q by ϕk.

Remark. The second condition means that either there are two points of J∩ϕ−k(B)

surrounding a point of J ∩ ϕ−k(C), or the other way around.

We are now ready to state and prove the main result of this chapter which

gives sufficient conditions for a Julia continuum to be a pseudo-arc.

Theorem 3.2.7. (Realisation of pseudo-arcs).

Let F ∈ H. Suppose there is a constant K > 0 such that the following property

holds for all integer quadruples Q = [A,B,C,D] with |Q| ≥ K.

There exists a number k0 = k0(Q) ∈ N, such that for every k ≥ k0 and every

compact interval J ⊂ [6,∞) with ϕk(J) ⊇ [A,D], we have that J is mapped

crookedly over Q by ϕk.

Then Ĵ(F ) is a pseudo-arc.
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46 Disjoint-type models and realisation of pseudo-arcs

Proof. Let F̂ be the periodic extension of F . Note that Ĵ(F ) is an invariant Julia

continuum of F̂ by Observation 3.1.6.

Suppose, by way of contradiction, that Ĵ(F ) is not a pseudo-arc. Note that

every Julia continuum of F̂ is arc-like by [Rem16, Proposition 7.6] and, in partic-

ular, Ĵ(F̂ ) is arc-like as well; thus Ĵ(F ) is also arc-like . Hence, by definition, Ĵ(F )

is not hereditarily indecomposable. This implies that, there is a decomposable

subcontinuum W of Ĵ(F ). Then, W can be written as the union of C0 and C1,

each of which is a proper subcontinuum of W. In particular, neither C0 * C1 nor

C1 * C0. For j ∈ {0, 1}, we denote

Cjn
..= F n(Cj) and Wn

..= C0
n ∪ C1

n.

By assumption, C0,C1 ⊂ Ĵ(F ). Then we have Cjn ⊂ T for j ∈ {0, 1}. Let z0, z1

be two points such that zj ∈ Cj \ (C1−j ∪ {∞}) for j ∈ {0, 1}. Let us now choose

a positive number ε such that ε < min{dist(z0,C1), dist(z1,C0)}, and note that

ε > 0 because C0,C1 are proper subcontinua. This implies that

Dε(zj) ∩ C1−j = ∅ (3.8)

for j ∈ {0, 1}. Now, we fix n sufficiently large such that 2n > 2π+9+3K
ε

and define

zjn = F n(zj). First, note that by Lemma 3.1.5, we obtain

D2nε(z
j
n) ∩ C1−j

n = ∅. (3.9)

Furthermore, the disc in (3.9) contains a straight line segment of length larger

than 4π, and thus it separates the strip S in two parts one to the left and one to

the right of zjn.

Let j ∈ {0, 1} be such that Re zjn < Re z1−j
n . We define an integer quadruple

Q = [A,B,C,D] as follows:

A ..= dRe zjn + 4 +Ke; B ..= A+K; D ..= bRe z1−j
n − 4c; C ..= D −K.
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3.2 Sufficient conditions for Julia continua to be pseudo-arcs 47

First, by the choice of n, we have

Re zjn + 9 + 3K ≤ ReF n(z), (3.10)

for all z ∈ C1−j; this means that C1−j
n is to the right of Re zjn + 9 + 3K. In

particular, we have that

Re zjn + 9 + 3K ≤ Re z1−j
n

and thus |Q| ≥ K. Moreover, from (3.10), we also have that

B + 4 < Re zjn + 9 + 3K ≤ Rew,

for every w ∈ C1−j
n . Similarly, Cjn is to the left of Re z1−j

n − 9 − 3K, and in

particular, all of points in Cjn have real part less than C − 4.

Let k0 = k0(Q) ∈ N be as in the hypothesis, and we define k = n + k0. By

Lemma 3.2.4 and the choice of A and D, we get

ϕk0(Re zjk) ≤ Re zjn + 4 ≤ A and ϕk0(Re z1−j
k ) ≥ Re z1−j

n − 4 ≥ D.

Then, if J is the interval bounded by Re zjk and Re z1−j
k , this implies that

ϕk0(J) ⊃ [A,D]. By assumption, J is mapped crookedly over Q by ϕk0 , that is,

there is a point of ϕ−k0(B) ∩ J between two points of ϕ−k0(C) ∩ J , or vice versa.

More precisely, let us assume the following; there are ξ1, ξ2, ξ3 ∈ J such that

Re zjk ≤ ξ1 < ξ2 < ξ3 ≤ Re z1−j
k ,

ϕk0(ξ1) = ϕk0(ξ3) = B and ϕk0(ξ2) = C (the opposite case is analogous).

Since zjk, z
1−j
k ∈ Wk, and Wk is connected, there are ξ̃1, ξ̃3 ∈ Wk such that

Re ξ̃1 = ξ1 and Re ξ̃3 = ξ3 (see Figure 3.3). Now, let z1 and z3 be their preimages

under F k0 : Wn →Wk, respectively. By Lemma 3.2.4, we have

Re z1,Re z3 ≤ B + 4.

Thus, z1, z3 ∈ Cjn, and hence ξ̃1, ξ̃3 ∈ C
j
k. Since C

j
k is a continuum, there is ξ̃2 ∈ C

j
k
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48 Disjoint-type models and realisation of pseudo-arcs

Figure 3.3: Illustration of the proof. Note that in the second level we have that
ϕk0(J) ⊃ [A,D] and J is mapped crookedly by assumption.

such that Re ξ̃2 = ξ2. However, the point z2 ∈ Cjn with F k0(z2) = ξ̃2 satisfies

Re z2 ≥ C − 4,

by Lemma 3.2.4. Thus, this gives us the desired contradiction, since Cjn is to the

left of C−4 and so z2 cannot both be in the continuum Cjn and have Re z2 ≥ C−4.

Therefore, any subcontinuum W of Ĵ(F ) is indecomposable. Hence Ĵ(F ) is

hereditarily indecomposable. �
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CHAPTER

FOUR

GEOMETRY AND CONVERGENCE ON

THE TRACTS

The first section of this chapter discusses the shape and geometric properties

of the tracts used in the main construction. We start by introducing a suitable

subclass Hν ⊂ H of conformal isomorphisms. This subclass will be defined by

those tracts with a geometrical property called Euclidean bounded decorations,

then we establish some conditions on functions in H to be in Hν . Additionally,

we introduce another subclass K of H that consists of functions F ∈ H whose

tracts T have a specific form, tending to ∞ through a sequence of “wiggles”(see

Definition 4.1.5). Then we show some properties of this subclass. In particular,

we prove that the class K is contained in the class of Hν for a universal constant ν.

In the following section, we focus on the class K and show that this class has

key properties of the one-dimensional projection ϕ of F which will be preserved

under approximation. We start by defining that functions in the class K are

(N,Γ)-close. Next, we show that this definition gives us convergence in the sense

of the Carathéodory kernel theorem. Finally, we conclude with an approximation

result for functions that are (N,Γ)-close.
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50 Geometry and convergence on the tracts

4.1 Wiggles and a geometric condition

Definition 4.1.1. (Euclidean bounded decorations and class Hν).

Let F : T → H be in the class H. We say that F has Euclidean bounded decorations

if there is a constant ν > 0 such that

diam(F−1
(
{ζ ∈ H : |ζ| = R})

)
≤ ν

for all R ≥ 0.

We denote by Hν the class of all functions F ∈ H that satisfy the Euclidean

bounded decorations condition for the constant ν.

Remark. For R > 0, the set F−1(ζ ∈ H : |ζ| = R) is a hyperbolic geodesic of T

that is perpendicular to F−1((0,∞)). We call these geodesics “vertical” geodesics.

In order to verify the bounded decoration property, we will make use of the

following result which is used to prove the Gehring–Hayman theorem [Pom92,

Theorem 4.20].

Lemma 4.1.2. ([Pom92, Lemma 4.21]).

There is a universal constant K > 0 with the following property.

Let f : D → C be a conformal map. Let −1 ≤ z1 < z2 ≤ 1 and assume that

dD(z1, z2) ≥ 1, where dD is the hyperbolic metric of D. For j ∈ {1, 2}, let Lj be the

hyperbolic line through zj orthogonal to R if |zj| < 1, and let Lj = {zj} otherwise.

Then, for every curve γ from L1 to L2,

diam(f(S)) ≤ K · diam(f(γ)),

where S = (z1, z2).

In the following result we estimate the Euclidean diameter (denoted by diam)

of hyperbolic geodesics in H under F−1.

Proposition 4.1.3. (Euclidean bounded decorations for translated points).

Let C > 0. Then there exists a constant ν > 0 with the following property.

50



4.1 Wiggles and a geometric condition 51

Suppose F ∈ H and θ ∈ R. Suppose that for every z ∈ ∂H, there is a curve

αz ⊆ H connecting z to iθ + [0,∞) such that

diam
(
F−1(αz)

)
≤ C.

Then, diam({F−1(z) : |z − iθ| = R}) ≤ ν for all R ≥ 0.

Proof. Let F ∈ H and let R ≥ 0. We consider the curves in H perpendicular to

iθ + [0,∞), that is,

β+ ..= {ζ ∈ H : |ζ − iθ| = R, Im ζ > θ},

β− ..= {ζ ∈ H : |ζ − iθ| = R, Im ζ < θ}.

Let z ∈ ∂H be such that |z − iθ| = R. If Im z ≥ θ, then there is a curve αz+

connecting z to iθ + [0,∞) satisfying that

diam
(
F−1(αz+)

)
≤ C

by assumption. Likewise, if Im z < θ, then there is a curve αz− having the same

property (see Figure 4.1).

Figure 4.1: Illustration of the setting, in blue are the semi-circles β+ and β− and
α+
z = αz is in pink.
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52 Geometry and convergence on the tracts

By Lemma 4.1.2, there is a universal constant K such that

diam(F−1(β+)) ≤ K · diam(F−1(α))

for any curve α connecting i(R + θ) to iθ + [0,∞). Then, take α to be the curve

αz+ . Thus, we have

diam(F−1(β+)) ≤ K · C.

The case for β− is analogous. Hence, we set ν ..= 2 ·K ·C and the claim follows. �

In the following result we set conditions on the class H to belong to the class

Hν0 for some ν0 > 0.

Proposition 4.1.4. (Condition on functions in H to be in Hν0).

For every C1 > 0, there exists a constant ν0 > 0 satisfying the following.

Let F ∈ H, and suppose that there is θ ∈ R with the following properties.

(i) There is a curve β connecting 5 to iθ in H such that

diam(F−1(β)) ≤ C1.

(ii) For every z ∈ ∂H, there is a curve γz connecting z to iθ + [0,∞) such that

diam(F−1(γz)) ≤ C1.

Then F ∈ Hν0.

Proof. Let F ∈ H, and take θ ∈ R as in the statement of the proposition. The idea

of the proof is to apply first Proposition 4.1.3 to the hypothesis of the statement

to see that every point in the boundary of H can be connected to the real line by

a curve whose image under F−1 has Euclidean diameter at most C1. Then, we

obtain the conclusion from the same previous proposition for hyperbolic geodesics

perpendicular to [0,∞), since we have connected any point in ∂H with the real
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4.1 Wiggles and a geometric condition 53

line; that is, the function F has Euclidean bounded decorations and we are done.

So this will be achieved by the following claim.

Claim 1. There exists C2 > 0, depending only on C1, such that every w ∈ ∂H
can be connected to [0,∞) by a curve αw such that

diam(F−1(αw)) ≤ C2.

Proof of Claim. Let us suppose that θ > 0; the case θ < 0 is analogous.

Let w ∈ ∂H; note that if w ∈ i(−∞, 0], then by property (ii) of the assumption,

the curve γw must intersect [0,∞), since γw connects w to iθ + [0,∞). We can

then take αw to be the sub-curve of γw which ends at the real line and we are

done.

We now assume that w ∈ i[0,∞). First, let us note that by Proposition 4.1.3,

and using the second assumption (ii) of the hypothesis, there is a constant ν > 0,

depending only on C1, such that any geodesic α̃ in H perpendicular to iθ + [0,∞)

satisfies that

diam(F−1(α̃)) ≤ ν.

Let α̃ be the geodesic in H perpendicular to iθ + (0,∞) containing w. Now,

we consider two sub-cases. If Imw ≥ 2θ, this implies that

α̃ ∩ [0,∞) 6= ∅

and we let αw be a sub-curve of α̃ connecting w to [0,∞).

Otherwise, the geodesic α̃ separates iθ from [0,∞), and hence it must intersect

β. So, we can take a point p ∈ β ∩ α̃. Then consider the sub-curve α̃1 of α̃

connecting w to p, together with the sub-curve β̃ of β connecting p to 5, and set

αw ..= α̃1 ∪ β̃,

(see Figure 4.2). So by construction, we have

diam(F−1(αw)) ≤ C1 + ν.
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54 Geometry and convergence on the tracts

1

Figure 4.2: Illustration of the geodesics α̃, the geodesics in blue represent those with
Im z ≥ 2θ, the ones in green otherwise. The red curve is the sub-curve αw when

0 < Imw < 2θ.

In either case, we have shown that diam(F−1(αw)) ≤ C1 + ν =.. C2. Hence,

the proof of the Claim 1 is complete. 4

This completes the proof of Proposition 4.1.4. �

In view of Theorem 3.2.7, our goal is to construct a function F ∈ H which

satisfies its hypothesis. In order to achieve this, we begin with the notion of

wiggles. In a rough sense, we start with the strip S and we inductively add a

sequence of wiggles to the tract over increasing real parts. So, let us start with

the following definition.

Definition 4.1.5. (Wiggles and class K).

Let {rj}Nj=0 and {Rj}Nj=0 be sequences of real numbers, with N ≤ ∞, such that

r0 > 6, rj > Rj−1 + 1 and Rj > rj + 2,
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4.1 Wiggles and a geometric condition 55

for all j < N , and by convention R−1 = 5. Define a tract T as follows (see Figure

4.3):

T ..={x+ iy : x > 4, |y| < π}\⋃
0≤j<N

({
x+ iy : x = rj, −π < y ≤ π

3

}
∪
{
x+ iy : rj ≤ x ≤ Rj − 1, y =

π

3

}
∪
{
x+ iy : x = Rj,

−π
3
≤ y < π

}
∪
{
x+ iy : rj + 1 ≤ x ≤ Rj, y =

−π
3

})
,

and we say that T has N wiggles. It will be also written as F has N wiggles.

4 5

Figure 4.3: Illustration of the tract T of a function F ∈ K.

In addition, we denote by K the set of functions F ∈ H such that the tract

of F is of the above form. For F ∈ K, we write rj(F ), Rj(F ) and N(F ) for the

numbers rj, Rj and N appearing in the definition of T .

Notation 4.1.6. Given different elements F, Fj, F̃ ∈ K, their one-dimensional

projections will be always denoted by ϕ, ϕj, ϕ̃ respectively.

Next, we introduce the notion of wiggles as a set.

Definition 4.1.7. Let F ∈ K have N wiggles. We say that a wiggle (set) is

denoted as follows:

Wj(F ) ..=
{
ζ ∈ T : rj < Re ζ < Rj and Im ζ <

π

3

}
(4.1)

for all 0 ≤ j < N .
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56 Geometry and convergence on the tracts

In the following result we apply Proposition 4.1.4 to show that the class K

satisfies the Euclidean bounded decorations condition.

Proposition 4.1.8. (Euclidean bounded decorations in K).

There exists a universal constant ν0 > 0 such that K ⊂ Hν0.

Proof. Let F ∈ K and let T be the tract of F . First, let us observe that the set

∂T \ {4} has two connectected components which are written as follows:

∂T+ ..={4 + iy | 0 < y ≤ π} ∪ {x+ iπ | x ≥ 4}⋃
0≤j<N

({Rj + iy | − π/3 ≤ y ≤ π} ∪ {x− iπ/3 | rj + 1 ≤ x ≤ Rj}),

∂T− ..={4 + iy | − π ≤ y < 0} ∪ {x− iπ | x ≥ 4}⋃
0≤j<N

({rj + iy | − π ≤ y ≤ π/3} ∪ {x+ iπ/3 | rj ≤ x ≤ Rj − 1}).

These components will be referred as the upper and lower boundaries of T

respectively. The sets ∂T+ and ∂T− are semi-open, connected curves. Moreover,

those curves do not intersect. This implies that there is a unique point θ0 ∈ R
such that F−1(iθ0) = 4.

Recall that the idea of the proof is to apply Proposition 4.1.4, that is, we want

to show that there are certain curves β and γz in H such that diamF−1(β) and

diamF−1(γz) for z ∈ ∂H are small. However, in this case we do the opposite,

we construct curves with small diameter in T , then we define β and γz as the

images under F of these curves and verify the hypotheses of the aforementioned

proposition.

So, note that the curve β ..= F ([4, 5]) connects iθ0 to F (5) = 5 in H. On

the other hand, by the shape of the tract T , we have that every w ∈ T can be

connected to the boundaries ∂T+ and ∂T− by either a straight line segment of

length at most 2π, or a horizontal segment of length at most 1 (at the bends of

the wiggles). Observe that at least one of these segments intersect the geodesic

α ..= F−1((iθ0 + (0,∞))). In particular, for z′ ∈ ∂T+ there is a segment γ′z′

connecting z′ with ∂T− of length at most 2π. Thus, γ′z′ intersects α. Now, let

z = F (z′) ∈ ∂H, and γz ..= F (γ′z′). So, we set C ..= 2π + 1 and therefore the
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4.1 Wiggles and a geometric condition 57

hypotheses hold. Hence F ∈ Hν0 and the proof is complete. �

We shall now obtain uniform bounds for the growth of functions in the class

K (depending on the sequences (rj(F )) and (Rj(F ))).

Proposition 4.1.9. (Growth of functions in class K).

There exits a constant Λ > 0 such that the following holds:

Suppose F ∈ K, and z ∈ T with ReF (z) ≥ 4. If z belongs neither to the middle

nor the bottom of any wiggle, i.e., if z /∈ Wj(F ) for all 0 ≤ j < N (see Definition

4.1.7), then

Re z

Λ
≤ log |F (z)| ≤ Λ Re z.

If z ∈ Wj(F ), then

Rj

Λ
≤ log |F (z)| ≤ ΛRj.

Proof. First, note that there is an arc α in T connecting 5 and ∞, and it remains

at distance at least 1/2 from ∂T , which is defined as follows, (see Figure 4.4).

α ..=

[
5, r0 −

1

2

]
∪

⋃
0≤j≤N(F )

((
rj −

1

2
+ i(0, 2π/3]

)
∪
((

rj −
1

2
, Rj −

1

2

]
+ 2πi/3

)

∪
(
Rj −

1

2
+ i[0, 2π/3)

)
∪
[
rj +

1

2
, Rj −

1

2

)
∪
(
rj +

1

2
+ i[−2π/3, 0)

)
∪
((

rj +
1

2
, Rj +

1

2

]
− 2πi/3

)
∪
(
Rj +

1

2
+ i(−2π/3, 0]

)
∪
[
Rj +

1

2
, rj+1 −

1

2

])
.

Here we use the convention that rN(F )+1 =∞, if N(F ) <∞.

Let w ∈ α. Denote by αw the part of the arc α connecting 5 with w. Now, we

want to estimate the Euclidean length `(αw).

Then, let us first assume that w /∈ Wj(F ) for every j. Let j < N(F ) be maximal

such that Rew > Rj. Further, observe that Rj ≥ 3j + 8 by construction (if no
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58 Geometry and convergence on the tracts

Figure 4.4: The arc α stays at distance at least 1
2 from ∂T .

such j exists, take j = −1). We then have

`(αw) ≤ Rew − 5 + π +
∑

0≤k≤j

2(π +Rk − rk − 1)

≤ 3 Rew + (2j + 1)π < 3 Rew +Rjπ < (3 + π) Rew.

In the other case where w ∈ Wj(F ), we have αw ⊆ αw̃, where w̃ ..= Rj − 2πi/3,

and thus

`(αw) ≤ `(αw̃) ≤ (3 + π) · Re w̃ = (3 + π) ·Rj.

On the other hand, note that any curve connecting 5 with w ∈ T must have

Euclidean length at least Rew − 5. Further, if w ∈ Wj(F ), then such a curve

must connect 5 with some point at real part Rj − 1, and thus the length should

be at least Rj − 6.

Now, let z ∈ T be as in the statement of the proposition, and let

γ ..= F−1
(
{u ∈ H : |u| = |F (z)|}

)
be the vertical geodesic containing z, and set z̃ ..= F−1(|F (z)|), then z̃ ∈ γ. By

Proposition 4.1.8, the Euclidean diameter of γ is uniformly bounded by ν0. Define

R ..=

{
Re z if z /∈ Wj(F ) for all j,

Rj if z ∈ Wj(F ).
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4.2 Convergence on the tracts 59

For u ∈ α, it follows from the standard estimate (2.3) that ρT (u) ≤ 2
dist(u,∂T )

≤ 4.

Further, by (2.2) we have ρT (u) ≥ 1/2.

If |F (z)| ≥ 5, then by the above, γ separates 5 from ∞, so it intersects α.

Then

1

2
(R− ν0 − 5) ≤ distT (5, γ) ≤ 4(3 + π) · (R + ν0) ≤ 4(3 + π + ν0) ·R. (4.2)

Since F is a local isometry between T and H, we have

distT (5, γ) = distT (5, z̃) = distH(5, |F (z)|) = log
|F (z)|

5
.

Then, the claim follows when R > 2(ν0 + 5). If 4 ≤ |F (z)| ≤ 5, then

distT (5, γ) ≤ log(5/4), so the inequality also holds in this case.

In order to obtain a precise Λ, we have to ensure that (4.2) holds for smaller R.

Recall that R ≥ 4 by assumption, then 4 ≤ R ≤ 2(ν0 + 5). Further, ReF (z) ≥ 4,

so, in particular, we have |F (z)| ≥ 4. Then, by the above, we have

|F (z)| ≥ 4 · R

2(ν0 + 5)
.

On the other inequality, set Λ′ ..= 4(3 + π + ν0), this implies that

|F (z)| ≤ Λ′ · 2(ν0 + 5) ≤ Λ′ · 2(ν0 + 5) · R
4
.

Therefore, if we take Λ ..= Λ′

2
· (ν0 + 5), the claim follows and the proof is complete.

�

Remark. The key fact in Proposition 4.1.9 is that Λ is independent of F (and z),

so that we have uniform bound on the growth of a function F ∈ K.

4.2 Convergence on the tracts

As we mentioned before, the position of the wiggles (rn, Rn) in our example will

be determined inductively. An important property is that if F ∈ K has N wiggles,

and the next wiggle (rN , RN ) is chosen sufficiently far to the right, then the inverse
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60 Geometry and convergence on the tracts

of the next function F̃ will be close to F−1, at least up to the (N + 1)-th wiggle.

More precisely, let us first introduce the following notion. Recall that N(F ) is the

number of wiggles of the tract T of F .

Definition 4.2.1. (Functions that are (N,Γ)-close).

Let F ∈ K have N < ∞ wiggles and let Γ be a positive number. We say that

F̃ : T̃ → H is (N,Γ)-close to F if the following hold:

(i) F̃ has more wiggles than F , that is, N(F̃ ) > N ,

(ii) rn(F̃ ) = rn(F ) and Rn(F̃ ) = Rn(F ) for 0 ≤ n < N ,

(iii) rN(F̃ ) ≥ Γ.

Remark 4.2.2. From the above definition, observe that (ii) can be rewritten as

follows:

T ∩ {Re z < Γ} = T̃ ∩ {Re z < Γ} .

As already mentioned, the constant Λ from Proposition 4.1.9 does not depend

on the function F ∈ K. Thus, as a consequence of the aforementioned result, we

have the following property for functions in K that are sufficiently close.

Proposition 4.2.3. (Points to the left of Γ).

Let F ∈ K have N wiggles. Let K ≥ 4 and let n0 ≥ 0. There exists Γ > RN−1(F )

with the following property.

Suppose F̃ ∈ K is (N,Γ)-close to F , x ∈ [4,∞) and, ϕ̃n(x) ≤ K for some

n ≤ n0, where ϕ̃ is the one-dimensional projection of F̃ . Then x ≤ Γ.

Proof. Without loss of generality, we assume that K ≥ RN−1(F ). Let Λ be the

constant from Proposition 4.1.9 and define

Ψ(t) ..= exp(Λ · t) for t > 0.

Let us now set Γ ..= Ψn0(K), where Ψn0 denotes the n0-th iterate of Ψ. Let

F̃ ∈ K, let n and x be as in the statement of the proposition, and we additionally

set tk ..= ϕ̃n−k(x).

Claim 1. tk ≤ Ψk(K), for k = 0, . . . , n.
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Proof of Claim. The proof will be given by induction over k. Observe that

t0 = ϕ̃n(x) ≤ K by assumption, thus the claim is proved for k = 0. Now, assume

the claim holds for tk, k < n. Set z ..= F̃−1(tk+1), then Re z = Re F̃−1(tk+1) =

ϕ̃(tk+1) = tk. In particular, by the induction hypothesis, we get

Re z ≤ Ψk(K) ≤ Γ.

This implies that z is either not in a wiggle, or it is in one of the first N wiggles

of T̃ . So, by Proposition 4.1.9, we have

log |F̃ (z)| ≤ Λ ·max(Re z,RN−1(F )) ≤ Λ ·Ψk(K),

and this implies that, tk+1 = F̃ (z) ≤ exp(Λ · Ψk(K)) = Ψk+1(K). Hence, the

claim holds for k + 1. 4

Since x = tn for k = n, this implies that

x ≤ Ψn(K) ≤ Ψn0(K) ≤ Γ

by Claim 1. Hence, the claim holds and the proof is complete. �

Before we show that Definition 4.2.1 is in the sense of the Carathéodory kernel,

we first state the following definition and the Carathéodory kernel theorem. Then

we introduce the notion of harmonic measure.

Definition 4.2.4. (Carathéodory kernel convergence, [Pom92, Section 1.4]).

Let w0 ∈ C. Suppose Un is a sequence of simply connected domains satisfying

w0 ∈ Un for all n ∈ N. We say that

Un → U as n→∞ with respect to w0

in the sense of kernel convergence, and we write (Un, w0)→ (U,w0), if:

1. Either U = {w0}, or U 6= C is a domain containing w0 with the following

property: For all compact sets K ⊂ U , there exists N ∈ N such that for all

n ≥ N , K ⊂ Un.
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62 Geometry and convergence on the tracts

2. For all w ∈ ∂U , there exists a sequence (wn)n∈N in ∂Un such that wn → w

as n→∞.

Theorem 4.2.5. (Carathéodory kernel theorem, [Pom92, Theorem 1.8]).

Let Un be a sequence of simply connected domains and let fn : D → Un be a

sequence of conformal maps with fn(0) = w0 and f ′n(0) > 0. If U = {w0} let

f(z) ≡ w0, otherwise let f : D → U be the conformal map with f(0) = w0 and

f ′(0) > 0. Then the following are equivalent:

1. fn converges locally uniformly to f in D as n→∞.

2. (Un, w0)→ (U,w0) as n→∞.

As mentioned above, we now define the harmonic measure and some of its

properties that we might need for following result. For further details in this topic

we refer to [GM05].

Definition 4.2.6. Let Ω ⊆ C be a simply connected domain whose boundary

consists of finitely many Jordan curves. Let E ⊆ ∂Ω be such that E ′, the boundary

of E with respect to ∂Ω, is null with respect to Ω. We set

U(z0) ..=

{
1 if z0 ∈ E,
0 if z0 ∈ ∂Ω \ E.

Then U is continuous at each point of ∂Ω \ E ′, and thus there is a unique

function ω(z0, E,Ω) that is harmonic and bounded in Ω and such that

lim
z→z0

ω(z, E,Ω) = U(z0), for z0 ∈ ∂Ω \ E ′.

The function ω(z, E,Ω) is called the harmonic measure of E with respect to

Ω at z. The harmonic measure can also be seen as the probability of a random

walk starting at z hitting the boundary of Ω in the set E.

Remark 4.2.7. By the maximum principle, the function ω takes values between 0

and 1. Therefore, 0 < ω(z, E,Ω) < 1.

We now show that the (N,Γ)-closeness notion is in the sense of Carathéodory

convergence.
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4.2 Convergence on the tracts 63

Lemma 4.2.8. (Carathéodory convergence).

Let F ∈ K. Suppose that (Fj)
∞
j=1 is a sequence of functions in K such that

Fj : Tj → H is (N,Γj)-close to F : T → H with Γj → ∞ as j → ∞. Then

(Tj, 5)→ (T, 5) as j →∞ in the sense of the Carathéodory kernel.

Proof. Let K be a compact and connected set such that 5 ∈ K. We have to show

that the following are equivalent:

(a) K ⊂ T ,

(b) K ⊂ Tj for all but at most finitely many j.

By condition (ii) in the Definition 4.2.1, we have that

Tj ⊂ T and T ∩ {z | Re z < Γj} ⊂ Tj,

for all j ∈ N. So, if j is sufficiently large such that Γj > maxz∈K Re z, then

K ⊂ Tj if and only if K ⊂ T . Additionally, note that any point in the boundary

of T will eventually be in the boundary of Tj. Hence, the convergence holds. �

The following result gives us locally uniform convergence on the inverse func-

tions.

Proposition 4.2.9. (Convergence of the inverse functions).

Let ν > 0 and let F ∈ Hν. Suppose that (Fj)
∞
j=1 is a sequence of functions in

Hν such that (Tj, 5)→ (T, 5) as j →∞ in the sense of the Carathéodory kernel

convergence. Then F−1
j converges locally uniformly to F−1 as j →∞.

Proof. Let ψj : D→ Tj be a conformal isomorphism normalised such that ψj(0) = 5

and ψ′j(0) > 0 for every j ∈ N. Let us also define ψ : D → T as a conformal

isomorphism having the same properties as ψj, that is, ψ(0) = 5 and ψ′(0) > 0.

By assumption, (Tj, 5) → (T, 5) in the sense of kernel convergence, then

ψj → ψ locally uniformly by the Carathéodory kernel theorem 4.2.5. Recall that

ψ extends continuously to ∂D by the Carathéodory–Torhorst theorem [Pom92,

Theorem 2.1], taking the value ∞ at exactly one point ψ−1(∞) of ∂D.
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64 Geometry and convergence on the tracts

Now, let us consider the conformal isomorphisms Mj : H→ D and M : H→ D
defined by Mj

..= ψ−1
j ◦ F−1

j and M ..= ψ−1 ◦ F−1 respectively. This implies that

F−1
j = ψj ◦Mj and F−1 = ψ ◦M (see Figure 4.5 for an illustration of the setting).

T

5
5

0

Figure 4.5: Illustration definition of M in terms of F−1 and ψ−1.

Note that Mj is a sequence of Möbius transformations with Mj(5) = 0 and

Mj(∞) = ψ−1
j (∞), since Fj(∞) =∞ (see Definition 3.1.1). Analogously, the map

M satisfies that M(5) = 0 and M(∞) = ψ−1(∞). This implies that it will be

sufficient to show that Mj(∞)→M(∞), that is (ψ−1
j ◦F−1

j )(∞)→ (ψ−1◦F−1)(∞)

as j →∞. Therefore, it remains to prove the following claim.

Claim 1. ψ−1
j (∞)→ ψ−1(∞).

Proof of Claim. Recall that S̃ = {x + iy | − π < y < π}. Let ε > 0 and let

R > 0 be chosen sufficiently large that the set {Reu ≥ R} in ∂S̃ has harmonic

measure at most (ε/2)/2π seen from 5. Since Tj ⊂ S̃, then the set {Re v ≥ R}
in ∂Tj has also harmonic measure at most (ε/2)/2π seen from 5, independently of j.
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4.2 Convergence on the tracts 65

Now, we choose a point w ∈ T such that Rew > R + ν and

|ψ−1(w)− ψ−1(∞)| < ε/4. (4.3)

For sufficiently large j, we also have

|ψ−1
j (w)− ψ−1(w)| < ε/4. (4.4)

Let αj be the geodesic of D passing through ψ−1
j (w) which is perpendicular to

the radius connecting 0 and ψ−1
j (∞). Then ψj(αj) is the vertical geodesic of Tj

through w, and hence has diameter at most ν (see Figure 4.6).

Figure 4.6: Illustration of the choice of the geodesics αj , in the disc D, and ψj(αj) in
Tj , passing through ψ−1

j (w) and w respectively.

By the choice of w, the real part of points in ψj(αj) is greater than R and the

arc of ∂D that is separated by αj from 0 has harmonic measure at most (ε/2)/2π.

This implies that this arc has length at most ε/2, and so

|ψ−1
j (w)− ψ−1

j (∞)| < ε/2. (4.5)
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66 Geometry and convergence on the tracts

Therefore, by (4.3), (4.4) and (4.5), we have shown that

|ψ−1
j (∞)− ψ−1(∞)| ≤ |ψ−1

j (w)− ψ−1
j (∞)|+ |ψ−1

j (w)− ψ−1(w)|

+ |ψ−1(w)− ψ−1(∞)| < ε

2
+
ε

4
+
ε

4
= ε

Since ε was arbitrary, the proof is complete. 4

Thus, Proposition 4.2.9 is proved. �

Recall that ϕ and ϕ̃ are the one-dimensional projections of F and F̃ , respec-

tively (see Notation 4.1.6). So we are now ready to state and prove the main

approximation result of this section. Note that Proposition 4.2.9 shows that ϕ̃

converges to ϕ whenever F̃ is (N,Γ)-close to F . In the following result we show

that ϕ̃n converges to ϕn.

Proposition 4.2.10. (Approximation by functions that are (N,Γ)-close).

Suppose F ∈ K has N < ∞ wiggles. Let ε > 0 and τ ≥ 5. Then there exists a

number Γ > RN−1(F ) with the following property.

Assume F̃ ∈ K is such that F̃ is (N,Γ)-close to F . If 4 ≤ t ≤ 2RN(F̃ ) and

min(ϕn(t), ϕ̃n(t)) ≤ τ for some n ≥ 0, then

|ϕn(t)− ϕ̃n(t)| ≤ ε. (4.6)

Proof. The proof will be given in two steps. First, we prove (4.6) when t belongs

to a fixed interval of the real line, then the remaining case.

By Lemma 4.2.8 and Proposition 4.2.9, F̃−1 → F−1 converges locally uniformly

on H. So, in particular, ϕ̃j converges uniformly to ϕ on compact subsets of (0,∞).

Claim 1. Let τ̃ > 4 and let δ > 0 be arbitrary. Then there is Γ(τ̃ , δ) >

RN−1(F ) (Γ(τ̃ , δ) means that Γ depends on both parameters τ̃ and δ), with the

following property. Suppose F̃ ∈ K is (N,Γ)-close to F . If t1, t2 ∈ [4, τ̃ ] with

|t1 − t2| ≤ δ, then

|ϕn(t1)− ϕ̃n(t2)| ≤ δ (4.7)

for all n ≥ 0.
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Proof of Claim. The proof will be given by induction over n. First, without

loss of generality, we may assume that τ̃ ≥ 6. Then, by Lemma 3.2.2, we have

ϕ([4, τ̃ ]) ∪ ϕ̃([4, τ̃ ]) ⊂ [4, τ̃ ]. Now, by Lemma 4.2.8 and Proposition 4.2.9, there is

Γ(τ̃ , δ) such that under the hypothesis of the claim, we have,

|ϕ(t)− ϕ̃(t)| ≤ δ

2
for all t ∈ [4, τ̃ ]. (4.8)

Then for the case n = 1, using the contraction property of the map ϕ and

(4.8),

|ϕ(t1)− ϕ̃(t2)| ≤ |ϕ(t1)− ϕ(t2)|+ |ϕ(t2)− ϕ̃(t2)| ≤ |t1 − t2|
2

+
δ

2
≤ δ.

Thus, (4.7) is proved for n = 1. Now assume that the claim holds for n. Then

t̃1 ..= ϕn(t1) and t̃2 ..= ϕ̃n(t2) also satisfy the hypothesis of the claim. Applying

the base case to t̃1 and t̃2, we then obtain the conclusion for n + 1. Hence the

claim is proved. 4

Now, let us assume that F̃ is defined as in the hypothesis for Γ sufficiently

large (to be stated below). Let us set RN−1
..= RN−1(F ) = RN−1(F̃ ). Further, let

Λ be the universal constant from Proposition 4.1.9. For t ≥ exp(Λ · RN−1), we

consider the point z ..= F−1(t); i.e.,

F (z) = t ≥ exp(Λ ·RN−1).

Thus,

log |F (z)| ≥ Λ ·RN−1.

By Proposition 4.1.9, this means that z belongs neither to the bottom nor to

the middle of any wiggle of T . Since ϕ(t) = Re z, Proposition 4.1.9 gives

ϕ(t)

Λ
≤ log t ≤ Λ · ϕ(t). (4.9)

Moreover, if additionally t ≤ exp(RN (F̃ )/Λ), then by a similar argument which
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also applies to F̃ , we obtain the following inequality. Set w ..= F̃−1(t), so

Λ ·RN−1 ≤ log |F̃ (w)| ≤ RN(F̃ )

Λ
.

Again, this means that w does not belong to the bottom two thirds of any

wiggle of T̃ , and thus the same estimate holds for ϕ̃. That is,

ϕ̃(t)

Λ
≤ log t ≤ Λ · ϕ̃(t). (4.10)

So, in particular, both values ϕ(t) and ϕ̃(t) from the inequalities (4.9) and

(4.10) are comparable up to a multiplicative error of at most Λ2. In fact, we have

the following.

Claim 2. Set Λ̂ ..= max(6, 4Λ2/3). Suppose that t ≤ exp(RN(F̃ )/Λ) and

further that n ≥ 0 satisfies max(ϕn(t), ϕ̃n(t)) ≥ Λ2 ·RN−1. Then

1

Λ̂
≤ ϕn(t)

ϕ̃n(t)
≤ Λ̂. (4.11)

Proof of Claim. The proof will be given by induction. Let t be as in the statement

of the claim. Observe that the case n = 0 is trivial. Now suppose that the equation

(4.11) holds for n. Let us first assume that ϕn+1(t) ≥ Λ2 ·RN−1. Then, it follows

from the induction hypothesis that

distH(ϕn(t), ϕ̃n(t)) ≤ log Λ̂.

Recall that ρT (u) ≥ 1/2 for all u ∈ T (see Example 2.3.6). Therefore, we have

obtained

|ϕ̃(ϕn(t))− ϕ̃n+1(t)| ≤ |F̃−1(ϕn(t))− F̃−1(ϕ̃n(t))|

≤ 2 distT (F̃−1(ϕn(t)), F̃−1(ϕ̃n(t)))

= 2 distH(ϕn(t), ϕ̃n(t)) ≤ 2 log Λ̂ < Λ̂,

(4.12)

and the last inequality holds from the fact that Λ̂ ≥ 6. Additionally, the assump-
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tion on ϕn+1(t) implies that ϕn(t) ≥ exp(Λ ·RN−1); i.e.,

ϕn(t) = |F (F−1(ϕn(t)))| ≥ exp

(
ReF−1(ϕn(t))

Λ

)
= exp

(
ϕn+1(t)

Λ

)
≥ exp(Λ ·RN−1).

Also, recall that ϕ(t) < t by Lemma 3.2.2. Therefore, we further have

ϕn(t) ≤ exp(RN(F̃ )/Λ) by assumption. Thus, (4.9) and (4.10) apply to ϕn(t),

then we obtain

ϕn+1(t)

Λ2
≤ ϕ̃(ϕn(t)) ≤ Λ2 · ϕn+1(t). (4.13)

So if ϕ̃n+1(t) ≥ 1
4
Λ̂, and by combining (4.12) and (4.13) we have

ϕn+1(t) ≤ Λ2ϕ̃(ϕn(t)) ≤ Λ2(ϕ̃n+1(t) + Λ̂) ≤ (Λ2 + Λ̂/4)ϕ̃n+1(t) ≤ Λ̂ · ϕ̃n+1(t).

For the opposite inequality, first note that Λ̂ ≤ 6Λ2, then 1
4
Λ̂ ≤ 3

2
Λ2 < Λ2·RN−1.

Now, if ϕ̃n+1(t) ≤ 1
4
Λ̂, thus we get

ϕn+1(t) ≥ 1

Λ2
ϕ̃(ϕn(t)) ≥ 1

Λ2
(ϕ̃n+1(t)− Λ̂) ≥ ϕ̃n+1(t)

(
1

Λ2
− 1

3Λ̂

)
≥ ϕ̃n+1(t)

Λ̂
.

Therefore, the case for n+ 1 has been proved, and hence the claim holds when

ϕn(t) ≥ Λ2 ·RN−1. The case for ϕ̃n(t) ≥ Λ2 ·RN−1 is completely analogous. 4

Now that we have shown that there is at most a multiplicative error Λ̂ between

the pull-backs under ϕn and ϕ̃n, we are ready to complete the proof. Let ε > 0,

we may assume that

τ ≥ max

(
8Λ̂

ε
,Λ2 ·RN−1

)
. (4.14)

Further, let us define τ̃ ..= Λ̂ · exp(Λ · exp(Λ · τ)). First, it follows from (4.9)
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70 Geometry and convergence on the tracts

that

ϕ2(t) > τ whenever t > τ̃/Λ̂. (4.15)

Additionally, if we assume that Γ is larger than τ̃ , then the same inequality

holds for ϕ̃, that is

ϕ̃2(t) > τ whenever t > τ̃/Λ̂. (4.16)

Now we choose

Γ ≥ max(Γ(τ̃ , δ), τ̃),

where Γ(τ̃ , δ) is as in Claim 1 with δ = min(Λ̂, ε/2). Note that τ̃ depends only on

τ and RN−1, and therefore Γ also depends only on F , ε and τ , as required.

Let us now consider t as in the statement of the proposition. First, it will be

enough to show the statement when n is minimal. Indeed, if (4.7) holds for some

n0 with min(ϕn0(t), ϕ̃n0(t)) ≤ τ , then it holds for all subsequent n by Claim 1;

recall that Γ ≥ Γ(τ, ε).

Moreover, the claim for n ≤ 2 holds by the choice of τ̃ and Claim 1. So let us

now take n ≥ 2, it follows from (4.15) and (4.16) that

ϕj(t) > τ and ϕ̃j(t) > τ

for j < n, and furthermore either ϕn−2(t) ≤ τ̃ /Λ̂ or ϕ̃n−2(t) ≤ τ̃ /Λ̂ by assumption.

On the other hand, it follows from Claim 2 that ϕn−2(t) and ϕ̃n−2(t) are comparable

up to a factor at Λ̂. So, in particular, both values, ϕn−2(t) and ϕ̃n−2(t), are less

that τ̃ , and so are their images.

Now, we will proceed with a similar argument as in the proof of Claim 2. As

in (4.12),

|ϕn−1(t)− ϕ(ϕ̃n−2(t))| ≤ 2 log Λ̂ < Λ̂. (4.17)

Additionally, by the above we know that |ϕ̃n−2(t)| ≤ τ̃ and since Γ ≥ Γ(τ̃ , δ),
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thus the hypotheses of Claim 1 hold, then we have

|ϕ(ϕ̃n−2(t))− ϕ̃n−1(t)| ≤ δ. (4.18)

Consequently, by combining (4.17) and (4.18), we get

|ϕn−1(t)− ϕ̃n−1(t)| ≤ Λ̂ + δ ≤ 2Λ̂. (4.19)

Again, recall that ρT (u) ≥ 1/2 for all u ∈ T (see (2.2)). So, in particular, by

(4.14), we also have

|ϕn(t)− ϕ(ϕ̃n−1(t))| ≤ |F−1(ϕn−1(t))− F−1(ϕ̃n−1(t))|

≤ 2 distT (F−1(ϕn−1(t)), F−1(ϕ̃n−1(t)))

= 2 distH(ϕn−1(t), ϕ̃n−1(t)).

Since {ϕn−1(t), ϕ̃n−1(t)} > τ and together with (4.19). In particular, we have

2 distH(ϕn−1(t), ϕ̃n−1(t)) ≤ 2Λ̂

τ
≤ ε

2
.

Therefore, by proceeding as above, we have obtained

|ϕn(t)− ϕ̃n(t)| ≤ |ϕn(t)− ϕ(ϕ̃n−1(t))|+ |ϕ(ϕ̃n−1(t))− ϕ̃n(t)| ≤ ε/2 + δ ≤ ε.

Hence the proof of Proposition 4.2.10 is complete. �

71



72 Geometry and convergence on the tracts

72



CHAPTER

FIVE

CONSTRUCTION OF PSEUDO-ARC

JULIA CONTINUA

The aim of this chapter is to construct a map F ∈ H which satisfies the hy-

potheses of Theorem 3.2.7 and give the proofs of Theorem 1.0.4 and Theorem

1.0.6. To do so, we adapt some ideas of Henderson [Hen64] to our context. He

constructs a self-map of the interval whose inverse limit is the pseudo-arc, starting

with x → x2 and introducing successive “notches” in the graph. We adjust his

technique to our setting, replacing maps of the interval by conformal maps of the

strip S = {x+ iy : x ≥ 4, |y| < π} into itself.

We start by defining the set Un(ϕ, I) (see Definition 5.1.3), where ϕ is the

one-dimensional projection of a function F ∈ H. This set records all of the

intervals which are mapped minimally (see Definition 5.1.1), for a given interval

I, function ϕ and iteration step n. Then for each of those intervals, we add

inductively a wiggle to our tract as in Definition 4.1.5. This is an analogue of the

notches in Henderson’s proof. In this way, we obtain a function in H satisfying the

hypotheses of Theorem 3.2.7; the existence of the desired entire function follows

from Theorem 3.1.7.
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74 Construction of pseudo-arc Julia continua

5.1 The set Un(ϕ, I) and its properties

5.1.1 Basic properties of Un(ϕ, I)

We begin by introducing the set Un(ϕ, I) and study its properties. This set is

adapted from [Hen64]. Throughout this section, let F ∈ H, and let ϕ be its

one-dimensional projection, as in Definition 3.2.1.

Definition 5.1.1. (Mapping minimally).

Let I ⊂ [6,∞) be a closed interval, and let n ≥ 0. We say that a closed interval

J ⊂ [4,∞) is mapped minimally over I by ϕn if ϕn(J) = I, and there is no smaller

subinterval of J satisfying this property.

In the following result, we give enough conditions of mapping minimally an

interval J ′ to an interval I under ϕn.

Lemma 5.1.2. (Condition of mapping minimally).

Let I ⊂ [6,∞) be a closed interval and let n ≥ 0. Suppose J ⊂ [4,∞) is an

interval such that ϕn(J) ⊇ I. Then there exists an interval J ′ ⊆ J that maps

minimally over I by ϕn; in particular, ϕn(J ′) = I.

Proof. Define χ = {[µ, ν] ⊆ J : ϕn([µ, ν]) ⊇ I}. Note that χ is partially ordered

by set inclusion. We first show that χ has a minimal element, then we prove that

this element has the desired property.

Claim 1. (χ,⊆) has a minimal element.

Proof of Claim. Observe that χ is non-empty, because J ∈ χ. Let C be a chain

in χ, i.e., a totally ordered subset of χ. We want to show that C has a lower

bound. Consider L =
⋂
C; observe that L is contained in every element of C.

Furthermore, L is a nested intersection of compact intervals; hence L is a lower

bound for C. Moreover, note that L ∈ χ. To see this, let x ∈ I, then (ϕn)−1(x)∩C
is non-empty and compact for all C ∈ χ. So,

(ϕn)−1(x) ∩ L =
⋂
C

(
(ϕn)−1(x) ∩ C

)
6= ∅.

Then, by Zorn’s lemma, χ has a minimal element. 4
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5.1 The set Un(ϕ, I) and its properties 75

Claim 2. Suppose J ′ = [a, d] is a minimal element of χ. Then ϕn(J ′) = I.

Proof of Claim. We shall prove the claim by contrapositive. So suppose that

[a, d] ∈ χ and I ( Î ..= ϕn([a, d]). We then consider the following cases:

• Case 1. I ⊆ Int Î.

Set ε ..= dist(I, ∂Î), then by uniform continuity, there is δ > 0 such that

|ϕn(x)− ϕn(y)| ≤ ε

2

whenever x, y ∈ [a, d] and |x− y| < δ. Since [a, d] ∈ χ, there are x′, y′ ∈ [a, d] such

that Î = [ϕn(x′), ϕn(y′)]. Now set

J̃ = [a+ δ, d− δ].

Then there is x̃ ∈ J̃ such that |x′ − x̃| ≤ δ and then ϕn(x̃) is to the left of I.

Likewise, J̃ contains a point ỹ, where ϕn(ỹ) is to the right of I. Since ϕn(J̃) is

connected, hence ϕn(J̃) ⊇ I, which implies J̃ is an element of χ, and so J ′ is not

minimal.

• Case 2. I and Î have an endpoint in common.

Let α be a common point, then there is a′ ∈ [a, d] such that ϕn(a′) = α. Let β be

the other endpoint of Î, and set ε = dist(β, I). Define δ > 0 as in case 1. Let

J̃ := [a0, d0]

be the smallest closed interval containing [a+ δ, d− δ] and a′. This is a proper

subinterval of J . Analogously to case 1, ϕn(J̃) ⊇ I, therefore J̃ is an element of

χ, so J is not minimal. 4

Therefore, we have shown that any minimal element of χ has the desired

property, and the proof is complete. �

Recall that a quadruple Q = [A,B,C,D] is an increasing four-tuple of real

numbers, that is, A < B < C < D (see Definition 3.2.5 for further details).

Definition 5.1.3. (The set Un(ϕ, I)).

Let I = [A,D] ⊂ [6,∞) be a closed interval and let Q = [A,B,C,D] be a
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quadruple. For n ≥ 0, we define

Un(ϕ, I) ..= {J ⊂ [4,∞) : J is mapped minimally over I by ϕn}.

In this case, if J ∈ Un(ϕ, I), we also say that J is mapped minimally over Q

by ϕn. Therefore, we also write Un(ϕ, I) ..= Un(ϕ,Q). Further, we define

Ûn(ϕ,Q) ..= {J ∈ Un(ϕ,Q) : J is mapped crookedly over Q by ϕn}.

We refer to Definition 3.2.6 for the definition of crookedness.

Remark 5.1.4. With this terminology, the hypotheses of Theorem 3.2.7 can be

rephrased as follows: Let F ∈ H. For all integer quadruple Q, there exists k0 ∈ N
with the following property. If

Uk(ϕ,Q) = Ûk(ϕ,Q) for all k ≥ k0,

then Ĵ(F ) is a pseudo-arc. Further, in this case, it will be sufficient to take the

constant K as K = 1.

Definition 5.1.5. (Interval to the left).

Let R > 0 and let I be a closed interval. We say that I is (strictly) to the left of

R if, (x < R) x ≤ R for every x ∈ I. Analogously, I is (strictly) to the right of R

for (x > R) x ≥ R for all x ∈ I.

Now, let us start with two simple properties, which are consequences of Lemma

3.2.2. For the remainder of this subsection, fix a closed interval I = [A,D] ⊆ [6,∞).

Observation 5.1.6. If J ∈ Un(ϕ, I), then J ⊂ [6,∞).

Proof. By Lemma 3.2.2(ii), we have ϕ([4, 6)) ⊂ [4, 6). On the other hand, if

J ∈ Un(ϕ, I) for some n ≥ 0, we have ϕn(J) = I, by definition. But I ⊂ [6,∞),

and therefore J ∩ [4, 6) = ∅. Hence the claim holds. �

Observation 5.1.7. No interval J ∈ Un(ϕ, I) contains an interval of Um(ϕ, I)

for n 6= m.
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Proof. Observe that ϕ(t) < t for t ≥ 5 by Lemma 3.2.2(ii). If J ∈ Un(ϕ, I), this

implies that ϕn(J) = I by Lemma 5.1.2. Therefore, ϕm(J) is strictly the left of

D, if m > n, and it will be strictly to the right of A, if m < n. Thus J does not

map over I under ϕm for n 6= m. �

The next observation shows us that the endpoints of an interval J map to A

and D under ϕn.

Observation 5.1.8. If J = [a, d] ∈ Un(ϕ, I), then {ϕn(a), ϕn(d)} = {A,D}.

Proof. Note that if J ∈ Un(ϕ, I), then ϕ−n(A) ∩ J 6= ∅ and ϕ−n(D) ∩ J 6= ∅.
Further, any sub-interval of J is bounded by an element of ϕ−n(A) and ϕ−n(D)

which also maps over I by Lemma 5.1.2. Hence the only elements of J that can

map over A and D are the endpoints and the proof is complete. �

The following result shows that different elements of the same Un(ϕ, I) can

only intersect at their endpoints.

Lemma 5.1.9. (Pairwise disjoint elements of Un(ϕ, I)).

For every n ∈ N, the elements of Un(ϕ, I) have pairwise disjoint interiors.

Proof. Suppose, by way of contradiction, that there are two intervals J1 = [a1, d1],

J2 = [a2, d2] ∈ Un(ϕ, I) such that J1 ∩ J2 contains more than one point.

Without loss of generality, we can assume a1 < a2, then a2 < d1. Since J1 is

mapping minimally over I under ϕn, this implies that

{ϕn(a1), ϕn(d1)} = {A,D}

by Observation 5.1.8. Moreover, since J2 ∈ Un(ϕ, I), then again by Observation

5.1.8, we also have either ϕn(a2) = A or ϕn(a2) = D. So, either

{ϕn(a1), ϕn(a2)} = {A,D}, or

{ϕn(d1), ϕn(a2)} = {A,D}.

Now, note that [a1, a2] is a sub-interval of J1 that maps minimally over I by ϕn,

and hence a contradiction of J1 ∈ Un(ϕ, I).

Likewise, we have that [a2, d1] is a subinterval of J1 and J2 that maps minimally

over I by ϕn. These contradictions complete the proof. �
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Lemma 5.1.10. Each Un(ϕ, I) is finite.

Proof. Let n ≥ 0, since ϕ(t) → ∞ as t → ∞, and thus ϕn(t) → ∞ as t → ∞,

this implies that ϕ−n(I) is bounded. By the condition of minimality, we have

ϕ−n(I) ⊃
⋃

J∈Un(ϕ,I)

J.

Set ε ..= diam(I). It follows from Observation 5.1.8 that for every J = [a, d] ∈
Un(ϕ, I), we have |ϕn(a)− ϕn(d)| = ε. By Lemma 3.2.2(i), we have

|ϕn(s)− ϕn(t)| ≤ |s− t|
2n

for all s, t ∈ J ;

in particular,

ε = |ϕn(a)− ϕn(d)| ≤ |a− d|
2n

. (5.1)

Set δ ..= 2nε > 0. Then it follows from (5.1) that δ ≤ |J | for all elements

J ∈ Un(ϕ, I).

Since the interior of the elements of Un(ϕ, I) are pairwise disjoint by Lemma

5.1.9, it follows that

diam(ϕ−n(I)) ≥ diam

 ⋃
J∈Un(ϕ,I)

J

 ≥ ∑
J∈Un(ϕ,I)

|J | ≥ δ ·#Un(ϕ, I).

Hence,

#Un(ϕ, I) ≤ diam(ϕ−n(I))

δ
<∞

as claimed, and the proof is complete. �

The following lemma shows that, for k ≤ n, the map ϕk induces a map

Un(ϕ, I)→ Un−k(ϕ, I).

Lemma 5.1.11. (Properties of Un−k(ϕ, I)).

Let n ≥ 0 be a positive integer. Then the following properties hold:
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(i) If J ∈ Un(ϕ, I), then ϕk(J) ∈ Un−k(ϕ, I) and J ∈ Uk(ϕ, ϕ
k(J)) for k =

0, . . . , n.

(ii) In particular, for k ≤ n,

Un(ϕ, I) =
⋃

J∈Un−k(ϕ,I)

Uk(ϕ, J).

Proof. To prove (i), let J ∈ Un(ϕ, I) and consider Jk ..= ϕk(J). Then, we have

ϕn−k(Jk) = ϕn−k(ϕk(J)) = ϕn(J) = I.

Now, let us show that J ∈ Uk(ϕ, Jk). By definition, it is enough to show that

there is no proper sub-interval of J mapping minimally over Jk by ϕk. We proceed

by contradiction. Suppose there is J̃ ( J such that ϕk(J̃) = Jk. This implies

ϕn−k(ϕk(J̃)) = ϕn−k(Jk), and thus ϕn(J̃) = I. Therefore, J /∈ Un(ϕ, I), which is

a contradiction. Hence the claim holds.

Similarly, we show that Jk ∈ Un−k(ϕ). Suppose, by way of contradiction,

that there is J̃k ( Jk such that ϕn−k(J̃k) = I and J̃k is minimal having this

property. Since J̃k ⊂ Jk = ϕk(J), this implies, by Lemma 5.1.2, that there

is a sub-interval J̃ ⊂ J such that ϕk(J̃) = J̃k ( Jk. Then we have obtained

ϕn(J̃) = ϕn−k(ϕk(J̃)) = I. Thus, J /∈ Un(ϕ, I) which is a contradiction. Then,

the claim follows.

From (i), we have

Un(ϕ, I) ⊂
⋃

J∈Un−k(ϕ,I)

Uk(ϕ, J).

For the converse inclusion, let J ∈ Un−k(ϕ, I) and L ∈ Uk(ϕ, J). This implies

that ϕk(L) = J and hence ϕn(L) = ϕn−k(J) = I. So L contains a sub-interval

L̃ such that L̃ ∈ Un(ϕ, I) by Lemma 5.1.2. Then ϕk(L̃) ⊂ ϕk(L) = J , but by (i)

we also have that ϕk(L̃) ∈ Un−k(ϕ, I). Therefore, we must have that L = L̃ as

required. Hence (ii) holds, and the proof is complete. �

The following result shows that, if an interval in Un−k(ϕ,Q) is mapped

crookedly over a quadruple Q, then this is also true for the corresponding interval
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in Un(ϕ,Q). Recall that the set Ûn(ϕ,Q) is given as

Ûn(ϕ,Q) = {J ∈ Un(ϕ,Q) : J is mapped crookedly over Q by ϕn},

we refer to Definition 5.1.3 for all details.

Lemma 5.1.12. (A condition to map crookedly in Un(ϕ,Q)).

Let Q = [A,B,C,D] be a quadruple. Suppose J ∈ Un(ϕ,Q) and ϕk(J) ∈
Ûn−k(ϕ,Q) for some k ≤ n. Then J ∈ Ûn(ϕ,Q).

Proof. Let J ∈ Un(ϕ, I), and suppose ϕk(J) is mapped crookedly over Q. To fix

our ideas, say the preimages tB < t̃B of B under ϕn−k surround a preimage tC of

C under ϕn−k, in particular tC ∈ [tB, t̃B].

By Lemma 5.1.2, there is a sub-interval J̃ of J that maps minimally over

[tB, t̃B] by ϕk. In particular, J̃ contains a preimage of tC under ϕk which is

an element of ϕ−n(C) ∩ J . Further, it follows from Observation 5.1.8 that J̃ is

bounded by ϕk({tB, t̃B}). Note that both preimages of tB and t̃B under ϕk are

elements of ϕ−n(B) ∩ J . Hence, J is mapped crookedly by ϕn, and the proof is

complete. �

We conclude this subsection with the following result which is an immediately

consequence of Lemma 5.1.11 and Lemma 5.1.12.

Corollary 5.1.13. Let Q = [A,B,C,D] be a quadruple. If Un(ϕ,Q) = Ûn(ϕ,Q),

then Uk(ϕ,Q) = Ûk(ϕ,Q) for all k ≥ n.

5.1.2 Approximation on the set Un(ϕ, I)

In this section, we obtain further properties of the set Un(ϕ, I), however these will

focus on functions in the class K. In particular, we wish to describe how these

sets change when we move from a function with N wiggles to a nearby function

with N + 1 wiggles. Let us first start with the following result which tells us that

the number of intervals in Un(ϕ, I) increases only through wiggles.

80



5.1 The set Un(ϕ, I) and its properties 81

Recall that (rj, Rj)
N
j=0, with N ≤ ∞, is a sequence of pairs of real numbers

which determines the position of the wiggles; we refer to Definition 4.1.5 for the

reader’s convenience.

Proposition 5.1.14. (Conditions over the wiggles to get #U1(ϕ, I) = 1).

Let F ∈ K have N wiggles. Let I = [A,D] be an interval with A ≥ 6 and |I| ≥ ν0,

where ν0 is the constant from Proposition 4.1.8. In addition, suppose that

I 6⊂ [rk(F )− ν0, Rk(F ) + ν0]

for any k ≥ 0. Then

#U1(ϕ, I) = 1.

Proof. Let T be the tract of F . First, observe that the hypothesis implies that

there is t, t+ ν0 ∈ [A,D] such that

Rk(F ) + ν0 < t < t+ ν0 < rk+1(F )

for some −1 ≤ k ≤ N . So, in particular, the intersection of T with each of the

vertical lines at the real parts t and t+ ν0 is connected. Let ρ be maximal so that

the vertical geodesic

γ = F−1({z ∈ H : |z| = ρ})

contains a point at real part t, then all of points on γ have real part at least t.

Therefore, γ separates all points of T which have real part less than t from all

points at real part greater that t+ ν0 by Proposition 4.1.8.

Now, if J ∈ U1(ϕ, I), this implies that ϕ(J) = I. Then F−1(J) connects two

points at real parts t and t + ν0, and thus F−1(J) ∩ γ 6= ∅, which implies that

ρ ∈ J . By Lemma 5.1.9, the elements of U1(ϕ, I) have pairwise disjoint interiors.

However, by Observation 5.1.8 we know that the elements of U1(ϕ, I) can only

intersect at their endpoints. Hence, the claim is proved. �

Definition 5.1.15. (Larger quadruples).

Let Q = [A,B,C,D] and Q̃ = [Ã, B̃, C̃, D̃] be two quadruples. We say that Q ≺ Q̃
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if the following holds:

Ã < A, B < B̃, C̃ < C and D < D̃.

In a similar way, for two intervals I = [A,D] and Ĩ = [Ã, D̃], we write I ≺ Ĩ if

Ã < A and D < D̃.

Additionally, we denote |Q̃−Q|conf
..= max(A− Ã, B̃ −B,C − C̃, D̃ −D).

The following results are regarding functions in the class K that are (N,Γ)-

close. Let us recall that for different elements F , Fj , F̃ in K, their one-dimensional

projections are denoted by ϕ, ϕj, ϕ̃ respectively (see Notation 4.1.6).

We start by seeing that for fixed n, the elements of Un(ϕ̃,, I) are uniformly

bounded for a function F̃ (N,Γ)-close to F .

Proposition 5.1.16. (Elements of Un(ϕ̃, I) are to the left of Γ).

Let F ∈ K have N wiggles. Let I = [A,D] ⊂ [6,∞) be an interval and let n0 ≥ 0.

Then there is Γ > RN−1(F ) with the following property.

Suppose F̃ ∈ K is (N,Γ)-close to F . Then for n ≤ n0, all of the elements of

Un(ϕ̃, I) are to the left of Γ.

Proof. Let Γ be the constant from Proposition 4.2.3 with K = D. If x ∈ J , where

J ∈ Un(ϕ̃, I) for some n ≤ n0, then ϕ̃n(x) ≤ K. Hence x ≤ Γ as required. �

The following result shows us how to approximate elements between Un(ϕ, I)

and Un(ϕ̃, Ĩ) that are (N,Γ)-close in K.

Proposition 5.1.17. (Approximation on elements of Un(ϕ, I)).

Let F ∈ K have N wiggles. Let I ≺ Ĩ be two intervals and let n0 ≥ 0. Then there

is Γ > RN−1(F ) so that the following holds.

If F̃ ∈ K is (N,Γ)-close to F , then for every n ≥ 0 and every J̃ ∈ Un(ϕ̃, Ĩ)

that is to the left of 2RN(F̃ ), there is J ∈ Un(ϕ, I) with J ⊂ J̃ .

In particular, for n ≤ n0,

#Un(ϕ̃, Ĩ) ≤ #Un(ϕ, I). (5.2)
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Proof. Denote I = [A,D] and Ĩ = [Ã, D̃]. Set ε ..= max(A− Ã, D̃ −D) > 0. Let

us take τ > D̃ and Γ according to Proposition 4.2.10. Let F̃ ∈ K be as in the

statement of the proposition and let n ≥ 0. Take J̃ ∈ Un(ϕ̃, Ĩ) such that it is to

the left of 2RN(F̃ ). Then, by Proposition 4.2.10, for all t ∈ J̃ = [ã, d̃],

|ϕn(t)− ϕ̃n(t)| ≤ ε. (5.3)

So, in particular, from (5.3), we have

|ϕn(ã)− ϕ̃n(ã)| ≤ ε and |ϕn(d̃)− ϕ̃n(d̃)| ≤ ε. (5.4)

By Observation 5.1.8, we have that ϕ̃n(ã) = Ã and ϕ̃n(d̃) = D̃. Then, it

follows from (5.4) that

ϕn(ã) ≤ Ã+ ε ≤ A and D ≤ D̃ − ε ≤ ϕn(d̃).

This means that ϕn(J̃) ⊃ I. Therefore, by Lemma 5.1.2, there is a interval

J ⊆ J̃ such that J ∈ Un(ϕ, I), and the claim holds.

Note that, in particular, every J̃ is to the left of Γ by Proposition 5.1.16.

On the other hand, all elements of Un(ϕ, I) are to the left of Γ by definition.

Therefore,(5.2) holds as claimed. This complete the proof. �

We conclude this section with the version of the preceding result for intervals

that are mapped crookedly.

Proposition 5.1.18. (Approximations on elements of Ûn(ϕ,Q))

Let F ∈ K have N wiggles, and let Q ≺ Q̃ be quadruples. Let n0 ≥ 0. Then there

is Γ > RN−1(F ) with the following property.

Suppose that F̃ ∈ K is (N,Γ)-close to F , that n ≤ n0, that J̃ ∈ Un(ϕ̃, Q̃), and

that J ∈ Un(ϕ,Q) with J̃ ⊇ J . If J is mapped crookedly over Q by ϕn, then J̃ is

mapped crookedly over Q̃ by ϕ̃n.

In particular,

#Un(ϕ̃, Q̃)−#Ûn(ϕ̃, Q̃) ≤ #Un(ϕ,Q)−#Ûn(ϕ,Q). (5.5)
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Proof. Recall that Q = [A,B,C,D] and Q̃ = [Ã, B̃, C̃, D̃]. We set ε ..= |Q̃−Q|conf

as in Definition 5.1.15. We take τ > D̃ and Γ according to Proposition 4.2.10.

Then assume F̃ ∈ K is as in the statement of the proposition. Let J̃ ∈ Un(ϕ̃, Q̃)

and let J be as in the hypothesis. Then, by Proposition 4.2.10, for all t ∈ J̃ ,

|ϕn(t)− ϕ̃n(t)| ≤ ε. (5.6)

Since J is mapped crookedly over Q by ϕn, this means that there are preimages

tB and tB̃ of B under ϕn surrounding a preimage tC of C under ϕn, that is

tC ∈ [tB, tB̃]. So by (5.6), in particular we have

|ϕn(tB)− ϕ̃n(tB)| ≤ ε,

|ϕn(tB̃)− ϕ̃n(tB̃)| ≤ ε and

|ϕn(tC)− ϕ̃n(tC)| ≤ ε.

(5.7)

Then, (5.7) implies that

ϕ̃n(tB) ≤ B + ε ≤ B̃,

ϕ̃n(tB̃) ≤ B + ε ≤ B̃ and

ϕ̃n(tC) ≤ C̃ − ε ≤ C.

(5.8)

Since F−n(J) is an arc that connects a point at the real part A to a point

at the real part D. So by (5.8), we have that there are preimages sB < sB̃ of B̃

under ϕ̃n such that [tB, tB̃] ∩ [sB, sB̃] 6= ∅. Further, there is also a preimage sC of

C under ϕ̃n. By the last equation of (5.8), we obtain that sC ∈ [sB, sB̃]. Hence,

J̃ is mapped crookedly over Q̃.

Lastly, observe that (5.5) follows immediately from the first part together with

Proposition 5.1.17, and thus the proof is complete. �

5.2 The main construction

Recall that our goal is to show that there is a disjoint-type entire function f so

that every Julia continuum of f is a pseudo-arc, Theorem 1.0.4. So we start by
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constructing the function F ∈ Hν0 that satisfies the hypotheses of Theorem 3.2.7.

As already mentioned, the idea of the construction is to start with the strip and

inductively add a new wiggle. In particular, in the N -th step of the construction,

we will have obtained a function in K with N wiggles. These functions converge to

a limit function F ∈ K with infinitely many wiggles, which is the desired function.

The outline of the construction is as follows. In Proposition 5.2.1, we set

up the induction, that is; we define F̃ ∈ K with N wiggles in such a way that

the number of intervals mapped crookedly increases. Next, applying Proposition

5.2.1 repeatedly, we can achieve crookedness over a prescribed quadruple for all

sufficiently large times, Proposition 5.2.2. We then establish Theorem 5.2.3 which

provides us the existence of the function F in K so that Ĵ(F ) is a pseudo-arc.

Proposition 5.2.1. (Increasing the number of intervals mapped crookedly).

Let F ∈ K have N wiggles. Let Q and Q̃ be quadruples such that Q ≺ Q̃ and let

Γ > 0. There exits a non-negative integer k such that

#Um(ϕ,Q)−#Ûm(ϕ,Q) = k

for sufficiently large m ∈ N.

Suppose that k ≥ 1. Then there exists a function F̃ ∈ K such that F̃ is

(N,Γ)-close to F and there exists n1 ∈ N such that for all n ≥ n1,

#Un(ϕ̃, Q̃)−#Ûn(ϕ̃, Q̃) ≤ k − 1.

Proof. Let Q = [A,B,C,D] and Q̃ = [Ã, B̃, C̃, D̃]. Set ε = |Q̃ − Q|conf as in

Definition 5.1.15 and set δ ..= min(B − A,D − C). By Lemma 3.2.2, let m0 ∈ N
such that for all m ≥ m0, all of the elements of Um(ϕ,Q) are to the right of the

last wiggle of F and, additionally, those elements have length at least ν0. Thus,

for all m ≥ m0 we have

#Um(ϕ,Q) = #Um0(ϕ,Q)

by Proposition 5.1.14 and Lemma 5.1.11. Further, it follows from Corollary
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5.1.13 that #Ûm(ϕ,Q) is non-decreasing. So, in particular a number k as in the

statement of the proposition does exist.

By assumption, if m0 is picked sufficiently large, we have

#Ûm(ϕ,Q) = #Ûm0(ϕ,Q) = #Um0(ϕ,Q)− k

for all m ≥ m0.

Assume that k > 0 and, choose Γ1 > Γ sufficiently large so that Propositions

5.1.16, 5.1.17 and 5.1.18 apply for m0. Further, let Γ2 > Γ1 be so large that

Proposition 4.2.10 holds for τ = Γ1. We now choose n1 ∈ N sufficiently large such

that the following hold.

(i) n1 > m0.

(ii) All elements of Un1(ϕ,Q) are to the right of Γ2 + ν0 + 1.

(iii) n1 >
log(2ν0+2)−log δ

log 2
.

Now, let z, w ∈ T with z1 = ReF n1(z), w1 = ReF n1(w) ∈ T such that

Re z = A, Rew = B. Then |z − w| ≥ B − A ≥ δ. By Lemma 3.2.2, we obtain

|z1 − w1| ≥ 2n1|ϕn1(z1)− ϕn1(w1)|

≥ 2n1|A−B| ≥ 2n1δ > 2ν0 + 2.
(5.9)

The last inequality holds by (iii). Analogously, we apply the same argument

to the points C and D.

Let I1 = [A1, D1] be the right-most element of Un1(ϕ,Q) that is not in

Ûn1(ϕ,Q). Now we can choose two points B1 < C1 such that

{ϕn1(B1), ϕn1(C1)} = {B,C}

and

min(B1 − A1, D1 − C1) > 2ν0 + 2, (5.10)

by equation (5.9). Let Q1 = [A1, B1, C1, D1] be the resulting quadruple (see Figure

5.1).
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Figure 5.1: Illustration of the setting of Um0(ϕ,Q) and Un1(ϕ,Q). The orange lines
represent intervals in their respective sets. Observe that up to this stage, F̃ has not yet
been defined. However, we have set Q1, where a wiggle will be added, and hence T̃ and

F̃ will be determined.

We now define F̃ ∈ K that is (N,Γ2)-close to F by setting rN(F̃ ) ..= B1 − ν0

and RN(F̃ ) ..= C1 + ν0. Next, we want to prove the following properties for the

one-dimensional projection ϕ̃ of the function F̃ .

Claim 1. The following properties hold for ϕ and ϕ̃:

(1) #Un(ϕ̃, Q̃) = #Um0(ϕ̃, Q̃) ≤ #Um0(ϕ,Q) for n ≥ m0.

(2) Every element of Um0(ϕ̃, Q̃) that contains an element of Ûm0(ϕ,Q) is in

Ûm0(ϕ̃, Q̃).

(3) U1(ϕ̃, Q1) = Û1(ϕ̃, Q1).
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88 Construction of pseudo-arc Julia continua

Proof of Claim. By Proposition 5.1.17, we have that #Um0(ϕ̃, Q̃) ≤ #Um0(ϕ,Q).

On the other hand, for n ≥ m0 there is no interval of Un(ϕ,Q) which is contained

in

[rN(F̃ )− ν0, RN(F̃ ) + ν0].

This will be shown by contradiction. Suppose that there is an interval J1 ∈
Un(ϕ,Q) such that J1 ⊆ [rN (F̃ )−ν0, RN (F̃ ) +ν0]. Then, (5.10) implies that J1 ⊆
[A1, D1]. However [A1, D1] ∈ Un1(ϕ,Q) which is a contradiction to Observation

5.1.7. Further, by Proposition 5.1.17, we also obtain that there is no interval of

Un(ϕ̃, Q̃) contained in [rN (F̃ )− ν0, RN (F̃ ) + ν0]. Therefore, by Proposition 5.1.14

we have

#Un(ϕ̃, Q̃) ≤ #Um0(ϕ̃, Q̃) ≤ #Um0(ϕ,Q)

for n ≥ m0. Hence (1) is proved.

Observe that (2) follows immediately from Proposition 5.1.18.

Finally, let J2 ∈ U1(ϕ̃, Q1), this implies that Re F̃−1(J2) = ϕ̃(J2) = Q1. Then

F̃−1(J2) is an arc which connects a point at the real part A1 < rN(F̃ ) to a point

at the real part D1 > RN(F̃ ) (see Figure 5.2). By the shape of the tract, we can

find x1, x2, y ∈ J2 with x1 < y < x2 such that ϕ̃(x1) = B1 = ϕ̃(x2) and ϕ̃(y) = C1,

which means that ϕ̃ does indeed map J2 crookedly to Q1. Hence, J2 ∈ Û1(ϕ̃, Q1)

and (3) is proved. 4

Figure 5.2: Schematic of the proof of (3), where F̃ is defined by adding a wiggle on Q1

We will now conclude the proof of Proposition 5.2.1 as follows. Let n > n1 and
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set n2
..= n −m0. Let J ∈ Un(ϕ̃, Q̃), note that ϕ̃n2(J) ∈ Um0(ϕ̃, Q̃), by Lemma

5.1.11(i). On the other hand, there is I ∈ Um0(ϕ,Q) such that

ϕ̃n2(J) ⊃ I,

by Proposition 5.1.17. Moreover, by Claim 1(1), there is at most one such

J for every I. Now, if I ∈ Ûm0(ϕ,Q), then by the above and Claim 1(2),

ϕ̃n2(J) ∈ Ûm0(ϕ̃, Q̃), and thus J ∈ Ûn(ϕ̃, Q̃) by Lemma 5.1.12.

Claim 2. Let I and J be as above. If I = ϕn1−m0([A1, D1]), then J ∈ Ûn(ϕ̃, Q̃).

Proof of Claim. Set Ĩl ..= ϕ̃n1−l([A1, D1]) and Jl ..= ϕ̃n−l(J) for l = m0, . . . , n1.

First, we want to show that

Ĩl ⊂ int(Jl) for l = m0, . . . , n1. (5.11)

So we prove (5.11) by induction over l. Consider the case l = m0. By

Proposition 4.2.10, we have that for all t ∈ [A1, D1],

|ϕ̃n1−m0(t)− ϕn1−m0(t)| ≤ ε,

and in particular Ĩm0 ∩ I ⊂ Ĩm0 ∩ Jm0 6= ∅.
It follows from the previous argument that ϕm0(Ĩm0) = ϕn1([A1, D1]) which is

contained in [Ã, D̃] = ϕ̃n(J). Therefore, Ĩm0 ∩ Jm0 6= ∅, but it does not contain

either of its endpoints. Hence, Ĩm0 ⊂ int(Jm0).

Now suppose the claim holds for l < n1. Note that the interval

Ĩl 6⊂ [rN(F̃ )− ν0, RN(F̃ ) + ν0].

By Proposition 5.1.14, #U1(ϕ̃, Ĩl) = 1. Since both intervals Ĩl+1 and Jl+1 map

over Ĩl, then these both intervals contain the unique element of U1(ϕ̃, Ĩl), and

therefore they have non-empty intersection. On the other hand, the endpoints of

Jl+1 map to the endpoints of Jl under ϕ̃. By the inductive hypothesis, Ĩl ⊂ int(Jl),

and therefore Ĩl+1 ⊂ int(Jl+1). Hence (5.11) is proved.

In particular Jn1 = ϕ̃n−n1(J) ⊃ [A1, D1]. By Claim 1, it follows that J is
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mapped crookedly over Q1 by ϕ̃n−n1 . Now, by choice of Γ2 and Proposition 4.2.10,

one of ϕ̃n1(B1) and ϕ̃n1(C1) is between Ã and B̃, and the other between C̃ and

D. Thus J is mapped crookedly over Q̃ by ϕ̃n. 4

Hence, if J as above that does not belong to Ûn(ϕ̃, Q̃), then I /∈ Ûm0(ϕ,Q)

and also I 6= ϕn1−m0([A1, D1]). There are k − 1 such intervals I, and therefore

there are at most k− 1 intervals J in Un(ϕ̃, Q̃) \ Ûn(ϕ̃, Q̃), and this completes the

proof. �

Proposition 5.2.2. (Creating crookedness over prescribed quadruples).

Let F ∈ K have N wiggles, let Q be a quadruple and Γ > 0.

Then there is F̃ ∈ K with N̂ wiggles and N̂ > N , that is (N,Γ)-close to F ,

and such that

#Un(ϕ̃, Q) = #Ûn(ϕ̃, Q)

for some n ≥ 0.

Proof. Let Q0 be a quadruple such that Q0 ≺ Q, and let k ≥ 0 such that Un(ϕ,Q0)

contains k elements not mapped crookedly, that is,

#Un(ϕ,Q0)−#Ûn(ϕ,Q0) = k

for all n sufficiently large, as in Proposition 5.2.1. Let

Q0 ≺ Q1 ≺ . . . ≺ Qk = Q

be a sequence of quadruples. We now apply Proposition 5.2.1 inductively to obtain

a sequence of functions F0 = F, F1, . . . , F` =.. F̃ with ` ≤ k, and Fj with (N + j)

wiggles for j ∈ {0, . . . , k}, such that

kj ..= lim
n→∞

(
#Un(ϕj, Qj)−#Ûn(ϕj, Qj)

)
is strictly decreasing, and k` = 0. Therefore, F̃ is the desired function and the

proof is complete. �

We are now ready to show one of the main results of this work.
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Theorem 5.2.3. (Model function with pseudo-arcs).

There is F ∈ K such that the Julia continuum Ĵ(F ) of F is a pseudo-arc.

Moreover, F can be chosen such that

lim inf
r→∞

max
Re ξ=r

log ReF (ξ)

r
=

1

2
. (5.12)

Proof. Let (Qk)
∞
k=1 be an enumeration of the countably many quadruples stated in

the hypotheses of Theorem 3.2.7. We construct inductively a sequence of functions

(Fk)
∞
k=0 that have Nk wiggles, for an increasing sequence (Nk)k≥0.

Here N0 = 0 and F0 : S → H, where S =
{
x + iy : x > 4, |y| < π

}
, is the

unique conformal isomorphism in K with F0(5) = 5 and F0(∞) =∞. Further, we

recursively construct a sequence (Γk)
∞
k=0 related to the functions Fk in such a way

that

(i) Fk+1 is (Nk,Γk)-close to Fk;

(ii) For every k ≥ 1, there is some nk ∈ N having the following property:

If F ∈ K such that F is (Nk,Γk)-close to Fk, then the one dimensional

projection ϕ of F has the property Un(ϕ,Qk) = Ûn(ϕ,Qk) for all n ≥ nk.

First, the number Γ0 can be chosen in an arbitrary manner.

Suppose that Fk and Γk have been constructed. We now apply Proposition 5.2.2

to the function Fk, the number Γk and a slightly smaller quadruple Q̃k+1 ≺ Qk+1,

to obtain function Fk+1 that has Nk+1 wiggles. Furthermore, this function has

the property that

Unk+1
(ϕk+1, Q̃k+1) = Ûnk+1

(ϕk+1, Q̃k+1)

for some nk+1 ≥ 0. Further, by Proposition 5.1.18 there is Γk+1 > 0 such that

Unk+1
(ϕ,Qk+1) = Ûnk+1

(ϕ,Qk+1) for every F that is (Nk+1,Γk+1)-close to Fk+1.

This concludes the inductive construction.

Now, let F ∈ K be the limit of the functions Fk, that is, the tract T of F has

N(F ) =∞ wiggles, and F is defined by the sequence (rNk
(Fk+1), RNk

(Fk+1))∞k=0.

By Corollary 5.1.13 and property (ii) of the inductive construction, we have
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obtained

Un(ϕ,Qk) = Ûn(ϕ,Qk)

for all n ≥ nk and k ≥ 0. Therefore, F satisfies the hypotheses of Theorem

3.2.7 (see also Remark 5.1.4), and hence Ĵ(F ) is a pseudo-arc. We now show the

following.

Claim 1. If Γk is chosen sufficiently large, depending on RNk−1
..= RNk−1(F ) =

RNk−1(Fk), then F additionally satisfies (5.12).

Proof of Claim. Set Γk ≥ k ·
(
ν0/2 + Λ(RNk−1 + 1) + ν0

)
, where ν0 is the constant

from Proposition 4.1.8 and Λ is the constant from Proposition 4.1.9. Let a ∈ Tk
such that Re a = RNk−1 + 1, and furthermore |F (a)| is maximal. Next, let

ζ ∈ Tk with Re ζ = Γk − ν0. We may also assume that Γk is chosen so large that

Re ζ > Re a+ 2ν0.

On the other hand, we know that T ∩ {Re z < Γk} = Tk ∩ {Re z < Γk} by

Remark 4.2.2, this implies that a, ζ ∈ T . In particular, the vertical geodesic γζ in

T through ζ separates the vertical γa from infinity, and thus |F (ζ)| > |F (a)|.

Recall that Γk ≤ rk by definition, this implies that Γk− ν0 ≤ rk− ν0, and thus

a, ζ belong to the straight part of T .

Let Q ⊂ T be the unique component whose boundary contains both γa and

γζ . Consider Q as a quadrilateral whose sides are γa, γζ and two parts of the

boundary of T . Next, we can apply the principal branch of the logarithm, and

get a conformal map

logF : T →
{
x+ iy : |y| < π/2

}
.

Since the geodesics γa and γζ under F are semi-circles, and so Q is mapped

by F to a quadrilateral that is a half-annulus, then log maps this half-annulus

conformally to the rectangle

R ..=
{
x+ iy : log |F (a)| < x < log |F (ζ)| and |y| < π/2

}
.
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The conformal modulus of the rectangle R is

mod(R) =
1

π
log
|F (ζ)|
|F (a)|

(5.13)

On the other hand, since γζ has diameter at most ν0 together with the structure

of the tract, we have that

Q ⊂
{
x+ iy : 0 < x < Re ζ + ν0 and |y| < π

}
.

Additionally, let us note that every curve connecting the vertical sides of the

set
{
x+ iy : 0 < x < Re ζ + ν0 and |y| < π

}
contains a subcurve that connects

the vertical sides of Q. Hence, by this observation and the monotonicity of the

modulus [Ahl66, Theorem 2, p. 11], we get that

mod(Q) ≤ Re ζ + ν0

2π
. (5.14)

Since the modulus is conformally invariant, that is, mod(R) = mod(Q), from

(5.13) and (5.14), we obtain

log |F (ζ)| ≤ Re ζ

2
+
ν0

2
+ log |F (a)| ≤ Re ζ

2
+
ν0

2
+ Λ · (RNk−1 + 1). (5.15)

So, by the choice of Γk, we have obtained that

ν0

2
+ Λ · (RNk−1

+ 1) ≤ Γk − ν0

k
=

Re ζ

k
, (5.16)

and thus by (5.15) and (5.16), we get

log |F (ζ)| ≤ Re ζ ·
(

1

2
+

1

k

)
. (5.17)
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Set ρk ..= Γk − ν0. Therefore, by (5.17), we get

lim inf
r→∞

max
Re ζ=r

log ReF (ζ)

r
≤ lim inf

k→∞
max

Re ζ=ρk

log |F (ζ)|
ρk

≤ lim inf
k→∞

max
Re ζ=ρk

Re ζ

ρk
·
(

1

2
+

1

k

)
=

1

2
.

Thus, (5.12) holds as claimed. 4

Hence, the proof of Theorem 5.2.3 is complete. �

By applying Theorem 3.1.7, we obtain a disjoint-type entire function g. This

function will have an invariant Julia continuum that is a pseudo-arc, because the

Julia continuum Ĵ(F ) of the function F from Theorem 5.2.3 is an invariant Julia

continuum of the periodic extension F̂ of F (see Observation 3.1.6). To show

that all Julia continua of g are pseudo-arcs, as claimed in the main theorem, we

must show that all Julia continua of F̂ are pseudo-arcs. This is attained by the

following result.

Theorem 5.2.4. ([Rem16, Corollary 8.7]).

Let F ∈ B
p
log be a disjoint type function with a unique tract up to translation of

2π, and such that T has Euclidean bounded decorations.

If one bounded-address Julia continuum of F is a pseudo-arc, then every Julia

continuum of F is a pseudo-arc.

Remark. In [Rem16, Section 8], this result is stated for bounded decorations, that

is, in Definition 4.1.1 instead to take the Euclidean diameter, it is the hyperbolic

diameter in the right half plane. Note that Euclidean bounded decorations

together with disjoint type implies that the hyperbolic diameter is bounded. So,

having Euclidean bounded decorations implies bounded decorations in the sense

of [Rem16], and Theorem 5.2.4 does indeed apply in our setting.

Using these previous results, we are now ready to prove Theorem 1.0.4.

Proof of Theorem 1.0.4. Let F ∈ K be as in Theorem 5.2.3, and let F̂ be its

2πi-periodic extension. Since the Julia continuum Ĵ(F ) of F is a pseudo-arc, thus

by Theorem 5.2.4, every Julia continuum of F̂ is a pseudo-arc.
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On the other hand, by Theorem 3.1.7, there is a disjoint-type function g such

that every Julia continuum of g is homeomorphic to a Julia continuum of F̂ .

Hence, every Julia continuum of J(g) is also a pseudo-arc.

To complete the proof, we are left to show that F̂ has Euclidean bounded

decorations. Recall that F̃ : T̃ → H1 where T̃ = F−1(H1), and the periodic

extension F̂ : T̂ → H1 is given by F̂ (z + 2πim) = F̃ (z) for all z ∈ T̃ , m ∈ Z,

where T̂ is the 2πim translations of T̃ (see Observation 3.1.6 for all details). The

vertical geodesics in T̃ are the preimages of the semi-circles

Υ ..=
{
z ∈ H1 : |z − 1| = R

}
for all R ≥ 0 by F̃ . Observe that the semi-circles Υ are not geodesics in H.

However, the two endpoints of any geodesic in Υ lie on some geodesic on H, which

is also semi-circle centered at 0 of radius
√

1 +R2. Now, note that hyperbolic

distance in H between any point in Υ and the second semi-circle is at most 1, this

implies that the Euclidean distance in T between a point of the vertical geodesic of

T̃ and the vertical geodesics in T connecting its endpoints is bounded by 2. Hence

F̃ has Euclidean bounded decorations, and thus F̂ also has Euclidean bounded

decorations and the proof is complete. �

We now conclude with the proof of Theorem 1.0.6

Proof of Theorem 1.0.6. We want to show that the disjoint-type entire function

g constructed in the proof of Theorem 1.0.4 has finite lower order. From Theorem

3.1.7, recall that Θ = f ◦ ψ, where f ∈ B, ψ is a quasiconformal map, Θ is a

universal covering on the tract of Θ and

Θ(exp z) = expF (z), (5.18)

where F is the function from Theorem 5.2.3. Furthermore, we obtain a disjoint-

type entire function by setting g = λf for sufficiently small λ.

Since ψ is Hölder continuous at ∞, there is some p > 1 such that

|z|1/p ≤ |ψ(z)| ≤ |z|p (5.19)
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for sufficiently large z. This also holds for the inverse ψ−1. Then for z ∈ exp(T )

we define

M(r,Θ) ..= max{|Θ(z)| : |z| ≤ r}.

Set ρ = log r, and note that M(ρ, F ) = max
{

ReF (ξ) : ξ ∈ T and Re ξ = ρ
}

and thus,

logM(r,Θ) = M(ρ, F ). (5.20)

This equality holds by the maximum principle and the fact that the points on ∂T

get mapped to imaginary axis by F , so the real part of those points are 0.

Recall that V (2) =
{
z ∈ V : Re Θ(z) > e2

}
, where V = exp(T̃ ) (see Theorem

3.1.7 for more details). Further, f is bounded on C\ψ(V (2)) by the aforementioned

theorem. So, this allows us to bound log log |f(z)| in terms of the maximum

modulus M(r,Θ) for points z ∈ ψ(V (2)) and sufficiently large |z| = r, that is, by

the above and (5.19) we get

log log |f(z)| = log log |Θ(ψ−1(z))|

≤ log logM(|ψ−1(z)|,Θ)

≤ log logM(|z|p,Θ)

≤ log logM(rp,Θ).

(5.21)

Therefore, since f is bounded on C \ ψ(V (2)) and by (5.21), it follows that

lim inf
r→∞

log logM(r, f)

log r
≤ lim inf

r→∞

log logM(rp,Θ)

log r

≤ lim inf
r̃→∞

log logM(r̃,Θ)

log r̃

(5.22)

where r̃ = rp. By Theorem 5.2.3 and (5.20), we know that

lim inf
rp→∞

log logM(rp,Θ)

p log r
=

1

2
.

Since |g(z)| < |f(z)| for all z, then the estimate from (5.22), also holds for g,
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that is, M(r, g) ≤M(rp,Θ) for r sufficiently large. So,

lim inf
r→∞

log logM(r, g)

log r
=
p

2
<∞

Hence, g has finite lower order of growth, as required. �
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