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Abstract 

Human immunodeficiency virus (HIV-1) infection continues to be a significant public 

health concern, with 36.3 million lives being claimed by the infection thus far. 

Currently there is no cure for HIV. Antiretroviral (ARV) therapy has considerably 

increased life expectancy in people living with HIV (PLWH), however, several 

challenges remain. This thesis investigates the various ways in which physiologically 

based pharmacokinetic (PBPK) modelling can be developed and applied with the 

aim of optimising treatment for human immunodeficiency virus (HIV-1) infection.  

Neonatal patients are considered a vulnerable population as limited clinical studies 

are conducted in this population. Newborns born to mothers with HIV are at risk of 

receiving HIV. Lack of pharmacokinetic (PK) data means fewer treatment options are 

available. Chapters 2 & 3 focus on developing and applying a neonatal PBPK model 

to investigate the PK of integrase inhibitors, dolutegravir and bictegravir in 

neonates.  Chapter 4 goes on to describe how modelling can be used to predict the 

PK of novel formulations by simulating long-acting, intramuscular, cabotegravir in 

neonates.  

Polypharmacy is routinely observed in PLWH, and drug-drug interactions (DDIs) 

prove an obstacle in HIV treatment, Chapter 5 involved developing an adult PBPK 

model to evaluate the magnitude of moderate inducers on novel ARVs. Residual 

levels of viraemia hinder the ability to develop a cure, Chapter 6 investigated the 

penetration of ARV drugs in lymphoid tissues using a mechanistic lymphatic PBPK 

model. Understanding the penetration of drugs in target tissues can help optimise 

ARV therapy.  

Collectively, this thesis evaluates the possible ways HIV treatment can be improved 

and optimised by investigating the potential of treatments in special populations, 

novel formulations of ARV drugs, management of drug-drug interactions and the 

penetration of therapy in target tissues. 
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1.1 Pharmacokinetics  

Pharmacokinetics (PK) can be split into four key stages: absorption, distribution, 

metabolism, and elimination (ADME) and involves the study of the rate and 

magnitude of drug movement through, into and out of the body. The PK behaviour 

of a drug dictates its efficacy [1, 2]. 

There are multiple routes of drug administration, the most common include, per oral 

(PO), subcutaneous (SC), intravenous (IV) and intramuscular (IM) injections, with 

other routes such as transdermal, rectal, sublingual etc. less frequently used [1, 2].  

1.1.1 Absorption 

Absorption is the process in which a drug moves from its site of administration into 

the bloodstream. Several factors determine the rate of drug absorption including 

the route of administration, formulation, physiology, and the drug’s 

physicochemical properties. With exception of IV administration, drugs must cross 

numerous biological membranes and barriers before they reach the systemic 

circulation. An orally administered drug moves across the enterocytes located in the 

gastrointestinal tract (GIT) into the gut wall to the venous blood. For drugs that are 

administered IM or SC, factors such as tissue density, composition and vascularity 

influence the rate of absorption. [1, 2] 

1.1.2 Distribution 

Distribution of a drug refers to the movement of drug through the blood and tissues 

in the body. Distribution is also influenced by physicochemical and physiological 

properties, with blood flow to organs and tissues, protein binding and blood-to-

plasma ratio playing a major role in drug distribution.  
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Blood-to-plasma ratio determines the concentration of drug in blood relative to 

plasma and gives an indication on drug binding to erythrocytes. Plasma protein 

binding is the phenomenon where drugs bind reversibly to proteins present in 

plasma depending on ionisability and lipophilicity of the compound and an 

equilibrium is established shortly after. Albumin is found in abundance in plasma, 

followed by lower concentrations of α-acid glycoprotein (AGP) and other proteins 

such as globulins. Only the unbound fraction of drug can go on to exert a 

pharmacological effect at the site of action. The extent of binding is dictated by the 

drug’s affinity for the protein which is dependent on its structure and 

physicochemical properties in addition to protein and drug concentrations. Protein 

concentration can fluctuate between individuals based on several physiological 

characteristics. Highly bound drugs can be characterised by limited distribution in  

organs and tissues.  

1.1.3 Metabolism 

The liver plays a crucial role in the metabolism of compounds. Metabolism can be 

split into two stages: phase 1 and phase 2. Phase 1 metabolism involves reduction, 

oxidation, and hydrolysis reactions that lead to the formation of new or modified 

functional groups; these reactions are predominantly facilitated by cytochrome 

(CYP) P450 enzymes. Conjugation reactions are carried out in phase II metabolism 

by uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) enzymes. Phase II 

reactions usually involve the addition of an endogenous moiety (e.g., sulphate or 

glucuronic acid) to the drug to increase the hydrophilicity of the compound, easing 

excretion from the body. Compounds can be metabolised by one or several 

enzymes. For certain drugs, metabolism can lead to the production of 

pharmacologically active metabolites. 
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Metabolism can also occur in the intestine, where CYP3A4 is present in the mucosa. 

Intestinal metabolism, as well as first –pass metabolism by the liver, can reduce the 

systemic exposure of certain orally administered drugs. Once absorbed in the GIT, 

drug moves to the liver via the portal vein from where it is either passively or actively 

transported across membranes after which it is subjected to metabolism and biliary 

excretion, this process is dubbed first-pass metabolism and can profoundly 

influence bioavailability of oral drugs. Bioavailability (F) can be defined as the 

proportion of drug that reaches the systemic circulation and is often expressed as a 

percentage.  In a low number of cases metabolism can also occur in other tissues 

such as the lungs and the kidney 

1.1.4 Elimination 

Drug elimination is the process in which drug is removed from the body irreversibly, 

in its metabolite form or unaltered, by the kidneys and/or the liver. Renal elimination 

can be summarised into three processes: tubular secretion, glomerular filtration, 

and passive reabsorption. Drugs can also be removed in the bile or excreted in 

faeces.  

1.1.5 Quantitative Pharmacokinetic Parameters 

The PK properties of a drug are deduced by studying concentration-time profiles 

following administration, a typical PK profile for an orally administered drug has 

been highlighted in Figure 1.1. Routinely used parameters to quantify PK include 

the maximum plasma concentration (Cmax), minimum plasma concentration (Cmin), 

area under the curve (AUC), the time taken to reach Cmax (Tmax) and clearance (CL). 

Clearance, defined as the volume of blood/plasma cleared of a drug over a given 

time period, can be expressed in multiple forms including, systemic clearance 
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(CLsys) or apparent clearance (CL/F) which is customarily used for oral drugs and  

takes into account bioavailability. [2] 

Figure 1.1 Concentration-time plot example following oral administration of a drug. 

Plasma concentration is plotted on the y-axis and time is plotted on the x-axis. Key 

PK parameters maximum concentration (Cmax), minimum concentration (Cmin), time 

taken to reach Cmax (Tmax) and area under the curve (AUC) have been highlighted 

within the figure 

1.2 Physiologically Based Pharmacokinetic Modelling 

Over the past two decades, physiologically based pharmacokinetic (PBPK) 

modelling has received widespread attention. Failures in the late stages of drug 

development can be costly so the ability to evaluate potential risks ahead of time is 

greatly favoured. Industries and regulatory bodies are becoming increasingly 
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interested in using PBPK modelling techniques in early drug discovery stages to 

facilitate drug development [1].  

1.2.1 General Structure 

PBPK modelling can be classed as a bottom-up approach that employs observed 

clinical data and in vitro data. PBPK modelling involves simulating important drug 

processes by integrating previous knowledge on organism and drug specific 

characteristics [3]. This modelling technique mimics the structure of the biological 

system being studied e.g., rat, monkey, human etc. and comprises distinct 

compartments that correspond the physiology of tissues and organs which are 

connected via the circulating blood system [3, 4]. Blood circulation is subdivided 

into a venous and arterial pool. The choice of compartments represented in a model 

often reflect the data that is available on the anatomical and physiological 

characteristics of the biological system and is also dependent upon the overall 

application/purpose of the model. Typically, each compartment is defined by a 

blood flow rate and tissue volume; a tissue is described as either permeability rate 

limited, or perfusion rate limited [3, 4]. Most PBPK models assume perfusion rate 

limited kinetics (rate at which blood is delivered to tissue) which is generally justified 

for small, lipophilic compounds. For larger, more polar compounds permeability 

across the cell membrane becomes the limiting step, in this instance, permeability 

rate limited kinetics is justified. It is also assumed that compartments are well-stirred 

and drug distribution is instantaneous [3-6]. Figure 1.2 below illustrates a typical 

schematic of a whole-body PBPK model.  
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Figure 1.2 Whole-body PBPK model comprising tissues and organs as 

compartments. The small intestine is further divided into seven sub-compartments 

for absorption modelling. Arrows represent direction of blood flow.  

1.2.2 Mathematical equations to represent drug distribution 

The equations used in a PBPK model are fundamentally mass balance equations 

derived from the law of mass action; they are used to describe the rate of change of 

the amount of drug within compartments [3]. Four different types of mathematical 
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equations have been used in models thus far: 1) linear ordinary differential, these 

are routinely used to describe the dynamic pharmacokinetic processes, 2) non-

linear differential, these equations are used when non-linear processes are present 

within particular tissues (e.g. binding and/or concentration-dependent elimination), 

3) partial differential, when dispersion models are assumed, partial differential 

equations are implemented, 4) algebraic, these equations are used when processes 

are assumed to be static. [3, 4] 

1.2.3 Drug and patient specific input data 

Once equations have been distinguished, the model requires input parameters, 

these can be split into two main categories: physiological and drug-specific 

parameters. The physiological input parameters are needed to characterise the 

physiological processes and anatomical structure of the species being studied (e.g., 

body weight, height, blood flows, organ weights and volumes, enzyme ontogenies 

etc.) [1, 3, 4]. These parameters are usually informed by pre-existing literature data. 

Drug-specific parameters such as: solubility, partitioning (e.g., tissue: plasma 

coefficients and blood: plasma ratios) protein binding, logP, clearance etc. are used 

to characterise ADME related processes. Tissue: plasma partition coefficients 

represent an important input parameter for models as they describe and quantify 

the partitioning of drugs between plasma and tissues at steady-state. Drugs-specific 

parameters like these can be derived from in silico predictive models based on the 

structure of the compound, in vivo methods, or in vitro experiments [2].  

A significant part of PBPK modelling is its reliance on extrapolation from 

experimental data, also known as in vitro in vivo extrapolation (IVIVE). The scaling up 

of clearance is an important example of this method, where the intrinsic clearance 

of a compound is determined using in vitro systems e.g., hepatocytes 

(uL/min/million cells) and microsomes (uL/min/mg) and scaled up using parameters 
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including: MPPGL, the microsomal protein per gram of liver or the number of cells 

per gram of liver and the weight of the liver [3, 6, 7]. 

1.2.4 Qualification  

Since its introduction, PBPK modelling has rapidly evolved from informing first-in-

human (FIH) doses to early testing of lead compounds during drug development. 

Its approval from regulatory bodies has led to the development of guidelines 

assessing model performance by the EMA for PBPK modelling and simulations 

developed for submission [8].   

Generally, the aim of the PBPK model should be clearly defined including key 

information on the target population(s), investigational drug(s) and dose(s) etc. 

Once anatomical and physiological equations have been defined for the biological 

system being studied, it is important to run initial simulations to ensure the 

population is appropriately represented within the model. For more complex 

physiological parameters such as enzyme ontogenies a more thorough approach is 

applied, where a probe drug metabolised solely by the enzyme of interest is used 

to characterise its activity. In general, to qualify a model, drugs with similar ADME 

properties to the compound of interest with observed clinical data available in the 

target population should be used. For each drug used in the qualification and 

prediction process, the physicochemical, in vitro, in vivo data should be supplied. 

Where possible, multiple data sets should be used to qualify the model to cover a 

range of PK characteristics that could potentially influence the output. [8-10] 

To assess the quality of predictions the absolute average fold error (AAFE) (Equation 

1) is commonly calculated with a generic acceptance criterion of 2-fold (± 100% of 

observed value). If predictions fall within 2-fold the model is assumed qualified [10].  
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(1) 

As model development is an iterative process, qualification of models can be an 

iterative process too. As more data becomes available or a better understanding of 

mechanisms is gained, models are constantly refined and validated.  

It is important to ensure appropriate representation of physiological processes 

using mathematical descriptions. When appropriately qualified, models can 

increase confidence in predictions and extrapolations made outside of the studied 

scenarios.                                        

1.2.5 Tools and Application  

All models detailed in this thesis were built and developed in SimBiology®. This 

software provides tools for modelling, simulating, and analysing dynamic systems, 

centring on not only physiologically-based pharmacokinetic modelling but 

quantitative systems pharmacology (QSP) and pharmacokinetic/pharmacodynamic 

(PK/PD) applications. There is flexibility in model development and models can be 

built using the block diagram editor or by code using the MATLAB® language. This 

modelling software provides a range of techniques to analyse ordinary differential 

equation (ODE)-based models and simulations can be run to predict PK, test 

different frequencies of dosing, identify optimal dosing regimens etc. It is worth 

mentioning that several other commercial software’s are available for PBPK 

modelling including GastroPlus, SimCYP, PK-Sim, PK Quest etc.  However, due to 

cost restraints, scope, and application, SimBiology® was deemed the best fit for 

model development. 

The recognition of PBPK modelling as a valuable pharmacological tool has led to 

several applications of this technique, some of which will be discussed herein. PBPK 
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modelling has proved itself a versatile tool in exploring multiple scenarios 

expanding quantitative drug PK studies.  

1.2.4.1 Special/Complex Populations 

Clinical trials are generally conducted in healthy adults between the ages of 18-30 

years and typically exclude those that do not fit these criteria. Several patient specific 

characteristics such as age, weight, pregnancy, hepatic/renal impairment etc. can 

cause significant changes in drug absorption, distribution, metabolism, and 

elimination [11] however clinicians and researchers face multiple challenges which 

impede the ability of investigating drugs directly in such vulnerable populations. 

Variability from the standard testing population can mean alterations in dose, 

administration routes and frequency of dosing may be necessary. Limited 

knowledge on how these individual parameters affect the PK of drugs mean fewer 

therapeutics options are available and as a result lead to off-label use [11, 12].  

Neonates, more specifically, represent a unique population; the rapid 

developmental changes observed during this period are complex and require 

drugs to be investigated directly in order to use them safely [11, 13-16]. PBPK 

models have been extensively developed to cover special populations by 

integrating knowledge on the physiological and anatomical changes that occur and 

can provide information on individualised drug therapies to deduce optimal dosing 

regimens [7]. For most special population PBPK models, the structure is adapted 

from an already validated adult PBPK model as described earlier. Appropriate 

changes in anatomy and physiology are considered using mathematical equations 

and/or additional compartments. To provide more confidence and support clinical 

trial design PBPK methods are more routinely being employed to predict dosing in 

paediatrics and neonates prior to conducting clinical trials [17]. An in-depth review 
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of existing PBPK models and challenges faced in the modelling of term and preterm 

neonates has been previously outlined [17].  

Recently the exposure of efavirenz (EFV) in pregnancy was predicted via PBPK 

modelling [18]; Chetty et al evaluated a lower dose of EFV (400 mg) in pregnant 

women to determine whether this dose would not be therapeutically inferior to a 

600 mg dose in pregnancy as had been clinically observed in the non-pregnant 

population. The model was validated using available clinical PK on a 600 mg dose 

of EFV in pregnancy [18]. Interestingly their results suggested a 2-fold increase in 

clearance in the third trimester of pregnancy in comparison to clearance before 

pregnancy [18]. Significant changes are observed in the maternal body including 

enzyme activity [19], which can lead to greater inter-individual variability in the PK of 

certain drugs, highlighted in the aforementioned study. The advancement of model-

informed doses can help fill these knowledge gaps by incorporating population-

specific data [19]. 

Extremities in age often pose ethical and logistical challenges in clinical trials, with 

elderly and paediatric patients undergoing significant developmental changes [11, 

19, 20]. In elderly patients’ changes are observed in, gastrointestinal motility, gastric 

pH, tissue volumes, glomerular filtration rates (GFR), total body water etc. these 

changes can affect the overall disposition of numerous drugs [20]. A comprehensive 

PBPK model for the elderly was developed with the aim of understanding which 

parameters most influenced the disposition of several drugs (midazolam, 

metoprolol, lisinopril, amlodipine, rivaroxaban, repaglinide, atorvastatin, 

rosuvastatin, clarithromycin and rifampicin) in this population [21]. The study 

investigated age-dependent correlations for each PK parameter e.g., AUC, Cmax, 

clearance etc. and concluded changes in exposure were attributed to a progressive 

decrease in renal and hepatic blood flows as well as GFR and were more likely due 
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to altered clearance than absorption or distribution [21]. Such models provide 

insights into the important biological processes that are affected in special 

populations, thus being beneficial in the development of treatment regimens and 

informing clinical trial design.    

1.2.3.2 Co-morbidities 

An advantage of PBPK modelling is its ability to incorporate the biological and 

pathophysiological changes observed in organ impairment and predict its resulting 

effect on drug PK, allowing the study of otherwise complex clinical scenarios. Co-

morbidities such as liver or renal impairment can significantly affect the PK of certain 

drugs through different mechanisms and in the most severe cases a dose 

adjustment may be necessary for efficacy and safety reasons. Reduced tubular 

secretion and glomerular filtration, hypoalbuminemia (low levels of albumin in the 

blood) and accumulation of uremic toxins are all characteristics of renal impairment 

[22]. These changes can lead to a reduced clearance of drugs that are majorly 

eliminated by renal and/or metabolic pathways. Liver impairment can be 

characterised by a decrease in hepatic blood flow, albumin, alpha-acid 

glycoprotein, hepatocytes, haematocrit and can be caused by numerous chronic 

disease conditions [23]. Several other changes are associated with liver cirrhosis 

including, changes in transporter and enzyme expression and activity; highlighting 

the importance to understand and evaluate the effect of such morbidities on the PK 

of therapeutics.  

A model describing the PK of ceftazidime was developed with the aim of predicting 

the PK in renally impaired patients [24]. Ceftazidime is a commonly used 

antibacterial that is eliminated from the body through glomerular filtration. The 

severity of renal impairment was categorised in the model as healthy, mild, 
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moderate and severe. The model successfully predicted the PK of ceftazidime in all 

four renal impairment categories with simulations within 1.5-fold of observed data 

[24].  

1.2.3.3 Novel Formulations  

Novel formulations are continually being developed to effectively deliver drug to 

target sites and improve drug efficacy and safety. They can be used to enhance the 

ADME characteristics of drugs. Novel formulations include, delayed/sustained 

release, long-acting, targeted release, modified release and many others.  

Sustained or delayed release drug delivery is where the drug/ active ingredient is 

released at a certain event, this type of formulation controls where and when drug 

is released. Orally administered therapeutics are subjected to different 

environments before entering the systemic circulation as discussed previously, of 

these, the stomach can prove an obstacle for certain drugs. The acidity of stomach 

fluids can cause drugs to breakdown before they have completed their therapeutic 

journey. An example of sustained/delayed release formulation includes a drug 

releasing only when it reaches an alkaline environment like the small intestine, 

avoiding breakdown in the stomach. [25, 26] 

Long-acting (LA) formulations are another example of novel formulations. The main 

advantage of LA therapeutics is a reduced pill burden. Patients with chronic illnesses 

on life-long therapy can experience pill fatigue from multiple, frequent medications 

and can benefit from a less regular drug administration, leading to better therapy 

outcomes. LA therapies are commonly used in psychotic disorders and also in 

contraception e.g., medroxyprogesterone acetate, a contraceptive that is 

administered as an intramuscular or subcutaneous injection [27-29].  
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PBPK modelling can effectively model novel formulations to provide valuable 

information on doses, frequency of dosing, routes of administration, distribution to 

tissues etc. [30] 

1.2.3.4 DDI Prediction 

Drug-drug interactions (DDIs) can negatively impact therapies and clinical 

management is faced with numerous challenges. Drug metabolism, dosing, 

administration routes, age, gender, weight, comorbidities etc. all play a role in the 

cause and extent of interactions. With a 20-40% prevalence, a reduction in clinical 

efficacy or adverse drug reactions are consequences of DDIs and can further 

complicate treatments.   

PBPK can predict differences in drug exposure and DDI magnitude enabling the 

identification of dose optimisation strategies. Screening for potential DDIs can be 

evaluated more efficiently using this modelling technique, PBPK DDI studies can 

deduce whether dose adjustments are needed, to what extent, dose frequencies 

and whether a DDI can be overcome, all in different populations.  

1.2.6 Limitations 

Although PBPK modelling is an advantageous pharmacological tool, it isn’t without 

limitations. The input information required for PBPK modelling can be complex and 

wide-ranging, data on the physiological and anatomical characteristics of the 

biological system to the physicochemical and biochemical processes involved in 

drug PK are necessary for simulations. Obtaining these data can be met with several 

challenges, complex mechanisms underpinning a drug’s ADME properties such as 

the effect of transporters, expression of transporters, ontogeny of enzymes in 

different age groups/systems etc. are difficult to define using in vitro methods and 

further complicated by IVIVE. Data is routinely collated from multiple sources and 
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can be conflicted while other parameters are poorly characterised causing 

knowledge gaps in certain areas. These knowledge gaps can hinder the ability of 

models to capture important processes and in turn generate poor simulations.  The 

quality of models often mirrors the availability of current scientific knowledge 

regarding the topic of interest.  

There is also a heavy reliance on preclinical data and extrapolation between 

different species can be a challenge. The use of correction factors is commonly 

practiced in modelling and come as a consequence to the above-mentioned 

limitations. Where poor predictions of drug properties such as distribution or 

absorption lead to the use of adjustments based on observed data when possible. 

Predictive models for processes like distribution are limited in their ability to 

characterise therapeutics that fall outside of the defined properties that determine 

distribution due to unique mechanisms that have not been elucidated. Therefore, a 

detailed understanding on the ADME, physicochemical and biological 

determinants of a compound are pivotal for successful modelling.  

Qualification of models with observed clinical data can also represent a challenge. 

For special population PBPK modelling, the modeller can frequently find themselves 

struggling to acquire good quality clinical PK data for the qualification of a model. 

To evaluate a model’s performance, comparison against observed data is essential. 

Good quality clinical data include a large sample population (to encompass 

variability), several dose scenarios (single/multiple dosing and varying amounts) 

and, ideally, should closely match the clinical scenario to be simulated where 

possible. Unfortunately, in special population modelling obtaining such data can be 

incredibly challenging due to the lack of data available. Clinical studies are routinely 

carried out in healthy 18–35-year-olds and data in vulnerable populations is 
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relatively sparse in comparison, further complicating qualification stages. When this 

is the case, observed data that closely match the simulated scenarios are used.  

Overall, PBPK modelling is a fairly comprehensive approach that requires time, 

significant experience and numerous resources, however, its potential in drug 

discovery and development is vast.  

1.3 Human Immunodeficiency Virus 

The human immunodeficiency virus (HIV) has been suggested to be first introduced 

in humans around 1920 to 1940 but was discovered in 1983. Since the start of the 

epidemic, 79.3 million people have become infected with HIV and 36.3 million 

people have died. Globally, 37.7 [30.2 million–45.1 million] million people were 

living with HIV (PLWH) in 2020 (UNAIDS) though the number of new infections have 

been reduced by 52% relative to the peak in 1997, where 3 million new infections 

were recorded. [31] 

1.3.1 HIV Structure 

The virus is of the genus Lentivirus and belongs to the family of Retroviridae. With a 

diameter of ~100-200 nm, the virion has a spherical shape [31]. The outer most layer 

of HIV is known as the viral envelope and is composed of a lipid membrane derived 

from the host cell. Along the surface of the membrane exist trimers of glycoprotein 

(gp), gp120 is essential for viral attachment and gp41 mediates viral fusion [32-34], 

both are imperative for the virus to gain entry. Inside the virus is a layer known as the 

matrix, comprising gag proteins [35]. Within the virus is a cone-shaped structure 

called the capsid, inside which important enzymes such as reverse transcriptase, 

integrase, and two copies of ribonucleic acid (RNA) are present.  
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1.3.2 HIV Replication Cycle 

The first stages of producing new viruses involves attachment and fusion [34]. The 

main target for HIV is immune cells with CD4+receptors i.e., T-lymphocytes (t-cells), 

macrophages, dendritic cells, and monocytes. Upon contact with a CD4+ cell, HIV 

binds to the host cell membrane receptors, with help from gp120 [32-34]. The HIV 

envelope is then fused to the cell wall using gp41, releasing the capsid into the host 

cell cytoplasm [34]. HIV RNA enters the cell and is reverse transcribed into 

deoxyribonucleic acid (DNA) using the enzyme reverse transcriptase [36]. Once 

converted, the integrase enzyme attaches itself to the viral DNA prior to passing 

through the wall of the cell nucleus [37]. The viral DNA binds to the host DNA once 

inside the nucleus and with the help of the integrase enzyme it inserts itself into the 

host DNA [37]. HIV remains dormant within the cellular genome, this phase is known 

as latency with cells being referred to as ‘latently infected’. [38] 
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If a signal is received to become active, HIV RNA will be produced by the cell. Host 

enzyme RNA polymerase is used to make messenger RNA (mRNA), which facilitate 

the production of viral proteins.  

Figure 1.1 HIV replication cycle. 
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Figure 1.3 Untreated HIV disease progression. Orange line represents HIV RNA copies and burgundy line represents CD4+ T lymphocyte 

count. With stages of primary infection, acute, clinical latency, opportunistic infections, and death highlighted within the figure.
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1.3.3 Antiretroviral Therapy 

The high mortality and morbidity associated with HIV has substantially decreased 

since the introduction of highly active antiretroviral (ARV) therapy (HAART) in the late 

90s [39]. HAART is a medication regimen used to treat and manage HIV-1. 

Traditionally consisting of a combination of at least three ARV drugs, of which two 

must belong to one of the classes of ARVs [40], recent guidelines now favour two-

drug regimens and on occasion  3 NRTIs. Each class of drug is focused on inhibiting 

a specific stage of the viral replication cycle. A number of ARV guidelines 

recommend therapy should be initiated in all adults living with HIV at any CD4 cell 

count [40, 41]. Some of the most recently approved ARVs have been listed in Table 

1.1.  

Table 1.1 FDA’s most recently approved antiretrovirals with brand names and 

approval dates.  

Drug Brand Name  FDA Approval Date 

Maraviroc (MVC) Selzentry 6th August 2007 

Raltegravir (RAL) Isentress 12th October 2007 

Etravirine (ETR) Intelence 18th January 2008 

Rilpivirine (RPV) Edurant 20th May 2011 

Dolutegravir (DTG) Tivicay 13th August 2013 
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Cobicistat (COBI) Tybost 24th September 2014 

Tenofovir Alafenamide 

Fumarate (TAF) 

Genvoya, Odefsey, Descovy, 

Biktarvy, Symtuza 
2015-2018 

Ibalizumab-uiyk (IBA) Trogarzo 6th March 2018 

Doravirine (DOR) Pifeltro 30th August 2018 

Fostemsavir (FTR) Rukobia 2nd July 2020 

Cabotegravir (CAB) Vocabria 22nd January 2021 

Adapted from HIVinfo.NIH.gov and FDA.gov. 

 

1.3.3.1 Nucleoside reverse transcriptase inhibitors (NRTIs) 

NRTIs target viral reverse transcriptase (RT) via competitive inhibition to prevent the 

synthesis of viral DNA. Cellular kinases facilitate the catalytic conversion of NRTIs to 

its active triphosphate form which exerts antiviral activity [42].  

Zidovudine was the first NRTI to be approved by the FDA used in the treatment of 

HIV infection and was initially given to patients as monotherapy. Shortly after, dual 

therapy was introduced as more NRTIs were approved for use, including, 

didanosine, stavudine and lamivudine.   

1.3.2.2 Non-nucleoside reverse transcriptase inhibitors (NNRTIs) 

NNRTIs also target viral RT but act through a non-competitive binding mechanism. 

NNRTIs require no conversion and block the enzyme substrate, preventing viral RT 

from converting viral RNA into DNA. Examples of NNRTIs include nevirapine (NVP) 
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and efavirenz (EFV) which are also known as first generation NNRTIs and second-

generation NNRTIs include etravirine, doravirine and rilpivirine.  

1.3.2.3 Protease Inhibitors (PIs) 

The mechanism of action of PIs is to prevent the cleavage of gag proteins facilitated 

by protease enzymes, subsequently inhibiting the maturation of virions. First 

generation PIs include, nelfinavir, lopinavir, ritonavir, indinavir, amprenavir, 

saquinavir etc. Second generation PIs include atazanavir and darunavir, which have 

an improved potency against HIV.  

1.3.2.4 Integrase Inhibitors (INSTIs) 

HIV-1 integrase enzyme is responsible for the insertion of the viral DNA into the 

genome of the host cell. Integrase inhibitors work by blocking this process and 

hindering the HIV-1 replication cycle [43, 44]. Targeting the integrase enzyme has 

proven advantageous as the human body has no homologue. [43, 44]  

Raltegravir, dolutegravir, bictegravir, elvitegravir and cabotegravir are examples of 

INSTIs approved for use by the FDA.  

1.3.2.5 Entry Inhibitors 

Entry inhibitors block HIV from binding to CD4 cells, preventing them gaining 

access to the host cell [45]. They work by binding to a specific domain on the surface 

of CD4 cells or HIV. [46] 

Enfuvirtide was the first entry inhibitor to be approved for use. It is a synthetic 

peptide that targets gp41 – the protein essential for viral fusion. Maraviroc, another 

entry inhibitor was later introduced, targeting the CCR5 receptor and consequently 

interrupting the HIV replication cycle.    
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1.3.3 Lymphatics 

The lymphatic system is central to HIV pathology; the majority of HIV-targeted CD4+ 

T-cells reside in lymph nodes. The lymphatic system plays an important role in 

several processes in the body, including, immune surveillance, absorption of fats 

and nutrients and maintaining tissue fluid. It comprises lymphatic vessels, capillaries, 

ducts, lymph nodes, lymph (fluid contained within system) etc. [47] Lymphatic 

tissues can be categorised into two; bone marrow and thymus are primary lymphoid 

tissues whereas lymph nodes, spleen and tonsils represent secondary lymphoid 

tissues [47].  

Previous studies have shown low concentrations of drug present within these tissue 

[48]. Low levels of ARV drugs can be a concern in HIV as this can allow for resistance 

and viral rebound. The lymph nodes represent a reservoir of inducible virus and are 

a well-known sanctuary site (anatomical site where HIV can replicate due to 

suboptimal concentrations of ARVs). Once an individual is infected, HIV spreads to 

lymph nodes within 6 days [49]. The reservoir has previously been thought to be 

established within the first 2 weeks of infection [50]. Understanding the degree in 

which ARV’s penetrate lymphoid tissues could be pivotal in treatment optimisation.  
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1.4 Aims 

The general aim of this thesis was to explore the different applications of PBPK 

modelling, by developing and applying several mechanistic models to optimise the 

treatment of HIV.  

Before a potential treatment reaches the stages of a clinical trial it must undergo 

numerous approval stages during which it is subjected to various research studies 

and the process can take between 3-6 years. Once a certain level of safety, efficacy 

and toxicity has been established the treatment is put forward for animal studies 

before studying in humans, should the outcome be positive. However, this entire 

process is met with several limitations, from the length of approval to the type of 

populations being investigated. Routinely, clinical trials are conducted in healthy 

patients aged between 18-35 years old, with a poor representation of special 

populations like, paediatrics, elderly, pregnancy etc. PBPK modelling can effectively 

evaluate hard-to-study clinical scenarios prior to clinical studies and provide 

valuable insight which cannot be easily gained. The objective of Chapter 2 was to 

construct and validate a whole-body PBPK model to describe the neonatal 

population by incorporating mathematical descriptions of anatomical and 

physiological characteristics.  

Chapter 3 focuses on how PBPK models can be used to inform appropriate doses 

in special populations, more specifically, it evaluates the potential treatment and 

prophylaxis of HIV in neonates with integrase inhibitors dolutegravir and bictegravir. 

PBPK models can also be used to simulate the PK of novel formulations, and this has 

been exemplified in Chapter 4, where long-acting cabotegravir was simulated in the 

validated neonatal PBPK model and optimal doses for treatment and prophylaxis 

were derived.  
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Polypharmacy is routinely observed in PLWH and DDIs prove an obstacle in HIV 

treatment, Chapter 5 involved developing an adult PBPK model to evaluate the 

magnitude of moderate inducers on novel antiretrovirals. Chapter 6 investigated the 

penetration of ARV drugs in lymphoid tissues using a mechanistic lymphatic PBPK 

model.  

Collectively, this thesis evaluates the possible ways HIV treatment can be improved 

and optimised by investigating the potential of treatments in special populations, 

novel formulations of ARV drugs, management of drug-drug interactions and the 

penetration of therapy in target tissues. 
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CHAPTER 2 

Neonatal PBPK model 

development and 

validation 
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2.1 Introduction 

Neonates, defined as infants from birth up to 28 days of age, are generally 

neglected as a population in pharmacological research. As a result, data describing 

the pharmacokinetics (PK) and pharmacodynamics in this vulnerable population of 

most licensed drugs, are lacking [51]. Efforts have been made to elucidate the 

significant changes that are observed in the absorption, distribution, metabolism, 

and elimination of drugs from birth to adulthood, yet a great deal remains 

unanswered.  

Neonatal dosing regimens were derived from adult doses using allometric scaling 

based on characteristics such as body surface area or body weight [52-54]. 

Extrapolation of PK data from older patients using this scaling approach is generally 

unsuccessful due to the complex physiological, anatomical and molecular changes 

that occur in neonates [54]. Maturity of the organ system plays a key role in the 

differences observed between these populations. Apparent differences in organ 

weights and blood flows are likely to impact the PK of drugs. Drug absorption in 

neonates can be altered due to multiple factors such as, delayed gastric emptying 

time, increased gastric pH, and decreased motility.  Changes in extracellular fluid 

together with changes in protein concentrations can lead to a varied distribution of 

drugs. Other key factors including non-linear maturation of transporter and 

metabolic pathways play a major role in neonatal PK.  

To understand the degree of effect the aforementioned characteristics have on 

ADME processes, it is important to investigate drugs directly to use them safely and 

effectively. However, clinical trials in paediatric patients are impeded by the 

difficulties and clinical constraints researchers are faced with, and this is particularly 

true for neonates. [55] 
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Physiologically based pharmacokinetic (PBPK) modelling can be employed to 

rationalise the design of clinical trials in neonates, increasing trial efficacy and safety. 

PBPK modelling simulates important drug processes by integrating existing 

knowledge on patient-specific characteristics and drug-related data to provide 

more accurate predictions in the patient-population being investigated [3, 56] [57]. 

PBPK modelling is gaining popularity as the preferred methodology to 

appropriately predict the PK of investigational drugs in the neonatal population. 

Regulatory bodies have become increasingly interested in the use of these models 

to support and rationalise the design of future clinical studies in multiple 

populations [6]. 

The aim of this chapter was to validate the anatomical and physiological 

characteristics of the neonatal model. To validate the enzyme ontogenies of 

cytochrome P450 A (CYP3A4) and UDP-glucuronosyltransferase 1A1 (UGT1A1) 

which represent some of the key metabolic pathways involved in the metabolism of 

antiretrovirals; probe substrates that had available neonatal clinical data were used 

for comparison against simulated data.  
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2.2 Methodology 

The PBPK model was designed in SimBiology version 5.8, a product of MATLAB 

R2018a (MathWorks, Natick, MA, USA 2018) [58]. Virtual, full-term, healthy neonates 

between 0 – 28 days were simulated. Neonatal maturation characteristics and a 

description of physiological and anatomical growth data were incorporated where 

appropriate. The model was based on the following assumptions: (1) well-stirred 

compartments with instant distribution of the drug; (2) no absorption of the drug 

from the colon; and (3) the model is blood flow limited. Simulated data were 

compared to observed neonatal PK data for raltegravir and midazolam. 

2.2.1 Anatomy  

World Health Organization (WHO) reference growth charts relating age to body 

weight and height were used for male and female neonates [59] (shown in Table 

2.1). The charts were digitalised using Plot Digitizer Tool 

(plotdigitizer.sourceforge.net); a linear relationship was derived for both parameters 

using Microsoft Excel. 

2.2.2 Tissue and organ weights 

The organ weights were collated from multiple sources and detailed in Table 2.3 

[52, 60], these values along with organ density data were used to calculate organ 

volumes [56]. The organ weights and volumes were validated against available 

published data on neonates. In the absence of literature data the small intestine fluid 

capacities from the published paediatric model [58] were allometrically scaled and 

applied to the neonatal model.  
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2.2.3 Blood flow 

Neonatal blood flow data previously described by Bjorkman [52] and integrated into 

the model. Blood flow to the portal vein was defined as the sum of the blood flow 

to the gut, stomach, pancreas, and spleen (Table 2.2).  

2.2.4 Intestinal Absorption 

2.2.4.1 Modelling absorption 

For orally administered drugs, a previously defined compartmental absorption and 

transit (CAT) model was implemented in the model [61]. The gastrointestinal tract 

was split into three major compartments: the stomach, small intestine, and colon 

(Figure 2.1). The small intestine was further sub-divided into seven compartments 

to describe the transit flow, where drug transfer from one compartment to the next 

was assumed to follow first order kinetics. The CAT model assumes the following: 1) 

Absorption from the stomach and colon is minimal in comparison to the small 

intestine; 2) passive transport across the small intestine membrane; 3) instant 

dissolution of drug.  

Figure 2.1 Schematic representation of ACAT model comprising stomach, small 

intestine split into 7 compartments and colon. SI, Small intestine.  
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Small intestine capacities in neonates were allometrically scaled from adult values 

due to the paucity of data. Literature indicated neonatal transit times were similar to 

adult transit times, therefore adult values were implemented in the neonatal model 

[62]. 

Absorption rates were calculated using equations 1-3 [61, 63, 64], involving the 

apparent permeability derived from caco-2 cells [64] or the polar surface area (PSA) 

and hydrogen bond donor (HBD) values [63]. A correlation between the in vivo/in 

vitro permeability was established using 24 drugs at pH 7.4 with data on human 

jejunum permeability and caco-2 permeability.  

Log Peff  =  −2.546 –  0.011PSA –  0.278HBD (1) 

Log Peff  = (0.6836 x Papp) − 0.5579  (2) 

Ka =  
2 x Peff

R
 (3) 

2.2.4.2 Solubility  

The solubility of drugs was considered in the model using equation 4, where the 

amount of drug available for absorption in each small intestine compartment was 

confined by the overall solubility of the drug (Dsol).   

Concsoluble = max (0, min(Dsol, CSI)) (4) 

Where Concsoluble is the concentration of soluble drug available for absorption and 

CSI is the concentration of dissolved drug in the small intestine compartment.  
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2.2.5 Plasma protein binding 

The pharmacokinetics of a drug is influenced by the extent to which it is bound to 

plasma proteins. Plasma protein binding of drugs in neonates was calculated using 

a previously combined database on age-related changes in plasma albumin and α1-

acid glycoprotein, to factor in the importance of developmental pharmacology on 

protein binding [65]. The unbound fraction (fu) of drug was estimated using 

equation 5 [66]. 

fuPaediatric =  
1

1 +  
(1 − fuAdult) × [P]Paediatric

[P]Adult ×  fuAdult

 

 

(5) 

    

Where [P]Adult is the adult plasma protein concentration, [P]Paediatric is the paediatric 

plasma concentration, fuAdult is the fraction unbound in adults and fuPaediatric is the 

fraction unbound in paediatric patients.  

2.2.6 Metabolism 

2.2.6.1 Intestinal metabolism  

The abundance of metabolic enzymes differs in neonates compared to adults, these 

changes can affect the overall clearance and pharmacokinetics of a drug making it 

essential to characterise the differences. The expression of CYP3A4 in the gut was 

estimated using an equation describing the fraction of CYP3A4 present in the 

neonatal gut in relation to the adult abundance. Clearance of drugs in the gut 

(CLgut) was evaluated using the in vitro intrinsic clearance (CLint) and the neonatal 

abundance of CYP3A4 and has been outlined in equation 6 [58, 65]. 
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CLgut (L/h) =
CLint x AbCYP3A4 x 1000 x 60

1000000
 (6) 

 

2.2.6.2 Ontogeny of CYP3A4 and UGT1A1  

Equations for CYP3A4 expression in neonates was calculated as a fraction of adult 

expression (Table 2.4) [65]. A UGT1A1 ontogeny profile detailing the age-related 

changes in enzyme maturation elucidated by Miyagi et al [67] was digitalised using 

Plot Digitizer. From this, a polynomial equation describing the fraction of UGT1A1 

present in neonates in relation to adult abundance was derived, where age is 

expressed in days. The profile was adjusted during the qualification of raltegravir to 

better characterise UGT1A1 expression in neonates which yielded the following 

equation (equation 7).   

UGT1A1= (-5 x 10-10x Age4) +  (-5 x 10-7x Age3) - (-0.0002 x Age2) + 

(0.0203 x Age) + 0.0305 

 

(7) 

2.2.6.3 Prediction of Hepatic Clearance from in vitro data 

Assuming the well-stirred model, hepatic clearance was estimated using equations 

8-10 [63, 68, 69]. 

CLinttotal= (ClintEx Abundance x MPPGL x WLiver) 
(8) 

MPPGL (
mg

g
) = 101.407+0.0158 x Age-0.00038 x Age2+0.0000024 x Age3

 (9) 

Total Hepatic Clearance = 
(Qhv x fu x CLinth)

(Qhv + CLinth x fu))
 (10) 
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Where CLinttotal, ClintE, Abundance, MPPGL, Qhv, fu and CLinth is the total intrinsic 

clearance of the enzyme(s) involved in metabolism of the drug, in vitro clearance of 

said enzyme(s), abundance of enzyme(s) in neonates, microsomal protein content 

per gram of liver, hepatic blood flow, fraction unbound of drug and the sum of all 

CLinttotal values, respectively.  

2.2.7 Distribution 

The volume of distribution (Vss) was calculated using previously published in silico 

models [70] described in equations 11-16. The model considers the composition of 

plasma and tissue to comprise water, phospholipids, and lipids. Drug lipophilicity 

determines where in the body the drug will distribute. Equation 11 calculates the 

erythrocyte: plasma (E:P) ratio; equations 12 & 13 describes partitioning of ionised 

and non-ionised species in olive oil:buffer at pH 7.4. 

E:P = (B:P - (1 - 0.45))/0.45 (11) 

logDvo:w = 1.115 × logPvo:w – 1.35 (12) 

Monoprotic Acid: LogD*
vo:w = LogDvo:w – Log(1 + 10pH – pKa) (13) 

Vss = (ΣVt × Pt:p) + (Ve × E:P) + Vp (14) 

Pt:p,adipose = 
(D*vo:w × (Vnlt + 0.3 × Vpht)) + (1 × (Vwt + 0.7 × Vpht)) 

(D*
vo:w × (Vnlp + 0.3 × Vphp)) + (1 × (Vwp + 0.7 × Vphp))

 × 
fu,p

1
 (15) 
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Pt:p,non-adipose = 
(Pvo:w × (Vnlt + 0.3 × Vpht)) + (1 × (Vwt + 0.7 × Vpht)) 

(Pvo:w × (Vnlp + 0.3 × Vphp)) + (1 × (Vwp + 0.7 × Vphp))
 × 

fu,p

fu,t
 (16) 

Equation 15 and 16 calculate the partitioning of drug in tissue and plasma and 

assume the following i) the neutral lipids in tissues have the same lipophilicity as 

vegetable oil (vo), ii) the water in tissues has the same characteristics as pure water, 

and iii) the phospholipids in tissues have a lipo-hydrophilicity similar to a mixture of 

70% water and 30% neutral lipids [70]. 

Table 2.1 Equations describing neonatal weight and height.  

Weight (male and 

female) 

Weight_initial:  3.0495 x female + 3.1572 x (1-female) 

Weight_maturation: ((0.014 x Age +1) x female) + ((0.018 

x Age+ 1) x (1-female)) 

Weight:  Weight_initial  x  Weight_maturation 

Height (male and 

female) 

Height = (0.0836 x Age + 49.802))/100) x female 

+((0.0954 x Age + 50.981)/100) x (1-female) 

Age expressed in days, weight expressed in Kg, height expressed in m. 

 

 

Table 2.2 Equations describing blood flow rate to organs in neonates. [52, 60] 

Cardiac Output Qco = Qad + Qbr + Qgut + Qha + Qki + Qlu + Qmu + Qpa 

+ Qre + Qsk + Qsp + Qst 

Adipose tissue Qad = (1.56 x WAdipose) x female + (1.44 x WAdipose) x 

(1-female) 

Brain Qbr = 30 x WBrain 
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Gut Qgut = (123 x WIntestines) x female + (126.6 x WIntestines) 

x (1-female) 

Hepatic artery Qha = (34.2 x WLiver) x female+ (35.4 x WLiver) x (1-female) 

Hepatic vein Qhv = Qha+Qpv 

Kidneys Qki = (64.8 x WKidneys) x female + (80.4 x WKidneys) x (1-

female) 

Lungs Qlu = 9.6 x WLungs 

Muscle Qmu = 2.34 x WMuscle 

Pancreas Qpa = (63.3 x WPancreas) x female + (65.4 x WPancreas) x 

(1-female) 

Portal vein Qpv = Qst+Qgut+Qpa+Qsp 

Remaining tissues Qre = (5.4 x WRemaining) x female + (5.04 x WRemaining) 

x (1-female) 

Skin Qsk = 9.6 x WSkin 

Spleen Qsp = (63.3 x WSpleen) x female + (65.4 x WSpleen) x (1-

female) 

Stomach Qst = (67.8 x WStomach) x female + (75 x WStomach) x (1-

female) 

Blood flows described in L/h in the model. 

 

Table 2.3 Equations describing weight of organs in neonates. [52, 60] 

Adipose  WAdipose = Weight x 0.245 

Blood 
WBlood = (Weight x 0.041) x female + (Weight x 0.044) x (1-

female) 

Bones WBones = Weight x 0.047 
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Brain WBrain = Weight x 0.10876 

Heart WHeart = Weight x 0.00619 

Intestines WIntestines = Weight x 0.014 

Kidneys WKidneys = Weight x 0.00744 

Liver WLiver = Weight x 0.03862 

Lungs WLungs = Weight x 0.01492 

Muscle WMuscle = Weight x 0.220 

Pancreas WPancreas = Weight x 0.00111 

Remaining 
WRemaining = (Weight x 0.102) x female + (Weight x 0.154) 

x (1-female) 

Skin 
WSkin = (Weight x 0.044) x female +(Weight x 0.047) x (1-

female) 

Spleen WSpleen = Weight x 0.00295 

Stomach WStomach = Weight x 0.003 

Thymus WThymus = Weight x 0.00274 

Adrenals WAdrenals = Weight x 0.00222 

Gut WGut = Weight x 0.039 
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Total Weight 

WTotal_weight= WLungs + WHeart + WBones + WKidneys 

+ WStomach + WIntestines + WSpleen + WPancreas + 

WLiver + WRemaining + WBrain + WSkin + WBlood + 

WAdipose + WThymus + WMuscle + WGut + WAdrenals 

Organ weights in kg  
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Table 2.4 Equations describing enzyme ontogenies in neonates as a fraction of adult abundance. [65, 67, 71, 72] 

Fraction: CYP2B6 Fraction_CYP2B6 = (1.07 x (Age/365)) / (1.31 + (Age/365)) 

Fraction: CYP2C8 Fraction_CYP2C8 = (0.716 x (Age/365))/(0.02+ (Age/365)) +0.3 

Fraction: CYP2C9 Fraction_CYP2C9 = (0.821 x (Age/365))/(0.01 + (Age/365))+0.21 

Fraction: CYP2C18 Fraction_CYP2C18 = (0.857 x (Age/365)) /(0.99+(Age/365)) +0.23 

Fraction: CYP2C19 Fraction_CYP2C19 = ((0.857 x (Age/365)) / (0.99+(Age/365)) +0.23) 

Fraction: CYP2D6 Fraction_CYP2D6 = ((1.01 x (Age/365))/(0.101 + (Age/365)))+0.036 

Fraction: CYP2E1 Fraction_CYP2E1 = (4.22 x Age/365^0.27) / (7.66+(Age/365)) 

Fraction: CYP3A4 Fraction_CYP3A4 = (1 x (Age/365)^0.83)/(0.31+((Age/365)^0.83)) + 0.08 

Fraction: CYP3A4 in 

neonatal gut 
Fraction_Gut = ((0.639 x (Age/365))/(2.36+(Age/365)))+0.42 

UGT1A1 Maturation UGT1A1 = (-5x10-10 x Age4) + (5x10-7 x Age3) – (0.0002 x Age2) + (0.0203 x Age) + 0.0305 

Age expressed in days. 
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Table 2.5 Physicochemical characteristics of raltegravir and midazolam.  

 

Property Raltegravir [73] Midazolam [65] 

Molecular weight, g/mol 445.2 325.8 

Log Po:w 0.58 3.89 

fu 0.17 0.034 

pKa 6.67 6.57 

R 0.60 0.55 

Polar surface area, Å2 150 30.2 

Hydrogen bond donors 3 0 

Caco-2 permeability, 10-6 

cm/sec 
6.6 32.4 [63] 

Clearance NA NA 

CLint CYP3A4 NA 3.75 

CLint UGT1A1 12.4 NA 

Solubility, mg/L 70000 [74] 0.134 [63] 

Abbreviations: A, L/h; CLint, intrinsic clearance; CYP, cytochrome P450 

(µL/minute/pmol); log Po:w, partition coefficient between octanol and water; 

NA, not applicable; pKa, logarithmic value of the dissociation constant; R, 

blood-to-plasma drug ratio; UGT, uridine diphosphate 

glucuronosyltransferase (µL/minute/106). 
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2.2.6 Model Qualifications and Simulations 

2.2.6.1 Clinical PK data in neonates 

Clinical PK data for midazolam were available in critically ill neonates with respiratory 

distress syndrome or neonatal infection [75]. The study involved administration of a 

0.2 mg.kg-1 intravenous bolus of midazolam in neonates with a mean gestational 

age of 37 weeks. The effect of the illness on the overall disposition of the drug could 

not be determined, however due to the lack of data available, it was used for the 

qualification of CYP3A4. Two cohorts of clinical data were available [76] for the 

qualification of UGT1A1 activity with raltegravir.  

2.2.6.2 Simulations  

Physicochemical parameters describing both raltegravir and midazolam were used 

as input data for the model and have been described in Table 2.5. Simulations were 

initially carried out for raltegravir and midazolam, in 100 virtual neonates. For 

raltegravir, the mean maximum plasma concentration (Cmax) and AUC were 

recorded for comparison against clinical data. For midazolam, the mean AUC, Cmax, 

trough plasma concentration (Ctrough) and CL values were recorded for comparison.  

2.2.6.3 Statistical evaluation of the model 

The PBPK model was qualified by calculating the absolute average fold error (AAFE) 

and root mean squared error (RMSE) where appropriate. AAFE is a useful parameter 

to assess over or under-prediction of the model, values closer to 1 indicate a closer 

similarity with observed values. The RMSE calculates the error between the 

predicted value and the observed value. The model was assumed to be qualified if 

the predicted values fell within the following criteria: with AAFE < 2 and RMSE < 1 

as per convention for the approach [10].  
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2.3 Results 

2.3.1 Anatomical Qualification 

For the qualification of neonatal anatomy, the mean simulated values were recorded 

for comparison against literature data. The simulated values for weight and height 

agreed with observed values. Equations describing the tissue and organ weights 

were sufficient in reflecting observed literature data (Table 2.6). Other neonatal 

anatomical characteristics such as organ volumes and blood flows (Table 2.7) 

described in the PBPK model were well within the 2-fold acceptance criteria for 

model validation.  

2.3.2 Raltegravir Qualification 

Comparison between observed and simulated PK data of oral raltegravir has been 

outlined in Table 2.8 and Table 2.9. In Cohort 1, the predicted mean AUC12 and Cmax 

values are within 1.6-fold of observed data. The predicted mean AUC and Cmax 

values in Cohort 2 were on average within 1.25-fold of the observed data, and Ctrough 

values were within 1.8-fold of observed data with the simulated concentration-time 

profile yielding a RMSE value below 1 (Table 2.10 & Figure 2.2). 

2.3.3 Midazolam Qualification 

Comparison of intravenous midazolam PK parameters have been detailed (Table 

2.11), with mean simulated values of AUC, Cmax, Ctrough and CL, all within 1.4-fold of 

observed data.  As both drugs were in sensible agreement with literature values, the 

model was considered qualified.  
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Table 2.6 Model qualification of neonatal organ weights; observed vs simulated 

data (data represented as Male/Female where a distinction in organ weights were 

observed).  

 

 

Organ Weight Reference (kg) Simulated (kg) 

Brain 0.395 0.399 

Lungs 0.054 0.055 

Heart 0.022 0.023 

Kidneys 0.027 0.027 

Liver 0.140 0.142 

Spleen 0.011 0.011 

Thymus 0.010 0.010 

Pancreas 0.004 0.004 

Adrenals 0.008 0.008 

Gut Contents 0.140 0.143 

Bones 0.170 0.172 

Adipose 0.890 0.896 

Intestines 0.050 0.051 

Muscle 0.800 0.807 

Stomach 0.010 0.011 

Remaining 0.56/0.37 0.618/0.374 

Blood 0.16/0.15 0.176/0.157 

Skin 0.17/0.16 0.189/0.161 

Age range evaluated in model is 0-28 days. 
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Table 2.7 Model qualification of neonatal organ blood flows, comparison of 

observed vs simulated data (data represented as Male/Female data represented as 

Male/Female where a distinction in blood flows were observed). 

 

Organ Blood Flow Reference (L/h) Simulated (L/h) 

Stomach 0.75/0.68 0.88/0.74 

Skin 01.63/1.54 1.77/1.53 

Kidneys 2.17/1.75 2.35/1.75 

Liver- Hepatic Artery 4.96/4.79 5.37/4.77 

Heart – Cardiac Output 34.80/33.0 37.66/33.18 

Brain 11.84 12.81/11.82 

Lungs 0.52 0.52 

Adipose 1.28/1.39 1.38/1.39 

Spleen 0.70/0.68 0.78/0.68 

Pancreas 0.26/0.25 0.28/0.25 

Hepatic vein 13.2/12.6 13.93/12.47 

Portal Vein 8.04/7.76 8.88/7.91 

Remaining 2.82/2.00 3.05/2.00 

Muscle 1.87 2.02/1.87 

Gut 6.33/6.15 6.96/6.24 

Age range evaluated in model is 0-28 days. 
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Table 2.8 Comparison between predicted and observed pharmacokinetics of raltegravir in cohort 1 [76, 77]. 

Raltegravir Cohort 1 

 2 mg/kg single dose 3 mg/kg single dose 

 Clinical† Simulated* AAFE Clinical† Simulated* AAFE 

AUC12 (mg.h/L) 28.13 (17.42-44.0) 27.71 ± 3.57 1.02 29.47 (18.89-46.26) 43.11 ± 5.14 1.46 

Cmax (mg/L) 3.40 (2.23-4.32) 3.41 ± 0.40 1.00 3.36 (2.00-5.32) 5.27 ± 0.58 1.57 

Abbreviations: †Values shown as geometric mean (range); AUC12, *Simulated values shown as mean ± standard deviation; area under curve over 

12 hours, Cmax, maximum plasma concentration; Cmax, maximum plasma concentration. 
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Table 2.9 Comparison between predicted and observed pharmacokinetics of raltegravir in cohort 2 [76, 77]. 

Raltegravir Cohort 2 

 1.5 mg/kg, Q24h; days 1-7 3 mg/kg twice daily; days 8-28 

 Clinical † Simulated* AAFE Clinical † Simulated* AAFE 

AUC (mg.h/L) 38.2 (38.4) 32.09 ± 5.40 1.19 14.3 (43.3) 15.29 ± 3.56 1.07 

Cmax (mg/L) 2.35 (35.0) 2.64 ± 0.29 1.12 2.85 (41.9) 2.34 ± 0.45 1.22 

Ctrough  (mg/L) 0.948 (64.2) 0.564 ± 0.22 1.68 0.176 (93.8) 0.316 ± 0.13 1.80 

Abbreviations: Cmax, maximum plasma concentration; *Values shown as simulated mean ± standard deviation; †Values shown as geometric 

mean (CV%); Q24h, once daily; AUC, area under curve over 24 hours, Cmax, maximum plasma concentration, Ctrough, minimum plasma 

concentration. 
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Figure 2.2 Simulated and experimental concentration-time profiles of orally administered raltegravir. A (Cohort 1): 1.5 mg/kg once daily, B 

(Cohort 2): 3 mg/kg twice daily [76]. Cohort 1; a ‘dose finding’ study where single doses of raltegravir were orally administered (PO) to neonates. 

Cohort 2 involved a multiple dosing regimen of 1.5 mg/kg PO raltegravir once daily in the first week of life and increasing the dose to 3.0 

mg/kg twice daily on day 8 to day 28. 
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Table 2.10 Comparison between observed and simulated PK profile of raltegravir 

in neonates (Cohort 2) [76]. 

 

Table 2.11 Comparison between observed and simulated PK of midazolam 0.2 

mg/kg IV bolus in neonates [75]. 

 

 

Raltegravir 

1.5 mg/kg Q24h; Days 1-7 

Raltegravir  

3 mg/kg Twice Daily; Days 8-28 

AAFE 1.247 1.392 

RMSE 0.432 0.430 

Abbreviations: AAFE, absolute average fold error; RMSE, root mean squared error; 

Q24h, once daily. Comparison between simulated and observed PK profiles of 

Raltegravir in Cohort 2, clinical data extrapolated using Plotdigitiliser. 

 Clinical Simulated AAFE 

AUC (mg.h/L) 2.20 2.89 1.31 

Cmax  (mg/L) 0.41 0.42 1.02 

Ctrough  (mg/L) 0.11 0.11 1.02 

CL (L/h) 0.41 0.38 1.06 

Abbreviations: AUC, extrapolated to infinity, Cmax, maximum plasma concentration, 

Ctrough, minimum plasma concentration, CL, clearance. 
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2.4 Discussion 

The PBPK model was built incorporating neonatal anatomical and physiological 

maturation characteristics. Equations relating growth to age were derived from 

existing literature [52, 59, 65].  For a PBPK model to be reliable it is important that 

equations describing the basic anatomy and physiology of the target population are 

represented appropriately and equations are sufficient in their characterisation of 

such parameters.  The PBPK model was qualified for the duration of the neonatal 

period (0-28 days); 100 virtual patients were simulated to estimate population 

variability and the mean value for each parameter was recorded for comparison 

against observed data. All blood flows, organ and tissue weights were within the 

acceptance criteria (<50% of clinical data) and successfully passed model 

qualification. Pre-term neonates are routinely delivered to HIV positive mothers, the 

models described in this chapter are based on full-term neonates. There are several 

physiological and anatomical differences between full-term and preterm neonates, 

availability on these types of data is sparse in full-term neonates and increasingly so 

in pre-term cases. The choice to build a PBPK model for full-term neonates were 

based on these limitations. However, for additional and further application, it may 

be worth looking into quantifying these changes. 

To validate the ontogeny of key enzyme CYP3A4, observed neonatal clinical data 

on probe substrate midazolam was utilised. The maturation profile of CYP3A4 was 

derived from Johnson et al [65] and expressed as the fraction of CYP3A4 present in 

a neonatal liver in relation to adult content. Clinical PK data for midazolam was 

available in critically ill neonates with respiratory distress syndrome or neonatal 

infection [75]. The study involved an administration of a 0.2 mg.kg-1 intravenous (IV) 

bolus of midazolam in neonates. The effect of the illness on the overall disposition 
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of the drug could not be concluded, however due to the lack of data available, it 

was used for the qualification of CYP3A4. The model was successful in predicting 

the PK characteristics of IV midazolam, with concentration-time profiles generating 

AAFE values < 2-fold. Cmax, Cmin and CL values produced an average percentage 

difference of 3.9%, with AUC yielding a 31% difference from observed data. 

The ontogeny profile of UGT1A1 in neonates was derived from literature [67] and 

expressed as the fraction of enzyme present in neonates compared to the adult 

expression. Two cohorts of clinical data on raltegravir, a UGT1A1 substrate, were 

available [76] for the qualification of UGT1A1 activity in neonates. The first cohort 

involved a dose-finding study which entailed administering a single oral dose, either 

2 or 3 mg/kg of raltegravir once daily to infants. The second cohort involved 

administering a daily dose of 1.5 mg/kg to neonates aged 1-7 days, with a dose 

escalation of 3 mg/kg twice daily on day 8 through to 28. These conditions were 

replicated in silico for evaluation of model performance. The clinical PK from these 

studies was used to calibrate the UGT1A1 expression. The equation extrapolated 

from Miyagi et al [67] had a tendency to over-predict UGT1A1 expression in the first 

two weeks of the neonatal period and under-predict expression in the latter two 

weeks of the neonatal period. The ontogeny profile was adjusted accordingly to 

better replicate the observed data represented in Figure 2.2. 

Underrepresentation of clinical PK data in the neonatal population proves a 

challenge when qualifying PBPK models. The in vivo clinical data that was used for 

the comparison between predicted and observed values in this chapter were carried 

out in only a handful of neonates [75, 76]. The few clinical studies that have been 

conducted in neonates have, often by necessity, numerous limitations from small 

sample sizes to restricted clinical and demographic detail due to ethical and logical 
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restrictions. Although there are data available on the ontogeny of hepatic enzymes, 

a significant portion of these studies are routinely carried out on small samples with 

large gaps in different age groups. In some cases, there are only one or two samples 

in the neonatal age bracket, making it problematic to accurately characterise 

expression. For this reason, the UGT1A1 maturation profile was adjusted during the 

model qualification stage to adequately predict the PK of raltegravir; a probe 

substrate that allowed the fine-tuning of equations describing age-related 

maturation.  

Many parameters remain underexplored in neonates, hindering the ability to 

mathematically represent their changes with growth and development. In the 

absence of such data, parameters from a previously published paediatric model [58] 

were utilised and assumed to be similar, including solubility, body composition, 

gastric and intestinal pH. For other parameters like small intestinal transit time, 

literature suggested there were no significant growth-related changes, thus adult 

values were implemented [62]. The lack of data on developmental changes in 

transporter expression make it inherently difficult to replicate this parameter in silico 

and so data on transporters was not included in the model. Previously developed 

neonatal PBPK models faced with this limitation have taken similar approaches [52, 

65], where data in neonates is lacking adults, values were implemented and on 

occasion allometrically scaled. Models were compared against observed data for 

overall evaluation of model performance. Johnson et al employed PBPK models to 

predict the clearance of eleven drugs in neonates and infants [65]. Due to the 

paucity of quantifiable data in neonates, similar assumptions were made in their 

models, nevertheless 70% of their predictions in neonates were within 2-fold of 

observed values [65]. 
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Changes in composition of plasma proteins such as alpha 1-acid glycoprotein and 

albumin can change and influence the distribution of drugs. At birth, newborns have 

lower concentrations of albumin and alpha 1-acid glycoprotein present in plasma, 

reaching adult levels when they are 1 year of age. This reduced concentration could 

translate into a greater fraction of unbound drug being available; the unbound drug 

moves across membranes to elicit a biological response before being eliminated 

from the body. To account for these changes a previously established database 

quantifying these changes was used and implemented in the PBPK model [66]. 

Despite the gaps in knowledge, PBPK models are extremely valuable and can 

provide important information on the PK of drugs in vulnerable populations. In this 

chapter intravenous and oral administration routes were developed and modelled 

however modelling different routes of administration and formulations are also 

feasible using this technique. PBPK modelling has numerous applications from 

assisting in candidate selection in early drug discovery to predicting drug-drug 

interaction potentials. PBPK models can be constantly refined in an iterative manner 

as more information from pre-clinical and clinical studies become available, helping 

to improve overall model performance making them an advantageous 

pharmacological tool. 
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3.1 Introduction 

In 2019, 150,000 new cases of HIV were reported in children under 15 years of age 

and 1.8 million children were living with HIV [78]. The majority of paediatric HIV 

infections are caused by perinatal transmission, in utero, during birth or afterwards 

through breastfeeding [79]. Of the measures taken to prevent mother to child 

transmission (PMTCT), initiating or maintaining effective antiretroviral (ARV) therapy 

in pregnant and breastfeeding women is the most successful.  In addition, all 

neonates with perinatal HIV exposure should receive ARVs as part of PMTCT. Those 

infants who are infected with HIV despite these efforts at prophylaxis can be 

detected with successful early diagnosis techniques and early initiation of ART can 

maintain an undetectable viral load and improve clinical outcomes in these infants 

[79, 80]. 

Current guidelines for ARV use in neonates recommend either a 1 or 2-drug 

prophylaxis regimen or ‘empiric therapy’, using a 3-drug regimen, including 2 NRTI 

and a NNRTI or integrase inhibitor (II), in high risk or infected infants [81]. 

Zidovudine, an NRTI, and/or nevirapine, an NNRTI are currently recommended for 

prophylaxis of neonates born to women living with HIV. Few ARVs have been 

studied in newborn infants, and only zidovudine, nevirapine, lamivudine and 

raltegravir have sufficient neonatal safety and PK data to be recommended for use 

from birth and lopinavir/ritonavir from 2 weeks of age, resulting in limited options 

for neonatal 3-drug treatment regimens [81]. 

Dolutegravir and bictegravir are highly potent HIV-1 integrase inhibitors but are not 

currently approved for use in neonates. Integrase inhibitors are well known for their 

safety and high efficacy and are accordingly favoured for first-line treatment in both 

ARV-naïve and experienced adult patients. Bictegravir, branded under the name 
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Biktarvy®, is currently available as a once-daily, single-tablet regimen and is co-

formulated with the NRTI’s emtricitabine and tenofovir alafenamide for the 

treatment of HIV-1 in adults [82]. Bictegravir has recently been studied in children 

older than 6 years and adolescents and studies are currently ongoing in children 

older than 2 years [83]. Safety and PK of dolutegravir have previously been studied 

in paediatric patients and a recent study investigated the safety in infants older than 

4 weeks of age [84]. Dolutegravir was generally well tolerated in all the cohorts with 

doses meeting the target concentrations [84].  

The aim of this chapter was to model the exposure of dolutegravir and bictegravir 

in neonates, to identify optimal dosing regimens for evaluation in neonates. 
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3.2 Methodology 

The PBPK model was designed in SimBiology version 5.8, a product of MATLAB 

R2018a (MathWorks, Natick, MA, USA 2018). [58] Virtual patients between 0 – 28 

days were simulated. The model was based on the same assumptions described in 

Chapter 2. Model was developed in 2019. 

3.2.1 Anatomy  

Equations describing the basic anatomy and physiology of neonates have been 

previously described (Chapter 2) and were implemented in the neonatal PBPK 

model. The adult PBPK model was constructed using physiological and anatomical 

equations previously defined in the literature. 

3.2.2 Simulation of ADME processes 

3.2.2.1 Dolutegravir Clearance 

The liver is the main site of dolutegravir metabolism [85]. A large portion of 

dolutegravir (51%) is estimated to be conjugated into an ether glucuronide by 

UGT1A1 and approximately 21% is hydroxylated by CYP3A4. UGT1A3 and UGT1A9 

are minor routes of elimination, owing to 2.8% and 5.5% of hepatic metabolism, 

respectively [85]. The remainder of the clearance (19.7%) is suggested to be 

undertaken by extrahepatic metabolism [85]. Due to the difficulty of approximating 

dolutegravir clearance from in vitro experiments, clearance was estimated via 

retrograde modelling from adult in vivo systemic clearance using equations 17-24. 

The total systemic clearance was multiplied by 0.72, the fraction of hepatic clearance 

(UGT1A1 +CYP3A4) (Equation 17). The total intrinsic clearance was then calculated 

using equation 18. 
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The fractions metabolised by each enzyme were incorporated in the final calculation 

of dolutegravir clearance (Equation 19, 20 & 23). However, data on UGT1A3, 

UGT1A9 and extrahepatic enzyme expression were inadequate, hence the fraction 

metabolised by each were totalled and scaled allometrically (Equation 23). 

CLDTG,hepatic =  CLDTG,sys x 0.72 (17) 

CLint,total =  (CLDTG,hepatic x QHV)/(fu/R(QHV −  CLDTG,hepatic)) (18) 

CL3A4 =  ((CLint,total x 0.29)/WLiver/MPPGL ) x WLiver,n x MPPGLn x CYP3A4n  (19) 

CL1A1 =  ((CLint,total x 0.71)/WLiver/MPPGL ) x WLiver,n x MPPGLn x UGT1A1n  
(20) 

CLint,total,n =  CL3A4 +  CL1A1 (21) 

CLDTG,hepatic,n = (QHV x (fu/R) x CLint,total,n)/(QHV + CLint,total,n x  (fu/R))  (22) 

CLDTG,extrahepatic,n = ((CLDTG,sys x 0.28)/70) x Weight     (23) 

CLDTG,sys,n =  CLDTG,hepatic,n + CLDTG,extrahepatic,n (24) 

 

Where CLDTG,hepatic is the hepatic clearance of dolutegravir in adults, CLDTG,sys is the 

systemic clearance of dolutegravir in adults, CLint,total is the total intrinsic clearance by 
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the liver in adults, CL3A4 is the clearance facilitated by CYP3A4 enzyme in neonates, 

CL1A1 is the clearance facilitated by UGT1A1 enzyme in neonates, UGT1A1n is the 

expression of UGT1A1 enzyme in neonates relative to the adult expression, 

CYP3A4n is the expression of CYP3A4 enzyme in the neonatal liver in relation to the 

adult abundance, MPPGL is the microsomal protein per gram of liver in adults, 

MPPGLn is the microsomal protein content per gram of liver in neonates, WLiver is the 

weight of the liver in adults expressed in kg, WLiver,n is the neonatal liver weight in kg, 

and Weight is the neonatal total body weight expressed in kg.  

3.2.2.2 Bictegravir Clearance 

Clearance of bictegravir was estimated via retrograde modelling due to the difficulty 

in approximating clearance from in vitro experiments and have been detailed below 

(Equations 9-12). Bictegravir is estimated to be conjugated into an ether 

glucuronide by UGT1A1 (50%) and hydroxylated by CYP3A4 (50%) in equal 

amounts. The fractions metabolised by each enzyme were incorporated in the final 

calculation of bictegravir clearance (Equation 26- 28). 

CLint,total =  (CLBIC,hepatic x QHV)/(fu/R(QHV −  CLBIC,hepatic)) (25) 

CL3A4 =  ((CLint,total x 0.5)/WLiver/MPPGL ) x WLiver,n x MPPGLn x CYP3A4n  (26) 

CL1A1 =  ((CLint,total x 0.5)/WLiver/MPPGL ) x WLiver,n x MPPGLn x UGT1A1n  (27) 

CLBIC,n =  CL1A1 +  CL3A4 (28) 

 

Where CLBIC,n is the clearance of bictegravir in neonates and CLBIC,adults is the systemic 

clearance of bictegravir in adults, CLint,total is the total intrinsic clearance by the liver in 
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adults, CL3A4 is the clearance facilitated by CYP3A4 enzyme in neonates, CL1A1 is the 

clearance facilitated by UGT1A1 enzyme in neonates, UGT1A1n is the expression of 

UGT1A1 enzyme in neonates relative to the adult expression, CYP3A4n is the 

expression of CYP3A4 enzyme in the neonatal liver in relation to the adult 

abundance, MPPGL is the microsomal protein per gram of liver in adults, MPPGL is 

the microsomal protein content per gram of liver in neonates and WLiver,n is the 

neonatal liver weight in kg. 

3.2.3 Model Validation 

The physicochemical properties of dolutegravir and bictegravir used as input data 

in the model have been represented in Table 3.1. For qualification of the drug 

properties for both dolutegravir and bictegravir, simulations were performed in the 

adult PBPK model [72] and comparisons were made between clinical [84, 86] and 

predicted values. The simulations were conducted in 100 virtual adults for a 50 mg 

daily dose of dolutegravir and a 50 mg daily dose of bictegravir, in adults. 

3.2.4 Simulations in neonates 

Each multiple dose strategy (bictegravir and dolutegravir) was simulated in 100 

healthy term neonates with the aim of achieving plasma exposure comparable to 

therapeutic levels observed in paediatric patients, for dolutegravir: Ctrough: 0.99 mg/L 

and AUC24: 50.1 mg.h/L [87]. For bictegravir, plasma exposures comparable to 

therapeutic levels observed in adults was set as the target, with a Ctrough of 2.61 mg/L 

and an AUC24 of 102 mg.h/L [88]. Doses ranged from 2 - 5 mg for dolutegravir and 

2.5 – 5 mg for bictegravir, with weight ranging from 3.0 – 4.5 kg, representing 

healthy, full-term neonates in the model.  
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As a qualified infant PBPK model was not available, infant dolutegravir PK was 

simulated by extrapolating from the neonatal PBPK model, for comparison against 

clinical values. 
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Table 3.1 Summary of physicochemical properties of dolutegravir and bictegravir. 

 

Property Dolutegravir  [72, 89-93] Bictegravir [94-96] 

Molecular weight, g/mol 419.4 449.4 

Log Po:w 2.2 2.7 

fu 0.0171 (0.0103-0.024)† 0.01 

pKa 8.20 9.8 

R 0.535  0.64 

Polar surface area, Å2 99.2 99.2 

Hydrogen bond donors 2 2 

Caco-2 permeability, 10-6 

cm/sec 
40.17  14.8 

Clearance 0.901A, 1.48A 621.9B  

CLint CYP3A4 NA 7.71 x10-4 

CLint UGT1A1 NA NA 

Solubility, mg/L 95 62.3 

Abbreviations: †, Median (range); A, L/h; B, mL/h; CLint, intrinsic clearance; CYP, 

cytochrome P450 (µL/minute/pmol); log Po:w, partition coefficient between 

octanol and water; NA, not applicable; pKa, logarithmic value of the dissociation 

constant; R, blood-to-plasma drug ratio; UGT, uridine diphosphate 

glucuronosyltransferase (µL/minute/106). 
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3.3 Results 

The PBPK model was initially validated in an adult model against clinical data for 

dolutegravir and bictegravir to ensure that the selected drug properties could 

appropriately characterise both drugs. The mean simulated values for 

pharmacokinetic parameters Cmax, Ctrough and AUC were recorded for comparison 

against available clinical data for oral formulations of both these drugs. To assess 

the accuracy of the simulations, the PBPK model was considered validated if the 

mean values were within 2-fold of observed data.  

3.3.1 Model Qualification 

The qualification of dolutegravir in adults and infants has been outlined in Tables 

3.2 and 3.3, with AAFE values of mean simulated PK parameters falling within the 2-

fold acceptance criteria [10].  

3.3.2 Dolutegravir Predictions 

The qualified model predicted the exposure of dolutegravir in neonates, with doses 

ranging from 2-5 mg (summarised in Table 3.4 and Figure 3.1). The predictions 

indicated that a 5 mg dose may be suitable for neonates. The mean predicted 

systemic clearance of DTG in neonates was 0.0274 (0.0142 - 0.0513) L/h. Regimen 

6 comprising a 5 mg dose with prolonged intervals between dosing resulted in 

AUCav and Ctrough values of 37.6 mg.h/L and 1.9 mg/L, respectively. These values are 

comparable to the paediatric target (AUC24: 50.1 mg.h/L and Ctrough: 0.99 mg/L) [86, 

87].  

3.3.3 Bictegravir Predictions 

Following successful validation in the adult model, bictegravir was simulated in 

neonates with doses ranging from 2.5- 5 mg, the mean PK parameters have been 
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outlined in Table 3.5. Simulations suggest regimens 4 and 5 were slightly above 

target exposures, with regimens 1-3 falling within the expected therapeutic 

concentrations (AUC: 102 mg.h/L); Ctrough 2.61 mg/L) [88].  
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Table 3.2 Comparison between predicted and observed pharmacokinetics of dolutegravir and bictegravir in adults.  

 

 

 Dolutegravir 50 mg dose Bictegravir 50 mg dose 

 Clinical* Simulated AAFE Clinical* Simulated AAFE 

AUC (mg.h/L) 53.6 (27) 74.62 (32) 1.392 102 (26.9) 110 (26) 1.075 

Cmax (mg/L) 3.67 (20) 4.42 (24) 1.204 6.15 (22.9) 6.21 (19) 1.010 

Ctrough (mg/L) 1.11 (46) 1.90 (48) 1.712 2.61 (35) 3.05 (37) 1.167 

CL (L/h) 0.776 0.754 (25) 1.029 0.541 0.610 (24) 1.129 

Abbreviations: *Values shown as geometric mean (%CV); Cmax, maximum plasma concentration; Q24h, once daily; AUC, area under curve over 

24 hours; Ctrough, minimum plasma concentration; CL, total systemic clearance;  AAFE, absolute average fold error. 
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Table 3.3 Summary of simulated vs observed PK for dolutegravir in infants. 

 Clinical Simulated AAFE 

AUC (mg.h/L) 61.0 (44) 46.2 (32) 1.32 

Ctrough (mg/L) 1.21 (55) 1.79 (31) 1.49 

Abbreviations: *Values shown as geometric mean (%CV); Cmax, maximum plasma concentration; AUC, area under curve over 24 hours, 

Ctrough, minimum plasma concentration; AAFE, absolute average fold error. 
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Table 3.4 Predicted PK of dolutegravir dosing regimens in neonates. 

Regimen Total Dose 
Dose* 

(mg/kg) 

Cmax
1 

(mg/L) 

AUCav 

(mg.h/L) 

Cmax
2 

(mg/L) 

AUC 

(mg.h/L) 

Ctrough 

(mg/L) 

T1/2 

(h) 

1 5 mg Q24h 
1.4 

(1.7 - 1.1) 
3.7 (27.5) 68.1 (34.6) 3.1 (27.8) 42.9 (15.9) 1.9 (23.6) 34.3 

2 3 mg Q24h 
0.85 

(1 - 0.7) 
2.2 (25.0) 40.0 (28.1) 1.7 (23.8) 28.2 (17.1) 1.4 (27.2) 33.6 

3 2 mg Q24h 
0.55 

(0.7 - 0.4) 
1.5 (18.8) 26.9 (28.1) 1.13 (22.5) 17.6 (14.7) 0.9 (18.9) 31.4 

4 5 mg Q48h 
1.4 

(1.7 - 1.1) 
2.0 (16.0) 33.9 (22.1) 1.4 (28.6) 26.1 (20.2) 1.0 (32.1) 33.1 
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5 

Day 1-14 = 5 mg Q48h, 

Day 15-28 = 5 mg 

Q24h 

1.4 

(1.7 - 1.1) 
2.9 (25.9) 46.3 (30.0) 2.8 (34.8) 42.6  (26.9) 2.4 (39.8) 36.4 

6 

Day 1-20 = 5 mg Q48h, 

Day 21-28 = 5 mg 

Q24h 

1.4 

(1.7 - 1.1) 
2.3 (20.0) 37.6 (30.4) 2.1 (33.3) 38.1 (22.1) 1.9 (23.1) 37.2 

*Median (Range), neonate weight range in the model is 3.0 - 4.5 kg. Cmax1, Average maximum plasma concentration over 28-day simulations; 

Cmax2, Maximum plasma concentration after final dose has been administered; AUCav, Average area under curve over 28-day simulations; AUC, 

Area under curve after final dose; Ctrough, Minimum plasma concentration after final dose; T1/2, Half-life; Q24h, one daily; Q48h, once every 2 days 

(48 hours).  
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Table 3.5 PK summary of predicted bictegravir dosing regimens in neonates. 

Regimen Total Dose (mg) Cmax
1 (mg/L) AUCav (mg.h/L) Cmax

2 (mg/L) AUC (mg.h/L) Ctrough (mg/L) 

Above 5*PA-

EC95   

(Yes/No) 

1 
Day 1-28 2.5mg 

Q24h 
4.97 (18.6) 92.26 (28.9) 4.35 (24.8) 81.92 (21.2)  3.96 (32.1) Yes 

2 Day 1-28 5mg Q24h 8.20 (16.7)  128.83 (29.1) 8.93 (32.3) 104.67 (20.2) 8.17 (31.1) Yes 

3 Day 1-28 5mg Q48h 5.32 (17.4) 95.63 (28.5) 4.61 (11.1) 77.50 (22.1) 3.76 (24.6) Yes 

4 
Day 1-13 5mg Q48h; 

Day 14-28 5mg Q24h 
8.35 (19.8) 130.23 (29.8) 8.20 (36.0) 134.24 (27.5) 7.56 (20.3) Yes 
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5 
Day 1-20 5mg Q48h; 

Day 21-28 5mg Q24h 
6.77 (20.8) 107.01 (32.3) 6.8 (24.8) 108.30 (39.9) 6.24 (20.1) Yes 

Cmax
1, Maximum plasma concentration over 28 day simulations; AUCav,  Average area under curve over 28 day simulations;  Cmax

2, Maximum 

plasma concentration after final dose; AUC, Area under curve after final dose; Ctrough, Minimum plasma concentration over 28 day 

simulations; PA-EC95, Protein binding-adjusted effective concentration (BIC PA-EC95: 0.162 mg/L). 
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Figure 3.1 Average daily DTG concentration time profiles in neonates  
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Figure 3.2 Neonatal average daily BIC concentration time plots  
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3.4 Discussion 

The benefits of initiating ARV therapy shortly after birth may include prevention of 

infection in at-risk infants and early viral suppression in those infants who are 

infected [97]. Breastfeeding increases the risk of infection in newborns but has 

enormous benefits for health and is recommended by WHO for at least the first six 

months of life [98]. In low- and middle-income countries, breastfeeding is favoured 

to avoid infant mortality from other life-threatening infections and initiating 

prophylaxis in breastfed neonates is encouraged for PMTCT [99]. There are only 5 

ARVs with adequate neonatal PK and safety data and a formulation suitable for use 

in neonates, the need for more potent alternatives is essential for effective early 

treatment and prophylaxis [100]. Dose optimisation in neonatal patients is complex 

and PBPK modelling may help inform knowledge gaps in the absence of empirical 

data. This is exemplified here with dose prediction for dolutegravir and bictegravir 

deployment in neonates. 

UGT1A1 polymorphism is known to affect dolutegravir exposure [101], certain 

polymorphisms are responsible for reduced enzyme activity resulting in an increase 

in exposure [101]. A previous study in adults concluded that this reduction in activity 

did not have a clinically significant impact on the exposure of dolutegravir [101], 

however this would need exploring further in neonates. The expression of CYP3A7 

in newborns is considerably high in comparison to CYP3A4. Although CYP3A7 and 

CYP3A4 have similarities in sequence identity and substrate range, the activity of 

CYP3A7 is known to be significantly less. The effect of CYP3A7 on dolutegravir and 

bictegravir has not yet been fully elucidated however CYPs play a minor role in the 

metabolism of dolutegravir hence was not included in the model [85]. Metabolic 

differences, like the ones highlighted in this paragraph, observed between adults 
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and infants can play a profound role in drug pharmacokinetics and remains a widely 

understudied area [102].  

Though the presented model predicts the PK of dolutegravir it has some key 

limitations. Maternal transfer of drug through breast milk or placenta has not been 

considered by the model. Pregnant women with HIV infection are expected to start 

or already be receiving treatment which involves a combination of ARVs. A cause 

for concern in breastfed neonates is maternal transfer of these drugs. The 

dolutegravir transfer into breast milk in a mother-infant pair was previously 

estimated to be equal to a daily infant exposure of 0.015 mg/kg [103]. 

Dolutegravir also readily crosses the placenta, therefore mothers receiving this 

treatment will be exposing neonates to dolutegravir with or without breastfeeding 

[104]. Based on our findings, the neonate’s first dose may be postponed until 24-

48 hours after birth if the mother has received dolutegravir 2-24 hours prior to 

delivery. Data on bictegravir’s ability to cross the placenta is not yet available and 

studies must be done to understand the impact on neonates.   

Although exposure from breast milk was not considered in this study, the model 

does provide information on a range of parameters from absorption through to risk 

of concentration-dependent fetal toxicity. Several models have previously been 

published describing infant exposure via breast milk [105-108]. The most recent 

involved a model to estimate isoniazid exposure in infants, a drug used in the first-

line treatment of tuberculosis [108]. Two multi-compartment models were coupled 

together, one adult and one infant; a separate compartment for breast milk was 

incorporated into the model. Predictions generated from the model suggested 

infant isoniazid exposure was relatively low and would not result in any clinically 

significant adverse effects. While progress has been made in the development of 
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these models, similar limitations arise from the lack of knowledge on specific 

neonatal characteristics. A recently published review on PBPK modelling in 

neonates [57] highlighted the importance of cross-talk between modellers and 

clinicians to bridge the understanding of age-related changes. Clinical observations 

and modelling can be combined in an attempt to explicate the developmental 

changes observed in the first month of life, utilising the knowledge that cannot solely 

be gained from existing in vitro and in vivo methods. The integration of molecular 

and clinical approaches represents an ideal interdisciplinary framework for the 

enhancement of modelling and its translation to various clinical scenarios [58, 69, 

72, 105]. 

Despite limitations, PBPK models are considered validated if predicted mean values 

lie within 2-fold of observed data [10]. Clearly, in the absence of clinical data it was 

not possible to specifically qualify the presented neonatal dolutegravir/bictegravir 

model. However, the raltegravir and midazolam qualification described in chapter 2 

does provide confidence that the ontogeny profiles of CYP3A4 and UGT1A1 

appropriately described expression in neonates. Observed differences between 

simulated and clinical drug concentrations (e.g., Cmax and Tmax) can additionally be 

caused by the model limitations described above but will likely have limited clinical 

impact.  A study evaluating the PK of dolutegravir in pregnant women and their 

infants reported the median elimination half-life in 21 infants as 38.2 hours, following 

in utero exposure [104]. Although infants did not directly receive dolutegravir, the 

half-life provides information on the elimination kinetics of dolutegravir in the first 

days of life. The simulations generated by the neonatal PBPK model are in keeping 

with this value with predictions of half-life within 20% of observed data (Table 3.4). 

The PK, efficacy and safety of dolutegravir in infants with HIV and children aged ≥ 4 

weeks to < 6 years was previously investigated [84] and used for further qualification 
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of the neonatal model. Within this study, 10 subjects were aged between 4 weeks 

and 6 months receiving a once daily 5 mg dispersible tablet, the same dose was 

simulated in silico. In the absence of a PBPK model for infants, predictions were 

carried out by extrapolating from the existing neonatal model. To minimise the 

difference between subpopulations, extrapolations were taken between weeks 4-5. 

Though the simulated data of dolutegravir in infants were close to the clinical values 

(within 2-fold), there was a trend to overestimate clearance, resulting in lower mean 

AUC values (Table 3.3). The simulations for dolutegravir were carried out over a 28-

day period for several multiple dose regimens outlined in table 3.4, with a maximum 

dose of 5 mg set by the adequate AUC and Ctrough values achieved clinically in 

infants. From the fixed-dose (regimens 1-3) concentration-time profiles, a steady 

increase in plasma concentrations of dolutegravir is observed during the first week 

of life, reaching maximum concentrations on days 7-10 (Figure 3.1); this may partly 

be explained by the immaturity of enzymes. Based on this prediction, a greater initial 

dose may be needed if the goal is to reach therapeutic concentrations within the 

first hours of life. 

It is also worth noting that the smallest dose formulation currently available for 

dolutegravir is a 5 mg dispersible tablet, however, administering 5 mg of 

dolutegravir daily (regimen 1) may lead to over-dosing. Regimens 4-6 propose 

alternative strategies to accommodate for the formulation restrictions that currently 

surround dolutegravir. Based on the simulated data, introducing a longer interval 

between dosing could pose a solution; regimen 6 involved 5 mg doses with a 48h 

interval from day 1-20 escalated to 5 mg once daily on week 4, yielding AUC and 

Ctrough values of 37.6 mg.h/L and 1.9 mg/L, respectively (Table 3.4). These values fall 

within the target criteria and are comparable to the clinical paediatric exposure. 
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Simulations for bictegravir were similarly carried out for the duration of the neonatal 

period (0-28 days) and several dosing regimens have been outlined in Table 3.5. 

Due to the unavailability of clinical data a previously qualified adult PBPK model was 

employed to validate input parameters. The simulated values were in good 

agreement with literature data with AAFE values well within the 2-fold acceptance 

criteria. Although the model passed qualification stages, it was met with a number 

of limitations. Clearance in the model was calculated using the apparent systemic 

clearance obtained from literature as data on the intrinsic clearance of dolutegravir 

and bictegravir were lacking. This clearance value was adjusted to take into account 

bioavailability. Since information was limited, it was assumed bioavailability in 

humans was the same as observed in macaques for dolutegravir (87%). Once the 

clearance had been adjusted to represent total systemic clearance the model 

generated PK in accordance with clinical PK. These physicochemical properties 

were then used as input data for the neonatal PBPK model. The retrograde 

calculation of clearance also took into account differences in protein binding, 

microsomal content, weight of the neonatal liver etc., before it was applied in the 

neonatal model. For bictegravir in neonates, regimens 1 and 3 produced the most 

promising outcome in terms of PK, with AUC and Ctrough values comparable to adult 

exposures (AUC: 102 mg.h/L); Ctrough 2.61 mg/L) [88], with neonates receiving either 

a daily fixed dose of 2.5 mg (regimen 1) or a dose of 5 mg every 48 hours (regimen 

3) throughout the neonatal period (28 days).  

Transporters can represent a factor influencing pharmacokinetics and dolutegravir 

has been identified as a substrate for P-glycoprotein (Pgp) and breast cancer 

resistance protein (BCRP) [85], although the role of these transporters in the 

definition of dolutegravir has not been fully characterized. This modelling approach 

does not include a maturation function for transporter expression, and this could 
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represent a potential limitation of our approach. Data concerning transporter 

abundance in neonates is largely understudied. Future studies elucidating 

expression in good quality paediatric tissue could help resolve this issue, however, 

these experiments are complicated by factors such as small sample sizes. 

With the previously stated formulation limitations, an advantage of PBPK modelling 

is its ability to simulate the PK of novel formulations [72]. Large dose adjustments 

are commonly observed between adult and paediatric patients, a more robust 

formulation approach would prove invaluable as drug approval in neonates and 

infants is often hindered by a lack of suitable formulations. PBPK modelling can be 

used to evaluate and help direct development of alternative formulations 

appropriate for use in paediatric patients. 
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CHAPTER 4       

Simulation of Long-

Acting, Intramuscular, 

Cabotegravir in 

Neonates 
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4.1 Introduction 

As highlighted in Chapter 3, HIV receives widespread global attention for being one 

of the leading causes of death, with 150,000 new cases of HIV reported in children 

under 15 years of age in 2020 [78].  

Cabotegravir (CAB) is a HIV-1 integrase inhibitor that stimulates a potent virological 

response [109] and has potential for treatment and prophylaxis within neonatal 

populations [110]. High efficacy and safety make integrase inhibitors the preferred 

first-line treatment of HIV in adult patients. In addition, CAB’s unique 

physicochemical and DMPK characteristics are compatible with different drug 

delivery strategies and has been identified as an excellent candidate for its use as a 

long-acting formulation [109, 111]. As we move towards the use of LA injectables 

for HIV treatment and prevention, there is great interest in the potential of these 

formulations for neonates and children. Administration of oral medications in 

neonates has posed significant challenges, with a number of factors including, 

formulation, palatability and caregiver burden negatively impacting treatment 

outcomes [112]. Long-acting formulations reduce the frequency of dosing and in 

regard to neonates, hold the potential of a single administration for the duration of 

the neonatal period, alleviating many of the aforementioned difficulties. 

The use of long-acting formulations in paediatric patients has been proposed in 

several disease areas. The treatment of schizophrenia, autism spectrum disorder, 

bipolar disorder and other mental disorders involves the use of LA/extended release 

antipsychotics, namely, paliperidone palmitate, aripiprazole, and risperidone [113]. 

Lack of compliance with maintenance treatment in patients with such disorders is 

associated with higher rates of relapse [113, 114]. LA injectable antipsychotics (LAIA) 

have been developed to maintain stable serum levels of the drug and to improve 
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adherence in adults. While these formulations have not been approved in 

adolescents and paediatric patients, the benefits of LAIA lead to the off-label use of 

these products in children and adolescents [115, 116] and have been suggested to 

be a safe treatment option during adolescence [115].  

The safety and pharmacokinetics (PK) of CAB have previously been studied in 

healthy, HIV-infected, co-morbid adult patients. In early 2021, the U.S. Food and 

Drug Administration (FDA) approved the LA injectable antiretroviral regimen, CAB 

and rilpivirine (RPV), in adults with HIV [111, 117]. Prior to the initiation of the 

intramuscular (IM) injection it is recommended that patients receive oral 

formulations of both CAB and RPV to assess patient tolerance [111]. Currently no 

studies have been conducted in adolescents and paediatric patients aged <18 years 

for these drugs. 

To date, few ARV’s have been studied in neonates; lack of suitable formulations and 

treatment options limit the possibilities for neonatal antiretroviral therapy. The 

objective of this study was to simulate the pharmacokinetics of IM and oral CAB in 

neonates and identify an appropriate initial dosing regimen to rapidly achieve 

therapeutic levels using mechanistic PBPK modelling.  
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4.2 Methodology 

This study is based on virtual patients; therefore, no ethical approval was required.  

The PBPK model was designed in SimBiology version 5.8, a product of MATLAB 

R2018a (MathWorks, Natick, MA, USA 2018). [58] Virtual patients between 0 – 28 

days were simulated. Neonatal maturation characteristics and a description of 

physiological and anatomical growth data were incorporated where appropriate. 

The model was based on the following assumptions: (1) well-stirred compartments 

with instant distribution of the drug; (2) no absorption of the drug from the colon; 

and (3) the model is blood flow limited. 

4.2.1 Anatomy 

Equations describing the basic anatomy and physiology of neonates have been 

previously described in Chapter 2 and were implemented in the neonatal PBPK 

model. The adult PBPK model was constructed using physiological and anatomical 

equations previously defined in the literature [69].  

4.2.2 Plasma Protein Binding 

Plasma protein binding of drugs in neonates was calculated using a previously 

combined database on age-related changes in plasma albumin and α1-acid 

glycoprotein. [65] The unbound fraction of drug was estimated using the following 

equation (29): [66]  

fuPaediatric =  
1

1 + 
(1 − fuAdult) × [P]Paediatric

[P]Adult ×  fuAdult

 
(29) 
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4.2.3 Metabolism 

4.2.3.1 Ontogeny of UGT1A1 and UGT1A9 

The ontogeny profile of UGT1A1 has been described by previously in Chapter 2 and 

detailed below in equation 30; a polynomial equation describing the fraction of 

UGT1A1 present in neonates in relation to the adult abundance. Due to insufficient 

data on neonatal UGT1A9 expression, the maturation profile was assumed to be 

identical to UGT1A1 ontogeny (equation 30).  [65]  

UGT1A1 = (−5 × 10−10 × Age4) + (−5 × 10−7 × Age3) − (0.0002 × Age2)

+ (0.0203 × Age) + 0.0305 

(30) 

 

4.2.4 Modelling Cabotegravir Clearance 

The clearance of cabotegravir is majorly facilitated by UGT1A1 (67%), with smaller 

contributions from UGT1A9 (33%) and renal elimination (<1%) [111]. Intrinsic 

clearance values derived from in vitro experiments were used to scale UGT1A1 and 

UGT1A9 clearance. In the absence of literature data, UGT1A9 ontogeny was 

assumed to follow the same maturation profile as UGT1A1. Renal clearance of 

cabotegravir in neonates was not included in the final clearance calculation due to 

its relatively minor contribution (equation 31). 

CLcabotegravir = (ClintU1A1+U1A9,adults x Wliver x MPPGL xUGT1A1neonates) 
(31) 

 

Where ClintU1A1+U1A9, adults is the sum of intrinsic clearance values of cabotegravir 

facilitated by UGT1A1 and UGT1A9 enzymes, UGT1A1neonates is the fraction of 

UGT1A1 present in neonatal livers relative to the adult abundance, Wliver is the 
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neonatal liver weight, MPPGL is the neonatal microsomal protein per gram of liver 

and CLcabotegravir is the total clearance of cabotegravir in neonates expressed in L/h.  

CLcabotegravir was then scaled using equation 32 to account for unbound fraction of 

drug in neonates (Fu) and neonatal hepatic vein blood flow (Qhv).  

CLh =  
(Qhv x Fu x CLcabotegravir)

(Qhv +  CLcabotegravir x Fu)
 

(32) 

 

4.2.5 Distribution 

The volume of distribution was calculated using previously published equations and 

has been described in detail Chapter 2. [70] 

4.2.6 Modelling IM administration 

Figure 4.1 Schematic of intramuscular depot model. 

The IM depot model was constructed by adding a further compartment (Figure 4.1) 

representing a proportion of the muscle the intramuscular injection is delivered to 

based on previous literature [72]. To model intramuscular drug release from the 

depot a previous population-PK study in which a two-compartment first-order 

absorption model was constructed to describe the absorption of long-acting, 

injectable cabotegravir, was used [58, 72]. Diffusion of drug from the IM 

compartment obeys first-order kinetics as described in Tegenge et al [118]. Based 
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on these findings, cabotegravir release rate in adults was assumed to be 4.5x10-4 h-

1 [58, 72]. 

4.2.7 Model Simulations & Qualification 

The qualified whole-body neonatal PBPK model described in Chapter 2 was 

modified to simulate cabotegravir in neonates in which the ontogeny of the key 

enzyme UGT1A1 was refined and validated using observed neonatal raltegravir 

clinical data [76]. For further validation of model input parameters, IM and oral 

cabotegravir were simulated in an adult PBPK model; observed, adult clinical data 

were used for comparison [119-121]. 

An 800 mg quarterly IM dose was simulated in the adult PBPK model. Clinical data 

concerning a 30 mg PO multiple-dose of cabotegravir [121] was used and simulated 

in the model for the oral validation. For each clinical scenario, simulations were run 

in 100 virtual patients and the mean AUC, maximum plasma concentration (Cmax), 

minimum plasma concentration (Ctrough) and CL were recorded for comparison 

against observed data.  

4.2.7.1 Model Predictions 

Several scenarios were modelled in healthy neonates with the aim of achieving 

plasma exposures 4-fold above the reported protein adjusted (PA) IC90 (4*PAIC90: 

0.664 µg/mL). To gain a better understanding on exposures in neonates, a range of 

IM doses from 10-25 mg were evaluated initially before moving forward with the 

dose that resulted in the most favourable PK in terms of target exposures. Since 

depot release in the neonate is unknown, simulations were performed using the 

adult release rate (4.5x10-4) as well as with this parameter decreased and increased 

by 2, 5 and 10-fold. Several anatomical factors can affect the absorption and 
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dispersion of drug in neonates, including differences in muscle mass, composition, 

and vascularity. The possibility of an oral safety lead-in in conjunction with an IM 

injection was also explored in the model, simulating doses ranging from 0.5-1.5 mg 

in combination with a 20 mg IM dose.  

4.2.7.2 Statistical Evaluation of the Model  

The PBPK model was qualified by calculating the absolute average fold error (AAFE) 

and root mean squared error (RMSE) where appropriate. AAFE is a useful parameter 

to assess over or under-prediction of the model, values closer to 1 indicate a closer 

similarity with observed values. The RMSE calculates the error between the 

predicted value and the observed value. The model was assumed to be qualified if 

the predicted values fell within the following criteria: with AAFE < 2 and RMSE < 1 

as per convention for the approach [10]. The absolute differences between 

simulated AUC, Cmax and Ctrough was also considered to evaluate the potential clinical 

relevance.
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Table 4.1 Physiochemical properties of cabotegravir.  

Property Cabotegravir [58] 

Molecular weight, g/mol - 

Log Po:w 1.04 

fu 0.007 

pKa 10.04 

R 0.5 

Polar surface area, Å2 99.2 

Hydrogen bond donors 2 

Caco-2 permeability, 10-6 cm/sec NA 

Clearance NA 

CLint UGT1A9 2.2 

CLint UGT1A1 4.5 

Solubility, mg/L 113 

Abbreviations: CLint, intrinsic clearance; log Po:w, partition coefficient between 

octanol and water; fu, unbound fraction of drug; NA, not applicable; pKa, 

logarithmic value of the dissociation constant; R, blood-to-plasma ratio; 

Clearance, systemic clearance; UGT, uridine diphosphate 

glucuronosyltransferase ratio (µL/minute/mg of microsomal protein). 
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4.3 Results 

4.3.1 Model Qualification 

4.3.1.1 Oral Cabotegravir in Adults 

The validation of cabotegravir in adults has been detailed in Table 4.2. Simulated 

mean PK parameters were within the acceptance criteria and deviated from 

observed data by an average of 16.5%, with mean AUC, Cmax, Ctrough and CL values 

falling within -9.6%, -22.8%, +0.21% and +33.3% of clinical data, respectively. 

Table 4.2 Summary of oral cabotegravir qualification in adults. 

PK characteristic Clinical* Simulated* AAFE 

AUC (mg.h/L) 146 132 1.106 

Cmax (mg/L) 8.1 6.25 1.296 

Ctrough (mg/L) 4.7 4.71 1.002 

Tmax (h) 3 4 1.333 

Abbreviations: *Values shown as geometric mean; Cmax, maximum plasma 

concentration; AUC, area under curve over 24 hours, Ctrough, minimum plasma 

concentration; Tmax, time taken to reach maximum concentrations; AAFE, absolute 

average fold error. 

 

4.3.1.2 IM Cabotegravir in Adults 

The validation of cabotegravir in adults has been detailed in Table 4.3. Simulated 

PK parameters were within the 2-fold acceptance criteria with mean AUC, Cmax, Ctrough 
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and CL values within +19.6%, +16.4%, +19.1% and +9.6% of observed clinical data, 

respectively. The simulated PK profile yielded an AAFE and RMSE value of 1.166 

and 0.440, respectively, and has been presented in Figure 4.2.  

Table 4.3 Summary of IM cabotegravir qualification in adults. 

PK characteristic Clinical* Simulated* AAFE 

AUC (mg.h/L) 4467 5341 1.196 

Cmax (mg/L) 3.3 3.84 1.164 

Ctrough (mg/L) 1.075 1.28 1.191 

CL (L/h) 0.249 0.273 1.096 

Abbreviations: *Values shown as geometric mean; Cmax, maximum plasma 

concentration; AUC, area under curve over 24 hours, Ctrough, minimum plasma 

concentration; CL, total systemic clearance; AAFE, absolute average fold error. 
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Figure 4.2 PBPK qualification of IM cabotegravir in adults (800 mg Q3mo dose). 

4.3.2 IM Cabotegravir in Neonates 

Initial simulations of cabotegravir in neonates suggested a 20 mg IM dose 

generated PK in keeping with target exposures, with Ctrough values greater than the 

4-fold PAIC90 value (1.2 µg/mL vs 0.664 µg/mL). Further simulations were run with 

the 20 mg IM dose with several release rates. Early cabotegravir concentrations and 

time to achieve target concentrations were sensitive to the IM release rate. The initial 

simulations of IM cabotegravir suggested that a delay of 35 hours (Regimen 1, Table 

1) is required to reach target concentrations if the infant cabotegravir release rate is 

identical to adults. To overcome this lag a single dose oral lead-in of cabotegravir 

was simulated (Regimen 8, Table 1). 
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Table 4.4 PK summary of cabotegravir dosing regimens in neonates.  

Regimen Dose Release rate 

Lag time to plasma 

concentration 

≥4*PAIC90 (h) 

Cmax 

(mg/L) 

Ctrough 

(mg/L) 

AUC0-28d 

(mg*h/L) 

AUCav 

(mg*h/L) 

1 20 mg IM CAB on Day 0 Adult* 35 2.55 1.20 1218.2 43.5 

2 20 mg IM CAB on Day 0 0.1x Adult - 0.28 0.15 134.9 4.8 

3 20 mg IM CAB on Day 0 0.2x Adult - 0.53 0.28 260.5 9.3 

4 20 mg IM CAB on Day 0 0.5x Adult 77 1.33 0.70 646.6 23.1 

5 20 mg IM CAB on Day 0 2x Adult 17 4.69 1.80 2150.6 76.8 
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6 20 mg IM CAB on Day 0 5x Adult 7 10.06 2.21 4176.7 149.2 

7 20 mg IM CAB on Day 0 10x Adult 4 15.85 1.90 5923.4 211.6 

8 
20 mg IM CAB & 0.8 mg 

PO CAB on Day 0 
Adult 4 4.69 1.08 1438.5 51.4 

Abbreviations: *Adult release rate = 4.5x10-4, 4*PAIC90: 0.664 ug/mL; Cmax, maximum plasma concentration; Ctrough, minimum plasma 

concentration; AUC0-28d, area under the curve over 28-days; AUCav, average daily concentration. 



99 
 

Figure 4.3 Simulated PK profiles of IM cabotegravir in neonates (Regimens 1-4) with 4*PAIC90 therapeutic cut-off (0.664 µg/mL).  
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Figure 4.4 Simulated PK profiles of IM cabotegravir in neonates (Regimens 5-8) with 4*PAIC90 therapeutic cut-off (0.664 µg/mL).  
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4.4 Discussion 

Antiretroviral prophylaxis can considerably decrease the risk of infants acquiring HIV 

through perinatal transmission. The duration of treatments is dependent upon the 

length of breastfeeding and maternal risk factors [100, 122]. However, the number 

of antiretrovirals available for treatment in neonates is only a few. Long-acting or 

extended-release nanoproducts of antiretrovirals hold the potential of simplifying 

treatment regimens while improving adherence in populations where poor 

adherence impedes successful treatment. Though long-acting formulations have 

many advantages their utility in sub-populations such as neonates is still in question. 

This study predicted the pharmacokinetics of injectable IM CAB in neonates.  

The previously developed neonatal PBPK model [123] was modified to simulate 

cabotegravir in neonates. In the absence of cabotegravir clinical data in neonates, 

the drug-specific model input parameters were qualified using an adult PBPK 

model. Observed data on IM and oral cabotegravir in adults were available for the 

qualification: an 800 mg Q3mo administration and a 30 mg QD dose, respectively, 

these conditions were replicated in the model [111, 120]. The intrinsic values 

derived from literature were insufficient in their characterisation of clearance hence 

a scaling factor was applied, this scaling factor was carried through to the neonatal 

model. The model succeeded in capturing both pharmacokinetic profiles of oral 

and IM LA cabotegravir in adults with values of AAFE falling within the acceptance 

criteria (<2 fold). The mean simulated pharmacokinetic parameters, AUC, Cmax and 

Ctrough also fell within the qualification criteria with an average percentage difference 

of 16.5% and 16.2% from clinical data for both oral and IM cabotegravir respectively.  

Lack of data on neonatal characteristics make it inherently difficult to characterise 

certain parameters such as enzyme and transporter ontogenies, in such instances, 
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assumptions were made in the neonatal model. Cabotegravir is mainly metabolised 

by UGT1A1 with minor contributions from UGT1A9 [109]. The ontogeny of UGT1A1 

was previously validated using the probe substrate raltegravir as described in 

Chapter 2, however, limited data were available for the characterisation of UGT1A9 

expression in neonates. Due to inadequate data, it was assumed UGT1A9 had an 

identical maturation profile to UGT1A1 but considering the minor role UGT1A9 

plays in cabotegravir metabolism, its subsequent effect on the PK profile was 

assumed to be minimal. Furthermore, cabotegravir is highly bound to plasma 

proteins (>99%), a cause for concern is its impact on bilirubin to albumin binding 

and the risk of neonates developing kernicterus from elevated levels of bilirubin in 

blood leading to bilirubin neurotoxicity [124]. The effect of cabotegravir on bilirubin 

displacement from albumin has not yet been studied and therefore was not 

considered by the model. Previous studies on the in vitro assessment of bilirubin 

displacement of integrase inhibitors, raltegravir [125] and dolutegravir [126], 

concluded that the extent of bilirubin displacement was not clinically significant, 

however this would need evaluating further in vivo for the long-acting formulation 

of cabotegravir. 

Drugs can be transferred from mother to fetus transplacentally. Transplacental 

transfer of drugs is known to occur through passive diffusion, facilitated diffusion, 

active transport and other processes [127]. Maternal-fetal transfer of ARVs 

contributes to the prevention of perinatal HIV transmission however deducing the 

safety profile of drugs in fetuses is extremely challenging. Women who become 

pregnant while on long-acting drugs are advised to discontinue treatment. 

Nevertheless, washout PK data of drugs in newborns can be useful in determining 

elimination kinetics and can be used in neonatal model development to inform dose 

selection as has been demonstrated in Chapter 3 with dolutegravir. The transfer of 
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cabotegravir via breastmilk has not been considered in the model. Breastfed infants 

can be a cause for concern. The necessity of breastfeeding in resource limited 

countries to avoid infant mortality has been well established [100, 122]; pregnant 

women are likely to be receiving ART and maternal transfer of these drugs can pose 

a challenge. Studies on the kinetics of breastmilk transfer of long-acting 

cabotegravir are not yet available and would be necessary to understand infant 

exposures.  

Despite limitations, the model predicted the PK of cabotegravir in neonates. 100 

virtual patients were simulated to account for population variability. The simulations 

for cabotegravir were run for a duration of 28 days, covering the neonatal period 

(Table 4.3). Initially, three IM doses ranging from 10-25 mg were evaluated in the 

model with the adult release rate. The 20 mg IM dose yielded the most favorable 

outcome in terms of PK and target concentrations hence this dose was carried 

forward for further evaluation of release rates. As the release rate of the long-acting 

cabotegravir formulation is unknown in neonates this parameter was decreased and 

increased by 2, 5 and 10-fold to assess its impact on the PK. Decreases in the release 

rate showed an increase in lag time to target plasma concentration (>4*PAIC90) and 

lower concentrations in plasma (Regimens 2-4, Table 4.3), where release rate was 

10-fold lower than the adult value, the resulting PK was 10-fold lower (Regimen 2, 

Table 4.3). Conversely, increasing the release rate decreased the time taken to reach 

target concentrations and, overall, increased plasma concentrations significantly 

(Regimens 5-7, Table 4.3). Taking these simulations into consideration, if release 

rates differ in neonates, dose adjustments may not only be significant, but necessary. 

The initial simulations also suggested a lag to reach target concentrations was 

present (≥ 35 hours), this delay could have serious implications in practice as 

neonates are most vulnerable in the first hours of life. Given the apparent differences 
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in composition of tissue and muscle mass in neonates compared to adults [54, 55], 

a delay in absorption following IM administration is somewhat anticipated and could 

be the result of reduced muscle blood flow, muscle mass and muscular contractions, 

all of which contribute to the overall dispersion of the drug [55]. To overcome this 

lag, oral doses were simulated in the neonatal model following validation in an adult 

PBPK model. A range of oral doses were explored in neonatal model, with a 0.8 mg 

dose yielding the most promising PK, this dose was then simulated in conjunction 

with the 20 mg intramuscular injection (Regimen 8, Table 4.3). Results from the 

simulations suggest an oral dose in conjunction with an IM dose can overcome the 

delay to reach target concentrations.  

Assuming the cabotegravir depot release rate in neonates is the same as observed 

in adults, the simulations suggest a 20mg IM injection alongside a single dose of 

oral cabotegravir both initiated on day 0, is suitable to achieve target exposure 

(>4*PAIC90).  However, since the effect of neonatal physiology on the depot release 

rate is unknown, observational data are needed to delineate the depot release rate 

in neonates and establish an appropriate neonatal cabotegravir dosing regimen. 

Early evaluation of the application of long-acting formulations for neonatal use can 

provide significant knowledge and help support their development. 

 

 

 

 



105 
 

CHAPTER 5          

DDI PBPK Model 

Development for 

Moderate Inducers 

  



106 
 

Contents 

5.1 Introduction 108 

5.2 Methodology 110 

5.2.1 Anatomy .......................................................................................................... 110 

5.2.2 Tissue and organ weights .............................................................................. 110 

5.2.3 Blood Flow ...................................................................................................... 112 

5.2.4 Intestinal Absorption ...................................................................................... 113 

5.2.5 Metabolism ..................................................................................................... 114 

5.2.5.1 Intestinal Metabolism ......................................................................... 115 

5.2.6 Distribution ...................................................................................................... 115 

5.2.7 Induction modelling ....................................................................................... 116 

5.2.7.1 CYP3A4 and UGT1A1 Induction Model ........................................... 116 

5.2.7.2 Model Equations ................................................................................. 116 

5.2.8 Model Simulations and Qualification ........................................................... 117 

5.2.8.1 Qualification of Plasma PK ................................................................. 117 

5.2.8.2 Qualification of Moderate DDIs ........................................................ 117 

5.3 Results……………………………………………….………………………………..120 

5.3.1 Doravirine ........................................................................................................ 120 

5.3.2 Bictegravir ....................................................................................................... 122 

5.3.3 Rifabutin........................................................................................................... 123 

5.3.4 DOR-RFB Drug-Drug Interaction .................................................................. 125 

5.3.5 BIC-RFB Drug-Drug Interaction .................................................................... 127 



107 
 

5.4 Discussion 128 

 

  



108 
 

5.1 Introduction 

The current standard of care for HIV treatment is highly active antiretroviral therapy 

(HAART) which involves a combination of multiple ARVs taken simultaneously to 

suppress HIV replication [128]. Since the introduction of combination therapy, 

mortality and morbidity in PLWH has considerably decreased [40]. However the 

resulting immunodeficiency from HIV, make patients susceptible to co-infections 

[129]. Concurrent morbidities are a systemic result of HIV/AIDS that require the use 

of additional medicines to treat, consequently increasing the chances of drug-drug 

interactions (DDI) in people living with HIV (PLWH) [129]. A DDI between two or 

more drugs can compromise the effectiveness of treatment or result in toxicity [130]; 

if a dose adjustment is required, a relevant change in drug concentration occurs or 

the co-medication is resulting in toxicity the DDIs has  clinical significance [130]. 

Common co-infections in PLWH include tuberculosis (TB), hepatitis B, hepatitis C 

and malaria. TB remains the leading cause of death among PLWH [129].  

The majority of DDIs remain unstudied during drug development due to the sheer 

volume of possible interactions and ethical constraints associated with high-risk 

DDIs. However, the importance of studying potential interactions is widely 

recognised, and as a result, a great deal of the PBPK models submitted to the US 

Food and Drug Administration (FDA) are regarding DDI prediction [131, 132]. 

During drug development clinical DDI studies are routinely focused on strong 

inducers and inhibitors evaluating the worst-case scenarios with fewer data 

regarding moderate and weak interactions, resulting in multiple DDIs with poor 

characterisation. The magnitude of induction/inhibition on victim drugs can be 

simulated via PBPK modelling, using in vitro metabolism data and in vivo studies for 

model qualification [132]. PBPK models have previously been developed for the 
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quantitative prediction of potential interactions and to evaluate whether they can be 

safely managed with dose adjustments [132-134].  

Bictegravir is a novel selective and potent HIV-1 integrase inhibitor and doravirine is 

non-nucleoside reverse transcriptase inhibitor [94, 135]. Both drugs have limited 

clinical experience in DDIs. Rifabutin is a well characterised moderate inducer used 

for the treatment of TB and is commonly administered in PLWH, thus was used to 

develop a moderate inducer PBPK model.  
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5.2 Methodology 

A whole-body adult PBPK model was applied to predict the pharmacokinetic 

parameters of moderate drug-drug interactions between bictegravir and rifabutin 

(BIC/RFB) and doravirine and rifabutin (DOR/RFB). All PBPK models were developed 

in Simbiology v5.8, a product of Matlab 2018a (MathWorks, Natick, MA, USA; 2018). 

100 male and female virtual patients aged between 18-60 years were simulated for 

each DDI scenario. Physicochemical and biological drug properties, in vitro and in 

vivo, were used to simulate BIC, DOR, and RFB [88, 94-96, 136]. Parameter 

estimation was carried out via curve fitting where data was not available.  

5.2.1 Anatomy  

Male and female virtual patients aged between 18-60 years were simulated in the 

model. Data from the National Center for Health Statistics were used to define key 

characteristics, body weight and body mass index (BMI). These characteristics were 

used to determine body surface area and height, described in equations 33 and 34, 

respectively. [56] 

𝐵𝑆𝐴 =  Weight0.425  ×  Height0.725 ×  0.007184 (33) 

Height =  Weight/BMI (34) 

 

5.2.2 Tissue and organ weights 

Organ and tissue weights were derived allometrically using height, weight, BMI, and 

age equations (Table 5.1). [56] 
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Table 5.1 Equations to calculate organ/tissue weights in the PBPK model using 

allometric scaling methods. 

Organ/Tissue Model equations 

Adipose ((((1.20*BMI)+(0.23*Age)-16.2)*Weight)/100) ± 0.041 

Blood 3.33*BSA-0.81 ± 0.1 

Bones exp(0.0689+2.67*log(Height)) ± 0.166 

Brain 0.405*exp(-Age/629)*(3.68-2.68*exp(-Age/0.89)) ± 0.084 

Gonads (3.3+53*(1-(exp((-Age/17.5)^5.4)))/1000 ± 0.049 

Heart exp(-2.502+2.13*log(Height)) ± 0.069 

Kidneys exp(-2.306+1.93*log(Height)) ± 0.14 

Liver exp(-0.6786+1.98*log(Height)) ± 0.028 

Lungs exp(-2.092+2.1*log(Height)) ± 0.195 

Intestines exp(-1.351+2.47*log(Height)) ± 0.049 

Muscle 0.93*Weight-Total weight 

Pancreas exp(-3.431+2.43*log(Height)) ± 0.245 

Remaining exp(-0.072+1.95*log(Height) ± 0.049 

Skin exp(1.64*BSA-1.93) ± 0.049 

Stomach exp(-3.266+2.45*log(Height)) ± 0.0965 

Spleen exp(-3.123+2.16*log(Height)) ± 0.156 



112 
 

Thymus 
14*((7.1-6.1*exp(-Age/11.9))*((0.14+0.86*exp(-

Age/10.3))))/1000 ± 0.049 

Total Weight 

Lungs + Heart + Bones + Kidneys + Stomach + Intestines + 

Spleen + Pancreas +  Liver + Remaining + Brain + Skin +Blood + 

Adipose + Thymus + Gonads 

Age expressed in years, BMI in kg/m2, height in m, weight in kg and BSA in m2. 

 

5.2.3 Blood Flow 

Blood flows to each organ were represented as a fraction of the total cardiac output, 

(Table 5.2).  

Table 5.2 Fraction of organ blood flow relative to total cardiac output 

Organ/Tissue Fraction of total cardiac output 

Adipose 0.052 

Bones 0.042 

Gonads 0.01 

Brain 0.11 

Hepatic Vein 0.32 

Hepatic Artery 0.12 

Kidneys 0.175 

Intestines 0.05 
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Muscle 0.19 

Lungs 0.025 

Pancreas 0.05 

Skin 0.06 

Spleen 0.05 

Stomach 0.05 

Remaining tissue 0.01 

Portal Vein 0.2 

Blood flows expressed in L/h. Cardiac output = 15 x Weight0.75. 

 

5.2.4 Intestinal Absorption 

Absorption was represented in the PBPK model using the CAT model described in 

Chapter 2 (Figure 2.1) [61] which considers a small intestine transit time of 3.3 hours 

and a stomach transit time of 0.5 hours [61]. The ordinary differential equations 35-

43 (ODE) detailed herein were used to describe rates of change to the amount of 

drug in the gastrointestinal tract for each of the nine compartments. 

Stomach compartment: 

𝑑𝐴𝑈,𝑆𝑇

𝑑𝑡
=  −𝐾𝑠 𝑥 𝐴𝑈,𝑆𝑇 −  𝐾𝐷 𝑥 𝐴𝑈,𝑆𝑇 

(35) 

𝑑𝐴𝐷,𝑆𝑇

𝑑𝑡
=  −𝐾𝑠 𝑥 𝐴𝐷,𝑆𝑇 + 𝐾𝐷 𝑥 𝐴𝑈,𝑆𝑇 (36) 
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Small intestinal compartment: 

𝑑𝐴𝑈,𝑆𝐼

𝑑𝑡
=  𝐾𝑠 𝑥 𝐴𝑈,𝑆𝑇 −  𝐾𝑡  𝑥 𝐴𝑈,𝑆𝐼 −  𝐾𝐷 𝑥 𝐴𝑈,𝑆𝐼 

(37) 

𝑑𝐴𝐷,𝑆𝐼

𝑑𝑡
=  𝐾𝑠 𝑥 𝐴𝐷,𝑆𝑇 + 𝐾𝐷 𝑥 𝐴𝑈,𝑆𝐼 − 𝐾𝑎 𝑥 𝐴𝐷,𝑆𝐼 𝑥 𝐶𝑆𝑂𝐿,𝑆𝐼 (38) 

𝑑𝐴𝐴𝐵𝑆,𝑆𝐼

𝑑𝑡
=  𝐾𝑎 𝑥 𝐶𝑆𝑂𝐿,𝑆𝐼𝑥 𝐴𝐷,𝑆𝐼 (39) 

Small intestinal compartments 2-7: 

𝑑𝐴𝑈,𝑆𝐼𝑖

𝑑𝑡
=  𝐾𝑡 𝑥 𝐴𝑈,𝑆𝐼𝑖−1 − 𝐾𝑡 𝑥 𝐴𝑈,𝑆𝐼𝑖 −  𝐾𝐷 𝑥 𝐴𝑈,𝑆𝐼𝑖 

(40) 

𝑑𝐴𝐷,𝑆𝐼𝑖

𝑑𝑡
=  𝐾𝑡 𝑥 𝐴𝐷,𝑆𝐼𝑖−1 −  𝐾𝑡 𝑥 𝐴𝐷,𝑆𝐼𝑖 +  𝐾𝐷 𝑥 𝐴𝑈,𝑆𝐼𝑖

−  𝐾𝑎 𝑥 𝐴𝐷,𝑆𝐼𝑖 𝑥 𝐶𝑆𝑂𝐿,𝑆𝐼𝑖 

(41) 

𝑑𝐴𝐴𝐵𝑆,𝑆𝐼𝑖

𝑑𝑡
=  𝐾𝑎 𝑥 𝐶𝑆𝑂𝐿,𝑆𝐼𝑖𝑥 𝐴𝐷,𝑆𝐼𝑖 (42) 

Colon Compartment: 

𝑑𝐴𝐶𝑂

𝑑𝑡
=  𝐾𝑡 𝑥 𝐴𝑈,𝑆𝐼7 −  𝐾𝑡 𝑥 𝐴𝐷,𝑆𝐼7 − 𝐾𝐶  𝑥 𝐴𝐶𝑂 

(43) 

 

5.2.5 Metabolism 

Doravirine is extensively metabolised by cytochrome P450 3A4 (CYP3A4) and 

bictegravir metabolised by CYP3A4 (fm = 0.5) and UDP glucuronosyltransferase 1 

family, polypeptide A1 (UGT1A1 – fm = 0.5) [88, 136].  
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5.2.5.1 Intestinal Metabolism 

Equation 44 was used to calculate the clearance of drugs by the gut (CLgut). In vitro 

data on intrinsic clearance (CLint), adult abundance of CYP3A4 enzyme (AbCYP3A4) and 

unit scaling factors were incorporated in the final calculation.  

𝐶𝐿𝑔𝑢𝑡 (𝐿/ℎ)  =
𝐶𝐿𝑖𝑛𝑡 𝑥 𝐴𝑏𝐶𝑌𝑃3𝐴4 𝑥 1000 𝑥 60

1000000
 (44) 

The scaling of in vitro intrinsic clearance to adult systemic clearance has been 

outlined in Chapter 2.  

5.2.6 Distribution 

The volume of distribution was calculated using previously published in silico 

models and has been described in Chapter 2. Adult tissue composition parameters 

comprising water, phospholipids, and neutral lipids, have been highlighted in Table 

5.3 and were used to calculate drug distribution. [70] 

Table 5.3 Composition of tissues in adults 

Organ/tissue Water Phospholipids Neutral Lipids 

Adipose 0.180 0.0020 0.790 

Bone 0.439 0.0011 0.074 

Brain 0.770 0.0565 0.051 

Gut 0.718 0.0163 0.049 

Heart 0.758 0.0166 0.012 

Kidney 0.783 0.0162 0.021 

Liver 0.751 0.0252 0.035 
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Lung 0.811 0.0090 0.003 

Muscle 0.760 0.0072 0.024 

Skin 0.718 0.0111 0.028 

Spleen 0.788 0.0198 0.020 

Plasma 0.945 0.0023 0.004 

Fractions based on average adult weight, 70 kg.  

 

5.2.7 Induction modelling  

5.2.7.1 CYP3A4 Induction Model  

Rifabutin moderately induces CYP3A4. Induction equations for CYP3A4 were 

derived from a previously published model [133].    

5.2.7.2 Model Equations 

Induction (Ind) via CYP3A4 was estimated using equation 45. Where Emax, EC50 and 

Ih represent the maximum induction, concentration of inducer producing 50% of 

Emax and the concentration of inducer in the liver, respectively.  

𝐼𝑛𝑑 = 1 +  
𝐸𝑚𝑎𝑥 𝑥 𝐼ℎ

𝐸𝐶50 + 𝐼ℎ
 (45) 

Rifabutin was assumed to have minimal effect on UGT1A1 induction based on 

literature data [137]; information regarding the induction potential of RFB on UGT 

enzymes is sparse. A study on the induction effects of RFB on long-acting 
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cabotegravir implemented a 1.3-fold increase in clearance accounting for RFB 

induced clearance in order to predict the resulting PK [138, 139].  

5.2.8 Model Simulations and Qualification 

5.2.8.1 Qualification of Plasma PK  

The plasma PK of doravirine, bictegravir and rifabutin were qualified in the PBPK 

model using observed clinical data prior to simulating drug-drug interactions to 

ensure input data could sufficiently characterise drugs. The input parameters have 

been summarised in Table 5.4.  

100 virtual patients were simulated for each modelling scenario. A 100 mg once 

daily (QD) dose of orally administered DOR was simulated in the model and mean 

AUC, Cmax and Ctrough values were recorded for comparison [136]. The concentration-

time profile was also compared against clinical data. For BIC, a 50 mg QD oral dose 

[94] was simulated and mean PK parameters were recorded for comparison. A 300 

mg QD dose of orally administered RFB was also simulated; two sets of clinical PK 

data were available for comparison of mean PK parameters and a concentration-

time profile.  

The AAFE and RMSE (where applicable) were calculated as a measure of model 

validation, with AAFE values < 2 and RMSE values < 1 passing qualification [10].  

5.2.8.2 Qualification of Moderate DDIs  

Clinical data on DDIs routinely evaluate the magnitude of an interaction by 

calculating the geometric mean ratios of drug PK with and without inducer/inhibitor, 

with a result of 1 equating to no effect on the drug PK. For the qualification of 

moderate interactions of DOR/RFB, a 100/300 mg QD dose was simulated in the 

model and for BIC/RFB, a 75/300 mg QD dose was simulated based on observed 
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data. To subsequently evaluate the predictive performance of the substrate PBPK 

models for the effect of a UGT1A1 and CYP3A4 inducer, mean ratios were 

calculated assessing the effect on AUC, Cmax and Cmin using equations 46-48,  for 

comparison against clinical data [88, 136].  

𝐴𝑈𝐶𝑅 =  𝐴𝑈𝐶𝑤𝑖𝑡ℎ 𝑖𝑛𝑑𝑢𝑐𝑒𝑟/𝐴𝑈𝐶𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑑𝑢𝑐𝑒𝑟 (46) 

𝐶𝑚𝑎𝑥,𝑅 =  𝐶𝑚𝑎𝑥,𝑤𝑖𝑡ℎ 𝑖𝑛𝑑𝑢𝑐𝑒𝑟/𝐶𝑚𝑎𝑥,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑑𝑢𝑐𝑒𝑟 (47) 

𝐶𝑚𝑖𝑛,𝑅 =  𝐶𝑚𝑖𝑛,𝑤𝑖𝑡ℎ 𝑖𝑛𝑑𝑢𝑐𝑒𝑟/𝐶𝑚𝑖𝑛,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑑𝑢𝑐𝑒𝑟 (48) 

 

A more stringent criteria than usual (<2 fold) was applied in the qualification of 

models, with models assumed qualified if ratios were ± 30 % of observed data and 

AAFEs were within 1.5-fold. As DDI model validation is tiered, single drug models 

must pass qualification first, followed by the validation of each DDI. To reduce model 

uncertainty a stricter criterion than usual was selected for the validation of the full 

DDI models. 
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Table 5.4 Physicochemical and biological properties of rifabutin, doravirine and 

bictegravir.  

Property 
Rifabutin 

 [140-142] 

Doravirine  

[135, 136] 

Bictegravir 

 [94-96, 143] 

Molecular weight, 

g/mol 
847.0 425.8 449.4 

Log Po:w 3.2 2.19 2.7 

fu 0.29 0.24 0.01 

pKa 6.9 9.47 9.8 

R 0.6 0.9 0.64 

Polar surface area, 

Å2 
209 98 99.2 

Hydrogen bond 

donors 
5 1 2 

Caco-2 

permeability, 10-6 

cm/sec 

95 nm/s - 14.8 

Clearance 48.3A 6.36A 621.9 B 

CLint CYP3A4 0.514 0.11 7.71 x10-4 

CLint UGT1A1 - - NA 

Solubility, mg/L 190 11.5 62.3 
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Emax,CYP3A4 3.4 - - 

EC50,CYP3A4 , µm 0.3 - - 

Abbreviations: A, L/h; B, mL/h; CLint, intrinsic clearance; CYP, cytochrome P450 

(µL/minute/pmol); log Po:w, partition coefficient between octanol and water; NA, 

not applicable; pKa, logarithmic value of the dissociation constant; R, blood-to-

plasma drug ratio; UGT, uridine diphosphate glucuronosyltransferase 

(µL/minute/106); Emax, maximum induction of CYP3A4 measured in fold change; 

EC50,  concentration of CYP3A4 inducer producing 50% of Emax. 

 

5.3 Results 

The PBPK models were initially validated using observed plasma PK on orally 

administered DOR, BIC and RFB alone before the prediction of DDIs.  

5.3.1 Doravirine  

Initial simulations of DOR in the PBPK model yielded AAFE values greater than 1.5-

fold consequently failing qualification criteria, for this reason the parameter Vss was 

fitted in the model using the clinical data. Upon applying a correction factor to Vss, 

DOR plasma PK was successfully predicted by the model with AAFE values falling 

within the 1.5-fold acceptance criteria with Cmax generating the highest AAFE value 

of 1.168 (Table 5.5).  The concentration-time profile was also in good agreement 

with literature data (Figure 5.1), with the profile yielding AAFE and RMSE values of 

1.131 and 0.188, respectively.  
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Table 5.5 Summary of observed and simulated PK parameters of a 100 mg QD dose 

of orally administered DOR. 

PK Variable Clinical Simulated AAFE 

AUC (mg*h/L) 17.5 16.3 1.071 

Cmax (mg/L) 1.226 1.05 1.168 

Ctrough (mg/L) 0.384 0.427 1.112 

Abbreviations: AUC, area under curve over 24 hours; Cmax, maximum plasma 

concentration; Ctrough, minimum plasma concentration; AAFE, absolute average 

fold error. 
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Figure 5.1 Simulated and observed concentration time profile of orally administered 

DOR 100 mg QD. Blue solid line represents observed clinical data (mg/L), pink solid 

line and shaded area represents simulated mean plasma concentration ± standard 

deviation (mg/L). 

5.3.2 Bictegravir  

Adjustments on the Vss were made in the model for better characterisation of PK 

parameters and clinical data was used to guide the level of correction applied to this 

parameter. Following adjustments, BIC PK were successfully predicted by the model 

with AAFE values of mean PK parameters well within the 1.5-fold acceptance criteria 

(Table 5.6). 
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Table 5.6 Summary of observed vs simulated PK parameters of a 50 mg QD dose of 

orally administered BIC. 

PK Variable Clinical Simulated AAFE 

AUC (mg*h/L) 102 103.7 1.016 

Cmax (mg/L) 6.15 6.10 1.008 

Ctrough (mg/L) 2.61 2.75 1.054 

CL (L/h)  0.622 0.695 1.117 

Abbreviations: AUC, area under curve over 24 hours; Cmax, maximum plasma 

concentration; Ctrough, minimum plasma concentration; CL, total systemic 

clearance; AAFE, absolute average fold error. 

 

5.3.3 Rifabutin 

A 300 mg QD dose of orally administered RFB was simulated in the PBPK model 

and the resulting PK has been outlined in Table 5.7 and 5.8.  

Comparison against clinical data yielded AAFE values within the 2-fold acceptance 

criteria. Both sets of clinical PK parameters passed qualification; the concentration-

time profile has been illustrated in Figure 5.2, simulated profiles generated an AAFE 

and RMSE value of 1.370 and 0.084, respectively. 
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Table 5.7 Summary of observed and simulated PK parameters of a 300 mg QD dose 

of orally administered RFB. 

PK Variable Clinical Simulated AAFE 

AUC (mg*h/L) 5.03 6.37 1.266 

Cmax (mg/L) 0.522 0.472 1.106 

Tmax (h) 4 3 1.333 

Abbreviations: AUC, area under curve over 24 hours; Cmax, maximum plasma 

concentration; Tmax, time to reach maximum plasma concentration; AAFE, 

absolute average fold error. 

 

Table 5.8 Summary of observed and simulated PK parameters of a 300 mg QD dose 

of orally administered RFB. 

PK Variable Clinical Simulated AAFE 

AUC (mg*h/L) 6.19 6.37 1.029 

Cmax (mg/L) 0.461 0.472 1.024 

CL (L/h) 48.3 39.6 1.219 
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Figure 5.2 Simulated versus observed concentration time profiles of RFB 300 mg 

QD. Blue solid line represents observed clinical data (mg/L), pink solid line and 

shaded area represents simulated mean plasma concentration ± standard 

deviation (mg/L). 

 

5.3.4 DOR/RFB Drug-Drug Interaction 

Following successful validation of both DOR and RFB alone, a combination dose of 

100-300 mg of DOR/RFB was simulated in the model. Simulated mean AUC, Cmax 

and Cmin values were recorded to calculate the mean ratio (Table 5.9).  

The percentage difference between simulated mean ratios and clinical ratios for 

AUC, Cmax and Cmin were +21.4, -16.4% and +22.2%, respectively. The resulting 

AAFEs for AUC, Cmax and Cmin were 1.179, 1.240 and 1.250, respectively. 
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Table 5.9 Summary of predicted DDI between DOR/RFB in moderate DDI PBPK 

model. 

PK variable 

DOR  

100 mg QD 

(simulated) 

DOR 100 mg/RFB 

300 mg QD 

(simulated) 

Mean 

Simulated 

Ratio 

Clinical 

Ratio 

AUC (mg*h/L) 9.08 5.67 0.62 0.50 

Cmax (mg/L) 0.58 0.49 0.84 0.99 

Cmin (mg/L) 0.25 0.10 0.40 0.32 
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5.3.5 BIC/RFB Drug-Drug Interaction 

Following successful validation of BIC, a combination dose of 75-300 mg of BIC-RFB 

was simulated in the model. Simulated mean AUC, Cmax and Cmin values were 

recorded to calculate the mean ratio (Table 5.10). The percentage difference 

between simulated mean ratios and clinical ratios for AUC, Cmax and Cmin were -7.8%, 

-7.2% and -2.2%, respectively. The resulting AAFEs for AUC, Cmax and Cmin were 

1.081, 1.075 and 1.023, respectively. Simulated data were in good agreement with 

literature values. 

Table 5.10 Summary of predicted DDI between BIC/RFB in moderate DDI PBPK 

model. 

PK variable 

BIC  

75 mg QD 

(simulated) 

BIC 75 mg/RFB 

300 mg QD 

(simulated) 

Mean 

Simulated 

Ratio 

Clinical 

Ratio 

AUC (mg*h/L) 83.75 56.31 0.67 0.62 

Cmax (mg/L) 5.14 4.40 0.86 0.80 

Cmin (mg/L) 2.35 1.05 0.45 0.44 
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5.4 Discussion 

An adult PBPK model was developed by defining the physiological and anatomical 

characteristics using mathematical equations. The PBPK model was qualified for 

virtual adults aged between 18-60 years. Data on the anatomy and physiology of the 

target population was readily available and derived from existing literature. The 

model was qualified prior to running simulations with all blood flows, organ/tissue 

weights and volumes within the acceptance criteria (< 2-fold).  

For the qualification of the CYP3A4 induction, each drug was initially validated in the 

model alone, prior to running drug-drug interaction simulations to evaluate model 

performance. In order for bictegravir and doravirine to pass model qualification 

criteria, modifications on the volume of distribution were made. Observed data 

were used to scale the correction factor to be applied on Vss in the PBPK model and 

the AAFE was used as a qualitative measure of model performance, a narrower 

criteria were used (within 1.5-fold) to minimise the error in prediction when 

validating the DDI model . Following modifications, the model successfully 

predicted the AUC, Cmax and Cmin of orally administered BIC, DOR and RFB alone, 

with AAFE’s falling within 1.5-fold criteria and ratios within 30% of observed values. 

The induction of CYP3A4 was evaluated in the model using a previously established 

model assessing the inducing and inhibitory effects of efavirenz on several CYP 

substrates [133]. The number of studies on moderate and weak DDIs in comparison 

to strong DDIs is few as clinical studies for DDIs tend to focus on worst case 

scenarios.  

Moderate drug-drug interactions are of clinical relevance as in some cases dose 

adjustments are necessary for treatment efficacy. BIC, as demonstrated in this 

chapter serves as an example,  BIC is usually administered as a 50 mg dose, 
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however, in combination with RFB the dose is increased to 75 mg to compensate 

for the induction effects . Throughout the literature, inhibition, and induction of CYP 

enzymes has been widely studied therefore input data concerning Emax and EC50 for 

the perpetrator drug RFB on CYP3A4 were readily available in the literature. 

However, knowledge on the effect of inducers and inhibitors on non-cyp enzymatic 

pathways is less well characterised. The difficulty in modelling UGT-mediated DDIs 

is reflected in the lack of models and clinical studies available, of the data that is 

available majority are focused on the inhibition of these enzymes [144, 145]. 

Callegari et al recently developed a PBPK model to evaluate the inhibitory effects of 

mefenamic acid (MFA) on UGT enzymes [144]. They evaluated the DDI following co-

administration of ertuglifozin (a UGT substrate) with MFA and qualified the model 

using clinical DDI data involving MFA and dapaglifozin. Dapaglifozin served as a 

probe substrate which has a similar metabolic profile to ertuglifozin in order to 

predict the DDI between MFA and ertuglifozin. The successfully qualified model 

predicted an AUCR of 1.51 when MFA is co-administered with ertuglifozin. [144] 

The only data that was available at the time of the study for UGT1A1 enzyme was the 

fold change in mRNA expression for UGT1A1 [137], data on EC50 values were not 

obtainable. In the instance that input data for the model is unavailable, it is common 

practice to estimate parameters using observed clinical data [144, 146]. To begin 

estimating the EC50 value for rifabutin for UGT1A1, a probe substrate that is entirely 

cleared by UGT1A1 would be necessary along with data on its co-administration 

with RFB to support the optimisation of this parameter. Raltegravir is metabolised 

solely by UGT1A1 and clinical data for both raltegravir alone and with rifabutin was 

available for model verification, however, the clinical PK that was available was itself 

conflicted, with greater exposures for AUC and Cmax recorded in the presence of the 

inducer [137]. For this reason, the EC50 could not be estimated using these methods.   
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More recently, a study evaluating the inducing effects of rifabutin on oral 

cabotegravir was published [138], based on this study Han et al [139] assumed a 

1.3-fold increase in clearance for long-acting (LA) cabotegravir (CAB) and 

implemented this value in a PPK model to predict the effect of rifabutin on LA CAB. 

Simulations were run for modified and unmodified regimens of LA CAB co-

administered with RFB, in 500 virtual patients. The unmodified regimen resulted in 

90-92% of simulated subjects achieving plasma concentrations above the target cut-

off (0.65 µg/mL) following subsequent injections, suggesting moderate induction 

via RFB [139]. To overcome this, switching to a monthly injection of CAB was 

suggested when co-administering with rifabutin. Going forward, it may be worth 

applying a 1.3-fold induction on the UGT-facilitated clearance of BIC to evaluate the 

magnitude of induction on UGT1A1.  

Although BIC is equally metabolised by CYP3A4 and UGT1A1, predictions of the 

interaction between RFB were still made and data on UGT1A1 induction was not 

included due to the abovementioned limitations and paucity of information. Taking 

into account the minor effect RFB had on RAL and CAB [137-139], it was assumed 

the magnitude of induction on UGT1A1 enzyme was less pronounced than on 

CYP3A; this rationale is supported by the model predictions, with clinical versus 

simulated ratios generating a less than 10% difference. There was a minor trend to 

underestimate the magnitude of interaction for BIC, which could be owed to the 

exclusion of UGT1A1 induction. 

The DDI PBPK model only considers liver induction, rifabutin is known to induce P-

glycoprotein (P-gp) transporters. P-gp are efflux transporters that play a role in the 

absorption, distribution, and elimination of certain compounds. Developing models 

that can characterise the magnitude of transporter DDIs are often met with 

complexities and several issues impede the ability to evaluate this through 
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modelling, few of which include, the lack of specific transporter substrates for in vitro 

characterisation, the need for validated in vitro assays to evaluate induction and the 

lack of clinical studies assessing the effect of P-gp related DDIs, all of which are 

essential to support PBPK model development. Although DOR is a P-gp substrate, 

its absorption has been attributed to its good permeability properties and P-gp is 

thought to play a relatively minor role [147], P-gp is also present in the intestine, 

however, induction has previously been reported to be of a weaker magnitude 

relative to CYP3A [147]. Based on this data and the given limitations, transporter and 

intestinal DDIs were not considered by the model. 

As discussed previously, the current PBPK model is adequate to estimate the DDI of 

moderate inducer rifabutin. Bearing in mind the above-mentioned limitations the 

model successfully predicted the induction of CYP3A4 for both DOR and BIC and 

simulations were well within the acceptance criteria. Based on these simulations, the 

increased 75 mg dose of BIC is enough to overcome the effects of induction by RFB. 

As for the DOR/RFB DDI, the exposure of 100 mg DOR is significantly reduced, 

simulations would suggest either increasing the dose or reducing the frequency 

between doses (e.g Q12h) could result in target PK.  

Clinical management of DDIs remains a challenge in the care and treatment of 

PLWH. The application of PBPK modelling to support drug development and 

discovery is now well recognised, more specifically, the application of models to 

predict DDIs has gained regulatory endorsement from the FDA, EMA and PMDA 

[131, 146]. Considering majority of the PBPK models developed in recent years have 

been focused on enhancing the management of CYP-related DDIs, there is 

considerable potential in the modelling of UGT-related and transporter-related 

DDIs.  Although more research on this topic needs to be done for the effective 

translation of in vitro data in PBPK modelling, with a heavy focus on the neglected 
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areas that have been previously stated.  A topic worth evaluating further is dose-

dependent induction of moderate inducers, dexamethasone is a known moderate 

inducer of CYP3A and experiences dose-dependent induction [148]. With dose-

dependent induction the magnitude of the interaction can be heightened and often 

underestimated [148].  
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6.1 Introduction 

Lymphoid tissues (LT) are one of the primary sites of HIV replication. Antiretroviral 

(ARV) therapy results in the effective inhibition of viral replication in peripheral 

blood, however, HIV reservoirs can persist in different tissues. HIV reservoirs are a 

group of immune cells that are infected with HIV (latent stage) but are not actively 

producing new virus [149].  Continuing viral replication has previously been linked 

with sub-therapeutic concentrations of ARV drugs in the LT and LT can represent a 

reservoir of inducible virus [48, 150]. Understanding the degree in which ARVs 

penetrate LT could be pivotal in optimising therapy and reducing the latent reservoir 

[149, 151].  

The lymphatic system plays an essential role in the homeostasis of tissue fluid, 

absorption of fats and nutrients and immunological response [152]. The lymphatics 

comprise a one-way transport system via a network of vessels and lymph nodes act 

as filtering ducts. Lymph is the fluid that circulates throughout the body and forms 

as interstitial fluid drains into the lymphatic capillaries [47]; it comprises white blood 

cells, majority of which are lymphocytes (B cells and T cells) that help protect the 

body from infections.  

The majority of PBPK models that have previously incorporated lymphatic 

physiology have mainly been developed to evaluate the pharmacokinetics (PK) of 

biotherapeutics such as monoclonal antibodies (mAbs) [153-156] as large proteins 

mostly enter the lymphatic system. The PK mechanisms of macromolecules differ to 

that of small molecules, hence, to model macromolecules, sub-

compartmentalisation of tissue compartments into intracellular, endosomal, 

interstitial, and vascular compartments is necessary to capture the non-uniform and 

permeability-limited distribution of these compounds [155, 156]. Shah and Betts 
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[155] developed such a PBPK model to characterise the plasma and tissue PK of 

nonspecific or antigen specific mAbs in mice and evaluated the scale-up potential 

of the model by characterising the plasma PK of mAbs in mouse, rat, monkey and 

humans. MAb entered endosomal space via pinocytosis and on and off rates were 

used to describe the interaction between FcRn and mAb. The PBPK model was 

similarly built by sub-dividing compartments and successfully characterised tissue 

and plasma PK of different mAbs with a common set of estimated parameters [155].  

Lymphatic PBPK models for small molecules have not yet been developed, however 

in disease areas like HIV, other infections and cancer, it may be beneficial to 

understand treatment efficacy within these tissues. The objective of this chapter was 

to incorporate lymphatic physiology in a whole-body PBPK model to describe the 

penetration of ARVs in LT. 
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6.2 Methodology 

Mechanistic adult PBPK models were developed in Simbiology v5.8, a product of 

Matlab 2018a (MathWorks, Natick, MA, USA; 2018) to predict the pharmacokinetic 

parameters and lymphatic penetration of raltegravir and efavirenz. Virtual cohorts 

comprising 100 male and female patients aged between 18-60 years were 

simulated in models for each drug. Alterations to the lymphatic system due to 

disease state were not considered by the model as simulated patients were 

considered ‘healthy’.  

6.2.1 Anatomy  

The anatomy of the adult PBPK model has previously been highlighted in Chapter 

5.  

6.2.2 Tissue and organ weights and volumes 

Organ and tissue weights were derived allometrically using height, weight, BMI, and 

age equations as described in Chapter 5; Table 5.1.  

Values of the physiological parameters used to describe lymphatics in the PBPK 

model have been detailed in Table 6.1. Interstitial volumes for organs and tissues 

were derived from literature and implemented in the model for each interstitial 

compartment. Vascular volumes were defined as a fraction of the total organ/tissue 

volume based on literature data [154].  

6.2.3 Blood and Lymph flow 

Blood flows to each organ was represented as a fraction of the total cardiac output, 

listed in Chapter 5; Table 5.2.  
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Lymph flow has been reported to be 500 times lower than the blood flow to the 

given organ [152] hence blood flows to each tissue or organ was divided by 500 to 

derive the lymph flow.  

6.2.4 Intestinal Absorption 

Absorption was represented in the PBPK model using the CAT model described in 

Chapter 2. Ordinary differential equations (ODE) were used to describe transit of 

drug through the gastrointestinal tract and have been described in detail in Chapter 

5.  

6.2.5 Metabolism 

6.2.5.1 Raltegravir and Efavirenz 

Raltegravir is majorly metabolised by the UGT1A1 enzyme. Intrinsic clearance data 

on the metabolism of RAL by UGT1A1 was used to scale clearance.  

Efavirenz is metabolised by CYP2B6, CYP2A6, CYP3A4, CYP1A2 and CYP3A5. 

Systemic clearance data was used to calculate clearance in the PBPK model.  

6.2.6 Distribution 

The volume of distribution was calculated using previously published in silico 

models and has been described in Chapters 2 & 5.                                                                                                                                                                                  

6.2.7 Model structure  

Figure 6.1 details a schematic diagram of the lymphatic PBPK model structure. For 

the lymphatic model, each compartment was further divided into vascular, interstitial 

and tissue sub-compartments as shown in Figure 6.2. The model is set up such that 

the arterial blood compartment receives blood from the lung compartment and 

distributes blood to all vascular compartments. Each vascular compartment is 
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connected to its respective tissue and interstitial fluid compartment. Lymph from all 

the organs is delivered to a central lymph node compartment via the efferent lymph 

supply from the interstitial compartments. Lymph flow is then delivered to the 

venous compartment from the lymph node, completing the circuit. Physiological 

parameters such as lymphatic flow, interstitial fluid and vascular volumes etc. were 

used to characterise the physiology of the lymphatic system. 

 

Figure 6.1 Schematic diagram of lymphatic PBPK model. 
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Figure 6.2 Structure of how organ/tissue compartments are further divided to 

describe movement of drug through lymphatics. 

6.2.7.1 Model parameters 

Based on previous lymphatic PBPK models [153, 155], a vascular and lymphatic 

reflection coefficient were incorporated in the model to describe the level of 

resistance provided to compounds by the vascular endothelial cells and lymphatic 

openings, respectively. For vascular reflection coefficients, the physiologic upper 

limits of pore size of different blood capillaries was previously reviewed, based on 

this, the vascular coefficients for heart, muscle, lung, skin, adipose and gut was set 

to 0.95; for kidney, spleen and pancreas, the value was set to 0.9; the value for bone, 

liver and spleen was set to 0.85 and for the brain the value was set to 0.99 a priori 

[155]. 

The lymphatic reflection coefficient was derived from a previously published study 

[157] on the effect of molecular weight on the lymphatic absorption of compounds. 

This was determined by measuring the cumulative recovery of four compounds in 

lymph following administration [157]. The data suggested a linear relationship 

between the weight of a drug and the proportion of dose absorbed by the 

lymphatics. Equation 49 represents the lymphatic recovery based on molecular 

weight, which was extrapolated from the literature using the Plotdigitizer tool 

(plotdigitizer.sourceforge.net) (Figure 6.3).  
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Lymph recovery =  0.00003 x Molecular weight +  0.0404 (49) 
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Figure 6.3 Linear correlation between molecular weight and lymph recovery. The 

curve drawn is the best fit calculated via linear regression and is defined as: Lymph 

recovery = 0.00003 x Molecular weight + 0.0404, with a correlation coefficient r of 

0.99. 

6.2.7.2 Model equations 

Drug enters the vascular compartment via the arterial blood supply (Qarterial) 

(Equation 50). The movement of drug from the vascular compartment to the 

interstitial compartment considers lymph flow to the organ (LForgan), the 

concentration of drug in the vascular compartment (Cvascular), volume of the arterial 

compartment (Vartery), the fraction of drug unbound and the blood to plasma ratio 

(B:P) and has been detailed in Equation 51.  
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𝐴𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 =  𝑄𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑥 𝐶𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙  (50) 

𝐴𝐼𝑆𝐹  =  𝐿𝐹𝑜𝑟𝑔𝑎𝑛𝑥 (𝐶𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟/ 𝑉𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟)𝑥 𝑓𝑢 𝑥 𝐵: 𝑃 (51) 

𝐿𝐹𝑜𝑟𝑔𝑎𝑛 𝑥 (𝐶𝑜𝑟𝑔𝑎𝑛/𝑉𝑜𝑟𝑔𝑎𝑛) 𝑥 𝑓𝑢𝑡 (52) 

 𝐿𝐹𝑜𝑟𝑔𝑎𝑛 𝑥 (𝐶𝐼𝑆𝐹/𝑉𝐼𝑆𝐹) (53) 

Equation 52 reflects movement of drug from the tissue compartment (Corgan) to the 

interstitial compartment via the lymph flow and considers the fraction of unbound 

drug in tissue (fut). Equation 53 describes the movement of drug from the interstitial 

compartment to the central lymph node compartment, where CISF is the 

concentration of drug in the interstitial fluid and VISF is the volume of ISF. Movement 

of drug from the tissue compartments back to the venous blood flow were modified 

from the whole-body adult PBPK model by subtracting the lymph flow from the 

venous blood flow (Qorgan) (Equation 54), where T:P is the tissue to plasma ratio and 

Cveinal is the concentration of drug in the veinal compartment.  

(((𝑄𝑜𝑟𝑔𝑎𝑛 −  𝐿𝐹𝑜𝑟𝑔𝑎𝑛) 𝑥 𝐶𝑜𝑟𝑔𝑎𝑛 𝑥 (𝑓𝑢/𝑇: 𝑃)) − 

((𝑄𝑜𝑟𝑔𝑎𝑛 −  𝐿𝐹𝑜𝑟𝑔𝑎𝑛) 𝑥 𝐶𝑣𝑒𝑖𝑛𝑎𝑙) 

(54) 

𝐴𝐿𝑁 ÷ 3 (55) 

𝑑𝐴𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝑑𝑡
= (∑ 𝐿𝐹𝑜𝑟𝑔𝑎𝑛𝑥 𝐶𝐼𝑆𝐹) − (𝐴𝐿𝑁 ÷ 3) (56) 

The amount of drug leaving the lymph node was defined in the model as the amount 

of drug in the lymph nodes (ALN) divided by the time taken for drug to transit from 
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lymph to systemic circulation; 3 hours [156]. Differential Equation 56 calculates the 

amount of drug in the lymph node (ALymphNode) considering the total sum of Equation 

52 for all organs and subtracting it by the amount of drug leaving the lymph node 

compartment (Equation 55). 

Table 6.1 Physiological parameters for lymphatic PBPK model. [153-155] 

Organ/Tissue Interstitial volume (L)  
Vascular volume (defined as a 

fraction of total organ volume) 

Heart 0.0488 0.042 

Lungs 0.300 0.185 

Muscle 3.910 0.027 

Skin 1.125 0.050 

Adipose 2.289 0.031 

Bone 1.891 0.050 

Brain 0.261 0.050 

Liver 0.429 - 

Spleen 0.0443 0.050 

Pancreas 0.018 0.050 

Remaining 0.277 0.050 

Kidney  0.0498 0.070 

Gut 0.1624 0.050 
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Stomach 0.277 0.050 

Gonads 0.277 0.050 

Parameters based on average adult weighing 70 kg.  

 

6.2.8 Model Simulations and Qualification 

Experimental in vitro data was utilised as input data in the model to simulate the 

pharmacokinetic profiles of raltegravir and efavirenz (Table 6.2). The PBPK model 

was qualified against available literature data [158] describing the tissue: plasma 

penetration ratio (LT: P) of both these drugs in humans. In these studies, human 

lymph node tissue and plasma were collected from deceased patients from tissue 

banks and concentrations of the drugs were measured by LC-MS/MS. LT: P in the 

PBPK model was assessed by running simulations for 30 days to evaluate lymph 

accumulation and then dividing lymph node and plasma areas under the 

concentration time curves (Equation 57).  

𝐿𝑇: 𝑃 =  𝐴𝑈𝐶𝐿𝑦𝑚𝑝ℎ/𝐴𝑈𝐶𝑃𝑙𝑎𝑠𝑚𝑎 (57) 

 

The percentage difference between observed and simulated ratios were calculated 

as a measure of model performance, with predictions ±30% of observed data 

passing model qualification. The AAFE was also calculated with a more stringent 

qualification criteria of 1.5-fold. As the predictions were based on a comparison of 

ratios, the qualification criteria were tightened to reduce the error and further 

improve predictions. 
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The plasma PK parameters for each drug were also compared to literature data [159, 

160] to ensure model modifications did not negatively impact predictions of plasma 

concentration. Clinical data on a 400 mg twice daily dose (BID) of RAL was used for 

qualification and for EFV a 600 mg once daily dose was simulated in the model. 100 

virtual patients aged between 18-60 years were simulated and the mean AUC, Cmax 

and Ctrough were recorded for comparison against observed data.  

The PBPK model was qualified by calculating the absolute average fold error (AAFE). 

AAFE is a useful parameter to assess over or under-prediction of the model, values 

closer to 1 indicate a closer similarity with observed values [10]. 
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Table 6.2 Physicochemical properties of raltegravir and efavirenz. 

  

Property Raltegravir [73] Efavirenz [72] 

Molecular weight, g/mol 445.2 316 

Log Po:w 0.58 4.60 

fu 0.17 0.02 

pKa 6.67 12.52 

R 0.60 0.74 

Polar surface area, Å2 150 38.33 

Hydrogen bond donors 3 1 

Caco-2 permeability, 10-6 

cm/sec 
6.6 2.5 

Clearance (L/kg) NA 9.4 [161] 

CLint CYP3A4 NA 0.007 

CLint UGT1A1 12.4 NA 

Solubility, mg/L 70000 [74] 93 

Abbreviations: A, L/h; CLint, intrinsic clearance; CYP, cytochrome P450 

(µL/minute/pmol); log Po:w, partition coefficient between octanol and water; 

NA, not applicable; pKa, logarithmic value of the dissociation constant; R, 

blood-to-plasma drug ratio; UGT, uridine diphosphate 

glucuronosyltransferase (µL/minute/106). 
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6.3 Results 

6.3.1 Plasma PK qualification 

6.3.1.1 Efavirenz 

A 600 mg once daily dose of efavirenz was simulated in the model for comparison 

against literature data. The PK parameters (highlighted in Table 6.3), AUC, Cmax and 

Ctrough were within the acceptance criteria for model qualification, with a maximum 

AAFE value of 1.311.  

Table 6.3 PBPK qualification of a 600 mg QD dose of efavirenz; summary of 

predicted versus observed pharmacokinetic parameters.   

PK characteristic Clinical Predicted AAFE 

AUC (mg*h/L) 58.14 65.02 (32) 1.118 

Cmax (mg/L) 4.076 3.25 (20) 1.254 

Ctrough (mg/L) 1.77 2.32 (50) 1.311 

AUC, area under curve over 24 hours; Cmax, maximum plasma concentration and 

Ctrough, minimum plasma concentration. 

 

6.3.1.2 Raltegravir   

A 400 mg BID of raltegravir was simulated in the PBPK model for comparison against 

clinical data. The resulting PK parameters have been outlined in Table 6.4. AUC12, 

Cmax and Ctrough were within model qualification acceptance criteria, with simulations 

generating a maximum AAFE value of 1.583. 
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Table 6.4 PBPK qualification of a 400 mg BID dose of raltegravir; summary of 

predicted versus observed pharmacokinetic parameters.   

PK characteristic Clinical* Predicted* AAFE 

AUC12 (mg*h/L) 7.076 (27) 11.2 (17) 1.583 

Cmax (mg/L) 2.519 (25) 2.275 (23) 1.107 

Ctrough (mg/L) 0.071 (35) 0.072 (27) 1.014 

*Data shown as geometric mean (%CV). AUC12, area under curve over 12 hours; 

Cmax, maximum plasma concentration and Ctrough, minimum plasma 

concentration. 

 

6.3.2 Lymph PK qualification 

6.3.2.1 Efavirenz and Raltegravir 

Simulations for a 600 mg QD dose of efavirenz and a 400 mg BID dose of raltegravir 

were run for a duration of 30 days to evaluate accumulation in lymph. The PK curve 

for both raltegravir and efavirenz flattened by day 10, to ensure both drugs had 

reached steady state concentrations simulations were run for a 30-day period.  The 

average daily plasma and lymph concentrations were calculated by dividing the 

total AUC over 30 days.  

Figure 6.4 Average daily concentrations (mg*h/L) of efavirenz and raltegravir in 

plasma and lymph. Lighter bars represent plasma concentrations and darker bars 

represent lymph concentrations, with actual values highlighted within the table.  
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The lymph to plasma tissue penetration ratios were calculated by dividing lymph 

concentrations by plasma concentrations. The resulting ratios have been detailed 

(Figure 6.5), with percentage differences of -4.8% and -14.6% of observed data for 

raltegravir and efavirenz, respectively. The AAFEs were 1.049 and 1.157 for RAL and 

EFV, respectively. The model successfully passed all qualification criteria. 

Figure 6.5 Observed and simulated Lymph: Plasma tissue penetration ratios of RAL 

and EFV. Lighter bars represent observed data and darker bars represent simulated 

data with values highlighted within table.  
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6.4 Discussion 

Although substantial progress has been made in the treatment of HIV, with 

combination ARV therapy proving highly effective, curing the virus still remains a 

major challenge. Residual levels of viremia can be detected in most patients on 

continuous therapy and if treatment is interrupted, rapid viral rebound occurs [162]. 

The reservoir comprises resting CD4+ memory T cells that harbour latent HIV-1 and 

routinely evade immune surveillance due to their quiescent nature, because of this 

the reservoir has a relatively long lifespan, hindering prospects of a cure. 

Progression in the quantification of the latent reservoir has been pivotal in 

establishing the stability of the reservoir.  Lymphoid tissues represent a primary site 

of HIV replication [163]. Continuing viral replication has been linked with sub-

therapeutic concentrations of ARV drugs in the lymphoid tissues [48]. Knowledge 

on treatment efficacy in these areas can help optimise therapy and support future 

HIV eradication strategies.  

A whole-body adult PBPK model was modified to simulate drug penetration and 

distribution in the lymphoid tissues. Several parameters were used to describe the 

physiology of the lymphatic system, all of which were derived from existing 

literature. Interstitial fluid volumes were readily available for most organs besides 

the stomach, gonads, and remaining tissue, in this instance, the remaining 

unaccounted interstitial fluid was divided equally among organs. Vascular volumes 

for all organs and tissues were readily available in the literature and were 

represented in the model as a fraction of total organ volume [154]. The physiology 

of the lymphatic system is considerably complex, around 500-600 lymph nodes  

[152] are present throughout the body and to replicate this in silico is a challenge. 

To lessen the computational burden and reduce model complexity the lymph nodes 
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were represented as a single compartment in the model, where the effluent lymph 

supply from all interstitial compartments was collected and then transferred to the 

systemic circulation. This technique has been used in previous PBPK models that 

have incorporated lymphatics [153-156]. Coefficients to describe the level of 

resistance provided by the lymphatic and vascular endothelium were incorporated 

in the model based on previous model structures. During model development, 

these parameters were explored, and it was found that both coefficients had very 

little to no influence on the outputs. This could possibly be explained by the 

differences observed in the mechanisms of transport of small molecules versus large 

molecules in the body. As these parameters had very little influence on model 

outputs, they were removed from the equations.  

Observed data on oral raltegravir and efavirenz were used for the qualification of 

the model. To ensure the addition of lymphatic compartments did not alter the 

predictions for plasma PK, plasma concentrations of each drug were also validated. 

Mean AUC, Cmax and Ctrough were within the 2-fold acceptance criteria with efavirenz 

and raltegravir yielding a maximum AAFE value of 1.311 and 1.583, respectively.  To 

assess the model’s capability in predicting the lymph penetration of both drugs, 

observed data concerning the lymph to plasma ratio were used. Observed data on 

penetration of ARVs in lymph are generally sparse and of those few studies that have 

been conducted, an overall consensus on a method to quantify drug exposure in 

such tissues is lacking with results often being opposed [164, 165]. Some studies 

have investigated concentrations in lymph node mononuclear cells [48] whereas 

others have used tissue homogenate [165]. As such, minimal data was available for 

the qualification of the model with only one human plasma sample available for RAL. 

The data that was used involved studying samples from human lymph node tissue 

of deceased PLWH who had been adherent to ARVs to allow for better 
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characterisation via LC-MS/MS [158]. The tissue samples were homogenised prior 

to analysis. The study measured concentrations of several ARVs in plasma and lymph 

node tissue to calculate ratios; both EFV and RAL were chosen for model 

development due to the availability of input and clinical data.  

Simulations in the models were run on healthy individuals and did not account for 

disease state or altered disposition. Interestingly, the same aforementioned study 

explored the effect of viral infection on antiretroviral penetration in the lymph nodes 

of human, mice, rats, and non-human primates and concluded no differences were 

found in any of the species and so the effects of diseases state were thought to be 

minimal. A limitation of the model was the absence of transporter ontogenies and 

their influence on distribution of compounds in lymph, however, Burgunder et al 

[158] also found few predictive relationships between drug transporter expression 

and ARV LT: P. It has been suggested distribution of small compounds in lymph 

nodes occurs through passive diffusion-based processes [158]. Considering such 

data is sparse and often limited; transporter expression was not included in the 

model due to the minimal effect it was suggested to have on penetration ratios 

[158].  

Although the model had its limitations it successfully passed validation criteria. 

Model predictions were in good agreement with literature values (within 30%); the 

simulated ratios for efavirenz and raltegravir were 1.9 and 1.41, respectively. 

Efavirenz was found to have a greater penetration ratio than raltegravir in the 

literature as well as the model. A previous study evaluating the bioavailability of 

antiretrovirals in lymphoid tissues in mice observed key physicochemical 

parameters such as pKa, lipophilicity (logP), protein binding and ionisation 

influenced the magnitude of penetration [166]. This finding is in keeping with the 

model data presented herein and the literature data used to qualify the model [158]. 
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According to the study, efavirenz experienced the highest penetration and exhibits 

greater pKa, logP and hydrophobicity in comparison to other drugs studied (pKa, 

EFV: 12.52 > RAL: 6.67; LogP, EFV: 4.6 > RAL: 0.58; hydrophobicity (based on water 

solubility) EFV: 93 mg/L < RAL: 70000 mg/L.) To increase model reliability & 

performance, it would be worth qualifying the model with additional ARVs from 

different classes and for further analysis on the aforementioned parameters that 

have been found to influence distribution. 

Integration of a PBPK model, like the one described in this chapter, with a dynamic 

model can provide important information on treatment efficacy. Dynamic models 

describing viral kinetics can be combined into this modelling framework providing 

a mechanistic description of drug and drug effects on a cellular or tissue level. 

Models of HIV dynamics have been used extensively over the years to quantify the 

level of HIV infection and efficacy of therapies [167-169]. Jilek et al  [169] quantified 

the intrinsic antiviral activity of ARV drug combinations, where the level of inhibition 

at clinically relevant concentrations was used to assess the inhibitory potential of 

various 2 and 3-drug regimens. Similar models are constantly being improved and 

developed further. PBPK models can generate data on tissue-specific 

concentrations which can be used as input data for dynamic models, therefore an 

integrated PBPK-PD framework can represent a valuable, informative tool for the 

enhancement of HIV therapy and rationalise strategy for the HIV cure.  

The development and incorporation of the lymphatic system in a PBPK model can 

be particularly useful in several disease states. Cancer is a leading cause for deaths 

worldwide, responsible for almost 10 million deaths in 2020 [170]. It has been found 

that the lymphatics are a primary site of solid tumour metastases [171] and therapies 

targeting this area continue to be developed [172]. Evaluating the efficacy of 
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existing and new cancer therapies in lymphoid tissues can prove pivotal in treatment 

success and to minimise the formation of metastases. 

In this chapter, a PBPK model to characterise the ARV content in lymphoid tissues 

was successfully developed. The lymphatics play a crucial role in the pathology of 

HIV. Lymphoid organs such as the lymph nodes, spleen, and gut-associated 

lymphoid tissue (GALT) are major sites in viral replication. Determining drug 

exposures in these tissues can help optimise treatment and maximise efficacy. 

  



155 
 

 

CHAPTER 7 

General Discussion 
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7.1 Special population PBPK modelling: Neonates 

The number of new infections has significantly decreased over the years following 

HAART, however, focus now needs to shift to the many overlooked areas of HIV. 

Treatment in vulnerable populations including patients with co-morbidities, children 

and infants, pregnant women, and the elderly requires optimisation. A number of 

ARV guidelines recommend initiating therapy in all adults living with HIV at any CD4 

cell count [40, 41]. 

The benefits of initiating ARV therapy shortly after birth may include prevention of 

infection in at-risk infants and early viral suppression in those infants who are 

infected, compared to deferring therapy until the abovementioned clinical criteria 

are met [97]. The term ‘early’ has varying definitions, with ART routinely initiated in 

infants between 2-6 months of life. Although breastfeeding increases the risk of 

infection in newborns it has enormous benefits for health and is recommended by 

WHO [98]. Initiating ART in the first hours of life is met with numerous challenges 

from limited scientific knowledge to ethical and logistical difficulties. As there are 

only a few ARVs with adequate neonatal PK and safety data with formulations 

suitable for use in neonates, the need for more potent alternatives is essential for 

effective early treatment and prophylaxis [100].  

PBPK modelling, as described throughout this thesis, represents a bottom-up 

approach that requires in vitro, in vivo, and physicochemical information as input 

data to generate simulations of various clinical scenarios. Where a biological system 

e.g., human, non-human primates, rats, mice etc. is described using mathematical 

equations. Drug-related processes such as absorption, distribution, metabolism, 

and elimination are also represented using mathematical descriptions and 

predictive models. Clinical trials are typically conducted in healthy patients aged 
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between 18-35 years old, with a poor representation of special populations. Since 

gaining regulatory acceptance there have been several instances in which PBPK 

modelling has been successfully used, with most impact on informing drug-labels, 

few of which have been highlighted (Table7.1). 

Company Drug/ Drug Name Drug Label – Clinical Pharmacology Review 

Janssen 
Rilpivirine 

HCl/Edurant 

https://www.accessdata.fda.gov/drugsatfda_

docs/nda/2011/202022Orig1s000ClinPharm

R.pdf  

Astrazeneca Olaparib/Lynparza 

https://www.accessdata.fda.gov/drugsatfda_

docs/nda/2014/206162Orig1s000ClinPharm

R.pdf  

Novartis Ceritinib/Zykadia 

https://www.accessdata.fda.gov/drugsatfda_

docs/nda/2014/205755Orig1s000ClinPharm

R.pdf 

https://www.ema.europa.eu/en/documents/p

roduct-information/zykadia-epar-product-

information_en.pdf 

Janssen Simeprevir/Olysio 

https://www.accessdata.fda.gov/drugsatfda_

docs/nda/2013/205123Orig1s000ClinPharm

R.pdf 

 

These are just some of the cases in which PBPK modelling has been used to either 

inform drug labels on unstudied scenarios or in place of clinical trials. Initially PBPK 

modelling was routinely carried out for DDI evaluation, but as regulatory acceptance 

is increasing the applications for PBPK have also increased in other areas and fields 

such as special-population modelling, drug formulation modelling, modelling as an 

alternative to animal testing in cosmetics industries etc.  

Chapters 2-4 demonstrate how the above-mentioned principles of PBPK modelling 

can be applied to help inform knowledge gaps in the absence of empirical data. A 

whole-body neonatal PBPK model was built using anthropometric equations 

derived from the literature. Following extensive validation of anatomical and 
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physiological characteristics, the PK of integrase inhibitors, DTG and BIC were 

predicted in Chapter 3. All models were successful in passing the 2-fold qualification 

criteria. The potential of neonatal prophylaxis and treatment using long-acting 

integrase inhibitor CAB was explored in Chapter 4.  Long-acting (LA) or extended-

release nanoproducts of antiretrovirals hold the potential of simplifying treatment 

regimens while improving adherence in populations where poor adherence 

impedes successful treatment. LA formulations have many advantages, including, 

reducing the frequency of dosing and in regard to neonates, hold the potential of a 

single administration for the duration of the neonatal period.   

While the models were effective in predicting drug PK, a number of limitations arose 

during development. A reoccurring problem when modelling special populations 

is the paucity of data available concerning physiological changes. Previously 

developed neonatal PBPK models faced with this limitation have taken similar 

approaches [52, 65], though not ideal, where data in neonates is lacking adult values 

are implemented and on occasion allometrically scaled. There is a high reliance on 

input data and the quality of this data often reflects the quality of generated 

simulations. The sparsity of data on developmental changes in transporter 

expression represents another challenge in special-population modelling. 

Transporters facilitate the movement of drugs and are crucial in ADME research. 

Replicating this parameter in silico without sufficient, quantifiable data is inherently 

difficult therefore data on transporters was not included in the models. Previously 

developed neonatal PBPK models faced with this limitation have taken similar 

approaches [52, 65], though not ideal, where data in neonates is lacking adult values 

are implemented and on occasion allometrically scaled. To further improve model 

predictions, a mechanistic understanding on the ontogenies and activities of 

transporters in neonates would be advantageous. Another consideration when 
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modelling in neonates is maternal transfer of drug through breast milk or placenta. 

Pregnant women with HIV infection are expected to start or already be receiving 

treatment which involves a combination of ARVs. As breastfeeding is encouraged, a 

cause for concern in breastfed neonates is maternal transfer of these drugs. 

Although maternal transfer has not been considered in our models, this data can be 

generated using a mechanistic PBPK model detailing the physiology of the 

maternal-fetal complex and equations to characterise movement of drug across 

placental barriers. Previous models have been successful in characterising 

breastmilk and placental transfer, with input data such as milk: plasma ratios key in 

generating predictions [173].  

 A lack of in vivo data to aid in the qualification of ADME processes also poses a 

problem, the number of clinical studies carried out in neonates are relatively few. Of 

the data that is available, studies are usually conducted on a small number of 

patients with sparse sampling. When conducting predictive modelling studies, 

validation is an integral part of the process which establishes confidence in model 

predictions. Qualification criteria of PBPK models is wide-ranging, PK parameters 

such as Cmax, AUC, Tmax etc., clearance or concentration-time plots can be used 

to evaluate a model’s performance. Validating predictions against concentration-

time profiles can be considered the ‘gold-standard’, however, when working with 

such populations where data sampling is sparse, using concentration-time profiles 

may not always be an option.   

The data generated in Chapters 3 and 4 can be used to support the rationale of 

future ARV studies in neonates and clinical trials can be conducted in a confirmatory 

manner rather than exploratory. Publishing these data led to some valuable peer 

review which were crucial in the applicability of the DTG model. It was made clear 

that there were formulation restrictions that surrounded DTG (5 mg dispersible 
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tablets) and upon discovering this, each regimen was accordingly tailored to these 

restrictions. The necessity for a bridge between clinicians, industry professionals and 

academic researchers is ever important in producing meaningful data. The 

employment of this modelling technique earlier on in drug discovery and 

development stages can prove advantageous in avoiding restrictions like the ones 

highlighted here and facilitate in the design of potential clinical trials.  

7.2 DDIs in PLWH 

Given the previously outlined advances in HIV therapy, a byproduct of which is 

increased life expectancy, comorbidities continue to complicate treatment. For 

patients who are adherent to treatment, HIV has become manageable, however, 

many PLWH require additional medication for concomitant diseases such as 

hypertension, diabetes, cardiovascular diseases etc. The majority of DDIs remain 

unstudied during drug development due to the sheer volume of possible 

interactions and ethical constraints associated with high-risk DDIs. The magnitude 

of induction and/or inhibition on victim drugs can be simulated via PBPK modelling, 

using in vitro metabolism data and in vivo studies for model qualification as has been 

demonstrated in Chapter 5 of this thesis [132]. An adult PBPK model was developed 

by defining the physiological and anatomical characteristics using mathematical 

equations. The PBPK model was qualified for virtual adults aged between 18-60 

years. Data on the anatomy and physiology of the target population was readily 

available and derived from existing literature. The model was qualified prior to 

running simulations with all blood flows, organ/tissue weights and volumes within 

the acceptance criteria (< 2-fold). The induction model was successfully built and 

predictions of DDIs between moderate inducer rifabutin, with doravirine and 

bictegravir were within the acceptance criteria. 
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One of the major limitations of our approach was the lack of in vitro data available 

on non-cyp enzymes, in vitro assays concerning CYPs have been developed and well 

characterised over the years, however, UGTs and other non-cyp enzymatic pathways 

remain widely overlooked. For this reason, it was not possible to evaluate the 

induction effect of rifabutin on the UGT-mediated clearance of bictegravir. Given 

the importance of UGT enzymes, there is great potential for PBPK modelling of UGT-

related DDIs and optimisation of in vitro experiments for this non-cyp enzymatic 

pathway should be prioritised to enhance and improve PBPK DDI studies.  

Modelling the effect of transporters also remains a challenge with limited 

knowledge on their effect on key ADME processes.  Developing models that can 

characterise the magnitude of transporter DDIs are often met with complexities and 

several issues impede the ability to evaluate this through modelling, including, the 

lack of specific transporter substrates for in vitro characterisation, the need for 

validated in vitro assays to evaluate induction and the lack of clinical studies 

assessing the effect of P-gp related DDIs, all of which are essential to support PBPK 

model development. Quantification of these parameters in vitro can lead to a better 

representation of the mechanisms underpinning DDIs and further improve model 

reliability.  

Clinical management of DDIs remains a challenge in the care and treatment of 

PLWH. The application of PBPK modelling to support drug development and 

discovery is well recognised, more specifically, the application of models to predict 

DDIs has gained regulatory endorsement from the FDA, EMA and PMDA [131, 146]. 

Considering majority of the PBPK models developed in recent years have been 

focused on enhancing the management of CYP-related DDIs, there is considerable 

potential in the modelling of UGT-related and transporter-related DDIs. Although 

more research on this topic needs to be done for the effective translation of in vitro 
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data in PBPK modelling, with a heavy focus on the neglected areas that have been 

previously stated.   

7.3 Lymphatic penetration of ART 

Early initiation of ART to reduce residual viremia, optimising treatments in special 

populations and optimising treatment to avoid the likelihood of adverse drug-drug 

interactions all hold great potential to advance the current status of HIV treatment, 

however, finding a cure remains paramount. Although substantial progress has 

been made in the treatment of HIV, with combination ARV therapy proving highly 

effective, curing the virus remains a major challenge. ART inhibits viral replication 

effectively but does not eradicate the virus. Residual levels of viremia can be 

detected in most adherent patients on therapy and if treatment is interrupted, rapid 

viral rebound occurs [162]. Rebound viremia stem from reservoirs which comprise 

resting CD4+ memory T cells that harbour latent HIV-1 and routinely evade immune 

surveillance due to their quiescent nature, because of this the reservoir has a 

relatively long lifespan, hindering any prospects of a cure. Previous modelling 

studies have suggested over 70 years of ART would be necessary to eliminate the 

reservoir using only ART. Progression in the quantification of the latent reservoir has 

been pivotal in establishing the stability of the reservoir.  Lymphoid tissues represent 

a primary site of HIV replication [163]. Continuing viral replication has been linked 

with sub-therapeutic concentrations of ARV drugs in the lymphoid tissues [48]. 

Knowledge on treatment efficacy in these areas can help design therapy and 

support future HIV eradication interventions.  

Typical models investigating distribution and kinetics of small molecules do not 

describe or include lymphatic physiology. Most PBPK models that have lymphatic 

physiology incorporated within them are often used to represent large molecules 
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such as monoclonal antibodies (mAb). There are significant differences in the ADME 

processes of large and small molecules, with the lymphatic system heavily 

influencing large molecule distribution. The incorporation of the lymphatic system 

in our model was structured around these existing models, with exception to 

mechanisms that were specific to large molecules.  In Chapter 6, a whole-body adult 

PBPK model was modified to simulate drug penetration and distribution in the 

lymphoid tissues. Several parameters were used to describe the physiology of the 

lymphatic system, all of which were derived from existing literature. Dividing the 

standard compartments of an adult PBPK model into interstitial, vascular and tissue 

required additional input data which was readily available in the literature [154]. The 

physiology of the lymphatic system is considerably complex, around 500-600 lymph 

nodes  [152] are present throughout the body and to replicate this in silico was a 

challenge, to lessen the computational burden and reduce model complexity the 

lymph nodes were represented as a single compartment in our models, where the 

effluent lymph supply from all interstitial compartments was collected and then 

transferred to the systemic circulation, this technique has been used in previous 

PBPK models that have incorporated lymphatics [153-156]. The simplification of 

complex systems like lymphatics represents an area in modelling that can be further 

improved for a better characterisation of key processes however the availability of 

such data is limited as well as the capability of modelling software’s. 

Validation of the model also represented a challenge with few data on lymphatic 

distribution of antiretrovirals. Considering the lymphatics represents an appealing 

target for therapy the lack of translatable data concerning treatment efficacies within 

these tissues is lacking. RAL and EFV were used for the validation as they represent 

two different classes of antiretrovirals, and sufficient data was available for these 



164 
 

drugs. For further refinement of model parameters, validating against multiple ARVs 

of different classes could improve the overall performance of the model. 

Integration of this lymphatic PBPK model, with a dynamic model can provide 

important information on treatment efficacy. Dynamic models describing viral 

kinetics can be combined into this modelling framework providing a mechanistic 

description of drug and drug effects on a cellular or tissue level. Models of HIV 

dynamics have been used extensively over the years to quantify the level of HIV 

infection and efficacy of therapies [167-169]. PBPK models can generate data on 

tissue-specific concentrations which can be used as input data for dynamic models, 

therefore an integrated PBPK-PD framework can represent a valuable, informative 

tool for the enhancement of HIV therapy and rationalise strategy for the HIV cure.  
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7.4 Conclusion 

Before a potential treatment reaches the stages of a clinical trial it must undergo 

numerous approval stages during which it is subjected to various research studies 

and the process can take several years. Once a certain level of safety, efficacy and 

toxicity has been established the treatment is put forward for animal studies before 

studying in humans, should the outcome be positive. However, this entire process 

is met with several limitations, from the length of approval to the type of populations 

being investigated. PBPK modelling can effectively evaluate hard-to-study clinical 

scenarios prior to direct evaluation and provide valuable insight which cannot be 

easily gained. The overall aim of this thesis was to explore and develop several 

mechanistic PBPK models to help support the optimisation of ART and 

design/inform future clinical studies. Where logistical, methodological, and ethical 

constraints hinder or complicate the ability to evaluate certain clinical scenarios, 

PBPK modelling proves an advantageous tool for deducing vital information.  
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