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Abstract

We consider a low count data INAR (Integer Autoregressive Regression) model in which
the arrivals are modelled non-parametrically and are allowed to contain covariates. Ac-
commodating possible covariates is important as exogenous variability, such as seasonality,
often needs to be catered for. The main challenge is to maintain the axiomatic proper-
ties of the arrivals non-parametric mass function while, at the same time, incorporating
covariates directly into the associated probabilities. Compared with models that impose
standard distributions such as Poisson or Negative Binomial for the arrivals, our approach
is more �exible and provides a general arrival speci�cation. The dependence structure
is parametric and uses the standard binomial thinning operator. The parameters are es-
timated by the Maximum Likelihood. Monte Carlo simulations show that our proposed
model performs very well with good �nite sample results. Two empirical issues are ad-
dressed where incorporating covariates is a prerequisite for successful modelling. The �rst
incorporates seasonal covariates into a semi-parametric model for forecasting the numbers
of claimants of wage loss bene�ts in the logging industry in British Columbia, Canada. The
second investigates if macro-economic indicators in an economy may be useful in predicting
the number of bank failures in the US �nancial sector.

Keywords: count data time-series; covariates; semi-parametric;integer autoregressive model

1 Introduction

There has been an increasing interest in modelling discrete-valued time series, usually com-
posed of counts of certain events or objects in speci�ed time intervals; see the book of Weiß
(2018) for a comprehensive introduction. A wide range of applications has arisen in various
areas and contexts such as in the social sciences, queueing systems, experimental biology, envi-
ronmental processes, economics, �nance, ecology, epidemiology, international tourism demand
and statistical control processes.
Cox (1981) suggested that models with time-varying parameters could be thought of as

either parameter or observation-driven. In observation-driven models, the current value of the
parameter is a function of the lagged dependent variable while in parameter-driven models, pa-
rameters are governed by some speci�ed stochastic process. These ideas have percolated into the
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count time series literature where, for example, Zeger (1988) introduced the benchmark count
data model in the class of parameter-driven speci�cations. A few methods, such as, but not
limited to, those given in West, Harrison and Migon (1985), Durbin and Koopman (1997, 2000),
Shephard and Pitt (1997), have been used for parameter-driven modeling. On the other hand,
the observation-driven approach is taken by Zeger and Qaqish (1988), Li (1994), Benjamin et
al. (2003), Davis et al. (2003) and Zheng et al. (2015). It is known that parameter-driven
models are generally straightforward in their interpretation of the e¤ects of covariates on the
observed count process, however, these models require considerable computational e¤orts in
parameter estimation and forecasting (see Durbin and Koopman (2000), Jung and Liesenfeld
(2001)). Compared with this, observation-driven models bene�t from straightforward estima-
tion and forecasting while interpretation of the e¤ect of covariates can be challenging. In
addition, the above mentioned approaches are parametric and often invoke the exponential
family as a convenient distributional class. Unfortunately, the exponential family is not a very
rich source of discrete distributions being essentially limited to the categorical, Poisson and
some very restricted Negative Binomial variables. The current paper is a hybrid; it is similar
in spirit to the parameter-driven approach in that an underlying stochastic process is utilized
(non-parametrically) but at the same time the dependence structure is observation-driven.
The integer autoregressive (INAR) class model has been extensively studied in the literature

(for example, see the survey by Weiß(2008a), Jung et al. (2005) and Freeland and McCabe
(2005)) and has been widely applied to �elds such as economics, �nance, marketing, environ-
mental studies and so on (see McCabe et al. (2011)). One of the most prominent features is
that the INAR model explains the current count by thinning (reducing) the lagged value of the
count and adding an integer valued arrivals process (see equation (4) for the model speci�ca-
tion). Thus, this model, while nonlinear, has a similar structure to, and shares properties with
the standard real-valued autoregressive model e.g., a linear conditional expectation and geo-
metric decay of the autocorrelation function. However, the use of binomial thinning operator
in the INAR process always leads to an integer value for the observed series after recursion and
that is not the case when the real-valued autoregressive model is employed.
The arrivals process in the INARmodel is typically modelled parametrically in the literature,

usually relying on Poisson or Negative Binomial distributions. Nevertheless, it is commonly
accepted that the use of standard parametric forms, without corroborating information, often
provides only very imprecise approximations to the underlying statistical distributions when, for
example, outliers, fat tails and even negative skewness cannot be discounted. Hence, Drost et al.
(2009) considered a semi-parametric joint estimation of the INAR coe¢ cients and the innovation
distribution where no speci�c distributional assumption is made for the arrivals. Based on this,
Jentsch and Weiß(2019) estimate jointly the INAR coe¢ cients and the distribution of the
innovations using bootstrap procedure. Our paper is similar to Drost et al.(2009) in that
we adopt the non-parametric, distribution-free perspective for the arrivals which allows for
a more robust and �exible arrivals process and does not impose any, possibly inappropriate,
distributional assumptions. However, we allow the arrivals to contain possible covariates in our
model and follow a di¤erent estimation approach. Indeed, some simulations presented below,
suggest that there are measurable advantages in adopting the approach as an alternative to a
misspeci�ed parametric model when the DGP is arbitrary and even when a properly speci�ed
parametric alternative is available, there is little loss.
In many cases, covariates play a very important role either in constructing a well-speci�ed

model for forecasting purposes or in assessing the e¤ect of a change in the covariate on the
count process being modelled. Covariates are usually incorporated parametrically; for example,
when using Poisson(�) arrivals it is customary to set � = exp (x0t�) to introduce covariates xt.
Freeland (1998) incorporates covariates parametrically into the thinning process as well as the
arrivals and gives identi�cation conditions. In applications of the INAR model though, and
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including the ones presented here, it is often more natural to consider the e¤ects of covariates
via the arrivals process rather than the thinning operator. In particular, since we model the
arrivals process non-parametrically, the challenge is to incorporate covariates directly into the
arrivals probabilities themselves whilst maintaining their probabilistic properties. To the best
of our knowledge, this non-parametric construction with covariates is novel. This construction
also leads to the most general disturbance speci�cation in the INAR literature. We use the
acronym S-INARX to denote the semi-parametric INAR model with covariates.
The remainder of the paper is structured as follows. We introduce the model and outline

some of its properties in Section 2. Estimation methods for model parameters are discussed
in Section 3 and Section 4 examines the small-sample properties via Monte Carlo simulations.
Covariates, both dummy and continuous, are considered in the simulations. Section 5 provides
a robustness check for using our model. Section 6 studies two empirical applications, producing
forecast distributions for low count times series, i.e., predicting the number of bene�t claimants
in British Columbia, Canada and the number of bank failures in the U.S. �nancial sector.
Section 7 concludes the paper.

2 Models with Covariates

In the �rst subsection, we consider how covariates might be directly incorporated nonpara-
metrically, into the probability mass function (pmf) of a discrete random variable with the
support on f0; 1; 2; :::;Mg which bypass distributional assumptions and parametric forms. Of
course, this incorporation needs to be constructed in such a way that the probabilities remain
non-negative and sum to unity. In the subsequent subsection, this construction is embedded as
the arrivals disturbance in an INAR model.

2.1 Discrete Variables with Covariates

The construction starts with a latent variable which contains an unobserved continuous variable
u�t which incorporates the covariate vector xt. Speci�cally, we assume that

u�t = x
0
t� + "t; "t � i.i.d. N(0; 1); (1)

where xt excludes a constant term. The normality assumption is not essential and is used
mainly for concreteness here. The discrete variables ut are de�ned in terms of the continuous
latent u�t by

ut =

8>>>>>><>>>>>>:

0; if u�t � 1
1; if 1 < u�t � 2
2; if 2 < u�t � 3
...

M; if M < u�t

(2)

where 1; : : : ; M are suitable threshold parameters and M is the upper limit of the support.
Thus, the pmf for ut is given, for r = 0; 1; : : : ;M , by

P (ut = r j xt) = purjt (3)

= �(r+1 � x0t�)� �(r � x0t�)

where implicitly 0 = �1, M+1 =1 and � is the distribution function of the standard normal
distribution which follows from the normal assumption in equation (1). By construction these
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probabilities lie in [0; 1] and sum to unity for all values of xt and t. At �rst glance, the ordered
probit speci�cation appears parametric, and it is parametric in how the covariates enter the
individual arrivals probabilities. But the probit merely plays the role of a link function as in the
generalized linear models (GLM) literature. The set-up retains the semi-parametric structure
across the arrivals probabilities and their support, as there is no distributional assumption (e.g.,
Poisson or Binomial etc.) introduced across these probabilities.

2.2 The INAR model with Covariates (S-INARX)

Consider the �rst order integer autoregressive, INAR(1), model (Al-Osh and Alzaid (1987)),
and McKenzie (1985)) for count data,

yt = � � yt�1 + ut; t = 1; 2; :::; T (4)

where the operator �, known as binomial thinning, is to ensure that only integer values of
� � yt�1 will occur. (For other speci�cations of thinning operations, see e.g. the survey in Weiß
(2008a)). The most common thinning operator is binomial thinning which is de�ned as

� � yt�1 =
yt�1X
i=1

Bit

where B1t; B2t;:::; Byt�1t are independently and identically distributed Bernoulli random vari-
ables with P (Bit = 1) = 1� P (Bit = 0) = �.
The distribution of the discrete arrivals ut is to be treated semi-parametrically and will also

depend on some vector of (observable) covariates xt. Speci�cally, the construction the previous
sub-section described in (2) and (3) is used to specify ut. The variable M and the 0s, are
treated as unknown parameters to be estimated which may or may not be of intrinsic interest.
Given low count data and using INAR model with arrivals speci�ed by such a ut (with some
moderately sized �), the value of M is not expected to be prohibitively large. For example, in
the simulations below, a value of M = 2 is su¢ cient to generate a sample of observations yt
with a maximum value in the region of 10 for large enough �. Thus, the process described in
(2) is a device that allows covariates to impact directly on the arrivals probabilities themselves
and at the same time preserves their properties and the dynamic properties of the model. It
also allows the signi�cance of � to be tested. The interpretation of the covariate structure of
the model is straightforward. If an element xj;t of xt has a positive coe¢ cient �j then larger
values of xj;t predict larger values of u�t and hence generally shift the arrivals distribution up.
More speci�cally, we can derive the marginal e¤ect of a change in xt on the conditional mean
as well as the probabilities associated with the yt�s.

2.3 Marginal E¤ects

From the model in (4), we can write the conditional expectation,

E(ytjyt�1) = �yt�1 + E (ut) (5)

where

E (ut) =

MX
r=0

r[�(r+1 � x0t�)� �(r � x0t�)]

Consider the univariate case for ease of notation, when the covariate is a continuous variable,
the marginal e¤ects for the conditional mean can be derived as

@E(ytjyt�1)
@xt

=
@E (ut)

@xt
= ��

MX
r=0

r[�(r+1 � xt�)� �(r � xt�)] (6)
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where � is probability density function of the normal distribution. It is also interesting to know
how the probabilities themselves vary with the change of covariate. When ut 2 f0; 1; 2; :::;Mg ;
we have, using purjt = �(r+1 � xt�)� �(r � xt�), the convolution

P (ytjyt�1) = Pr (Yt = ytjYt�1 = yt�1) (7)

=

min(yt;yt�1)X
r=max(0;(yt�M))

Bi(r; yt�1; �) � pu(yt�r)jt

from which we can calculate derivatives with respect to xt. When xt is a 0 � 1 dummy the
change in probabilities is given by

min(yt;yt�1)X
r=max(0;(yt�M))

Bi(r; yt�1 � r; �) [�(r+1)� �(r)� f�(r+1 � �)� �(r � �)g]

In practice, M , frg ; � and � need to be estimated as described in Section 3.

3 Estimation

For the estimation, the log-likelihood (conditional on y1 and xt) for the S-INARX model is
calculated by a standard convolution argument and is given by

`T (�; �;  (M) ;M)

=
TX
t=2

log

min(yt;yt�1)X
r=max(0;(yt�M))

Bi(r; yt�1; �) � pu(yt�r)jt

=
TX
t=2

log

min(yt;yt�1)X
r=max(0;(yt�M))

Bi(r; yt�1; �) �
�
�((yt�r)+1 � x0t�)� �((yt�r) � x0t�)

�
where Bi(x;n; p) are the usual binomial probabilities. The parameters to be estimated are M ,
 (M) = (1; : : : ; M ) and (�; �). In situations where one is exclusively interested in assessing
the covariate e¤ect, only �̂ and the associated t-statistic are of interest per se. To estimate the
parameters, starting values are needed so we set � = 0 and � = 0. Then, for My = maxt yt,
de�ne the sample proportions

epur = T�1 TX
t=1

1r(yt) r = 0; 1; :::;My:

Setting pu0 = �(1), so that 1 = ��1(pu0 ), an estimated value of 1 can be obtained from
~1 = ��1(epu0 ). Then, according to equation (3), we have pu1 = �(2) � �(1); which implies
~2 = �

�1(epu1 + epu0 ) = ��1(ep1 +�(~1)) and from here we can estimate ~2: The same procedure
may be carried out for the remaining ~0s to get ~r, r = 0; 1; :::;My. Note these initial values
are particularly suited to the value of the thinning � being relatively small.
Using these starting values, one could then attempt to maximize the likelihood of `T (�; �;  (M) ;

M) by searching over a grid ofM 2 [max(yt�yt�1);M+], say, and optimizing `T (�; �;  (M) ;M)
at each step with respect to �; �; . Then use the estimates that correspond to the largest
likelihood in the set. This may be a feasible Maximum Likelihood (ML) procedure in some
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empirical analyses but time-consuming for large T and in simulation experiments. As an al-
ternative, since My = maxt yt is the largest number of probabilities one could ever hope to
estimate semi-parametrically, it is possible to replace M in the likelihood by My to obtain
the function `T (�; �;  (My) ;My). This function may be treated as a pseudo-likelihood and
its �rst order conditions provide suitable estimating equations for �, � and  (My). Hence,
using the starting values above, maximizing `T (�; �;  (My) ;My) yields �̂, �̂ and ̂ leading to
p̂urjt : r = 0; 1; :::;My where

p̂urjt = �(̂r+1 � x0t�̂)� �(̂r � x0t�̂): (8)

The value M is then estimated as the smallest M̂ such that
PM̂

r=0 p̂
u
r � 1 � "�, for some

small tolerance "� with p̂ur = T�1
PT

t=1 p̂
u
rjt. The simulations below show that this approach

to estimation works well providing good estimates for �̂, �̂, M̂ and ̂
�
M̂
�
. In particular

�̂j and its standard error, as required by the t-statistic to test the impact of a covariate,
are well estimated. The parameter restriction imposed in the estimation is � 2 (0; 1) and
we use logit transformation � = (1 + e�a)�1 to guarantee this. In addition, to ensure that

the estimates of ̂
�
M̂
�
monotonically increase, we do the following: �rstly, de�ne �1 = 1;

�2 =
p
2 � 1; �3 =

p
3 � 2; :::; �M+1 =

p
M+1 � M as initial values where 1; :::M+1

can be pre-speci�ed providing 1 < 2 < 3 < ::: < M+1; then apply Maximum Likelihood
estimation as described above and denote the estimated values as ̂�1;; ̂

�
2 ; ̂

�
3 ; :::, ̂

�
M+1; after

that, we square these estimates except for ̂�1 and obtain ̂
�
1 ; (̂

�
2 )
2; (̂�3 )

2; :::; (̂�M+1)
2; �nally,

take the cumulative sum for each estimates so that the �nal estimates of ̂
�
M̂
�
will be ̂1 =

̂�1 ; ̂2 = ̂
�
1 + (̂

�
2 )
2; ̂3 = ̂

�
1 + (̂

�
2 )
2 + (̂�3 )

2; :::; ̂M+1 = ̂
�
1 + (̂

�
2 )
2 + (̂�3 )

2 + :::(̂�M+1)
2:

4 Monte Carlo Study

In this section, we conduct Monte Carlo experiments to examine the �nite sample performance
of the proposed estimator in our model (as described in the last paragraph of Section 3). The
simulations are based on 1000 replications and for sample sizes T = 100; 200 and 500. We choose
� = f0:2; 0:5; 0:8g. The latent variable u�t is constructed according to equation (1) for a given
covariate xt and the arrivals ut and INARX observations yt are generated by equation (2) and
(4) subsequently. The threshold parameters are set to be 1 = 0 and 2 = 1:3862 which implies
the arrivals distribution will have support f0; 1; 2g and henceM = 2: The unreported case for a
larger M , for example M = 5, is also simulated and the results are qualitatively similar to the
the case whenM = 2 reported in Tables 2 and 3. For all the covariates used in our simulations,
the arrivals support remains f0; 1; 2g albeit with di¤erent associated probabilities.
Before turning attention to other parameters, we �rst assess how well the parametersM , 1

and 2 are estimated. We model seasonal variation by assuming the covariate xt is a 12-month
seasonal dummy variable taking values 0 and 1; speci�cally, the �rst six months of xt is set
to 0 followed by the remaining six months taking the value 1 and this pattern is replicated to
complete the sample. The coe¢ cient � is set to be 1. Table 1 summarizes the distribution
of the estimated M given the true value is 2 as in the DGP. Based on the settings above, we
calculate the percentage of times, out of 1000 replications, that M̂ takes di¤erent values. The
results show that M̂ performs extremely well, for example, over 96.9% of times, M is correctly
estimated when T = 200 and M is consistently estimated1 as the sample size increases. Figure

1Since M is an integer valued, the estimator M̂ identi�es M correctly and does not reside in an small interval
close to M as in the case of a real valued parameter.
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1 and 2 plot the densities of the estimated 1 and 2 with di¤erent sample sizes and �: Both
�gures clearly show that, ̂1and ̂2 converge to the true values of 0 and 1:3862 respectively as
the sample size increases. Figure 3 provides sample density plots (solid line) for the t-values of
the estimated � for di¤erent sample sizes with � = 0:2. It is evident that the density is very
close to the standard normal distribution (dotted line) even for smaller sample sizes.

Table 1. Distribution (percentage of times) of M̂ when M = 2

� = 0:2 � = 0:5 � = 0:8

M̂ 1 2 3 4 1 2 3 4 1 2 3 4
T = 200 0:0 96:9 2:9 0:2 0:0 100 0:0 0:0 0:5 99:5 0:0 0:0
T = 500 0:0 99:8 0:2 0:0 0:0 100 0:0 0:0 0:0 100 0:0 0:0
T = 1000 0:0 99:9 0:1 0:0 0:0 100 0:0 0:0 0:0 100 0:0 0:0

[Figure 1. Density plot for estimated 1 for di¤erent � ]

[Figure 2. Density plot for estimated 2 for di¤erent �]

[Figure 3. The distribution of t(�̂1) when � = 0:2 in comparison with
standard normal distribution]

To evaluate the performance of other parameters estimation, we calculate the bias and Root
Mean Squared Error (RMSE). We consider two cases for covariates xt : (1) when covariates xt
is seasonal dummy; (2) xt is a continuous variable. The simulation results are summarized in
Tables 2 and 3 respectively. In all tables, columns of m(:) represents the mean value for each
estimated parameter and

P2
0p̂
u
r in the last column is the value

2X
r=0

8<:
NrepsX
j=1

"
TX
t=1

p̂
u[j]
rjt =T

#9=; =Nreps (9)

where p̂u[j]rjt is the p̂urjt of the jth replication. Under the DGP described above, the value ofP2
r=0

PT
t=1 p

u
rjt=T adds up to 1. Hence we would expect that the sum in (9), comprising of

three estimated probabilities, would be very close to 1 as well, despite the fact that for any data
set,

PT
t=1 p

u
rjt=T , r = 1; :::;My in total are calculated. Again, the simulations con�rm this, i.e.,

the implied estimate of M is very close to 2.
With the seasonal dummy covariates xt, the estimation results are reported in Table 2(a)

for the estimation of � and � and Table 2(b) for the estimation of pur . We �nd a monotonic
gain in RMSE of estimated �; � and the pur�s when the sample size T increases for any �xed
� and this pattern applies across all the � values. On the other hand, at any given T; the
estimation of all the parameters is better when � is smaller. We also consider cases with other
forms of dummy covariates xt, including: (a) xt is generated to follow a Bernoulli distribution
with P (xt = 1) = px; (b) xt is assumed to alternate between 0 and 1 at each time period; (c)
xt takes f0; 1; 2; 3; 4g in sequence and then repeats over the time. The patterns, for any given

7



T or �, are similar to our reported experiments. The results from these settings are provided
in the supplementary appendix.
Next, we investigate estimation performance when the covariate xt is a continuous variable.

All the other parameters are kept unchanged except a simple continuous trigonometric model
is considered in order to mimic the e¤ect the seasonality, i.e., xt is de�ned by �1 sin(2�t=12) +
�2 cos(2�t=12): The coe¢ cients �1 and �2 are both set to be 1: The simulation results are
summarized in Table 3(a) and 3(b). As the results for �̂1; �̂2 are similar, only those for �̂1 are
reported. It is clear that �̂ and �̂1 are very close to their true values. Furthermore, when the
sample size T goes up, RMSE decreases monotonically and this applies for all � values. The
estimation of purjt also performs well as re�ected by the small values of the bias and RMSE.
In conclusion, our proposed model performs very well in all the settings above including

both dummy and continuous covariates xt. In general, at any �xed �, there is a monotonic
gain in bias and RMSE for all the estimated parameters as the sample size increases. And
such gains apply to all � values. This is consistent with expectations as estimation typically
becomes more accurate when T gets larger. On the other hand, for any given T; the bias and
RMSE of estimated �1 and pur increase with � which may also be expected since with less
thinning in yt, My tends to be larger and hence more probability parameters are estimated in
the arrivals. For the estimation of �, the change in RMSE is not monotonic. However, in
general, RMSE decreases with � as an overall pattern.
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5 Robustness check

In this section, we investigate the performance of our proposed S-INARX (semi-parametric
INARX) model under misspeci�cation. Three cases are considered: (a) the arrivals are gen-
erated as described in Section 4 and both S-INARX and P-INARX (parametric INARX) are
estimated. Our intention is to assess the penalty, if any, that arises from using a (misspeci�ed)
parametric model when the DGP is semi-parametric and to compare the performance with that
of using the S-INARX model; (b) the arrivals are generated from a single Poisson distribution
P1 with parameter �1+�xt and the resultant ut is used as a parametric DGP. We compare the
performance of the S-INARX model with that of a Poisson based parametric P-INARX model.
The idea is to investigate the price that may be paid for using the semi-parametric S-INARX
model when there is a well speci�ed parametric alternative available; (c) the arrivals are gen-
erated using a mixture of two Poisson distributions P1 and P2 with means ��1 = �1 + �xt and
��2 = �2 + �xt respectively to approximate an arbitrary semi-parametric DGP. It is of interest
to see how S-INARX and P-INARX perform under this setting as the DGP corresponds to
neither model.
One of the primary reasons for entertaining structural time series models for counts (e.g.

the INARX class) is to produce forecasts and so it seems natural to compare competing models
via their one-step ahead forecast distributions. A standard log scoring rule is used to assess
how well the forecast distributions perform. It is expected that our S-INARX model will have
better performance in the �rst case above and in the second case, one hopes that the S-INARX
model would have a forecasting performance that is not too inferior to that of the parametric
P-INARX model. We choose �1 = 1; �2 = 2; � = 1; � = 0:2 and the mixing probability p = 0:3
in the simulations. Table 4 summarizes the results.
It is clear that, if the underlying distribution of the arrivals is as described in case (a)

above, the S-INARX performs better than P-INARX when T = 100 and then with sample
size increases, the P-INARX actually has larger log score than that of S-INARX. This relative
performance might be expected as there are more parameters to estimate using the S-INARX
when the sample size is large and My tends to be greater. For case (b), when the underlying
distribution of the arrivals is indeed Poisson and semi-parametric estimation is used, not much
is lost compared with using the (correct) parametric speci�cation except when the sample size
is small, i.e. T = 100: With the sample size increases, the performance of S-INARX improves
signi�cantly. Finally, if the underlying distribution of the arrivals is mixed Poisson as in case
(c), then the log score associated with the S-INARX method is larger than that of the log
score using P-INARX estimation. Therefore, our conclusion is that the performance of the
proposed S-INARX approach is less a¤ected by model misspeci�cation when compared with
that of parametric P-INARX estimation.

Table 4. One-step ahead forecast distributions performance
Semi-parametric INARX (S-INARX)/Parametric-INARX (P-INARX)

S-INARX DGP Poisson DGP Mixed Poisson DGP
T log score log score log score
100 S-INARX �0:3891 �1:5790 �0:5988

P-INARX �0:5121 �0:5748 �0:7537
200 S-INARX �0:5075 �0:4507 �0:5037

P-INARX �0:2486 �0:5748 �0:5720
500 S-INARX �0:4937 �0:5101 �0:5154

P-INARX �0:2500 �0:5171 �0:5698
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6 Empirical Analysis

In this section, we discuss two empirical prediction applications using our proposed model,
incorporating a dummy and a continuous covariate respectively2 . In particular, we highlight
the role of nonparametric forecast distributions. It is very common in prediction settings to use
the mean of the forecast distribution with it being optimal in the Mean Square Error sense. In
the case of low counts, this practice would invariably lead to incoherent forecasts not contained
in the integer-based support of the variable under study and would require some ad hoc rounding
procedure to ensure credibility. A possible solution might be to use the median of the forecast
distribution with it being optimal in the Absolute Error sense. That the median forecast
may itself not be very informative is exempli�ed by the following two situations. Let X be a
discrete variable that takes two values. In the �rst scenario, let the distribution of X be given
by P (X = 0) = 1�P (X = 1) = 0:50 while in the second let P (X = 0) = 1�P (X = 5) = 0:90.
In both cases, the median of X is 0. However, in the second situation, there is almost twice
the probability of observing a zero making that outcome far more likely. Thus, the use of a
single, even coherent, summary measure of a forecast distribution may be quite uninformative
and possibly misleading.
It is clearly more instructive to give the full probability distribution for all the values in

the support. In addition, should information be available to quantify the losses related to the
individual projected numbers, i.e. a Loss Function be available, the forecast distribution allows
the associated risk function to be calculated. From there, if a single number is required, for ease
in communication, say, it is then possible to use the minimax forecast, for example. Thus, there
is a potential triple bene�t from the nonparametric distribution approach: both inappropriate
distributional assumptions and possibly misleading singleton forecasts may be avoided and the
forecast distribution can facilitate better decision making.

6.1 Cuts Data Application

In this application, we analyze some time series count data, obtained from the Workers Com-
pensation Board (WCB) of British Columbia, Canada, using our proposed semi-parametric
model. This data was originally studied by Freeland (1998) and later by Freeland and Mc-
Cabe (2004), Zhu and Joe (2006) amongst others. The dataset consists of monthly counts of
claimants collecting Short Term Wage Loss Bene�t (STWLB) for injuries received in the work-
place. In the selected data set, all the claimants are male, between the ages of 35 and 54, work
in the logging industry and reported their claim to the Richmond, BC service delivery location.
This data set consists of 120 observations starting in January 1985 and ending in December
1994. The data series we use here are claimants whose injuries are cuts related. The thinning
parameter � can be interpreted as the probability that an existing claimant will continue to
collect bene�t in the next month and arrivals are new claimants.
Figure 4 shows the time series plot of the cuts data. The mean of the data is 6:13 and

the variance is 11:80 with the smallest observation being 1 and the largest 21 in July 1987.
This indicates some type of over-dispersion in the data. The July 1987 observation is by some
distance larger than the preponderance of the data and in a parametric analysis, �tting a
negative binomial for example, would often be treated as an outlier and possibly be deleted
from the data set to ensure a good parametric �t. However, there is no need to do so here
and we estimate the semi-parametric model described in Section 3. There is also an apparent
seasonality pattern in this plot which is also con�rmed by the sample autocorrelation function
(ACF) in Figure 5 and the summary in Table 5. Such seasonality is not surprising in this

2The exposition in this section is based on Freeland (1998) and Freeland and McCabe (2004)
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context as we expect fewer claims in the winter months and more in the summer months in the
logging industry.

[Figure 4. Time series plot of the cuts data from 1985 to 1994]

[Figure 5. Sample autocorrelation function of cuts numbers]
Table 5. Mean of the counts in each month over 1985 to 1994

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Average 4:2 3:8 4:6 4:9 7:0 7:1 8:5 7:5 7:2 7:2 7:2 4:4

We chose to model the seasonal variation, �rstly, by adding a mix of sine and cosine terms
to the arrival process and also by using a dummy variable for winter and summer. In the former
case, the term �0 + �1 sin(2�t=12) + �2 cos(2�t=12) replaces x0t� in equation (1) and is then
incorporated into our model in (4). In the dummy variable case, all months from December
to May are set to 0 and others are set to be 1 and the term �0 + �1Dt is used as x0t� in
the arrival process. The estimation of � in (4) as well as the parameters �0; �1; (and also �2
in the sin/cos case) are of interest. To estimate the parameters, we use the pseudo Maximum
Likelihood estimation technique described in Section 3. We also plot, in Figure 6 and 7, the ACF
of the standardized Pearson residuals (i.e. deviations from the model conditional mean) from
�tting both the above models which evidence the adequacy of our models. The results for the
estimated parameters are reported in Table 6 and M̂ = 14 in both models. Our analysis shows
the seasonal regression is statistically signi�cant at the 5% level in both cases which con�rms
that the seasonality covariates do explain some variation in the cuts data. The estimated � is
not a¤ected by the choice of seasonal model. When we compare the estimate �̂ obtained here
using the semi-parametric approach with trigonometric covariates with that of Freeland and
McCabe (2004), �̂ = 0:406, who incorporated the covariates parametrically using a Poisson
distribution, we see little di¤erence suggesting the original analysis remains robust and not
particularly sensitive to the parametric distributional forms used. The misspeci�cation tests
used in the original study also support this conclusion.

[Figure 6. ACF of standardized Pearson residuals in seasonal
dummy model ]

[Figure 7. ACF of standardized Pearson residuals in seasonal
dummy model]

With suitable re-estimation of the parameters for the appropriate sub-samples, and including
the seasonal dummy covariate, we can make a forecast of the number of claimants for future
months. This is an important managerial issue as it provides valuable information for decision
makers to allocate resources as well as for �nancial planning. For example, assume that the
current time is August 1991 and we wish to predict a value for September 1991. Using the
sin=cos model, we report in Table 7 that the highest probabilities are assigned to the numbers
8, 9 and 7 while in fact, the true number is 7 for September 1991. For the low winter season,
consider December 1993; the highest probability is allocated to 4 and 5 cases and indeed 4 cases
did actually occur. Results, not reported here, show similar pattern in the dummy variable
case. The overall picture is also consistent with the expectation that fewer claims occur in the
winter months and more in the summer months in the logging industry.
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Table 6. Parameter estimates based on cuts data
Panel A: sin=cos covariate

�̂ �̂0 �̂1 �̂2
estimate 0:4361 3:4012 �0:5721 �0:9268
s.e 0:1655 0:2675 0:2732 0:2827
t-stat 2:6356 12:7169 �2:0941 �3:2780

Panel B: winter and summer dummy variable covariate
�̂ �̂0 �̂1

estimate 0:4406 2:55418 1:2740
s.e 0:02141 0:03926 0:05136
t-stat 20:5749 65:0623 24:8043

Table 7. Probability distributions forecast for Sep 1991 and Dec 1993 using seasonal dummy
covariate

ySep;1991 = 7; yAug;1991 = 11 yDec;1993 = 4; yNov;1993 = 6
P (yt = 3jyt�1) 0:0021 P (yt = 1jyt�1) 0:0117
P (yt = 4jyt�1) 0:0117 P (yt = 2jyt�1) 0:0561
P (yt = 5jyt�1) 0:0421 P (yt = 3jyt�1) 0:1244
P (yt = 6jyt�1) 0:1059 P (yt = 4jyt�1) 0:1797
P (yt = 7jyt�1) 0:1900 P (yt = 5jyt�1) 0:1951
P (yt = 8jyt�1) 0:2436 P (yt = 6jyt�1) 0:1651
P (yt = 9jyt�1) 0:2187 P (yt = 7jyt�1) 0:1086
P (yt = 10jyt�1) 0:1309 P (yt = 8jyt�1) 0:0598
P (yt = 11jyt�1) 0:0469 P (yt = 9jyt�1) 0:0350
P (yt = 12jyt�1) 0:0077 P (yt = 10jyt�1) 0:0263

6.2 Bank Failures

Monitoring �nancial systems is one of the key tasks of regulatory authorities and has typically
focused on bank-speci�c, industry-speci�c and macroeconomic determinants of bank failure
with the objective of understanding which factors are the most useful and signi�cant in the
prediction of banking crises. There has been an increasing interest in studying bank failures, and
in particular, to detect any relationship between bank failure and macroeconomic or �nancial
indicators. For instance, Demirgüç-Kunt and Detragiache (1998) underline that elements of
the macroeconomic environment, such GDP growth, excessively high real interest rates and
high in�ation, signi�cantly increase the likelihood of systemic banking crises. Similarly, output
growth in Kaminsky and Reinhart (1999), Louzis et al. (2012), and low unemployment rates in
Louzis et al. (2012) and Ghosh (2015) are found to be negatively associated with bank failures,
as a dynamic economy usually enjoys a buoyant housing sector, while accommodating monetary
policies encourage banks to o¤er more loans. The Buch et al. (2010) model includes GDP
growth, in�ation, the Federal Funds rate, house price in�ation and a set of factors summarizing
conditions in the banking sector.
This subsection aims to provide an empirical analysis of U.S. commercial banks failures

using our proposed S-INARX model. A framework to monitor and forecast the occurrence of
bank failures in US is important in particularly for institutions such as the Federal Deposit
Insurance Corporation (FDIC). Our framework contributes to the literature as follows: Firstly,
instead of using aggregated annual data on bank failures, we study monthly failure occurrences.
This higher frequency data has the advantage of providing an attractive monitoring strategy
for regulatory authorities, by giving a �ner, real-time tool for detecting any developing �nancial
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vulnerabilities in a timely manner. Secondly, in contrast to studying measures such as bank
failure rates and the failure ratio that are usually of a continuous nature, we look at the numbers
of bank failures which are of more practical and direct relevance and therefore more natural
to use. Finally, our model can provide predictions for the entire probability distribution that
are more informative than those based on mean e¤ects. It is often the case that the policy
makers are interested not only in the average e¤ect of a policy, but also in its distributional
consequences and this can be very useful information for monitoring and further analysis.
In the S-INARX framework, the contagion risk of past bank failures is captured by the

thinning component of the model while the impact of the covariates is included in the nonpara-
metric arrival speci�cation thus avoiding the need to make, possibly contentious, distributional
assumptions. The data, i.e. the monthly number of failed banks, is extracted from reports
that cover FDIC insured institutions. The number of observations is 84, covering bank failures
from January 2012 to December 2018. We take the data up to December 2017 as our in-sample
observations and the remainder are used for out-of sample prediction.
Figure 8 provides a time-series plot of the banking failure numbers. The average is 1:5833

while the variance is 3:5985 which indicates overdispersion in the distribution of failure numbers.
While other factors, including bank or industry speci�c ones, can also be considered, we will
focus on the link between macroeconomics variables and bank failures. Hence, following the
literature, we investigate, as explanatory variables, the most commonly used macroeconomic
indicators, i.e., GDP growth rate, unemployment rate, in�ation and the Federal fund rate in
U.S. The data were obtained from the FRED Economic data base and the OECD data resource.
Then we �t the model (4) by including all the above macroeconomic indicators in the arrival
process (1) and estimate the coe¢ cients of these covariates as well as �, as in the previous
Section.

[Figure 8. Plot of the number of bank failures from 2012 to 2017]

Table 8 summarizes the estimation results from �tting the S-INARX model to the monthly
occurrence of bank failures; �̂ is the estimated thinning parameter and �̂0 and �̂1; �̂2 are
respectively the intercept and slope coe¢ cients in the covariate estimation using the in�ation
and the Fed fund rate as covariates. Other variables e.g. the unemployment rate and GDP
growth rate are found insigni�cant in the estimation, and therefore have been removed from the
regression. Plots and the ACF of the residuals from this model suggest they may be treated as
noise. Again, the ACF of the standardized Pearson residuals from �tting this model is provided
in Figure 9 and suggests the adequacy of this model. For the estimation of the parameters, M̂
= 6; �̂2 is negative which is consistent with our expectation since the lower the interest rate,
the less margin that banks earn which may encourage more risky loans; taken together, these
would increase the risk of bank failure. The positive impact of in�ation can be explained by
the fact that when in�ation increases, the value of money would fall and hence discourages
people�s saving and investment. More broadly, as it is known that banks�pro�t will be a¤ected
during an economic downturn, increasing in�ation, which is generally considered bad for the
economy, would add more risk to the banks position. The t-statistics in Table 8 con�rm that
both in�ation and the Fed fund rate play a signi�cant role in modelling monthly bank failure
numbers.

[Figure 9. ACF of standardized pearson residuals of using bank
data]
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Table 8. Parameter estimates using bank data

�̂ �̂0 �̂1 �̂2
estimate 0:2096 0:1798 1:0120 �2:369
s.e 0:1167 0:5481 0:3505 0:8157
t-stat 2:0609 0:3281 2:8890 �2:9050

With the re-estimated parameters, we can now make a probability forecast of the number

of bank failures for future months. We choose two examples: The �rst one is based on our

last in-sample data point of December 2017, i.e., yt�1 = 1, and use this make a one-step ahead

out-of-sample prediction distribution for January 2018; In the second example, we choose a

larger base observation, i.e., yt�1 = 4; the number of August 2013, and use this to make a

distribution forecast for bank failures in September 2013. The results are summarized in Table

9. Using the covariates of in�ation and Federal fund rate, we �nd that the highest probability

of failure is assigned to the value of 0 while in fact, the true number is 0 in the �rst example.

In the second example the highest probabilities are allocated to outcomes 1 and 2 and, indeed,

2 cases did actually occur. It is clear from the probability distribution in the second column of

Table 9 that only the outcomes 0 and 1 need to be seriously considered as possibilities. On the

other hand, the distribution in column four, shows that any of the outcomes from 1 to 4 has

an associated non negligible probability of occurring, with outcomes 1 and 2 deemed the most

likely. The larger entropy associated with the distribution is apparent. This sort of information

is not readily apparent to regulatory authorities when using single summary measures alone.

Table 9. Nonparametric Forecast probability distributions for Jan 2018 and Sep 2013

yJan;2018= 0; yDec;2017= 1 ySep;2013= 2; yAug;2013= 4

P (yt= 0jyt�1) 0:6452 P (yt= 0jyt�1) 0:0830

P (yt= 1yt�1) 0:2800 P (yt= 1jyt�1) 0:2564

P (yt= 2jyt�1) 0:0524 P (yt= 2jjyt�1) 0:2242

P (yt= 3jyt�1) 0:0116 P (yt= 3jyt�1) 0:1382

P (yt= 4jyt�1) 0:0047 P (yt= 4jyt�1) 0:1144

P (yt= 5jyt�1) 0:0009 P (yt= 5jyt�1) 0:0646

P (yt= 6jyt�1) 0:0004 P (yt= 6jyt�1) 0:0615

We can also look at the marginal e¤ects as described in Section 2.3. The marginal e¤ect

on the conditional mean can be obtained from equation (6) for any given value of xt. Again,

we consider two examples with the �rst one in June 2012 when 7 banks actually failed, which

represents the possible aftermath of �nancial crisis. The second example we choose is July 2016

when there were no bank failures re�ecting more normal times. Given the estimated ̂0s and

�̂0s, we �nd from Table 10 that, at an in�ation baseline of 1:6639 in June 2012, a small increase

therein would suggest that the conditional mean of the failed bank numbers will increase by

around 0:7708. Similarly, at a baseline in�ation of 0:8271 in July 2016, the conditional mean

of failed bank numbers will increase by 0:4573 re�ecting the environment being strong. On the

other hand, when the Fed fund rate (FDR) is at 0:16 as in June 2012, the conditional mean of
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the failed bank numbers will decrease by around 1:8039 as compared with 1:0702 when the FDR

is at a relatively high value 0:39 for July 2016. These numbers are consistent with what we

expect viz. that the change in the number of bank failures under normal economic conditions

is not as sensitive as that during a �nancial crisis and economic downturn.

Table 10. Marginal e¤ect on the conditional mean of failed banks

Date In�ation Marginal E¤ect Fed fund rate Marginal E¤ect

Jun 2012 1:6639 0:7708 0:16 �1:8039
Jul 2016 0:8271 0:4573 0:39 �1:0702

7 Conclusion

We propose a semi-parametric, S-INARX, approach to include covariates in the arrivals of the

INARX (integer autoregressive regression with covariates) model which has frequently been

used in count data analysis. Our approach adopts the non-parametric, distribution-free per-

spective for the disturbances which allows for a more robust and �exible arrival process than in

parametric models that often impose, possibly inappropriate, distributional assumptions such

as Poisson or negative binomial. In contrast to the typical non-parametric situation where a

function (in�nite dimensional) is to be estimated, our arrivals mass function is discrete and

�nite dimensional and while it is true that there are a larger number of parameters to be es-

timated, in comparison with a parametric distributional approach, the excess is not expected

to be large when modelling low counts. A larger number of parameters does impose a greater

computational cost, but the Monte Carlo studies indicate that the burden is modest. In addi-

tion, to help explain the behavior of the dependant variable of interest, our model incorporates

exogenous covariates directly into the arrivals probabilities whilst maintaining their probabilis-

tic properties. This o¤ers a more natural alternative for considering the e¤ects of covariates

than incorporation via the thinning process. To the best of our knowledge, our construction

with covariates is novel and leads to the most general disturbance speci�cation in the INAR

literature.

Monte Carlo studies show that our proposed method works very well in �nite samples. We

further provide a robustness check with the conclusion that the performance of our proposed

S-INARX model is less a¤ected by misspeci�cation when compared with that of a parametric

counterpart, the P-INARX model. Simulations show that the S-INARX model outperforms

P-INARX when the underlying distribution of the arrivals is not parametric while not being

inferior when arrivals are actually parametric. This is particularly true when low counts are

considered in which M is not too large. However, it is a perennial problem in forecasting that

the future may di¤er quite substantially from the past in unknown ways. Of course, this issue

is likely to be much more acute in long-range forecasting than in the short-term one-step ahead

framework considered here. However, in ongoing forecasting processes, accuracy checks are

continually made with model updates and improvements regularly implemented. In the current

context, this would include assessments of the possible future values of M. In addition, when a
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sequence of one-step ahead forecasts is made the model itself would usually be re-estimated as

new observations become available thereby providing updates for M.

Finally, two empirical problems have been studied in the paper. The �rst concerns semi-

parametric probability distribution forecasts for a low count times series of bene�t claimants

where covariates need to be incorporated to account for seasonality; the second investigates

the feasibility of using macroeconomic indicators as covariates when trying to predict the

monthly number of bank failures. Further, whilst using the semiparametric approach, we have

shown that one-step ahead predictions for the entire probability distribution can be produced

which can be more informative for policy makers and regulatory authorities in monitoring and

decision-making processes.
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