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Abstract

Solar forecasting is a crucial and cost-effective tool for better utilization of solar energy for smart environment design.
Artificial intelligence (AI) technologies, such as machine learning (ML) and deep learning (DL), have gained great
popularity and widely applied in solar forecasting in recent years. However, conventional AI-based forecasting methods
suffer from high variability and stochasticity of solar irradiation, making unreliable predictions due to heterogeneous
solar resources. Moreover, the training process of DL models is less flexible and requires immense data. Even for
a well-trained model, it can still yield deteriorated performances on other datasets of varying data distributions. To
tackle the deficiencies of AI forecasting models, we present a flexible distributed solar forecasting framework based on a
novel spatial and temporal attention-based neural network (STANN) with federated learning (FL) technique, considering
multi-horizon forecasting scenario from 5–30 min. The STANN model consists of a feature extractor and a forecaster,
which can be respectively trained on various local datasets for better localization, and updated to further improve
forecasting accuracy through global parameter aggregation under the proposed framework without data gathering. We
evaluate effectiveness of the proposed method by conducting extensive experiments on real-world datasets and compare
it to other popular forecasting models. The results demonstrate that our approach outperforms the other benchmarks
with higher forecasting accuracy for all forecast horizons and better generalization on various datasets, achieving the
highest forecast skill of 28.83% at 30-min horizon and an improvement of 11.2% compared with the centralized, localized,
and conventional FL training methods.
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1. Introduction

Solar energy has sparked worldwide interest and accep-
tance as a viable alternative to fossil fuels due to its advan-
tages of being environmentally friendly and inexhaustible
[1]. In a symbiotic relationship to the development of so-
lar energy, solar forecasting becomes one of the popular
topics in the field of photovoltaic (PV) power generation
[2], sustainable smart environment design [3], and smart
cities [4]. For example, a weather forecasting platform
is incorporated into energy management systems (EMSs)
to anticipate onsite energy generation for better electrical
and thermal consumption [5]. And the weighted ensembles
of supervised learning models are used to predict thermal
comfort exceedance under a possible climate change sce-
nario [6]. However, solar forecasting remains a challenging
task due to the highly variable and stochastic nature of
solar irradiance. It hinders optimal solar energy harvest-
ing and poses challenges to power grids, e.g., intermittent
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PV power generation caused by passing clouds can create
power fluctuations, impair grid frequency balance, and fi-
nally lead to system instability and even blackouts [7].
Therefore, reliable solar forecasting is required for solar
grid operation as well as passive solar architecture design
for better solar energy utilization [8].

As a sub-domain of energy meteorology, solar forecast-
ing refers to the prediction of both PV power generation
and solar irradiation. Both of them can be achieved by
using similar methods, however, power data is usually un-
available as it is private to PV power facilities. Thus, we
only focus on the forecasting of global horizontal irradiance
(GHI) because solar generation is directly affected by in-
cident irradiation, and the irradiation-to-power conversion
is well understood.

The existing solar irradiance forecasting approaches can
be classified into three categories by predictive models:
(1) physical models, (2) statistical models, and (3) hy-
brid approaches [9]. The physical models simulate coupled
physical equations of the atmosphere to generate realistic
predictions of solar irradiation based on numeric weather
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prediction (NWP) systems. For very short-term forecast-
ing or nowcasting at minute to sub-minute levels, it tends
to make poor predictions due to the difficulty in cloud
motion/height estimation and the limited temporal and
geographic resolutions [10].

Alternatively, statistical models make empirical predic-
tions using historical irradiance observations. They can be
applied to arbitrary forecast horizons from intra-hour to
day-ahead depending on the temporal resolution of data.
The established statistical methods, such as regressive
models and machine learning models, usually adopt shal-
low networks with only a few hidden layers, thus having
limited capability to handle complex nonlinearity [11]. To
overcome this problem, deep learning (DL) models have
been adopted to predict solar irradiation or power gen-
eration because of their sufficient ability for information
extraction and nonlinearity representation. In [12], the
authors utilize long-short term memory (LSTM) and re-
current neural networks (RNN) to forecast day-ahead PV
power production with time correlation principles under a
partial daily pattern prediction. Besides, a convolutional
neural network (CNN) is applied to extract the underly-
ing relationship between sky images and solar irradiance
and make predictions for PV power ramp rate control [13].
A comprehensive review of DL approaches for renewable
energy forecasting is presented in [11].

Hybrid methods integrate the merits of different fore-
casting techniques to improve forecasting accuracy by
either combining multiple statistical models (hybrid-
statistical) or applying statistical techniques to the physi-
cal modeling process (hybrid-physical) [14]. For example,
a hybrid-statistical method proposed in [16] combines both
CNN and LSTM networks and presents improved forecast-
ing performance than the standalone CNN and LSTM.
However, this stacked model requires immense training
data and leads to increased training complexity and more
computational resources. In [15], the authors compare
physical deterministic models based on weather forecasts
and a hybrid physical artificial neural network (ANN) for
day-ahead PV power prediction. The results show that
the hybrid physical-ANN combined achieves the best fore-
casting results than the other physical model.

In addition to model architectures, practical solar fore-
casting is always associated with a variety of data sources
as well. Unlike the synthesized and well-elaborated
datasets for certain tasks, solar data naturally differs in
probability distribution due to the heterogeneity of solar
resources. This paradigm violates the identically and in-
dependently distributed (IID) assumption commonly ap-
plied to neural networks and would increase the likelihood
of errors and the complexity of modeling [16]. Moreover,
there is little prior knowledge on how different input vari-
ables interact, including endogenous features derived from
the observations, and exogenous features (e.g., wind speed,
humidity, turbidity, and zenith angle). Thus, the hetero-
geneity of solar data makes solar forecasting particularly
challenging, even for a sophisticated model.

In this work, we present a distributed multi-horizon
solar forecasting framework based on a spatial-temporal
attention-based neural network (STANN) and federated
learning (FL) to leverage the above issues. The STANN
model is built in the encoder-decoder structure consisting
of a spatial feature extractor and a forecaster. The spa-
tial feature extractor integrates attention mechanism to
select the relevant input variables by assigning weights in
the feature space. The forecaster employs attention lay-
ers in time space to provide insight into long-term tempo-
ral dependencies, thus improving forecasting accuracy. To
make our model more robust and generalized on various
data sources, we incorporate the STANN model with the
FL technique into a distributed two-stage training strat-
egy: (1) the STANN model is trained on each dataset
to learn the local characteristics of each dataset; (2) af-
ter local training, the decoder parameters are aggregated
by performing the FedAvg algorithm to further improve
forecasting performance, while preserving the encoder pa-
rameters locally.

The contributions of this paper are summarized below:

1. A spatial-temporal attention-based STANN model is
designed for multi-horizon solar forecasting. It con-
tains a spatial feature encoder and a temporal de-
coder, which separately selects relevant features and
provides insight into temporal dynamics, enabling
skillful multi-horizon solar forecasting for a wide range
of input features.

2. We proposed a distributed forecasting framework us-
ing FL in favor of a customized feature extractor to
fit divergent data sources, while collaboratively train-
ing the forecaster without data sharing. To investi-
gate the effectiveness of the proposed approach, the
results from the conventional centralized and localized
training methods are also compared and discussed.

3. We carry out extensive experiments on various real-
world datasets and input features. The results demon-
strate improved accuracy and better generalization of
various data sources, making it more applicable to
practical forecasting scenarios.

The remainder of the paper is organized into the follow-
ing four sections. In Section II, a brief literature study is
presented. Section III introduces the data used in simula-
tions. In Section IV, we introduce the STANN model with
the FL separable training method. Section V presents the
simulation results with discussions and is followed by a
conclusion with potential future works in section VI.

2. Related work

2.1. AI-based multi-step time series forecasting

From a statistical perspective, multi-step time series
forecasting can be considered as a variation of the one-
step ahead forecasting problem. It can be further divided
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Figure 1: Comparison of direct and joint multi-step ahead forecasting
methods.

into iterative, direct and joint approaches [17]. Iterative
methods typically make use of auto-regressive models by
recursively feeding one-step ahead predictions into future
input data samples, e.g., related works in [18, 19, 20]. How-
ever, the main limitation of the iterative methods is that
the recursive structure could result in large error accumu-
lations over long forecast horizons when small forecasting
errors are produced at each time step.

In contrast, direct approaches (e.g., [21, 22]) require a
collection of models that are trained to predict each N -
step ahead. In addition to training multiple models, the
main drawback is the deterioration in forecasting accu-
racy at longer horizons due to a weakened temporal cor-
relation. Alternatively, studies in [13, 23] utilize resam-
pled time series for training. The resampled data have
the same temporal resolution for a specific forecast hori-
zon, such that the predictions are always one-step ahead
regardless of how long the forecast horizon is. Nonethe-
less, it results in a reduced amount of data by a factor of
1
N

with sparse temporal information in the time series as
the forecast horizon increases. For example, a weighted
gaussian process regression model is proposed in [24] for
10 steps-head daily global and direct solar radiation fore-
casting. The authors compared both direct and iterative
approaches by using paralleled and cascaded architectures,
respectively. The results showed that the cascaded model
achieved better accuracy than the direct method by con-
sidering the temporal correlation.

In the joint strategy, also known as multiple input mul-
tiple outputs (MIMO), the objective is to train a capa-
ble model (e.g., recurrent and Seq2Seq models) to di-
rectly generate multiple forecasts in a one-shot manner.
A comparison between the direct approaches and the joint
method is shown in Fig. 1. Recently, Transformer [25] ar-
chitectures based on attention mechanisms have achieved
great success in natural language processing and other Seq-
2-Seq tasks. The attention mechanism is also applied to
other architectures for multivariate time series forecasting
tasks [26, 27]. For example, in [26], the authors predict
multi-step citywide passenger demand based on a graph
with a hierarchical graph convolutional structure, where
the attention-based module is to model the dynamic tem-

poral information. In [28], a self-attention-based Trans-
former model has been utilized for multivariate solar time-
series forecasting. The method achieves evident improve-
ments compare to the LSTM model and its attention-based
variants on two different datasets. However, these often
fail to consider the different types of inputs commonly
present in multivariate time series forecasting, and either
assume that the exogenous inputs are known into the fu-
ture [29].

2.2. FL-based forecasting

Federated learning (FL) is a distributed stochastic gra-
dient descent (SGD) procedure that allows a selection
of devices to train on local data and contribute updates
to a shared model [30]. This learning technique has
shown promising prospects in many fields, such as Internet
of Things (IoT)-based energy control in smart buildings
[31, 32], public health [33], traffic prediction [34], and load
forecasting [35, 36]. The work of [37] applies FL to predict
the socio-demographic characteristics for energy utilities
to offer diversified services to their electricity consumers.
The authors in [35] provide a simple study of FL for elec-
trical load forecasting using a client cluster method and
compare it with centralized and localized forecasting. The
results suggest that FL can be used only for individual
load forecast problems in cases where access to training
data is not possible because FL outperforms centralized
forecasting, but is worse than localized forecasting. A re-
cent study in [38] proposes an innovative federated deep
generative learning framework for renewable scenario gen-
eration. The model outperforms the state-of-the-art cen-
tralized methods. Besides, different federated learning set-
tings are designed and performed that demonstrate better
robustness of the method. In [39], an FL-based Bayesian
neural network (FL-BNN) is proposed to preserve the pri-
vacy of utilities in the behind-the-meters (BTMs) estima-
tion with a layerwise parameter aggregation strategy en-
abling a customized model for each client. The FL-BNN
model is slightly better than that of the centralized BNN
model and is much better than the other benchmarks. To
the best of our knowledge, the only existing work related
to FL-based solar forecasting is introduced in [40]. The
authors propose a federated probabilistic solar forecast-
ing scheme based on variational Bayesian. This method
presents slightly improved accuracy in comparison to the
centralized model on the data collected from a limited area
of 64 square km. However, the work lacks an in-depth
analysis of the impact of different input variables regard-
less of the fact the time series used for training are highly
correlated.

Although, the decoupled FL training process keeps raw
data decentralized, the learning objective is to optimize
a shared model which can be vulnerable to non-IID data
[41]. Therefore, the initiative of the proposed forecasting
scheme is to train multiple customized models fitting var-
ious real-world data sources instead of a global model.
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Table 1: NREL datasets information
Site State Length Location Elevation [m] TZ

SRRL BMS Colorado 46,342 (39.742, -105.182) 1828.8 PST

ECSU North Carolina 46,584 (36.282, -76.216) 26 EST

UO SRML Oregon 45,813 (44.046, -123.074) 133.8 PST

UNLV Nevada 46,706 (36.107, -115.143) 615 PST

La Ola Lanai Hawaii 47,428 (20.766, -156.922) 381 HST

ARM RCS Kansas 45,245 (36.606, -97.486) 320 CST

SW Solar Arizona 46,876 (33.416, -123.108) 347 MST

HSU SoRMS California 46,219 (40.875, -124.081) 36 PST
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Figure 2: Probability density of the GHI (blue) and the CSI (green)
time series of the NREL datasets. The GHI values are scaled in a
range of [0, 1] by a MaxMinScaler for better visualization.

3. Data description

3.1. Datasets

Folsom dataset: This comprehensive dataset is pub-
lished in [42] for benchmark solar forecasting models. It
contains 3-year (2014-2016) solar irradiation data in 5-min
resolution with well-elaborated endogenous and exogenous
features at Folsom, California. We use 2014 and 2015
as training set and 2016 as out-of-sample testing set to
compare the STANN with other benchmark models. The
dataset contains multiple features and covers annual solar
patterns under different weather such that model perfor-
mance can be fully evaluated.

NREL datasets: We utilize solar irradiance measured
by the baseline measurement system [43] of the National
Renewable Energy Laboratory (NREL). We select 8 mea-
surement sites at different locations in the US that cover
various weather patterns. The data from each site contains
1-year observations of global horizontal irradiance (GHI)
at an interval of 1 min. The data distribution of each
dataset is shown in Fig. 2. The data is then averaged to
5-min resolution and the nighttime values are removed ac-
cording to solar zenith angle (θz > 85◦ during nighttime)
since they have no impact on PV power production. We
divided each dataset into 70% of the training set and 30%
of the out-of-sample test set for evaluating the proposed
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Figure 3: Diurnal variation of GHI and CSI on 30 July, 2012 in
Arizona USA.

distributed learning framework. The detailed information
is presented in Table 1.

3.2. Data processing

3.2.1. Clear-sky index

We first calculate clear-sky index (CSI) as input time
series for all forecasting models instead of directly predict-
ing GHI values. It is defined as the ratio between the mea-
sured irradiance and its expectation under the cloud-free
atmosphere, which is written as:

k(cs) = I/I(cs) (1)

where k(cs) is CSI, I is actual GHI and I(cs) is correspond-
ing clear-sky irradiance. Using CSI is a common practice
to remove seasonality and to improve accuracy in solar
forecasting, which is equivalent to data normalization in
other time series forecasting tasks. The predicted CSI can
be converted back to GHI by multiplying corresponding
clear-sky values as a reversed process in equation 1. In
this study, Ineichen–Perez clear-sky model [44] based on
Linke turbidity is used to retrieve CSI using pvlib [45]
packaged in Python. An example of daily GHI variation
and its corresponding CSI values are illustrated in Fig. 3.

3.2.2. Feature extraction

Feature extraction is the process of extracting features
from raw data using data mining techniques to improve
the performance of machine learning algorithms. Follow-
ing [42], we featurize the derived CSI time series into three
variables, namely backward average values (B), lagged av-
erage values (L), and variability (V):

Bi(t) =
1

iδ

t∑
t−iδ

k(cs)(t), i = {1, 2, . . . , N} (2)

Li(t) =
1

δ

t−iδ∑
t−(i+1)δ

k(cs)(t), i = {1, 2, . . . , N} (3)
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Vi(t) =

√√√√ 1

iδ

t∑
t−iδ

∆k(cs)(t)2, i = {1, 2, . . . , N} (4)

where δ denotes the temporal resolution of data and N is
the number of horizons. In this research, we perform intra-
hour forecasts (i.e., 5–30-min at a step of 5-min) so that
δ = 5 and N = 6 for 6 forecast horizons. As for other fea-
tures, such as weather-related variables, their effectiveness
depends on one’s understanding of the predictors, and how
they affect the predictand. Adding irrelevant predictors
might result in overall prediction variance [46]. Therefore,
we do not include any other meteorological variables.

3.2.3. Data transformation

After the feature extraction, the data is in a form of a
2-dimensional multivariate matrix:

D =


x1

x2

...
xn

 =


x1
1 x2

1 · · · xm1
x1
2 x2

2 · · · xm2
...

...
. . .

...
x1
n x2

n · · · xmn

 ∈ Rn×m

where n is the length of the data and m is the input size. It
is then rearranged into sequences over a look-back window
of length s for DL time series forecasting models:

D = [Xs,Xs+1, . . . ,Xt . . . ,Xn]> ∈ R(n−s)×s×m

where Xt = [xt−s,xt−s+1, . . . ,xt] ∈ Rs×m is in-
put sequence corresponding to a target vector
ŷt+τ = [yt+1, yt+2, . . . , yt+τmax ] for multi-horizon fore-
casting, where τ ∈ [1, 2, . . . , τmax] is a discrete forecast
horizon.

4. Methodology

This section introduces the proposed distributed so-
lar forecasting framework based on federated learning.
First, a spatial-temporal attention-based neural network
(STANN) is specialized to incorporate into the framework
as the forecasting model. Then, we distinguish our frame-
work from the conventional FL setting by introducing a
novel two-stage training strategy to fit diverse data dis-
tribution. An overall schematic view of this framework is
illustrated in Fig. 4.

4.1. STANN forecasting model

In time series forecasting, the encoder-decoder architec-
ture has exhibited cutting-edge results by encoding the
temporal information underlying the historical observa-
tions into a latent vector zt and generates the final forecast
using the vector as follows:

zt = fenc(Xt,yt+τ )

Dataset

Initialize parameter

Perform FedAvg

Data collection

Calculate CSI

Feature 
extraction

Transformation

Updated 
parameters

Upload to the 
central server

Update decoder 
parameters

Server Client

ForecasterData Processing

Local training

STANN

Broadcast parameters

Select clients

Context vector

Feature
Extractor

Figure 4: The proposed distributed solar forecasting framework. The
dashed line means the step is only executed once at the beginning of
the updating rounds.

ŷt+τ = fdec(zt)

where fenc(·) and fdec(·) are encoder and decoder functions
respectively. By taking advantage of this architecture, we
propose a STANN model that consists of a spatial feature
extractor and a forecaster shown in Fig. 5. The details of
both the feature extractor and forecaster will be presented
in the following sections.

4.1.1. Spatial feature extractor

The spatial feature extractor is used to aggregate spa-
tial information among different input features using dy-
namically generated weights, further enabling the recur-
rent layers directly focus on the significant time depen-
dencies – even far back time steps in the sequence. In this
case, we apply additive attention [47] function that uses a
single hidden layer with two linear transformations and a
tanh activation in between. Particularly, given an input
sequence Xt = [xt−s,xt−s+1, . . . ,xt] ∈ Rs×m at position t,
we can first compute attention scores εt over the feature
space, as a function of the previous hidden states ht−1 and
the input sequence Xt:

εt = a(ht−1,Xt)

= v>a tanh (W aht−1 +UaXt)
(5)

where a(·) is the alignment function that evaluates how
well the input data match with the previous hidden state
and determines which input values xit in i-th feature at
time t should focus on. W a ∈ Rs×p, Ua ∈ Rs×s and
va ∈ Rs are learnable parameters that can be jointly opti-
mized by any back-propagation algorithms with the recur-
rent layers. And ht−1 ∈ Rp is the previous hidden state
vector and p is the size of the encoder hidden state vector.

The attention weights αt are then obtained by apply-
ing a softmax function over the attention scores εt =
[ε1t , ε

2
t , . . . , ε

m
t ] ∈ Rm:

αt = softmax(εt) =
exp (εt)∑m

j=1
exp

(
εjt
) (6)
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Figure 5: The forecasting model architecture based on attention layers and GRU network.

where αt = [α1
t , α

2
t , . . . , α

m
t ] ∈ Rm is a vector of attention

weights representing the probability distribution over the
feature space and the sum of all the weights

∑m

j=1 α
j
t = 1.

By performing the above operations at each time step,
we can obtain the weighted input sequence by multiply-
ing the spatial attention weights with corresponding input
data and represent the attended input sequence as:

X′s =


x′1
x′2
...
x′s

 =


α1

1x
1
1 α2

1x
2
1 · · · αm1 x

m
1

α1
2x

1
2 α2

2x
2
2 · · · αm2 x

m
2

...
...

. . .
...

α1
sx

1
s α2

sx
2
s · · · αms x

m
s

 (7)

Subsequently, we use a GRU layer to encode the time de-
pendencies of the weighted input sequences. The GRU
layer contains multiple GRU units, each of which processes
a data point at a one-time step by referring to the mem-
ory from its previous hidden states ht−1 [48]. The update
gate z(·) and the reset gate r(·) then decide which infor-
mation to be passed or forgotten. The currently hidden
state vector is computed as follows:

zt = σ(W zx
′
t +U zht−1) (8)

rt = σ(W rx
′
t +U rht−1) (9)

h′t = tanh(Wx′t + rt � ht−1) (10)

ht = zt � ht−1 + (1− zt)� h′t (11)

where σ(·) is sigmoid activation function and � is element-
wise Hadamard product and W z, U z, W r and U r are
GRU parameters. The current hidden state ht ∈ Rp con-
tains all the encoded information of the weighted input
data x′t and will be forwarded to the decoder for further
processing.

4.1.2. Forecaster

The structure of the forecaster is similar to the en-
coder, except for the additional linear transformation and

a multi-layer perceptron (MLP) layer to make multi-step
forecasts. To further enhance the forecasting performance,
we use temporal-attention layers to capture temporal dy-
namics of the encoder hidden state ht based on the pre-
vious decoder hidden state dt−1. The temporal attention
weights are calculated by the following equations:

ϑt = v′>a tanh (W ′
a ∗ dt−1 +U ′a ∗Ht) (12)

βt = softmax(ϑt) =
exp (ϑt)∑s

j=1
exp

(
ϑjt
) (13)

where W ′
a ∈ Rp×q, U ′a ∈ Rp×p and v′>a ∈ Rq are parame-

ters of the alignment function to learn, and q is the size of
the decoder hidden vector. βt = [βt−s, βt−s+1, . . . , βt] ∈ Rs
is temporal attention weight vector that scores the impor-
tance of each hidden state in Ht = [ht−s,ht−s+1, . . . ,ht]

>

corresponding to the attended input sequence X′t. After-
ward, the attention layer computes a context vector as a
weighted sum of all encoder hidden states as represented
below:

ct = βtHt =

t∑
i=t−s

βihi (14)

where ct ∈ Rq is the context vector, which is then concate-
nated with input data point xt ∈ Rm. The concatenated
vector [ct;xt] ∈ Rq+m is transformed by a linear layer:

x̃t = w>(ct ⊕ xt) + b (15)

where ⊕ is concatenation operation and x̃t ∈ Rq+s is the
newly transformed input data based on which the current
hidden state dt ∈ Rq of the decoder GRU layer is pro-
duced.

Finally, the MLP layer takes the final decoder hidden
state dt and the context vector ct as inputs, and summa-
rize all the information to make forecasts by:

ŷt+τ = ŵ>(ct ⊕ dt) + b̂ (16)

where ŵ and b̂ are learnable parameters of the MLP layer
and ŷt+τ = [yt+1, yt+2, . . . , yt+k] ∈ Rk are the predictions
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Figure 6: A schematic view of a typical FL approach. The illus-
trated is one communication round between local clients and a cen-
tral server.

of the forecasting model. The final forecasting results Ŷ
for all forecast horizons at {5, 10, . . . , 30}-min are:

5-min 10-min · · · 30-min
↓ ↓ ↓


ŷt+1 ŷt+2 · · · ŷt+6 ← Xt

ŷt+2 ŷt+3 · · · ŷt+7 ← Xt+1

Ŷ = ...
...

. . .
...

...
ŷn+1 ŷn+2 · · · ŷn+6 ← Xn

After prediction, the predicted CSI are converted back
to GHI by multiplying the corresponding clear-sky irra-
diance as a inverse process in (1) for further evaluation.

4.2. Distributed solar forecasting framework using FL

Based on the abovementioned theory, we propose a dis-
tributed solar forecasting framework that incorporates the
STANN model with federated learning technique (namely
FL-STANN) to further improve forecasting accuracy and
generalization of various data.

4.2.1. General FL setting

In conventional FL settings, the learning task is to op-
timize a global model parameter ΨS via a group of dis-
tributed datasets under the coordination of a central server
S as shown in Fig. 6. We can regard the group of datasets
as a federation of N clients denoted as C = {Ci}|Ni=1, each
holding a local dataset Di. Nevertheless, the clients are
prohibited from uploading the data to their central server
due to privacy concerns, but the central server can ac-
cess the local network parameters. Therefore, the global
parameter is exclusively optimized on each local dataset
with a loss function `(Di;ψi), and then aggregated on the

central server. The local optimization is defined as:

min
ψ̃i

`(Di;ψi)
def
=

1

ni

∑
t∈ni

`(Di;ψi) (17)

where ψ̃i is the updated parameters of client Ci trained on
dataset Di. It is obtained by minimizing average loss over
all ni data samples in the dataset.

After training, the updated parameters are uploaded to
the central server and aggregated using FedAvg algorithm
as follows:

Ψ̃S = ΨS +
1

N

N∑
i=1

∆ψi (18)

where Ψ̃ is aggregated global parameter, Ψ is global model
parameter from previous updating round and ni is length
of the data. ∆ψi = ψ̃i − ψi is the difference between pa-
rameters from current round and previous round of client
Ci.

4.2.2. FL-STANN framework

In solar forecasting applications, learning objective is to
train multiple local models for each client Ci to make pre-
dictions based on their datasets Di ∼ Pi. Given an input
sequence Xt ∈ Rs×m from dataset Di, the feature extractor
weights ψ(enc)

i and the forecaster weights ψ(dec)
i can be sep-

arately optimized by minimizing MSE loss using backward
propagation algorithm with two AdamW optimizers and
a MSE loss function `(·) on each dataset. The optimiza-
tion of both extractor and forecaster can be formulated as
followings:

ψ̃(enc) ← arg min
ψ(enc)

s∑
t=1

m∑
i=1

`
(
xit, ψ

(enc)
i

)
(19)

ψ̃(dec) ← arg min
ψ(dec)

s∑
t=1

q∑
j=1

`
(
hjt , ψ

(dec)
j

)
(20)

where the encoder weight is training on dataset Di to follow
its data distribution ψ(enc)

i ∼ P |Di in (19). The encoded
the hidden state vector ht is further used as the input
together with the previous decoder hidden states dt−1 to
make multi-horizon predictions ŷt+τ in (20). The localized
optimization procedure is described in the following steps:

(i) Collecting data and making datasets Di before train-
ing. This step is only executed once before local
training;

(ii) Updating decoder parameters ψ(dec)
i |S→Ci from the

globally aggregated updates;

(iii) Training both encoder and decoder based on the local
datasets Di for a certain number of local iterations;

(iv) Uploading the updated the decoder parameters
∆ψ(dec)

i |Ci→S to the central server S, in the mean-

while keeping the optimized encoder weights ψ̃(enc)
i

locally.
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Table 2: Implementation details of FL-STANN model.

Parameters
No. of Hidden Sequence Batch Learning No. of Global Local Loss

Optimizer
layers layer size length size rate clients epochs epochs function

Values 1 p = q = 128 s = 20 bs = 64 φ = 1e−3 N = 8 T = 5 e = 10 MSE AdamW

On the central server, a global decoder Ψ(dec)
S is con-

structed by aggregating the updated parameters from lo-
cal clients. Nonetheless, this will lead to the asynchronous
issue of updates, for example, each client’s update is imme-
diately applied to the local decoder before any aggregation
with updates from other clients as discussed in [49]. Since
there is no actual communication between clients and the
server in our simulations, we assume that all clients up-
load and aggregate the parameters in a synchronized way
as follows:

(i) Initializing decoder parameters at the beginning of
the FL updating round;

(ii) The server selects a set of clients meeting the eligi-
bility requirement (e.g., the gradient is converged or
training loss is continuously decreasing);

(iii) Performing FedAvg algorithm to aggregate parame-
ters of the selected clients:

Ψ̃(dec)
S = Ψ(dec)

S +
1

η ×N

η×N∑
i=1

∆ψ(dec)
i (21)

(iv) Broadcasting the aggregated parameter to the se-
lected clients.

where η ∈ [0, 1] is ratio of the clients participated in each
FL round. However, the case of η = 0 is very unlikely,
especially in cross-device FL applications that involve large
number of clients. The overall procedure of the proposed
FL-STANN approach is described in Algorithm 1.

5. Experiments

To fully assess the performance of the proposed ap-
proach, we carry out extensive experiments on real-world
solar datasets. First, we compare the multi-horizon fore-
casting performance of the STANN model with different
benchmarks on various input features with the Folsom
dataset. Then, we verify the effectiveness of the FL-
STANN training strategy on different NREL datasets. Fi-
nally, we demonstrate the performance of FL-STANN at
different participation rates.

5.1. Experiment setup and statistics

In this work, all the simulations are implemented with
Python 3.8 and PyTorch deep learning library and trained
on a server using an NVIDIA 1080Ti GPU. For the pa-
rameters of the STANN (i.e., p, q, and s), they are
determined by conducting grid search on p = q ∈
{32, 64, 128, 256, 512} and s ∈ {5, 10, 15, 20, 25, 30}. For

Algorithm 1 FL-STANN

input: Initial local encoder ψ(enc)
i , global decoder ΨS, op-

timizer O(·), loss function `(·), and learning rate φ.
output: Updated local encoder ψ̃(enc)

i and decoder ψ̃(dec)
i .

1: init: clients C = {Ci}|Ni=1 holds local encoder pa-
rameter ψ(enc)

i and initialize the decoder parameter
ψ(dec)
i ← ΨS, and a local dataset Di.

2: for each round r = 1, 2, . . . ; r ∈ T do
3: Client executes:
4: for each client Ci ∈ C in parallel do
5: · ψ̃(enc)

i , ψ̃(dec)
i ← Training(Di, φ, ψ(enc)

i , ψ(dec)
i )

6: · update local encoder ψ(enc)
i ← ψ̃(enc)

i

7: if `(r) − `(r−1) < 0 then
8: · ∆ψ(dec)

i = ψ̃(dec)
i − ψ(dec)

i

9: · uploadCi→S(∆ψ(dec)
i )

10: else
11: · keep the optimal decoder weights ψ(dec)

i

12: end if
13: end for
14: Server executes:
15: · select η ×N clients Ci ⊆ C
16: · aggregate Ψ̃S ← FedAvg(∆ψ(dec)

i )
17: · broadcastS→Ci(Ψ̃S → ψ(dec)

i )
18: end for
19: Return ψ̃(enc)

i , ψ̃(dec)
i

example, we initially set p = q = 32 and conducted train-
ing on the 2014-2015 data of the Folsom dataset and tested
on 2016 data. Then, we repeated the above procedure by
using various hidden layer sizes {64, 128, 256, 512}. We
finally choose p = q = 128 and s = 20 that achieve the
best performance considering the trade-off between accu-
racy and computation cost. The hyperparameters of the
framework are shown in Table 2.

Besides, we consider three commonly used error met-
rics for time series prediction, namely, mean absolute
error (MAE), mean bias error (MBE), and root mean
square error (RMSE). The normalized versions are used to
compare the performance across different dataset, which
are defined as: nMAE = 1

n

∑n

t=1
|yt − ŷt|/ȳ, nMBE =

1
n

∑n

t=1
(yt − ŷt)/ȳ and nRMSE =

√
1
n

∑n

t=1
(yt − ŷt)2/ȳ

where ȳ is the mean of target values. Finally, we use
forecast skill to measure the improvement of a forecast-
ing model over the reference model:

skill = 1− nRMSE

nRMSEp

(22)

where nRMSEp is the nRMSE of the smart persistence.
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Table 3: Multi-horizon forecasting results of the STANN and the benchmarks. The numbers in the parenthesis indicate the changes caused
by introducing the endogenous and the exogenous features compared with clear-sky index.

n
M

A
E

[%
]

5-min 10-min 15-min 20-min 25-min 30-min

CSI(+Endo.)(+Exo.) CSI(+Endo.)(+Exo.) CSI(+Endo.)(+Exo.) CSI(+Endo.)(+Exo.) CSI(+Endo.)(+Exo.) CSI(+Endo.)(+Exo.)

Baseline 5.65 8.74 11.12 13.33 15.35 17.30

Lasso 6.24(-0.01)(+1.36) 8.45(+0.01)(+1.37) 10.83(-0.05)(+1.83) 12.84(-0.01)(+1.89) 14.24(-0.01)(+2.76) 16.85(-0.04)(+3.01)

ElasticNet 6.25(-0.01)(+1.29) 8.44(-0.02)(+1.35) 10.81(-0.03)(+1.77) 12.81(-0.01)(+1.84) 14.22(-0.02)(+2.74) 16.83(-0.03)(+2.98)

GRU 5.52(+0.03)(+1.32) 7.64(+0.08)(+2.59) 9.38(+0.07)(+2.64) 10.95(+0.16)(+3.19) 11.22(-0.05)(+2.63) 13.34(+0.11)(+2.38)

LSTMT 5.31(+0.02)(+1.48) 7.41(+0.10)(+2.45) 9.17(+0.11)(+2.29) 10.82(-0.05)(+2.74) 10.95(+0.07)(+3.19) 12.75(+0.13)(+2.42)

A-LSTM 4.92(-0.02)(+1.22) 6.91(-0.09)(+1.28) 8.77(+0.06)(+1.79) 8.61(+0.18)(+2.41) 10.12(-0.08)(+2.71) 10.83(-0.05)(+2.54)

Transformer 4.68(-0.14)(+0.92) 6.53(-0.15)(+0.95) 8.68(+0.03)(+1.21) 7.62(-0.31)(+1.37) 9.86(-0.15)(+1.58) 10.61(-0.04)(+1.87)

STANN 4.73(-0.11)(+0.84) 6.51(-0.17)(+0.82) 8.47(-0.18)(+0.93) 7.91(-0.23)(+1.29) 9.32(-0.27)(+1.42) 10.03(-0.14)(+1.62)

n
M

B
E

[%
]

Baseline 0.0 0.0 0.01 0.0 0.01 0.02

Lasso 1.18(-0.01)(+1.42) 1.33(-0.01)(+1.78) 1.35(+0.02)(+1.79) 1.44(-0.01)(+2.02) 1.58(-0.02)(+2.31) 1.89(-0.01)(+2.55)

ElasticNet 1.16(-0.00)(+1.40) 1.31(-0.01)(+1.79) 1.33(-0.01)(+1.76) 1.43(-0.00)(+1.98) 1.59(-0.03)(+2.26) 1.88(+0.01)(+2.53)

GRU 2.92(-0.03)(+4.21) 3.41(-0.02)(+5.42) 2.32(+0.01)(+8.74) 2.24(-0.05)(+6.51) 2.79(-0.02)(+5.18) 3.70(-0.03)(+4.86)

LSTM 3.08(-0.12)(+3.75) 3.42(-0.05)(+4.82) 2.43(-0.04)(+4.13) 2.11(-0.03)(+3.81) 2.76(-0.03)(+4.32) 3.44(-0.03)(+3.41)

A-LSTM 2.54(-0.09)(+2.25) 2.61(-0.12)(+2.31) -1.19(+0.08)(-0.21) 1.67(-0.04)(+2.47) -3.15(+0.32)(-1.25) 2.91(-0.58)(+3.21)

Transformer -1.92(+0.41)(-1.42) 1.84(-0.42)(+2.26) -1.91(+0.42)(-1.30) -1.60(+0.63)(-1.85) 1.27(-0.11)(+1.85) 1.25(-1.02)(+2.33)

STANN -0.63(-0.31)(-1.24) 1.48(-0.91)(+1.42) 1.45(-0.47)(+1.27) 1.19(-1.02)(+1.84) -1.76(+0.43)(-1.37) 1.49(-0.83)(+1.59)

n
R
M

S
E

[%
]

Baseline 11.84 15.62 17.83 19.88 21.73 23.48

Lasso 11.72(-0.01)(+0.32) 14.92(-0.02)(+0.44) 16.62(-0.02)(+0.84) 17.90(-0.02)(+1.02) 18.91(-0.02)(+1.33) 19.86(-0.03)(+2.01)

ElasticNet 11.70(-0.03)(+0.31) 14.87(-0.01)(+0.42) 16.59(-0.03)(+0.85) 17.86(-0.01)(+0.99) 18.87(-0.02)(+1.37) 19.83(-0.02)(+2.03)

GRU 11.38(-0.03)(+0.53) 14.11(-0.02)(+0.68) 15.92(-0.05)(+0.94) 17.51(-0.05)(+1.36) 18.09(-0.11)(+1.94) 19.26(-0.10)(+2.24)

LSTM 11.43(-0.02)(+0.49) 14.25(+0.01)(+0.53) 16.04(-0.04)(+1.02) 17.26(-0.03)(+1.24) 17.94(-0.03)(+2.15) 19.17(-0.05)(+1.79)

A-LSTM 11.31(-0.05)(+0.34) 13.96(-0.05)(+0.41) 15.32(-0.08)(+0.83) 16.48(-0.06)(+1.45) 17.73(-0.09)(+1.92) 18.89(-0.07)(+1.94)

Transformer 11.14(-0.04)(+0.27) 13.71(-0.07)(+0.25) 15.01(-0.12)(+0.68) 15.92(-0.12)(+1.13) 17.29(-0.21)(+1.36) 17.65(-0.13)(+1.46)

STANN 10.94(-0.06)(+0.24) 13.04(-0.08)(+0.22) 14.72(-0.15)(+0.47) 15.39(-0.17)(+0.97) 16.72(-0.19)(+1.12) 16.87(-0.16)(+1.35)

S
k
il
l
[%

]

Baseline 0.0 0.0 0.0 0.0 0.0 0.0

Lasso 1.01(+0.08)(-2.87) 4.48(+0.13)(-2.81) 6.79(+1.12)(-4.71) 9.96(+1.01)(-5.13) 12.98(+0.92)(-6.12) 15.41(+0.12)(-8.56)

ElasticNet 1.18(+0.25)(-2.70) 4.80(+0.06)(-2.69) 6.95(+1.68)(-4.76) 10.16(+0.05)(-5.48) 13.16(+0.92)(-6.30) 15.54(+0.08)(-8.64)

GRU 3.89(+0.25)(-4.48) 7.54(+0.13)(-4.46) 10.71(+0.28)(-5.27) 11.92(+0.25)(-6.84) 16.75(+0.51)(-8.93) 17.97(+0.43)(-9.54)

LSTM 3.46(+0.17)(-4.14) 6.62(-0.07)(-3.47) 10.04(+0.22)(-5.71) 13.18(+0.15)(-6.24) 17.44(+0.14)(-7.59) 18.36(+0.21)(-7.63)

A-LSTM 4.48(+0.33)(-2.88) 10.63(+0.32)(-2.63) 14.08(+0.45)(-4.66) 17.10(+0.30)(-7.29) 18.41(+0.41)(-8.84) 19.55(+0.17)(-8.26)

Transformer 5.91(+0.34)(-2.28) 12.23(+0.45)(-1.61) 15.82(+0.67)(-3.82) 19.92(+0.61)(-5.68) 20.43(+0.97)(-6.26) 24.83(+0.55)(-6.30)

STANN 7.76(+0.51)(-2.03) 16.52(+0.51)(-1.41) 17.44(+0.84)(-2.63) 22.59(+0.85)(-4.88) 23.06(+0.87)(-5.16) 28.15(+0.68)(-5.75)

Table 4: Comparison of inference time of each model [sec.].

Lasso ElasticNet GRU LSTM A-LSTM Transformer STANN

CSI 2.6 2.7 10.2 13.6 16.8 21.9 17.8

CSI+Endo. 4.8 5.1 17.5 21.9 29.3 45.7 40.6

CSI+Exo. 8.1 8.9 31.7 36.9 40.4 72.5 64.1

5.2. Multi-horizon forecasting performance

The multi-horizon forecasting results are presented in
Table 3 from 5-min to 30-min ahead. In this experi-
ment, we compare the STANN model compared with some
commonly used time series forecasting models, including
Lasso regression, ElasticNet regularized regression, GRU,
LSTM, attention-based LSTM (A-LSTM) [50] and a deep
Transformer model for time series forecasting [51]. The
model parameters are the same as those in the original
papers. For the Lasso and ElasticNet, the multitask ver-
sions in scikit-learn machine learning library are used to
generate multi-step predictions.

To have better intuition about the results, predictions of
four typical weather types are visualized in Fig. 8, which
are overcast, cloudy, partially cloudy, and sunny, respec-
tively. Since the predictions from the ElasticNet is very
close to that of the Lasso model, its results are omitted
for a more clear presentation. According to the figure, it
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Figure 7: Correlation matrix of different input features.

is obvious that the forecasts of the STANN model is closer
to the actual values under all weathers. In contrast, the
other models suffer from deteriorated forecasting accuracy
more or less during large ramp events.
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Figure 8: Visualized prediction curves of GHI at 5-min ahead under different weathers: (a) overcast, (b) cloudy, (c) partially cloudy, and (d)
sunny days.
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Figure 9: PCC between predictions and measurements at each fore-
cast horizon.

Moreover, we also investigate the model performance
by using three input combinations: (1) CSI only, (2) CSI
with endogenous features, and (3) CSI with exogenous fea-
tures.Besides the endogenous features in Section 3.2.2, ex-
ogenous variables (i.e., average, standard deviation, and
entropy derived for each red, green, and blue channels of
selected sky images) are also included. Although the nega-
tive impact of using exogenous features has been reported
in [42], we still use them as noisy signals to test the ro-
bustness of the forecasting models in this simulation. To
better compare model performance on different input fea-
tures, the results directly present improvement or decre-
ment compared to the CSI forecasting results, for exam-
ple, the numbers in the parenthesis are the corresponding

changes resulting from the endogenous and exogenous fea-
tures.

According to the results, the regression approaches, i.e.,
the Lasso and the ElasticNet regressions have the worse
performance in forecasting errors and skills, which indi-
cates the incapability of dealing with complex nonlinear-
ity. As for the DL-based neural networks, i.e., GRU, and
LSTM, outperform the regression approaches concerning
nMAE, nRMSE, and skill. However, it is worth mention-
ing that the predictions of GRU and LSTM models are
generated by using the n-step ahead forecasting approach
since they failed to generate comparable predictions in a
joint way. As for the attention-based approaches, i.e., A-
LSTM, Transformer, and STANN perform much better
than the vanilla LSTM and GRU in terms of all metrics.
Particularly, the proposed STANN model achieves the
best results on nRMSE and forecast skills for all forecast
horizons, which are respectively 7.76%, 16.52%, 17.44%,
22.59%, 23.06%, and 28.15%. To evaluate the computa-
tional efficiency, we compare runtime for the model infer-
ence. The results are presented in Table 4. It is seen that
as the model complexity increases, the time used for test-
ing increases as well. The Lasso and ElasticNet only take
a few seconds for three input combinations. However, the
transformer has the longest runtime during inference and
the runtime for STANN is slightly shorter.

Fig. 7 shows the correlations between different input
features. By using the three endogenous features, the fore-
casting performance of each model can be further improved
to different extents due to the strong correlation between
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Table 5: The forecasting results generated by the STANN trained with different training strategies.
Site Input Model nMAE [%] nMBE [%] nRMSE [%] Skill [%] Runtime [h] Site Input Model nMAE [%] nMBE [%] nRMSE [%] Skill [%] Runtime [h]

HI CSI

Persistence 29.1±7.1 0±0 45.4±8.1 - -

NV CSI

Persistence 9.6±3.6 0±0 13.8±3.7 - -

Localized 26.7±5.0 2.9±1.2 39.0±5.2 14.1±1.2 0.048 Localized 5.8±0.3 2.7±1.4 10.6±0.8 23.2±3.9 0.048

Centralized 25.4±4.8 -1.5±1.3 37.6±4.2 17.2±1.4 0.231 Centralized 6.2±0.4 -1.9±1.0 10.8±0.7 21.7±4.1 0.231

FL-Both∗ 25.2±4.6 -1.9±1.1 37.4±4.3 17.6±1.4 0.127 FL-Both∗ 6.7±1.2 -5.4±1.2 11.3±1.4 18.1±3.8 0.127

FL-STANN 23.8±4.2 1.3±0.8 35.6±4.5 21.6±1.5 0.108 FL-STANN 5.3±1.2 -1.3±0.6 10.1±1.2 26.8±2.6 0.108

CA
CSI

+B

Persistence 15.3±5.0 0±0 23.7±5.9 - -

ARI
CSI

+B

Persistence 10.8±3.8 0±0 15.8±3.9 -

Localized 12.5±2.9 -0.5±1.0 19.9±3.2 16.0±2.7 0.070 Localized 6.1±0.6 0.1±1.7 12.0±1.6 24.1±2.2 0.071

Centralized 14.2±2.8 -1.9±0.9 20.2±3.2 14.8±2.5 0.506 Centralized 8.6±0.8 -2.4±1.1 12.1±1.7 23.4±2.0 0.506

FL-Both∗ 12.7±2.5 -1.0±1.1 19.2±3.3 19.0±2.1 0.127 FL-Both∗ 7.8±1.4 -3.5±0.7 12.7±1.9 19.6±2.7 0.127

FL-STANN 11.9±2.4 -1.2±0.5 19.1±3.3 19.4±2.2 0.146 FL-STANN 7.2±1.3 -0.8±1.2 11.7±1.7 25.8±2.1 0.146

CO
CSI

+BV

Persistence 13.5±4.5 -0.1±0 20.9±4.8 - -

NC
CSI

+BV

Persistence 19.5±4.6 0±0 31.3±4.5 -

Localized 11.4±2.7 -6.6±0.4 18.5±3.0 11.5±2.5 0.116 Localized 19.1±1.7 8.9±0.6 29.4±2.2 6.1±2.4 0.116

Centralized 10.7±2.4 -4.2±0.5 18.1±2.7 13.4±1.8 0.958 Centralized 17.3±1.6 -3.9±1.1 27.8±1.7 11.2±2.1 0.958

FL-Both∗ 10.9±1.9 -2.9±0.8 18.3±2.3 12.4±1.2 0.127 FL-Both∗ 16.7±1.9 -1.8±1.5 26.4±2.7 15.6±1.1 0.127

FL-STANN 9.8±1.2 -0.3±0.6 17.2±2.6 17.7±1.6 0.206 FL-STANN 16.0±2.6 -0.7±1.0 25.7±2.5 17.3±1.3 0.206

OR
CSI

+BVL

Persistence 16.8±3.2 -0.1±0 27.1±6.2 - -

KS
CSI

+BVL

Persistence 15.6±4.6 0±0 24.2±4.8 - -

Localized 14.8±3.2 1.2±0.8 23.5±4.2 13.3±1.8 0.164 Localized 13.8±3.6 -6.0±1.1 21.5±3.6 11.2±1.2 0.163

Centralized 15.4±2.8 -3.2±1.3 24.2±2.2 10.7±1.1 1.417 Centralized 13.2±2.4 -2.7±1.4 20.7±2.7 14.5±1.3 1.417

FL-Both∗ 14.6±2.5 -1.8±1.4 24.0±1.8 11.4±1.2 0.127 FL-Both∗ 14.4±3.2 -4.3±0.6 21.1±2.6 12.8±1.4 0.127

FL-STANN 14.5±3.2 -0.7±0.6 23.2±4.1 14.4±1.6 0.367 FL-STANN 12.8±2.6 -1.5±0.4 19.7±2.9 18.6±1.5 0.367
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Figure 10: Training losses of FL-STANN vs. conventional FL setting.

CSI and endogenous variables B and L. Generally, the re-
sults in the middle parenthesis show that the nMAEs and
nRMSE are reduced and the nMBEs are more towards 0,
which results in more accurate predictions and improved
forecasting skills. Particularly, the STANN model has the
most significant improvements than the others, for exam-
ple, forecast skill at 5-min ahead is increased by 0.51%
higher than the 0.34% of the Transformer model. In con-
trast, the forecasting performances deteriorated by intro-
ducing the 9 exogenous features (see in Section II. B) be-
cause of the weak correlations with the CSI as well as other
endogenous features. Notably, the GRU and LSTM mod-
els are most vulnerable to the exogenous features in terms
of all metrics. A worse case can be observed where the fore-
cast skill of the GRU has decreased by 9.54% at 30-min
ahead. Nevertheless, the deterioration in STANN is much
smaller than the others, which suggests that the STANN
model is more robust to unexpected input features.

We also compute the Pearson correlation coefficient

(PCC) for each horizon below:

γ =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)

which reflects the linear correlation between the predic-
tions and the targets. A larger value indicates a stronger
relationship between two variables. Fig. 9 shows the vari-
ations of the PCC of each forecasting model as the horizon
increases. As we can see, STANN has the highest PCCs
and the trend of decreasing is slight as the horizon in-
creases, which demonstrates a strong correlation between
the predictions and the target for all forecast horizons. In
contrast, the PCCs of the Lasso, ElasticNet, GRU, and
LSTM decrease fast and are less than that of the baseline
model. In the meanwhile, the A-LSTM and the Trans-
former have intermediate performance between the base-
line and STANN. The results demonstrate the better ca-
pability of the STANN in multi-horizon solar forecasting.

5.3. FL forecasting performance

In this section, we compare four training methods using
NREL datasets: STANN trained with data gathered from
all local datasets (centralized), STANN exclusively trained
with each local dataset (localized), and conventional FL
approach where both feature extractor and forecaster are
updated through central server (FL-Both), and the pro-
posed FL-STANN. Each local dataset is divided into 70%
of the training set and 30% of the out-of-sample test set.
Considering the availability of exogenous data at each site,
we only use endogenous features generated without other
exogenous features.

We firstly carry out a preliminary experiment in the FL-
STANN framework and in a conventional FL setting using
CSI without other features. The models are trained for
100 FL rounds and their training loss curves are shown in
Fig 10. It can be observed that the losses decrease rapidly
at the beginning, and eventually approach a steady state
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Figure 11: The scatter plots of 5-min forecasting results produced by the four training methods: (1) localized, (2) centralized, (3) conventional
FL, and (4) the FL-STANN framework from top to bottom rows, respectively. Darker color indicates denser data points.

after about 40 rounds. However, the FL-STANN loss is
smaller and more stable, which indicates better conver-
gence in training and higher forecasting accuracy com-
pared to the conventional FL setting.

Then, we compare the FL-STANN with centralized and
localized methods. In this test, we use different features for
each dataset to account for the capability of FL-STANN
to handle various input data. For example, Hawaii and
North Carolina only utilize CSI time series as an input,
but Oregon and Kansas employ CSI with three endoge-
nous variables B, L, and V. It is worth mentioning that
the conventional FL setting is not able to deal with data
of various dimensions because the feature extractors can
not be aggregated through the FedAvg algorithm due to
different input layer sizes. Thus, we only use CSI as input
without other features. The forecasting results generated
by the STANN using the three training methods are sum-
marized in Table 5. The numerical results are represented
in the form of “mean±std” for all 6 forecast horizons, and
the asterisk ∗ symbol means the model is trained with CSI
only.

According to the results, three observations can be made
from the results. Firstly, model performance differs largely
among clients. The substantial variations in model perfor-
mance might be explained by the skewed data distribution
of each dataset as shown in Fig.2. For instance, the local-
ized model trained on the Nevada dataset has a forecast
skill of 6.1 ± 2.4%, but it achieves a high forecast skill of
23.2 ± 3.9% on the Nevada dataset as it has more evenly
distributed data.

Secondly, the FL-STANN strategy outperforms the oth-
ers on all local datasets, and the performance of local-
ized and centralized models can be improved by using FL-
STANN. For example, in North Carolina, nMBE of local-
ized STANN is 8.9 ± 0.6%, which implies the predictions

are larger than the actual values and results in a deterio-
rated accuracy. In contrast, the centralized FL-STANN is
learned from the less skewed data that is gathered from all
the training sets, thus the nMBE is reduced to −3.9±1.1%
and the forecasting skill is improved to 11.2 ± 2.1%. By
using FL-STANN, the nMBE can be further reduced to
−0.7± 1.0% with the highest skill of 17.3± 1.3%.

Thirdly, opposite to the localized and centralized mod-
els, the model trained in conventional FL setting tends
to have better performance on highly skewed data and
degraded performance on more balanced distributed data.
Noticeably, the forecast skills are 18.1±3.8% and 19.6±2.7
on the Nevada and Arizona dataset, which are lower than
that of the other models. This is because the feature ex-
tractor parameters are aggregated with the others during
FL rounds in this setting so that its capability of extract-
ing local features is weakened and influenced by the other
extractor trained on skewed data. The visualized fore-
casting results are shown in Fig. 11. The predictions of
STANN learned by localized, centralized, and conventional
FL methods are widely spread with more outliers, whereas
FL-STANN significantly reduced biases, especially in the
NC, CO, and KS datasets, resulting in improved forecast-
ing accuracy.

In terms of runtime for training, on the one hand, the lo-
calized STANN spent the least times of 0.048, 0.07, 0.116,
and 0.164 hours for the four input variable combinations
on each dataset. On the other hand, the centralized model
took the longest time which is about 8 times that of the
localized one since the amount of training data is propor-
tionally increased. As for the FL-STANN, the training
time is increased compared with the localized model be-
cause of the additional time for the parameter aggregation
process at each updating round. However, the increased
runtime of the FL-STANN can be acceptable and compro-
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Figure 12: Forecast skills (%) produced by the FL-STANN on dif-
ferent data sources at various participation rates η.

mised with enhanced robustness and model performance.
Finally, we investigate the impact of the number of par-

ticipants on the FL-STANN framework. The participa-
tion rate is referring to the ratio of clients participating
in every FL round. It depends on either FL settings or
clients themselves. For example, with a huge population
of devices, server samples only part of them every update
due to communication overhead. Fig. 12 illustrates the
forecast skills under different participation rates η and the
results are mean skills for all forecast horizons. We assume
that there will be at least 3 participants in every updat-
ing round to guarantee a comparable model performance,
thus the rate is changed from a minimal rate of 30% to
100%. For example, when η = 0.3, we randomly choose 3
clients from all datasets to train the FL-STANN model at
each updating round. As we can see, the forecast skill of
each client is promoted as η increases, which suggests that
more clients are encouraged to participate in FL training
for better performance. In practice, clients can make in-
formed choices about how and whether to participate at
all based on convergence states or if there is new data col-
lected.

6. Conclusion

In this work, we propose a STANN model for multi-
horizon solar forecasting, which integrates both spatial and
temporal attention with a detachable encoder-decoder ar-
chitecture. The model can not only handle complex tem-
poral dynamics but provide insight into feature space for
relevant feature selection using its context spatial encoder.
To have a better generalization of different data sources,
a novel distributed forecasting strategy is developed for
the STANN model based on FL. It allows the model to
preserve the local data characteristics while improving the
forecasting ability of the temporal decoder through FL ag-
gregation without revealing the local data. We verify the
effectiveness of our method by conducting extensive ex-
periments on different real-world datasets and features.

The results demonstrate better forecasting accuracy and
robustness to a variety of input features than the bench-
marks. The STANN performance can be further enhanced
via the FL separable training on various data sources, with
significant improvement in forecast skills up to 11.2%.

In the future study, we will further develop the frame-
work for real-world smart environment design applications
considering finer-grained FL aggregation algorithms, com-
munication bottlenecks, and privacy issues.
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