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• A novel adaptive penalty mechanism is designed for the Peer-to-Peer energy trading.

• Participants are encouraged to compensate for energy deviations to prevent clearing price deviations.

• A three-dimensional penalty is developed to reduce excessive penalty risks for market participants.

• A distributed default clearing algorithm is devised to implement the proposed penalty mechanism.
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A B S T R A C T

With the rapid development of Distributed Energy Sources (DERs), Peer-to-Peer (P2P) energy
trading is regarded as an effective scheme to improve local energy utilization. Nevertheless, unlike
wholesale electricity markets of the current grid size, small-scale prosumers and highly unpredictable
intermittent DERs account for a significant proportion of P2P markets, leading to an escalation of
market uncertainties. To facilitate effective market functionality, penalty mechanisms for unqualified
participants are essential, as is typically the case in the wholesale electricity market. However, there
has been little discussion of the use of penalty mechanisms in P2P markets. In this context, we
propose a novel adaptive penalty mechanism (APM) to drive the defaulting prosumers to fulfill orders.
Unlike the traditional two-dimensional (price, quantity) penalty price, APM uses a three-dimensional
penalty and introduces deviation percentage factors to reduce the risk of excessive penalty rates.
Penalty prices are determined by utilizing the distributed default clearing algorithm to adapt to market
conditions, thereby preventing deviations in clearing prices. Case studies are conducted to demonstrate
the feasibility and efficiency of the proposed APM in the P2P market. The results indicate that the
APM strike an appropriate between cost-effectiveness and regulation, requiring about 20% less reserve
capacity than the severe penalty.

1. Introduction
Recently, the adoption of DERs has been increasing due

to combat climate change and its impacts. At the same time,
advances in information and communication technologies,
smart meters, energy management systems (EMSs), and
distributed ledger technologies (such as blockchain) have
transformed traditional consumers into prosumers [1, 2].
Through the provision of flexible load scheduling, monitor-
ing and sharing of energy usage information, prosumers can
participate actively in energy trading as both producers and
consumers. Various P2P energy trading tests and projects
have been carried out at some countries’ distribution end
to help users benefit from the installed DER equipment. By
these means, the management and optimization of energy
resources are expected to be enhanced in the future.

The P2P energy market is a new market scheme that
allows network peers to share all or part of their energy
surplus and deficits. It provides benefits in terms of prosumer
autonomy, market transparency, and competitiveness [3].
Moreover, [4, 5] demonstrates that appropriate P2P markets
can provide participants with profit or cost savings and
encourage prosumers to remain involved. The market’s long-
term sustainability depends on the participation of members,
and the market mechanism must therefore protect the core
interests of members. Given the increasing penetration of
renewable energy and the autonomous demand management
of producers, energy production and consumption are prone
to greater randomness and uncertainty. The market partici-
pants at the distribution level are smaller than those at the
transmission level, thus making DER and load forecasting
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more challenging [6]. Besides severely impacting the grid’s
performance, efficiency, and reliability [7], these uncertain-
ties can also lead to escalating defaults in the market.

The P2P pricing mechanism can be broadly classified
into three categories: centralized pricing mechanism, de-
centralized pricing mechanism, and auction mechanism [8–
15]. The centralized pricing mechanism with a centralized
transaction process and information sharing manner [11,
12, 15]. However, the computational load associated with
P2P sharing may become significant with the growth of
DER penetration [16]. Decentralized pricing mechanisms
are characterized by decentralized transaction procedures
and information exchange [10], with prosumers retaining
full control over their decision-making processes when ne-
gotiating transaction prices [8, 9]. However, the absence of
centralized control results in a heavy communication burden
between agents, which inhibits the market’s efficiency. Auc-
tion mechanisms are usually employed in community market
environments. It combines the advantages of centralized and
decentralized pricing mechanisms. Communication among
participants is centralized and the transaction process is
decentralized [13]. Communities cannot directly intervene
in market participants’ energy imports and exports, but they
can indirectly urge prosumers to participate in P2P sharing
through appropriate pricing signals [14]. Many studies show
that P2P energy trading can facilitate cooperation among
prosumers in several ways. However, uncertainty and default
problems may lead to the price mechanism generating mis-
leading price signals, thereby reducing market fairness.

Some research efforts have been devoted to address the
uncertainties in the P2P market. For example, a novel P2P
joint energy and reserve market is proposed in [7], in which
a decentralized negotiation pricing mechanism is adopted.
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Nomenclature
DER Distributed Energy Resource P2P Peer-to-Peer
APM Adaptive Penalty Mechanism EMS Energy Management System
ESS Energy Storage System DA Double Auction
ESD Energy Surplus Deviation EDD Energy Deficit Deviation
PCP Pre-determined Clearing Price ACP Actual Clearing Price
OED Overall Energy Deviation DP Deviation Percentage
MDP Maximum Deviation Percentage

Renewable energy agencies provide community managers
with their uncertainty distributions, which help calculate the
total reserves that should be maintained. An auction pricing
mechanism-based P2P energy trading model is proposed
in [17, 18], to coordinate demand response schemes and
potential generation-consumption uncertainties. In general,
the uncertainty may cause significant differences between
the energy ordered in the market and the actual energy
delivered, which would constitute a default. Additionally,
prosumers could intentionally violate contracts in order to
obtain maximum benefit [19]. However, the impacts of such
a default on the market settlement are rarely discussed in the
above-mentioned work, nor are measures taken to guarantee
the performance of the participants’ contracts. Ideally, mar-
ket operators should encourage participants to fulfill their
obligations under the agreement. This will protect the rights
and interests of market participants and encourage them
to demonstrate their real capacity to produce and consume
in the marketplace [20]. To preserve market fairness, it is
also important to limit the impact of uncertainty on trading
outcomes and to prevent arbitrage opportunities arising from
default.

Penalties proved to be effective tools for encouraging
participants to perform their contracts. Some electricity mar-
kets, such as regional electricity markets in North America,
California Independent System Operator (CAISO), Midcon-
tinent Independent System Operator (MISO), and Southwest
Power Pool (SPP), adopt penalty schemes to address the
undesired power imbalance in the grid [21–23]. For ex-
ample, the CAISO market adopts penalty prices to enforce
constraints, thus ensuring supply equals demand (power
balance constraints) or transmission constraints. Research on
penalties has also been conducted in some studies. A penalty
scheme is proposed in [6], in which a penalty price is set
for power rate, regulation mileage and electricity quantity to
control the market volatility within an expected limit. In [24]
, a real-time decentralized demand-side management system
is proposed that forces customers create a uniform load
spectrum by penalizing customers who fail to comply with
it in their actual consumption. In [25], the authors propose
an energy planning model which considers the penalty costs
associated with deviations from the energy target to maxi-
mize profits. Included in the works [26–28], the penalty costs
are presented for wind power plants failing to provide the
scheduled power. Additionally, the reserve markets incor-
porating electric vehicles and the penalties associated with
non-compliance with the contract are investigated in [29]
[30] [31]. Notably, [30] outlines two penalty mechanisms

(inability to cover total reserve capacity and insufficient
reserve capacity). In [32] the penalty cost is proposed to
reduce the difference between real-time power delivery and
day-ahead scheduling, thereby minimizing the potential for
fluctuations in power transmission.

These studies show that penalty mechanisms have differ-
ent goals depending on the application and market environ-
ment. However, most of these efforts are aimed at penalizing
producers with professional forecasting and energy manage-
ment abilities, while neglecting prosumers in the emerging
P2P market. Additionally, these measures impose a two-
dimensional penalty (price and quantity) upon defaulting
users and ignore their defaulting magnitude or severity.
Considering the high degree of uncertainty associated with
the behaviors of prosumers, implementing the traditional
penalty mechanism in the energy market will have more neg-
ative effects [20]. Moreover, despite the incentive compati-
bility resulting from the imposition of penalties, participants
may experience a reduction in revenue adequacy [7]. Thus, a
novel penalty mechanism is required that is compatible with
the features of the P2P market.

In response to the problems mentioned above, contribu-
tions of this paper include the following:

• A P2P energy market model involves a penalty mech-
anism is built to explore the default issue. Participants
can minimize the costs associated with penalties by
self-regulating actively to reduce energy deviations.
A discussion is provided on the impacts of the energy
deviations and penalties on trading outcomes.

• A novel APM is proposed that adapts to market con-
ditions by updating the penalty factor. The deviation
percentage parameter is introduced to reduce partici-
pants’ excessive penalty risks on the market. With the
penalty factor determined by the market operator to
minimize overall costs, the clearing price deviations
can be prevented by controlling the energy deviation
into an acceptable range.

• A distributed default clearing algorithm is presented.
By solving the individual optimal energy scheduling
for the participants and the penalty decision-making
for the market operator separately, the efficiency of
the calculation can be guaranteed, and the privacy of
participants can be protected as well.

The rest of this paper is organized as follows. Section
2 formulates the P2P energy trading process considering
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Fig. 1: Framework of P2P energy trading involves a penalty mechanism

the default behaviors and penalty mechanism. Section 3
discusses the impact of default on trading results and the
likely undesired consequences of the penalties. Section 4
describes the proposed APM with the distributed default
clearing algorithm in detail. Section 5 presents the results
and discussions of the case studies. Section 6 concludes this
paper.

2. P2P energy trading framework
2.1. P2P energy market framework description

The P2P energy trading structure of the grid-connected
microgrid is shown in Fig. 1. Prosumers are connected
via bidirectional energy and information flows. The whole
community is connected to the utility grid through a network
connection. The P2P energy market is an online trading
platform that provides a marketplace for energy buyers and
sellers while simultaneously serving a regulatory role. Ad-
ditionally, the P2P energy trading platform will interact with
other markets (wholesale and balancing markets) to achieve
real-time energy balance. Through this structure, prosumers
can trade energy with others to attain local energy self-
consumption. Participants in this market can be individual
or commercial prosumers (such as shopping malls, small
factories, schools, etc.) who have installed generation facil-
ities (such as photovoltaic systems, batteries, and electric
vehicles). This paper assumes that participants have installed
an energy management system (EMS) and smart meter to

optimize facilities’ energy scheduling. The smart meter col-
lects each consumer’s information, including photovoltaic
power production, energy consumption, energy storage sys-
tem (ESS) status, and energy transactions with other con-
sumers and public grids. Additionally, the smart meter com-
municates with the EMS for processing energy management.
Typical methods contain switching the facility’s operating
mode, changing its operating hours, and running it via an
ESS. With the continuous updating of real-time data avail-
able through smart meters, it is possible to monitor each
participant’s energy usage and therefore detect defaulters
[33]. On this point, an agreement must be signed between
each prosumer and the market. The following information
should be included in the agreement but is not limited to:

• Participants are required to submit their orders to
the market with specific price and energy quantity
information in advance, subject to the limit specified
by the market.

• Participants agree to release data on smart meters; the
market can access the information in real-time when
anomalies are detected.

• Participants who fail to complete the energy quantity
stipulated in the matched order will be charged a
penalty according to the amount of deviation.

The P2P market trading cycle refers to a discrete pe-
riod with a fixed duration throughout the day. During the
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trading period, both buyers and sellers send individual or-
ders to the market. The market operator collects orders for
period T and applies the pricing mechanism to determine
the clearing price and settle the trade. During the order
execution period, participants will deliver energy following
pre-matched orders; however, some participants may fail to
deliver. To prevent any significant failure risk caused by
increased failure sources, the market operator must detect
the defaulting participants as soon as possible to change
their consumption/generation. The penalty mechanism de-
termines the allowable range of energy deviation and the
corresponding penalty prices in the market. The market
detects defaulting participants and sends them penalty sig-
nals by continuously monitoring. After receiving a penalty
signal, the participant’s EMS will manage the energy to
reduce fines. Once defaulting participants remain, the market
operator will continue to send them penalty signals until the
penalty mechanism has been exercised to the full extent.

2.2. The pricing mechanism for the P2P energy
market

The Double Auction (DA) is a widely used pricing mech-
anism in many P2P market studies, such as [34–39]. Dis-
criminatory and uniform k-DA are common auction mech-
anisms [36]. The transaction prices are determined between
each pair of winning buyers and sellers under the discrim-
inatory k-DA. In contrast, a unified k-DA mechanism is
designed to make it possible to generate a unified settlement
price for all winning participants within a transaction cycle,
which is common in competitive wholesale electricity mar-
kets. Similarly, the Brooklyn Microgrid project has adopted
this method for P2P trading [38]. The price manipulation
problem can be prevented by establishing appropriate pric-
ing mechanisms that encourage participants to be honest to
avoid using bid price arbitrage [40, 41].

Nevertheless, the bid price is not the only factor affect-
ing market settlement. The energy deviation between the
order book and the actual energy delivered/consumed will
cause errors in transaction results. The discriminatory DA
mechanism is characterized by more transactions, requiring
complicated computation procedures to determine differ-
ent transaction prices [42]. As P2P market participants in
a community often exhibit greater randomness, managing
defaulting orders will require a more complicated method to
calculate and settle the price deviation and energy deviation
between different orders. In contrast, the uniform DA pricing
mechanism requires less computational complexity, which
can better cooperate with the penalty mechanism.

Considering that in a trading time duration 𝑡, 𝑁 partic-
ipants are involved in the transaction, including 𝑁𝐵 buyers
and 𝑁𝑆 sellers. The prosumers with energy deficits are
referred to as the buyers, set 𝐵 = {𝑗|𝑗 = 1, 2, 3...,𝑁𝐵}.
Accordingly, the prosumers with energy surplus are referred
to as the sellers, set 𝑆 = {𝑖|𝑖 = 1, 2, 3...,𝑁𝑆}. The
market platform creates an order book according to the price
priority principle. An order match will only be made when
the buying price exceeds the selling price. The objective of

the market is to pass on the generation costs to consumers
reasonably and efficiently, thus maximizing net social wel-
fare [43]:

max
𝑁𝑆∑
𝑖=1

𝑝𝑆𝑒𝑙𝑙𝑖 ⋅𝑄𝑆
𝑖 −

𝑁𝐵∑
𝑗=1

𝑝𝐵𝑢𝑦𝑗 ⋅𝑄𝑏
𝑗 (1)

s.t.
𝑁𝑆∑
𝑖=1

𝑄𝑆
𝑖 =

𝑁𝐵∑
𝑗=1

𝑄𝑏
𝑗 (2)

𝑝Sell
𝑖 ≤ 𝑝𝐵𝑢𝑦𝑗 (3)

𝑁𝑆∑
𝑖=1

𝑄𝑆
𝑖,𝑙 +

𝑁𝐵∑
𝑗=1

𝑄𝑏
𝑗,𝑙 ≤ 𝑄𝑀𝑎𝑥

𝑙 (4)

where 𝑝𝑆𝑒𝑙𝑙𝑖 denotes the bid price of the 𝑖𝑡ℎ seller, 𝑁𝑆
is the number of sellers engaging in energy trading; 𝑝𝐵𝑢𝑦𝑗
denotes the bid price of the 𝑗𝑡ℎ buyer, 𝑁𝑆 is the number
of consumers engaging in energy trading. 𝑄𝑠

𝑖 is the energy
quantity for seller, 𝑄𝑏

𝑗 is the energy quantity for buyer. 𝑄𝑀𝑎𝑥
𝑙

is the energy limit of the branch 𝑙 in the network. The first
constraint in Eq. (2) is present to ensure energy balance.
The second constraint in Eq. (3) pertains to weakly budget
balance for the buyers. Eq. (4) are the physical constraints
imposed by the grid.

2.3. Default analysis
It is not uncommon for inaccurate generation predictions

and demand-side fluctuations, such as instrument faults,
schedule changes, unexpected visitors, and the uncertainties
associated with manual operations. For example, for a load
prediction made at 15-minute intervals, the possible mean
absolute percentage error dispersion ranged between 3% and
250%, with a mean of 57.5%; and the dispersion with a 30-
minute prediction and with a 60-minute forecast is 48% and
43.2%, respectively [44]. On the other hand, deviations in
net load profiles for providing ancillary services may result
in the breach of pre-negotiated residual orders in the P2P
energy trading [19]. These situations will inevitably lead
to energy deviations between orders and actual consump-
tion/production.

The energy deviation refers to the variation of the mea-
sured energy quantity from the specified energy quantity in
the order book, as Eq. (5) shows. It can be divided into
the Energy Surplus Deviation (ESD), i.e., the actual energy
delivered exceeding the ordered energy, and the Energy
Deficit Deviation (EDD), i.e., the actual energy delivered is
less than the ordered energy. ESD and EDD are expressed
as Eqs. (6) and (7), respectively. ESD could result from
participants’ actual production exceeding the sold quantity
or participants’ actual consumption being lower than the
purchased quantity. EDD could result from the actual energy
production being less than the sold quantity or the actual
energy consumption exceeding the amount purchased.

Δ𝑄𝑖,𝑡 = 𝑄Actual
𝑖,𝑡 −𝑄Order

𝑖,𝑡 (5)
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Fig. 2: (a) The impact of ESD on double auction process; (b) The impact of EDD on double auction process

Δ𝑄+
𝑖,𝑡 =

{
𝑄Actual

𝑖,𝑡 −𝑄𝑠
𝑖,𝑡, when 𝑄Actual

𝑖,𝑡 > 𝑄𝑠
𝑖,𝑡

𝑄𝑏
𝑖,𝑡 −𝑄Actual

𝑖,𝑡 , when 𝑄Actual
𝑖,𝑡 < 𝑄𝑏

𝑖,𝑡

(6)

Δ𝑄−
𝑖,𝑡 =

{
𝑄𝑆

𝑖,𝑡 −𝑄Actual
𝑖,𝑡 , when 𝑄Actual

𝑖,𝑡 < 𝑄𝑆
𝑖,𝑡

𝑄Actual
𝑖,𝑡 −𝑄𝑏

𝑖,𝑡, when 𝑄Actual
𝑖,𝑡 > 𝑄𝑏

𝑖,𝑡

(7)

where Δ𝑄𝑖,𝑡 is the energy deviation for participant i at
time t. 𝑄𝑂𝑟𝑑𝑒𝑟

𝑖,𝑡 is the energy in pre-matched order. 𝑄𝐴𝑐𝑡𝑢𝑎𝑙
𝑖,𝑡 is

the measured actual energy. Δ𝑄+
𝑖,𝑡 represents the ESD and

Δ𝑄−
𝑖,𝑡 represents the EDD.
When penalty measures are used in the energy mar-

ket, energy deviations are treated as defaults and fined ac-
cordingly. Studies on the pricing of the penalty have been
conducted extensively, and some have recommended setting
different penalty prices for ESDs and EDDs [26, 29, 30, 45],
whereas others have suggested setting the same penalty price
for both [18, 24, 25, 31, 46]. For example, the penalty price
for EDD/ESD is higher/lower than the day-ahead market
price [45]. The penalty price is set same for EDD and ESD
with 0.0685$/kWh [46], 0.01$/kWh [24] and 0.13$/kWh
[31], respectively. For a generator i with energy deviation,
the default clearing process can be expressed as:

if Δ𝑄 > 0,𝜑𝑖,𝑡 = 𝐶𝑡 ⋅
(
𝑄Order

𝑖,𝑡 + Δ𝑄+
𝑖,𝑡

)
− 𝑝penal

𝑖,𝑡 ⋅ Δ𝑄+
𝑖,𝑡 (8)

if Δ𝑄 < 0,𝜑𝑖,𝑡 = 𝐶𝑡 ⋅
(
𝑄order

𝑖,𝑡 − Δ𝑄−
𝑖,𝑡

)
− 𝑝penal

𝑖,𝑡 ⋅ Δ𝑄−
𝑖,𝑡 (9)

where𝜑𝑖,𝑡 is the energy bill at t. 𝑝penal
𝑖,𝑡 is the penalty price

at t. 𝐶𝑡 it the clearing price.
Notably, there has been little discussion regarding puni-

tive measures against P2P energy trading. According to the
research on P2P energy trading, Refs [12, 15, 47, 48] point
out that the net power flow between the community grid and
utility grid could be compensated according to the Feed-in
Tariff scheme. The Feed-in Tariff scheme allows prosumers

to purchase energy deficits at a retail price and sell energy
surplus at an export price. Many countries set export prices
below retail prices to encourage local energy consumption.
The clearing price in the P2P market is typically between the
retail price and the export price. Accordingly, the defaulting
participants can purchase EDD at a higher retail price and
sell ESD at a lower export price than the clearing price.
Additionally, Refs [19, 49] stated that the real-time energy
deviation could be purchased on the balancing market at a
specific price. For a prosumer i with energy deviation, the
default clearing process can be expressed as:

If Δ𝑄𝑖,𝑡 > 0,𝜑𝑖,𝑡 = 𝑄Order
𝑖,𝑡 ⋅ 𝐶𝑡 + Δ𝑄+

𝑖,𝑡 ⋅ 𝑝
Sell
𝑖,𝑡 (10)

If Δ𝑄𝑡 < 0,𝜑𝑖,𝑡 = 𝑄Order
𝑖,𝑡 ⋅ 𝐶𝑡 − Δ𝑄−

𝑖,𝑡 ⋅ 𝑝
𝐵𝑢𝑦
𝑡 (11)

where 𝑝Sell
𝑖,𝑡 is the price of purchasing energy from the utility

grid. 𝑝𝐵𝑢𝑦𝑡 is price of selling energy from the utility grid.

3. Default and Penalty in the P2P Energy
Trading

3.1. The impact of energy deviations on trading
outcomes

Fig. 2 illustrates two examples of ESD and EDD’s impact
on a DA process. A single clearing price is determined by the
intersection of the aggregate demand and supply curves, and
all participants trade at this price, 𝐶 . Each order is shown
as a horizontal line, on which the y-axis represents the price,
and the length of the horizontal lines represents the energy
quantity. Suppose a certain amount of ESD exists and other
parameters remain unchanged, the sorting curve of asks (the
green solid line) generated according to actual measured
quantities is different from that (the red dotted line) gen-
erated according to ordered quantities, as Fig. 2(a) shows.
As a result, the new clearing price 𝐶 ′ generated by using
the actual sorting curve is higher than the pre-determined
clearing price 𝐶 . In practice, the market will not regenerate
𝐶 ′ based upon the actual measured quantities, which means
the clearing price used in the settlement process will be 𝐶
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rather than 𝐶 ′. Profit space refers to the difference between
the clearing price and the cost. If the cost is fixed, the profit
space depends on the change in the clearing price. Therefore,
the clearing price deviation will affect non-defaulting par-
ticipants. When using 𝐶 for settlement, the non-defaulting
seller’s/buyer’s profit space will be lower/higher than that
of using 𝐶 ′, respectively. Similarly, Fig. 2(b) shows that the
actual bid curve containing EDD leads to a lower clearing
price𝐶 ′ than𝐶 , resulting in opposite changes in profit space
in contrast with Fig. 2(a).

Participants’ income and expenditure are expressed as
the product of price and quantity. Eq. (12) shows that when
using 𝐶 ′ for settlement, the seller will earn more income
while the buyer will spend more than using 𝐶 for settlement.
Likewise, when 𝐶 ′ is less than 𝐶 , the settlement amount will
be the opposite, as shown in (13). Therefore, regardless of
whether the clearing price deviation is upward or downward,
a party who complies with the agreement will suffer from the
loss of economic interest (the buyer will spend more, and the
seller will earn less).

If 𝐶 ′
𝑡 > 𝐶𝑡,

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝑁𝑆∑
𝑖
𝑄𝑠

𝑖 ⋅ 𝐶
′
𝑡 >

𝑁𝑆∑
𝑖
𝑄𝑠

𝑖 ⋅ 𝐶𝑡

𝑁𝐵∑
𝑖
−𝑄𝑏

𝑖 ⋅ 𝐶
′
𝑡 <

𝑁𝐵∑
𝑖
−𝑄𝑏

𝑖 ⋅ 𝐶𝑡

(12)

If 𝐶 ′
𝑡 < 𝐶𝑡,

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝑁𝑆∑
𝑖
𝑄𝑠

𝑖 ⋅ 𝐶
′
𝑡 <

𝑁𝑆∑
𝑖
𝑄𝑠

𝑖 ⋅ 𝐶𝑡

𝑁𝐵∑
𝑖
−𝑄𝑏

𝑖 ⋅ 𝐶
′
𝑡 >

𝑁𝐵∑
𝑖
−𝑄𝑏

𝑖 ⋅ 𝐶𝑡

(13)

Given the examples, it can be inferred that when ESD
and EDD co-occur, the resulting clearing price deviations
resulting from them can be partially offset. Additionally,
there can be correlations between uncertainties, i.e., energy
deficits and surplus can be compensated for by each other.
Thus, an acceptable deviation range can be specified, within
which the ESD and EDD will not cause the clearing price to
deviate. It can be determined based on the effect of energy
deviation on the clearing price, as Eqs. (14)-(16) describes.

Δ𝑄𝐻 = 𝑞𝑐 − 𝑞1 (14)

Δ𝑄𝐿 = 𝑞2 − 𝑞𝑐 (15)

(
𝐶 ′

𝑡 ,𝐶𝑡
)

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

If
𝑁∑
𝑖=1

Δ𝑄+
𝑖 −

𝑁∑
𝑖=1

Δ𝑄−
𝑗 > Δ𝑄𝐻

𝑡 ,𝐶
′
𝑡 > 𝐶𝑡

If
𝑁∑
𝑖=1

Δ𝑄+
𝑖 −

𝑁∑
𝑖=1

Δ𝑄−
𝑗 < −Δ𝑄𝐿

𝑡 ,𝐶
′
𝑡 < 𝐶𝑡

If − Δ𝑄𝐿
𝑡 ≤ 𝑁∑

𝑖=1
Δ𝑄+

𝑖 −
𝑁∑
𝑖=1

Δ𝑄−
𝑗 ≤ Δ𝑄𝐻

𝑡 ,

𝐶 ′
𝑡 = 𝐶𝑡

(16)

C

0 Quantity

Price

Asks
Bids

PMax

PMin

T� TF� T�

Fig. 3: Double auction trading process

Where 𝑞𝑐 is the quantity corresponding to the clearing
price𝐶 . 𝑞1 and 𝑞2 represent the sorting position and quantity
of the order at the clearing point, as Fig. 3 shows; Δ𝑄𝐻 is
the limitation for extra ESD; Δ𝑄𝐿 is the limitation for extra
EDD.

For comparison purposes, the 𝐶 generated during the
trading period is referred to as the Pre-determined Clearing
Price (PCP), and the 𝐶 ′ generated by using the actual mea-
surements is referred to as the Actual Clearing Price (ACP).
The part of energy deviation that the community ultimately
needs to be exchanged with the utility grid, which is referred
to as Overall Energy Deviation (OED), can be defined as:

OED =
𝑁∑
𝑖=1

(
Δ𝑄+

𝑖,𝑡 − Δ𝑄−
𝑖,𝑡

)
(17)

As mentioned above, ESD and EDD change the sorting
curves in the DA trading process. It is worth noting that the
OED is the ultimate factor determining the clearing price
deviation degree. Clearing price deviations will impact the
profit space of participants and further alter their income and
expenditures. As a result of ensuring market fairness, the
operator should ensure that the ACP and PCP are consistent,
thereby attempting to minimize the impact of clearing price
deviations on participants.

3.2. Undesired consequences of the penalty
As mentioned in Section 2.3, energy deviations can be

settled at the Feed-in Tariff scheme and ancillary prices in
the P2P market. Although these settlement processes are
not explicitly defined as the penalty mechanism, they have
a similarly punitive effect. As shown in Eq. (10), ESD
is settled according to a selling price, such as the export
price set by the Feed-in Tariff scheme or ancillary service
prices. EDD is settled at the buying price, such as retail and
ancillary service prices, as determined by Eq. (11). These
processes can be equivalent to a default clearing process with
different penalty prices for ESD and EDD:

Δ𝑝Sell
𝑡 = 𝐶𝑡 − 𝑝Sell

𝑡 (18)

𝜑𝑖,𝑡 =
(
𝑄Order

𝑖,𝑡 + Δ𝑄+
𝑖,𝑡

)
⋅ 𝐶𝑡 − Δ𝑝Sell

𝑡 ⋅ Δ𝑄+
𝑖,𝑡 (19)
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Fig. 4: Schematic of the power curve and corresponding
clearing price in a P2P market. (a) Power curve of a clear
sky day; (b) Corresponding clearing price

Δ𝑝𝐵𝑢𝑦𝑡 = 𝑝𝐵𝑢𝑦𝑡 − 𝐶𝑡 (20)

𝜑𝑖,𝑡 =
(
𝑄Order

𝑖,𝑡 − Δ𝑄−
𝑖,𝑡

)
⋅ 𝐶𝑡 − Δ𝑝𝐵𝑢𝑦𝑡 ⋅ Δ𝑄−

𝑖,𝑡 (21)

whereΔ𝑝𝑆𝑒𝑙𝑙𝑡 is the price difference between PCP and selling
price, which can be equivalent as a penalty price for ESD;
Δ𝑝𝐵𝑢𝑦𝑡 is the price difference between PCP and buying price,
it can be regarded as a penalty price for EDD.

Fig. 4 shows a schematic of the supply-demand curve
and the corresponding price curve in the P2P market. When
penalizing participants based on different prices for ESD and
EDD, they can reduce the expenditure on energy deviations
through strategic approaches. For example, when the supply
is less than the demand as 𝑇 1 shows, the penalty priceΔ𝑝𝑆𝑒𝑙𝑙𝑡
for ESD is higher than the penalty price Δ𝑝𝐵𝑢𝑦𝑡 for EDD.
To avoid a higher penalty, participants can reduce the ask’s
energy quantity and increase the bid’s energy quantity during
the trading period. Alternatively, participants may ignore
the EDD correction when the compensation cost for self-
regulation is higher than the penalty price. These factors will
eventually lead to the EDD being larger than ESD on the
market and may cause the ACP lower than PCP. Similarly,
the penalty price Δ𝑝𝐵𝑢𝑦𝑡 is higher than Δ𝑝𝑆𝑒𝑙𝑙𝑡 when the
demand exceeds the supply at 𝑇 2, which results in ESD
exceeding EDD. Therefore, imposing differentiated penalty
prices will result in biased energy deviations, as illustrated
in Eq.(22). It is critical to note that only by setting penalty

Minimize 
EDD Cost

Generation

Prosumer (i)
Minimize 
ESD Cost

Consumption

Prosumer (j) 

… 

Checking 
OED 

Constrains

Minimize Cost

Penalty Factor

P2P Market 
Platform

Penalty Price (j)

Energy 
Deviation 

Information

Energy Management 
System

Penalty Price (i)

Fig. 5: The work-flow of the proposed APM

prices uniformly will the participants not take strategic mea-
sures that would result in excessive EDD or ESD.

when
⎧
⎪
⎨
⎪⎩

Δ𝑝Sell
𝑡 > Δ𝑝𝐵𝑢𝑦𝑡 , ||Δ𝑄+

𝑡
|| < ||Δ𝑄−

𝑡
||

Δ𝑝Sell
𝑡 < Δ𝑝Buy

𝑡 , ||Δ𝑄+
𝑡
|| > ||Δ𝑄−

𝑡
||

Δ𝑝Sell
𝑡 = Δ𝑝Buy

𝑡 , ||Δ𝑄+
𝑡
|| = ||Δ𝑄−

𝑡
||

(22)

The above examples show that penalty measures may
prevent participants from offering all their capacity to the
market and result in unjustifiable fines for rational parties.
Furthermore, enforcing strict penalties to decrease the prob-
ability of default may not be feasible since it reduces the
expected revenues of the participants and discourages them
from participating in the market. In this regard, the penalty
mechanism used in the P2P market should accommodate
the participants’ limited self-regulation capability and the
market conditions.

4. Proposed adaptive penalty mechanism
Fig. 5 shows the work-flow of the proposed APM. The

market operator collects penalties from defaulting partici-
pants according to market conditions. Participants willing to
change their energy scheduling will adjust their controllable
devices and ESS accordingly. The extensive installation of
advanced metering infrastructure has made it possible to
enable active interaction among grid components to achieve
effective communication and response between market op-
erators and participants at a higher frequency [50], such
as at a second interval. Intelligent automatic systems carry
out decision-making and information exchange functions
for them. In the workflow, the functions of the participants
are: (1) optimizing the individual objective function when
receiving penalty information and (2) utilizing EMS to com-
pensate for energy deviations automatically. The functions of
the market platform are: (1) monitoring whether participants
compensate for energy deviations; (2) initializing and up-
dating penalty factors determined by the market condition;
(3) determining the amount of final energy deviation and
obtaining compensation from the utility grid.
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4.1. Penalty Price Formulation
Due to the difficulty of ensuring that no energy deviation

occurs during the trading process, an excessive penalty may
reduce prosumers’ willingness to participate in the P2P mar-
ket. In view of this, the parameter Deviation Percentage (DP)
is introduced to measure the magnitude of a participant’s
defaults, as Eq. (14) shows. The three-dimensional penalty
is formulated as Eq. (15) shows. Participants with lower
deviation percentages are subject to lighter penalties. On the
contrary, participants who fail to meet market obligations
will suffer from more severe consequences.

𝑑𝑝𝑡,𝑖 =
||||
Δ𝑄𝑖,𝑡
𝑄𝑖,𝑡

|||| ⋅ 100% (23)

𝑝penal
𝑖,𝑡 = 𝑑𝑝𝑖,𝑡 ⋅ 𝑘𝑝𝑡 ⋅ ||Δ𝑄𝑖,𝑡

|| (24)
where 𝑑𝑝𝑖,𝑡 is the deviation percentage. 𝑘𝑝𝑡 represents the
penalty factor.

The difference between two-dimensional and three-
dimensional penalties is illustrated in Fig. 6. The lines of
different colors correspond to different penalty prices. Under
the three-dimensional penalty, a relatively small degree of
DP (e.g., within 20%) will not result in high fines with the
increase of the penalty factor. Thus, an essential way for
participants is to reduce their DP to avoid high fines. In
contrast, the two-dimensional penalty imposes more signif-
icant fines on participants with a greater energy deviation,
regardless of their default degree. Participants with large
energy quantity orders may be more at risk than those
with significant prediction errors. Consequently, the two-
dimensional penalty could potentially result in losing key
prosumers with high transaction volumes and frequency. In
this regard, introducing the DP parameter can effectively
reduce the risks associated with their participation in the
market.

4.2. Energy Deviation Management Model for
Participants

EMS can assist prosumers in managing DERs and using
bidding strategies to participate in energy transactions. In
terms of self-regulation, Ref.[17] describes a method for
controlling electrical appliances to reduce energy deviations.
Energy storage equipment can also be used as a backup
system to correct the energy deviation in [45]. This paper
assumes that market participants can simultaneously control
electrical appliances and energy storage equipment for self-
regulation.

According to [17], modifying the energy plan will neg-
atively affect the welfare of the corresponding customers,
and a quadratic function can be used to express the cost of
discomfort introduced:

𝑐𝑐𝑜𝑚𝑖,𝑡 =
(
𝑄com

𝑖,𝑡

)2
⋅ 𝜆com𝑖,𝑡 (25)

where 𝑐𝑐𝑜𝑚𝑖,𝑡 denotes the participant’s discomfort cost, 𝑄com
𝑖,𝑡

is the energy from controllable devices, 𝜆com𝑖,𝑡 is the cost
coefficients for the controllable devices.
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According to [45], the operational cost of ESS is sup-
posed to be a linear function of the absolute value of
charged/discharged capacity. It is typically measured using
its power storage capacity in kWh or MWh when the ESS is
used for peak shaving or load leveling. This paper assumes
that the EMS will use available ESS capacity to adjust
the relevant energy deviation. Therefore, the state-of-charge
constraint of ESS is not considered. The ESS operating costs
incurred to compensate for energy deviations are as follows:

𝑐𝐸𝑆𝑆
𝑖,𝑡 = |||𝑄

𝐸𝑆𝑆
𝑖,𝑡

||| ⋅ 𝜆
𝐸𝑆𝑆
𝑖,𝑡 (26)

where 𝑐𝐸𝑆𝑆
𝑖,𝑡 denotes the ESS operation cost, 𝑄𝐸𝑆𝑆

𝑖,𝑡 is the
energy form ESS, 𝜆𝐸𝑆𝑆

𝑖,𝑡 is the cost coefficients for the ESS.
The participation of prosumers in the DA-based P2P

market has been extensively discussed, and many strategies
have been proposed and analyzed, such as zero intelligence
(ZI) [51], best-offer, and market power approach [36]. One
way to reduce the default risk associated with energy trading
is to improve the accuracy of predictions. Another effective
method is to enhance prosumers’ energy self-regulation
ability during the order execution period to reduce energy
deviations. As this paper focuses primarily on the influence
of the penalty mechanism on participants’ self-regulation,
the strategies of bidding and prediction are not discussed.

To maximize the welfare of participants, EMS may need
to modify the energy plan in real-time to solve the arbitrary
behavior of users and the uncertainty of renewable energy
generation forecasts. It is necessary to consider the balance
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between compensation costs and penalties. The objective
function for the optimization is presented by:

min
∑
𝑡∈𝑇

𝑐𝑐𝑜𝑚𝑖,𝑡 + 𝑐𝐸𝑆𝑆
𝑖,𝑡 + 𝑝penal

𝑖,𝑡 ⋅ Δ𝑄𝑖,𝑡 (27)

With the penalty price and cost Eqs. (23)-(26) substituted
into the objective equation, the objective function can be
derived as following:

min
∑
𝑡∈𝑇

(
𝑄com

𝑖,𝑡

)2
⋅ 𝜆com

𝑖,𝑡 + |||𝑄
𝐸𝑆𝑆
𝑖,𝑡

||| ⋅ 𝜆
𝐸𝑆𝑆
𝑖,𝑡

+ 𝑘𝑝𝑡 ⋅

||||||||

(
𝑄order

𝑖,𝑡 −𝑄Actual
𝑖,𝑡 +𝑄𝐸𝑆𝑆

𝑖,𝑡 +𝑄com
𝑖,𝑡

)2

𝑄order
𝑖,𝑡

||||||||

(28)

s.t. 𝑄𝑐𝑙_𝑐𝑜𝑚
𝑖,𝑡 ≤ 𝑄𝑐𝑜𝑚

𝑖,𝑡 ≤ 𝑄𝑐ℎ_𝑐𝑜𝑚
𝑖,𝑡 (29)

𝑄𝑐𝑙_𝐸𝑆𝑆
𝑖,𝑡𝑐 ≤ 𝑄𝐸𝑆𝑆

𝑖,𝑡 ≤ 𝑄𝑐ℎ_𝐸𝑆𝑆
𝑖,𝑡 (30)

where 𝑄𝑐𝑙_𝑐𝑜𝑚
𝑖,𝑡 and 𝑄𝑐ℎ_𝑐𝑜𝑚

𝑖,𝑡 is the available capacity
limitation of controllable devices for EDD and ESD, re-
spectively. 𝑄𝑐𝑙_𝐸𝑆𝑆

𝑖,𝑡 and 𝑄𝑐ℎ_𝐸𝑆𝑆
𝑖,𝑡 is the available charging

and discharging capacity of self-equipped ESS, respectively.
Eqs. (29) and (30) denote the constraints that the energy
scheduling needs to be within the available scheduling range.

4.3. Decision-Making model for the P2P Market
Operator

The ideal situation for the P2P market would be when
the total selling energy quantity equals the total buying
energy quantity. The utility grid will provide a paid balanc-
ing service if unexpected energy deviations are observed.
The penalty imposed on energy deviations can be collected
by the P2P market to compensate for the net costs caused
by maintaining the power grid balance. The retail/export
prices and the ancillary services prices are determined by the
whole market and the balancing market operator. The system
operator is responsible for managing the system constraints
and balancing the power; these roles are beyond the scope of
this paper.

The goal of the P2P market operator is to reduce the
economic risks related to transactions by determining the
overall energy deviation target in the market, adjusting the
penalty factors, and transparently deciding the penalty price
to promote the fairness of the market transactions. The
objective function of the optimization is to minimize the sum
of the penalty and net costs of the community:

min
{ N∑

𝑖
𝑑𝑝𝑖,𝑡 ⋅ 𝑘𝑝𝑡 ⋅

(
Δ𝑄+

𝑖,𝑡 + Δ𝑄−
𝑖,𝑡

)
+ 𝑝𝐺𝑟𝑖𝑑

𝑡 ⋅𝑄𝐺𝑟𝑖𝑑
𝑡

}
(31)

s.t.
𝑁∑
𝑖

(
Δ𝑄+

𝑖,𝑡 − Δ𝑄−
𝑖,𝑡

)
+𝑄Grid

𝑡 = 0 (32)

𝑄min
𝑡 ≤ 𝑁∑

𝑖

(
Δ𝑄+

𝑖,𝑡 + Δ𝑄−
𝑖,𝑡

) ≤ 𝑄max
𝑡 (33)

Δ𝑄𝐿
𝑡 ≤ 𝑁∑

𝑖

(
Δ𝑄+

𝑖,𝑡 − Δ𝑄−
𝑖,𝑡

) ≤ Δ𝑄𝐻
𝑡 (34)

N∑
𝑖
𝑑𝑝𝑡,𝑖 ⋅ 𝑘𝑝𝑡 ⋅

(
Δ𝑄+

𝑖,𝑡 + Δ𝑄−
𝑖,𝑡

) ≥ 𝑝Grid
𝑡 ⋅𝑄Grid

𝑡 (35)

𝑘𝑝min
𝑡 ≤ 𝑘𝑝𝑡 ≤ 𝑘𝑝max

𝑡 (36)
where 𝑝Grid

𝑡 ⋅𝑄Grid
𝑡 is the net costs for compensating energy

deviation from utility grid, 𝑘𝑝max
𝑡 is the maximum penalty

factor and 𝑘𝑝max
𝑡 is the minimum penalty factor. Eq. (32)

describes the constraint of energy balance in the community.
Eq. (33) describes the market’s constraint of maximum
energy deviation. Eq. (34) describes the constraint of the
acceptable range of energy deviation to ensure that the PCP
and ACP are consistent, as described in Section 3.1. Eq. (35)
describes the fines collected should be sufficient to pay the
additional net cost to the utility grid. Eq. (36) describes the
constraint of the penalty factor.

4.4. Distributed Default Clearing Algorithm
Implementing optimization in a centralized manner re-

quires full access of the market operator to participants’
facilities, including getting information data and controlling
adjustable devices directly, which could compromise the
participants’ privacy and control. In contrast, decompos-
ing the optimization problem can reduce the information
required to ensure default clearing efficiency, thereby im-
proving the privacy level of participants’ utility and cost.
Each participant collects data and computation separately in
the distributed optimization approach. As such, this paper
developed a default clearing algorithm in a distributed man-
ner without requiring individual device information from
participants.

Under the presented APM, each participant is considered
a rational agent who makes the best decisions and attempts
to maximize welfare. Consequently, all involved participants
focus only on solving their individual cost minimization
problems, thus contributing to the goal of overall cost min-
imization through a distributed solution. The market regu-
lators solve Eq. (34) by adjusting the level of the penalty
factor. Upon receiving the operator’s penalty factor signal,
the participators will correct the energy deviation in line with
their objective function. This algorithm is illustrated in the
Fig. 7, and the process is explained as follows:

Step 1: The P2P marker platform assigns an initial value
𝑘𝑝0𝑡 to the penalty factor and sets the OED constraints.

Step 2:Once receiving the penalty factor from the P2P
market operator, the prosumers run their EMS by solving
optimization problems. The optimal decision is the energy
scheduling for controllable devices and ESS.

Step 3: Once the corresponding results from prosumers
are observed, the P2P market operator determines whether
the OED exceeds the established limit. Meanwhile, the op-
erator updates its penalty factor, subject to the elasticities
in the generation and consumption sides. The elasticity of
the penalty factor indicates that the change of penalty price
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Fig. 7: Distributed default clearing algorithm

will lead to the change of OED by prosumers. Prosumers can
be prompted to correct their energy deviation by increasing
the penalty factor. Let 𝑘 denote the iteration number of the
interaction. The ESD, EDD, OED, and penalty factor values
are normalized to the value at the initial iteration, i.e., 𝑘 = 1.
Following the collection of energy deviation information,
the market operator will modify and disclose the penalty
factors following actual information as:

𝑘𝑝(𝑘+1)𝑡 = 𝑘𝑝𝑘𝑡 + 𝜁𝑘𝑡 (37)
where 𝜁𝑘𝑡 is the elasticity of the penalty factor, which is
determined according to the monitoring data.

The elasticity will be updated if the OED does not meet
the market restrictions at this time, as demonstrated in Eq.
(38). As shown in (39), the elasticity will not be updated
when OED meets the market restrictions. In addition, the
participants make decisions based on the available capacity
limit for the active intervention, which means that even if the
penalty is increased, the participant may run out of capacity
and can not to reduce the energy deviation further. Therefore,
the elastic update formula appears in Eq. (40).

𝑄max
𝑡 ≤ 𝑁∑

𝑖
Δ𝑄𝑘

𝑖,𝑡 ≤ 𝑄min
𝑡 , 𝜍𝑘𝑡 = 𝜎𝑘𝑡 (38)

𝑄min
𝑡 ≤ 𝑁∑

𝑖
Δ𝑄𝑘

𝑖,𝑡 ≤ 𝑄max
𝑡 , 𝜁𝑘𝑡 = 0 (39)

𝑁∑
𝑖
Δ𝑄𝑘

𝑖,𝑡 −
𝑁∑
𝑖
Δ𝑄(𝑘−1)

𝑖,𝑡 ≤ 𝜛𝑡, 𝜍𝑘𝑡 = 0 (40)

where 𝜛𝑡 is the capacity limitation parameter; 𝜎𝑘𝑡 is the
elasticity parameter of the penalty factor. As studied in [52],

the elasticity factor that is affected by monetary variables
and can be expressed as follows:

𝜎𝑘𝑡 =

(
𝑁∑
𝑖
Δ𝑄𝑘

𝑖,𝑡−
𝑁∑
𝑖
Δ𝑄(𝑘−1)

𝑖,𝑡

)
∕
𝑁∑
𝑖
Δ𝑄𝑘=1

𝑖,𝑡

Δ𝑘𝑝𝑘𝑡 ∕𝑘𝑝
𝑘=1
𝑡

(41)

Step 4: Participants change their responding strategies
by solving their optimization problems and receiving the
updated penalty factor from the market operator. The iter-
ative interaction continues until reaching convergence. The
criteria of the convergence are the required OED to meet
the constraints, or the variation is narrowed down to the
allowable range, and the penalty factor remains unchanged
as
𝑘𝑝(𝑘+1)𝑡 = 𝑘𝑝𝑘𝑡 (42)

Proof: The iterative process between the market opera-
tor and participants to the convergence if Eq.(42) holds. The
penalty will continue to rise when OED fails to meet market
expectations, as represented in Eq.(38), i.e., 𝑘𝑝(𝑘+1)𝑡 > 𝑘𝑝𝑘𝑡 .
The iterative process will continue. When OED meets the
market restrictions as (39) and (40), the penalty factor
remains unchanged. This is the point at which the iterative
process converges.

This paper aims to demonstrate the penalty concept by
analyzing interactions between the market and participants
on a distributed level. The proposed APM is intended to
ensure accurate implementation of market-clearing results
but not to ensure the safe operation of distribution systems.
Therefore, this paper does not take account of physical con-
straints, such as three-phase power flow, operations reserve,
node voltage, and network losses.

5. Simulation and Results
Evaluations on the proposed model are conducted in the

context of a P2P market with commercial participants. The
simulations are conducted on a computer with the Intel(R)
Xeon(R) processor L5630*2. All the cases were simulated
using MATLAB, among which the proposed model calls the
CPLEX optimization toolbox and Yalmip toolbox.

Three sets of case studies were designed and simulated
based on the local P2P energy trading, in which 25 commer-
cial participants with aggregated demand response-based
smart buildings. Load data is derived from measurements
in electricity energy usage data in Council buildings in 2020
[53]. Generation data from real-world measurements is taken
from Pecan Street in June 2021 [54]. Assuming that the
price of energy exchange between the P2P operator and the
utility grid is 0.6$/kWh for the energy deficit compensation
and 0.2$/kWh for export energy surplus. The bidding range
of participants is also between this price range, and that
ZI strategy is adopted to participate in the DA-based P2P
market. There is a set range for penalty factors of 0 to 1 and
applied to all cases. Fig. 8 shows the penalty price for the
corresponding value. The initial value of the penalty factor
is regarded as the minimum penalty factor.

In the first case study, the goal is to test and verify
the effectiveness of the proposed APM by adjusting the
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Table 1
Results of the no-penalty.

MDP 0% 10% 20% 30% 40% 50% 60% 70% 80%
ESD (kWh) 0 17.9333 40.0139 47.0869 67.3036 98.5535 111.285 71.0556 138.9136

No-penalty EDD (kWh) 0 -17.1552 -27.7086 -68.768 -82.9118 -59.1742 -111.6057 -60.907 -101.7419
OED (kWh) 0 0.7781 12.3053 -21.6811 -15.6082 39.3793 -0.3207 10.1486 37.1717
ACP ($/kWh) 0.4963 0.4963 0.4992 0.4852 0.4963 0.5334 0.4963 0.4992 0.5334

Fig. 8: The relationship between penalty price, deviation
percentage and penalty factor

Maximum Deviation Percentage (MDP). The second case
study is intended to explore the limitations of the penalty
mechanism by varying the participants’ reserve capacity
for energy deviation. The third case study investigates the
correlation between the self-regulation cost and the APM by
altering participants’ discomfort and ESS operational cost.

Fig. 9 illustrates the impact of energy deviation on the
clearing price when different energy deviations are set ran-
domly for different participants. In line with the conclusion
of Section 3.1, there is a high possibility of significant
clearing price deviations when substantial OED appears. If
OED is controlled within the specific range (-20.43 to 10.09
kWh), price deviation will not occur, as PRC and ARC are
consistent (0.4963$/kWh). The maximum deviation range
allowed by the market is set to be between - 10 kWh and
10 kWh, reducing the amount of energy exchanged with the
utility grid and maintaining the clearing price.

5.1. Case study 1: Base case assessing the
performance of the APM

This case study acts as the base case and consists of 4
scenarios for validating and assessing the P2P energy trading
performance with different penalty mechanisms. The energy
exchange price between P2P operators and the utility grid
is ignored in this case to assess the penalty mechanism
efficiency better. The ESS cost coefficient is 0.4, and the
discomfort cost coefficient is 0.04. The energy deviation
values are randomly generated for each participant within
the MDP range to simulate the uncertainty, as Eq. (43)
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Fig. 9: The relationship between overall energy deviation and
actual clearing price

shows. An MDP of 0% indicates that the participant has fully
fulfilled the order.

Δ𝑄𝑖,𝑡 = 𝑀𝐷𝑃 ⋅𝑄order
𝑖,𝑡 ⋅ 𝛼𝑖,𝑡 (43)

where 𝛼 is the is a defaulting coefficient.
Table 1 shows the results of the no-penalty scenario. The

prosumer would not compensate for energy deviations in this
scenario. It is observed that the OED shows significant ran-
domness since a high MDP does not necessarily correspond
to a large amount of OED. For example, when the MDP is
60%, the OED is even less than 1. The ESD and EDD are
approximately equal in value at this point, so they can be
offset against each other. When OED exceeds the specific
range shown in Fig.9, it will lead to inconsistency with
the PCP and ACP. The clearing price deviation generates
misleading price signal and destroys the fairness of the
market.

Table 2 shows the energy deviation and ACP results
under the three penalty mechanisms. Two two-dimensional
penalties are analyzed (one is higher than the ESS cost
and the second is lower) to better compare with the APM,
representing excessive and insufficient penalty, respectively.
Results show that the APM and severe penalty (0.6$/kWh)
mechanisms can ensure the consistency of the ACP and
PCP within any of the MDP. The severe penalty forces the
participants to compensate for all energy deviation, thus
fulfilling the order ultimately. By comparison, the APM
regulates the OED within the allowed range (-10 kWh to
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Table 2
Results under different penalty mechanisms.

Penalty mechanism MDP 0% 10% 20% 30% 40% 50% 60% 70% 80%

Adaptive penalty

ESD (kWh) 0 17.9333 30.1215 19.3324 25.2976 38.7335 111.285 63.016 94.0356
EDD (kWh) 0 -17.1552 -20.4661 -29.1593 -34.929 -29.1489 -111.6057 -55.7733 -87.0888
OED (kWh) 0 0.7781 9.6554 -9.827 -9.6314 9.5846 -0.3207 7.2427 6.9468
ACP ($/kWh) 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963
ESD (kWh) 0 2.4467 19.0634 23.7674 40.9896 71.0529 91.7012 58.5553 121.4131
EDD (kWh) 0 -4.539 -11.997 -48.4855 -63.7247 -45.8609 -87.5317 -43.8644 -86.7418
OED (kWh) 0 -2.0923 7.0664 -24.7181 -22.7351 25.192 4.1695 14.6909 34.6713

Mild penalty
(0.2$/kWh)

ACP ($/kWh) 0.4963 0.4963 0.4963 0.4852 0.4852 0.5035 0.4963 0.4992 0.5334
ESD (kWh) 0 0 0 0 0 0 0 0 0
EDD (kWh) 0 0 0 0 0 0 0 0 0
OED (kWh) 0 0 0 0 0 0 0 0 0

Severe penalty
(0.6$/kWh)

ACP ($/kWh) 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963 0.4963
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Fig. 10: Comparison of bills under different Maximum Deviation Percentage (MDP). (a) Proposed adaptive penalty mechanism;
(b) Mild penalty mechanism; (c) Severe penalty mechanism

10 kWh), and participants do not correct the ESD and
EDD entirely. Although the mild penalty (0.2 $/kWh) can
encourage participants to correct a portion of the energy
deviation, it is ineffective in preventing price deviations. Fur-
thermore, although the values of ESD and EDD decreased
to a certain degree under this penalty, the value of OED is
even more significant than the no-penalty scenario in some
circumstances (10%, 30%, 40%, 60%, 70% MDP).

Fig. 10 illustrates a comparison of the bills under three
penalty mechanisms. The bill includes the income from sell-
ing ESD, the spend for purchasing DED, penalties, the cost
of operating the ESS, and the cost of discomfort. Fig. 10(a)
illustrates the bill related to the APM, which sets different
levels of penalties according to the variation of OED. The
penalties are not imposed when the MDP is 10% or 60%,

as the OED is in the allowable range. A lesser penalty is
applied when the MDP is 20% or 70% as the OED is close to
10kWh. In other instances, there is necessary to compensate
for the energy deviation by utilizing both ESS and control-
lable devices, so the penalties tend to be more significant.
As Fig. 10(b) shows, participants always use controllable
devices when a mild penalty is applied to compensate for the
energy deviation. They prefer accepting the penalty since it
is not economical to use ESS simultaneously. The expenses
are more significant when the severe penalty mechanism
is imposed, as shown in Fig. 10(c). To avoid the penalty,
participants must use both ESS and controllable devices
to correct all energy deviation. It can be concluded that
the traditional two-dimensional penalty mechanism follows
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Fig. 11: Comparison of total bills under different MDP. (Where
APM represents the adaptive penalty mechanism, MPM is
the mild penalty mechanism and SPM represents the severe
penalty mechanism.)

similar patterns under any MDP, which makes it inflexible
to changes in market conditions.

Fig. 11 shows the total bill for the three penalty sce-
narios. The severe penalty provides the most effective way
of ensuring full compliance with all orders. Nevertheless, it
typically requires participants to suffer the highest cost. Ac-
cording to the results, the proposed APM has a less total bill
than the mild penalty mechanism in most instances (except
for those with MDP of 20% and 30%). In contrast, the APM
can strike a balance between economy and effectiveness.

5.2. Case study 2: Performance with different
reserve capacity

This case study focuses on assessing the performance
of the penalty mechanisms in situations where participants
have varying reserve capacities. For this case, the energy
deviation scenario is selected from case 1, MDP=50% (the
OED value reaches the maximum). The cost coefficients are
the same as in case 1. The capacity limitation parameter 𝜛𝑡
is set to 0.05 in this case. It should be noted that the smaller
the value, the lower the participantsâĂŹ available capacity
to compensate for energy deviation. Given that the prosumer
cannot predict the 𝛼𝑖,𝑡 exactly, then the reserve capacity can
be planned by using the MPD as follows:

𝑄𝑐𝑙
𝑖,𝑡 = 𝑀𝑃𝐷 ⋅ |||𝑄

order
𝑖,𝑡

||| ⋅ 𝛽
𝑐𝑙
𝑖,𝑡 (44)

𝑄𝑐ℎ
𝑖,𝑡 = −𝑀𝑃𝐷 ⋅ |||𝑄

order
𝑖,𝑡

||| ⋅ 𝛽
𝑐ℎ
𝑖,𝑡 (45)

where 𝛽𝑐ℎ𝑖,𝑡 is the reserved capacity factor for ESD; 𝛽𝑐𝑙𝑖,𝑡 is the
reserved capacity factor for DED.

The reserved capacity factor is a fixed number ranging
from 0 to 1, which represents the amount of capacity the
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Fig. 12: Relationship of penalty factor and overall energy
deviation under different reserve capacity factor

prosumer is willing to reserve for self-regulation in advance,
e.g. 𝛽𝑖,𝑡 = 1 represents the reserved capacity setting is
sufficient to ensure that any energy deviation generated by
chance can be corrected. In this case, it is assumed that the
capacity of the ESS and the controllable devices share the
reserved capacity equally.

Fig. 12 illustrates the variation in OED due to an increase
in penalty and reserve capacity factors under the APM.
With the increase in penalty factor, the OED consistently
exceeds 30kWh when the reserve capacity factor 𝛽 is 0.10.
As the reserve capacity increases, the OED decreases more
rapidly, implying that the penalty’s effectiveness becomes
increasingly apparent. For example, at a penalty factor of
0.4, the OED is within the acceptable range when the reserve
capacity factor is 0.7 and 0.8. Following Eq. (40) in section
4.4, the penalty factor will not continuously increase across
the limited reserve capacity. Similarly, the three curves
(𝛽 = 0.1, 0.2, 0.3) confirm that continuously increasing
the penalty factor does not promote the prosumer’s self-
regulation when the reserve capacity is insufficient.

Fig. 13 shows the energy deviation under different re-
serve capacity factors. The energy deviation under the se-
vere penalty decreases significantly as the reserve capacity
factor increases. A reserve capacity factor greater than 0.5
is required to achieve control of OED within the allow-
able range. Under the mild penalty, there is no noticeable
difference in energy deviation with an increase in reserve
capacity factor, which means that the reserve capacity is
not fully utilized. The APM’s reduced energy deviation rate
is between severe and mild penalties, suggesting a reserve
capacity factor greater than 0.4 is necessary to limit OED.
Although participants’ compensation for energy deviation
under the APM is lower than that under severe penalty, less
reserve capacity is required. It is essential to note that the
choice of reserve capacity by the prosumer will also be based
on economic considerations.

Fig. 14 illustrates the bills under different reserve capac-
ity factors. The OED results show that the market require-
ments cannot be met when 𝛽 is smaller than 0.4, whichever
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Fig. 13: Comparison of energy deviation with different reserve capacity factor. (a) Energy surplus deviation; (b) Energy deficit
deviation; (c) Overall energy deviation. (Where APM represents the adaptive penalty mechanism, MPM is the mild penalty
mechanism and SPM is the severe penalty mechanism.)
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Fig. 15: Comparison of results under different cost (a) Relationship of ESS cost, compensation energy and penalty factor; (b)
Relationship of discomfort cost, compensation energy and penalty factor; (c) Relationship of ESS cost, discomfort cost and
penalty factor

penalty mechanism is employed. Under these circumstances,
the severe penalty will result in high expenditures, e.g.,
the total expense exceeds 100$ for a 𝛽 at 0.1. Increasing
the reserve capacity can reduce expenses. Thus, prosumers
may prefer to select a higher reserve capacity (𝛽 > 0.8)
to minimize cost. With the increase in reserve capacity
factor, the total cost remains essentially unchanged under the
mild penalty mechanism. It indicates that prosumers always
accept the penalty, so they will not prepare enough reserve
capacity for self-regulation. Fig. 14(a) illustrates that when
the prosumers’ reserve capacity factor reaches an appropri-
ate value (𝛽 > 0.5), the bill does not change significantly as
𝛽 increases. As a result, participants do not need to blindly
choose a sufficient reserve capacity but typically select a
suitable one. The participants would determine reserve ca-
pacity based on different penalty mechanisms to maximize
economic benefits. The APM and severe penalty mechanism
can encourage participants to improve their self-regulation

abilities. The APM requires fewer reserve capacities than the
severe penalty when similar OED results are obtained, so it
with a lower risk of wasted opportunity costs.

5.3. Case study 3: Performance with different
self-regulation cost

This case study examines the performance of the pro-
posed APM when the prosumers’ compensation cost for
self-regulation varies. Assuming prosumers have sufficient
reserve capacity, the energy deviation scenario is the same
as in case study 2. Two-dimensional penalty mechanisms
will no longer be tested. As discussed in case study 1, a
penalty price above the cost coefficient can be considered
a severe penalty mechanism. In contrast, the penalty price
below the cost coefficient can be regarded as a mild penalty
mechanism. The performance can be referred to as the
results of case study 1.

Testing the APM has been conducted by modifying the
discomfort and ESS cost coefficient, and all results meet the
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market requirements (-10kWh< OED<10kwh). Figs. 15(a)
and 15(b) indicate that when the ESS or discomfort cost is
low, a relatively small penalty factor can promote the devices
to provide compensation energy for self-regulation. When
ESS and discomfort costs increase, only an increased penalty
factor would effectively promote participants to use energy-
correcting devices. According to Fig. 15(c), the penalty fac-
tor rises proportionally to the increase of ESS and discomfort
cost. In other words, the penalty factor is aligned with the
compensation cost those prosumers are willing to bear to
achieve the desired outcome. If one of the devices is low-
cost and has sufficient capacity, the cost of the other will not
significantly affect the penalty factor. That is, it is necessary
for participants to have at least a low-cost piece of equipment
for compensating energy deviations.

On the other hand, market operators should investi-
gate participants’ equipment conditions and related risks.
When participants possess the necessary equipment for self-
regulation that is both cost-effective and capacity adequacy,
the penalty mechanism can provide effective market regula-
tion. However, when participants’ self-regulation is costly,
only the simultaneous imposition of high penalty factors
can achieve the desired effect. In this situation, participants
would face the risk of significant fines and self-regulation
costs, thus reducing enthusiasm for participating in the mar-
ket.

6. Conclusion
This paper proposes a novel APM for the P2P market

regulation. In addition to monitoring the P2P energy trading
within a distribution network, this method can encourage
participants to compensate for energy deviations between
their actual generation/consumption and the quantity spec-
ified in orders. The energy deviations will lead to the incon-
sistency between the pre-determined clearing price and the
actual clearing price, which can be controlled into acceptable
ranges by implementing the APM. As a result, it is possible
to avoid deviations in the clearing prices to ensure the
fairness of the market. In comparison to the traditional two-
dimensional penalty mechanism described in the literature,
the APM in this paper offers the following advantages:

• Considering there are many uncertainties in the P2P
market due to the high penetration of renewable en-
ergy sources and the arbitrary behavior of participants.
The proposed APM embraces the uncertain nature of
the participants by using a three-dimensional penalty
to reduce excessive penalty risks, benefiting the par-
ticipants with a low deviation percentage.

• The APM helps limit the accumulation of unnecessary
penalties by adjusting the penalty factor to adapt to the
market conditions. It permits partial energy deviation
to achieve low-risk dispatch by purchasing/selling en-
ergy from/to participants with complementary gener-
ation/consumption energy deviations.

• The case studies demonstrate the feasibility of utiliz-
ing the APM in the P2P market. When similar energy
deviation results are obtained, the reserve capacity and
compensation costs required by the APM are less than
the severe penalty. As a result, the APM can mitigate
the risks associated with the heavy fines resulting from
energy deviation and the potential opportunity costs
wastage caused by the reserve capacity.

This paper explores the prerequisites for adopting the
APM in the market. The results suggest that market operators
should analyze participants’ reserve capacity and compensa-
tion costs before implementing a penalty mechanism. Insuf-
ficient reserve capacity may result in penalty mechanisms
not being effective and resulting in additional expenses.
Additionally, when compensation costs are high, it has been
found that only imposing higher fines can encourage partic-
ipants to engage in active participation. Therefore, applying
a penalty mechanism without considering the limitations
of the participants may compromise their willingness to
participate. Furthermore, the setting of penalty mechanisms
should also consider the limitations of existing forecasting
technologies as well as the reaction ability of participants,
which will be investigated in the future.
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