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ABSTRACT

The purpose of this thesis is to study the homogenization of the lake

equation. It generates reaction effect and the reaction term is induced

by homogenization due to the weak convergence. It can be character-

ized by L. Tartar’s method of oscillating test function. We begin by the

homogenization of a Stokes equation perturbed by a drift. By means

of constructing a similar homogenized equation we figure out the weak

limit of the important term, this leads to a limit equation with an extra

zero-order term. We then turn to the homogenization of an anelastic

Stokes system arising from the lake equations and prove the existence

of the solution of the equation using Lax-Milgram Theorem. The ho-

mogenization of the anelastic Stokes equation lays a fundation for the

homogenization of the lake equation. We finally give the proof of the

existence and uniquess of the solution of lake equation using Faedo-

Galerkin method and study the homogenization of the lake equation

by constructing a homogenized equation of the test function according

to Tartar’s method.

Keywords: Homogenization; Viscous Lake Equations; Navier Boundary

Conditions; Anelastic Stokes System.
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Chapter 1

Introduction

The theory of homogenization is a distinct mathematical subject set

forth during the last century. This theory has many significant appli-

cations in filtration, disperse media, mechanics of perforated and com-

posite materials, it can be also found in some other branches of physics,

modern technology and mechanics. Originally, the theory of homoge-

nization was developed in order to give an account of the macroscopic

behaviour of composite materials. The most striking characteristic of

composite materials is the fact that they consists of at least two finely

mixed constituents. Due to their properties, the composite materials

have a wide range of industrial uses nowadays. In general, compos-

ite materials have a better behaviour than the average behaviour of

their individual constituents. Typical examples are the superconduct-

ing multifilamentary composites which are used in the synthesis of op-

tical fibres.

In the ordinary way, in comparison to their global dimension, the het-

erogeneity in composite materials are relatively small. Hence, there are

two scales used to characterize the material, one is the microscopic,

which describes the heterogeneity, and the another one is the macro-
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scopic, which is used to describe the global behaviour of the composite

materials. In addition, the composite can be viewed as a homogeneous

material in macroscopical sight.

This brings up an important topic, homogenization, which is aimed at

researching accurately the macroscopic properties of the composite ma-

terials by considering the properties of the microscopic structure. That

is to say, the heterogeneous medium can be replaced by the homoge-

nized material. Moreover, the global characteristics of the homogenized

material are a good approximation of the heterogeneous medium. From

the perspective of mathematics, the heterogeneous medium can be re-

garded as a sequence of the solutions of a boundary value problem

depending on a parameter lying in a probability space, and the homog-

enized material is the limit of the sequence for an appropriate weak

topology. This signifies mainly that the solutions of a boundary value

problem converge weakly but may not converge strongly (due to the

oscillations) to the solution of a limit boundary value problem which is

clearly defined. The aim of homogenization is to research how oscilla-

tions of coefficients of PDEs generate oscillations in their solutions.

Currently, a vast literature is available on the mathematical aspects

of the homogenization theory. In Tartar’s [59, 60], the author talked

about the background of homogenization theory and the early work

done by Évariste Sanchez-Palencia [51, 52]. In consideration of the

periodic geometry that mixtures of materials show, Évariste Sanchez-

Palencia applied variational methods to identify the first term of an

asymptotic expansion when the period length ε tends to 0. These gen-

erated equations have the same form as the original equations, but

have an essential relation with anisotropic materials, even when the

materials used are all isotropic. In Cioranescu and Donato’s [16], they
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introduced the framework of homogenization theory started with the

variational approach of partial differential equations and then focused

on the periodic homogenization of linear partial differential equations.

They also revisited the oscillating test function method due to Tartar

[57, 58], which is the main tool we will use in this research. In addi-

tion, some other monographs can be referred to study the theory of

homogenization, in particular: Allaire [3, 4], Bachvalov [5], Bachvalov

and Panasenko [6], Oleinik [63], Zhikov, Kozlov and Oleinik [64].

When solving the problems of partial differential equations, the theory

of homogenization can be understood as the ‘averaging’ of partial dif-

ferential equations, which has been usually associated with the method

of weak convergence. Weak convergence method is a significant tech-

nique proposed for researching nonlinear partial differential equations.

In Evans’ [23], the author gave an introduction to this method. When

solving some nonlinear partial differential equations, namely

T (u) = f, (1.0.1)

where T represents a given nonlinear operator, u is the unknown and f

is a given function. To research the existence of a solution u of (1.0.1),

one can construct a suitable group of solvable approximating problems.

We write these problems as

Ti(ui) = fi for i = 1, 2, 3, · · ·, (1.0.2)

where Ti denotes a nonlinear operator which is close to T by some

means for i → ∞, the function fi is close to f , and ui is a solution of

(1.0.2). Now, the expectation is that the functions {ui}∞i=1 will converge

to a solution u of the equation (1.0.1).

In point of fact, the operators Ti may represent discretizations, singu-

lar regularizations, finite dimensional projections, gradients of approx-

3



imate energy functionals, systems collapsing in the limit to a single

equation, and so on. In effect, it is usually not very hard to invent

a class of reasonable approximation which can be solved in fact for a

given nonlinear partial differential equation such as (1.0.1). The ap-

proach is to prove that the solutions of (1.0.2) converge to a solution of

(1.0.1) indeed. But the nonlinearity is an impediment for solving this

problem. Nevertheless, the functions {ui}∞i=1 usually satisfy some uni-

form estimates, and likewise these best available boundary conditions

are usually not too strong. In consideration of these relatively poor

estimates, it can be usually shown only that the functions {ui}∞i=1 (or

a subsequence) converge weakly to a limit u in some function space

ui
w
⇀ u as i→∞. (1.0.3)

This kind of weak convergence is almost always a certain problem, given

the strong nonlinearities. Even if one has constructed approximate

operators Ti in some way which tend to T , it does not necessarily mean

in application that the weak convergence (1.0.3) can imply

Ti(ui)→ T (u) as i→∞. (1.0.4)

The obstacle in the procedure is that weak convergence does not have

a good behaviour in the case of nonlinearities, and yet such weak con-

vergence is obviously the best result we can obtain.

Early in the late 1940s, a Brinkman-type law [11] has been introduced

when researching the Stokes or Navier-Stokes equations. The law was

obtained from the Stokes equations by adding a term proportional to

the velocity to the momentum equation. Therefore, when deriving the

homogenization process, Brinkman’s law is widely applied, this means

that there is usually a linear zero-order term for the velocity appears

in the limit problem.
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While studying homogenization, the main obstruction is to identify the

limit of the terms containing products of two sequences convergence

weekly in some function space. The main tool we used to overcome

this obstacle is the oscillating test functions method introduced by L.

Tartar [57, 58] in 1970s. The idea of Tartar’s method is to construct an

appropriate collection of oscillating test functions, then by subtraction

some terms cancel and passing to the limit one can derive the limit

equation of the target problem using the limit expressions obtained

[58] (see also [16] for the elementary introduction). The method of the

oscillating test functions plays a dominant role in the present research.

Along with the oscillating test functions method, there are many other

methods usually been used in homogenization problems, such as the

multiple-scale method, the two-scale convergence method introduced

by Nguetseng [50] and developed by Allaire [3, 4], and the approaches of

G-convergence and H-convergence to the non-periodic case introduced

by Spagnolo [54] and Tartar [56] repectively, the more details can be

also found in Murat’s [49].

The present research was inspired from the work done by M. Briane and

P. Gérard [13] as well. In [13], the authors not only revised Tartar’s

problem but also proposed a new method based on a parametrix of

the Laplace operator to overcome the lack of integrability of the given

oscillating drift term.

The objective in this thesis is to show the homogenization of a kind of

viscous lake equations based on the method of weak convergence. The

two-dimensional viscous lake equations can be written as

∂t(bu) + div(bu⊗ u) + bηu+ b∇h = div(νbΣ(u)) + bf , (1.0.5)

div(bu) = 0, (1.0.6)
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for (x, t) = (x1, x2, t) ∈ Ω×(0,∞) with Ω ⊂ R2, a bounded and smooth

domain. Here, Σ(u) = 2D(u)− div(u) I and D(u) = 1
2
(∇u+ (∇u)T)

is the deformation tensor.

The viscous lake equations (anelastic limit) have been derived by D.

Levermore and M. Sammartino in [37] as the shallow water limit of

the three-dimensional Navier-Stokes equations, in order to model the

evolution of the vertically averaged horizontal components of the veloc-

ity to the incompressible three-dimensional viscous fluid confined to a

shallow basin with varying bottom topography. The viscous lake equa-

tion was started from three-dimensional incompressible Euler flow, the

so-called lake equations

∂tu+ u · ∇u+∇p = 0, (x, t) ∈ QT ,

div(bu) = 0, (x, t) ∈ QT ,

bu · ∇ = 0, (σ, t) ∈ ST ,

u(x, 0) = u0(x), x ∈ Ω,

(1.0.7)

where QT = Ω× [0, T ), ST = ∂Ω× [0, T ) for all 0 < T <∞. The lake

equations have been derived in [14, 15, 28] to model the evolution of

the vertically averaged horizontal components of the three-dimensional

velocity to the incompressible Euler equations confined to a shallow

basin with a varying bottom topography. Some results for Euler equa-

tions can be employed from Evans and Müller [24], Semmes [53]. More

information about the lake equation can be found in publications such

as Bresch and Métivier [9], Lacave, Nguyen and Paudaser [33], Jiu and

Niu [30], Lions [43] and so on. There are also some literature regarding

the compressible and incompressible flows, for example, Bresch, Gisclon

and Lin [10], DiPerna and Majda [20, 21, 22].

During the last decades, extensive research has been done into the ho-
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mogenization of different types of fluid flow models, and they are still

topics of research today. In Marchenko and Hruslov’s [46], they consid-

ered the homogenization of the stationary incompressible Navier-Stokes

equation under distribution of identical obstacles, and they were the

first to prove that Brinkman’s law describe the limiting behavior of

Stokes flow in a periodically perforated domain for a particular scaling

of the holes. Afterwards, in his seminal PhD thesis [1], Allaire analyzed

the homogenization of the Navier-Stokes equations in open sets perfo-

rated with tiny holes. Nowadays, numerous publications can be found

on fluid flow homogenization. Homogenization of stationary Navier-

Stokes equations was investigated in, for example, Hillairet [29] and

Lu [45]. For compressible fluids, both stationary and time-dependent

cases were considered in Feireisl and Lu [25], Lu and Schwarzacher [44]

and so on. There are also articles investigating the homogenization of

the evolutionary Navier-Stokes system such as Mikeliě [48] and Feireisl,

Namlyeyeva and Nečasová [26].

The viscous lake equations considered in this thesis have the following

equations

∂t(bu
ε)− 1

2
(uε · vε)∇b+ b curl(vε)Juε + b∇pε = div(bΣ(uε)) + bf ,

(1.0.8)

div(buε) = 0, (1.0.9)

for (x, t) ∈ QT = Ω× [0, T ), with the Navier boundary conditions

uε · n = 0, τ ·
(
∇uε + (∇uε)T

)
· ∇ = −βτ · uε, (1.0.10)

for (σ, t) ∈ ST = ∂Ω× [0, T ), and the initial condition

uε(x, 0) = uε0(x), x ∈ Ω. (1.0.11)
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Here we assume the eddy viscosity coefficient ν = 1, turbulent drag

coefficient η = 0 and the nonlinear term div(buε ⊗ uε) is replaced by

−1

2
(uε · vε)∇b+ b curl(vε)Juε (1.0.12)

based on some identities. It is remarked that (1.0.10) are usually called

the (general) Navier boundary conditions, which were first used by

Navier in 1827 (see [7, 42]) and mean that there is a stagnant layer of

fluid close to the wall allowing a fluid to slip, and the slip velocity is

proportional to the shear stress.

Before deriving the homogenization of viscous lake equations, we con-

sidered the homogenization of some important equations in the early

chapters on the basis of the homogenization results of a two dimen-

sional equivalent of the perturbed Stokes problem given in section 3 of

[13].

In Chapter 2, we proposed the homogenization of a Stokes equation

with a drift term in a bounded smooth domain Ω ⊂ R2,



∂tu
ε −∆uε + curl(vε)Juε +∇pε = f , (x, t) ∈ QT ,

div(uε) = 0, (x, t) ∈ QT ,

uε(σ, t) = 0, (σ, t) ∈ ST ,

uε(x, 0) = uε0(x), x ∈ Ω,

(1.0.13)

where QT = Ω × [0, T ), ST = ∂Ω × [0, T ) for all 0 < T < ∞ and

J is the rotation matrix of angle 90◦. The equation arises from the

Navier-Stokes equation where the nonlinear term (uε ·∇)uε is replaced

by (vε · ∇)uε. We prove the limit u satisfies the Brinkman [11] Stokes
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equation

∂tu−∆u+ curl(v)Ju+∇p+Mu = f , (x, t) ∈ QT ,

div(u) = 0, (x, t) ∈ QT ,

u(σ, t) = 0, (σ, t) ∈ ST ,

u(x, 0) = u0(x), x ∈ Ω,

(1.0.14)

where M is the positive definite symmetric matrix-valued function.

In Chapter 3, we consider an anelastic Stokes system with drift term

arising from the lake equations

−div(bΣ(uε))− 1

2
(uε · vε)∇b+ b curl(vε)Juε + b∇pε = bf , (1.0.15)

div(buε) = 0, x ∈ Ω (1.0.16)

with the Navier boundary conditions

uε·n = 0, τ ·
(
∇uε+(∇uε)T

)
·∇ = −βτ ·uε, x ∈ ∂Ω . (1.0.17)

This is the analogue of the Stokes equation for the lake equation where

the eddy viscosity coefficient ν = 1, turbulent drag coefficient η = 0

and the nonlinear term div(buε ⊗ uε) is replaced by

−1

2
(uε · vε)∇b+ b curl(vε)Juε. (1.0.18)

We show that the sequence uε converges weakly in H1
b (Ω) to the solu-

tion u of the Brinkman equation−div(bΣ(u))− 1

2
(u · v)∇b+ b curl(v)Ju+ b∇p+ 2Mu = bf

div(bu) = 0, x ∈ Ω

with the Navier boundary conditions

u · n = 0, τ ·
(
∇u+ (∇u)T

)
· ∇ = −βτ · u, x ∈ ∂Ω .
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In Chapter 4, based on the result in the previous chapters, we propose

the homogenization limit of the lake equaitons;
∂t(bu)− 1

2
(u · v)∇b+ b curl(v)Ju+ b∇p+ 2Mu = div(bΣ(u)) + bf

div(bu) = 0, (x, t) ∈ QT

u(x, 0) = u0(x), x ∈ Ω

with the Navier boundary conditions

u · n = 0, τ ·
(
∇u+ (∇u)T

)
· ∇ = −βτ · u, (σ, t) ∈ ST .

The proof follows Tartar’s method using the oscillating test function

∂t(bw
ε
λ) + b div

(
(vε − v)⊗ λ

)
+ b∇qελ = div(bΣ(wε

λ)), x ∈ Ω

div(bwε
λ) = 0, x ∈ Ω

wε
λ(x, 0) = wε

λ0(x), x ∈ Ω

wε
λ · n = 0, x ∈ ∂Ω.

(1.0.19)

Some classical results for the Navier-Stokes equations and the knowl-

edge of fluid mechanics we making use of refer to Bensoussan, Lions

and Papanicolaou [8], Dafni [18], DiPerna and Majda [21, 22], Majda

and Bertozzi [47] and Tsutsui [62].
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Chapter 2

Homogenization of a Stokes
Equation with a Drift Term

In this chapter we study the homogenization of a two-dimensional non-

stationary Stokes equation with an oscillating drift term varied from

the Navier-Stokes equation. The purpose of the model is to under-

stand how the oscillations of vε will create oscillations in ∇uε and to

discover the equation satisfied by the weak limit u of uε. In this chap-

ter, Tartar’s approach based on oscillating test functions method leads

to a limit equation with an extra zero-order term. In Section 2.1, we

give an introduction to the work done by L. Tartar and show the main

results. In Section 2.2, we prove the existence and uniqueness theo-

rem for the solution of the drift nonstationary Stokes equation using

Faedo-Galerkin method. Section 2.3 is devoted to the proof of the ho-

mogenization result by imitating Tartar approach and constructing a

nonstationary linearized Stokes equation.
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2.1 Introduction and Main Results

The aim of this chapter is to deal with the homogenization of the non-

stationary Stokes equation with an oscillating drift term in a bounded

smooth domain Ω ⊂ R2,

∂tu
ε −∆uε + curl(vε)Juε +∇pε = f , (x, t) ∈ QT ,

div (uε) = 0, (x, t) ∈ QT ,

uε(σ, t) = 0, (σ, t) ∈ ST ,

uε(x, 0) = uε0(x), x ∈ Ω,

(2.1.1)

where QT = Ω× [0, T ) and ST = ∂Ω× [0, T ) for all 0 < T <∞.

The homogenization of partial differential equations was first studied

by L. Tartar at the end of the Seventies. He developed a method based

on oscillating test functions to study homogenization. In his paper [58],

the author talked about oscillations of a function to describe a sequence

of functions which converges weakly but may not converge strongly.

Homogenization is then concerned with understanding how oscillations

of coefficients of a partial differential equation create oscillations in its

solution.

In [13], the authors revisited a homogenization problem studied by

Tartar. The paper considered a scalar equation and a two-dimensional

perturbed Stokes equation with a L2−bounded oscillating drift.

The equation (2.1.1) arises from the Navier-Stokes equation (we assume

that the viscosity and the density of the fluid are both equal to 1)

∂tu
ε −∆uε + (uε · ∇)uε +∇pε = f . (2.1.2)

Thanks to Tartar’s work [57, 58], for the nonlinear term (u · ∇)u with

the divergence free velocity u in the Navier-Stokes equation, we have
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the identity

(u · ∇)u = div(u⊗ u) = curl(u)× u+∇
(1

2
|u|2

)
, (2.1.3)

Furthermore, the equivalent of transformation (2.1.3) in two-dimension

is

(u · ∇)u = div(u⊗ u) = curl(u)Ju+∇
(1

2
|u|2

)
, (2.1.4)

where curl(u) := ∂1u2 − ∂2u1 and J :=

(
0 −1
1 0

)
.

To overcome the trouble caused by the nonlinearity, we replace the first

u in the nonlinear term (u ·∇)u with a given vector-valued divergence

free function v, hence the nonlinear term changes to (v·∇)u. Finally we

can replace (2.1.2) to the drift nonstationary Stokes equation (2.1.1).

In this chapter, we introduce the spaces H(Ω), V(Ω) and V−1(Ω) defined

by

H(Ω) =
{
u ∈ L2(Ω) | div(u) = 0

}
,

V(Ω) =
{
u ∈ H1

0 (Ω) | div(u) = 0
}
,

and

V−1(Ω) =
{
u ∈ H−1(Ω) | div(u) = 0

}
.

We define the solution space associated with (2.1.1);

V 2(QT ) =

{
u ∈ L2([0, T );V(Ω)), u′ =

∂u

∂t
∈ L2([0, T );V−1(Ω))

}
which is a Banach space with respect to the norm

‖u‖V 2(QT ) = ‖u‖L2([0,T );V(Ω)) + ‖u′‖L2([0,T );V−1(Ω)) .

We begin with the existence theorem of the solution for the drift non-

stationary Stokes equation.
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Theorem 2.1.1. Let f ∈ L2(QT ). Assume that vε is bounded in

W 1,0,r
x,t (QT ) ∩ C∞x,t(QT ), with r > 2 and div (vε) = 0. Then, there exists

uε ∈ V 2(QT ) (2.1.5)

and

pε ∈ L
2r

2+r

(
QT

)
. (2.1.6)

Moreover, uε satisfies the weak formulation of (2.1.1) given by

〈uε′(t),ϕ(x)〉V−1(Ω),V(Ω) +

∫
Ω

∇uε(x, t) : ∇ϕ(x) dx

+B(uε(x, t),vε(x, t),ϕ(x)) = 〈f(x, t),ϕ(x)〉 ,
(2.1.7)

for every ϕ ∈ V(Ω). The trilinear form B(uε,vε,ϕ) in (2.1.7) is de-

fined by

B(uε,vε,ϕ)
def≡ 〈(∇uε)Tvε,ϕ〉 −

∫
Ω

(vε ⊗ uε) : ∇ϕ dx (2.1.8)

Here the term curl(vε)Juε in the nonstationary Stokes equation (2.1.1)

is replaced by the extension of the identity (2.1.4) for any divergence

free functions uε,vε

curl(vε)Juε = div (vε ⊗ uε) + (∇uε)Tvε −∇(vε · uε). (2.1.9)

The initial condition has to be understood in L2(Ω),

lim
t→0
‖uε(t)‖L2(Ω) = ‖uε0‖L2(Ω) .

Moreover, since B(uε,vε,uε) = (∇uε)Tvε · uε − (vε ⊗ uε) : ∇uε = 0,

for all t ∈ [0, T ), the energy inequality holds

‖uε(t)‖2
H(Ω) +

∫ T

0

‖uε(τ)‖2
V(Ω) dτ 6 ‖uε0‖2

L2(Ω) + C2
Ω

∫ T

0

‖f(τ)‖2
L2(Ω)dτ

(2.1.10)

where CΩ is the Poincaré constant.
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It is worth noticing that the force terms in curl(vε)Juε occur because

of a magnetic force uε × b as well. Although this force does not work

directly it creates oscillations which dissipate energy at a microscopic

level, an effect that will appear in the homogenization limit equation.

To derive the homogenization limit of (2.1.1) as suggested by Tartar

[58] (See also [13] for the revised method. ), we need to construct the

homogenized nonstationary Stokes equation of the test function wε
λ, for

λ ∈ R2,

∂tw
ε
λ −∆wε

λ + div
(
(vε − v)⊗ λ

)
+∇qελ = 0, (x, t) ∈ QT ,

div (wε
λ) = 0, (x, t) ∈ QT ,

wε
λ(σ, t) = 0, (σ, t) ∈ ST ,

wε
λ(x, 0) = wε

0λ(x), x ∈ Ω.

(2.1.11)

The main result of this chapter is the following homogenization limit

of (2.1.1).

Theorem 2.1.2. Assume the same hypothesis of Theorem 2.1.1. In

addition, suppose

vε
w
⇀ v weakly in W 1,0,r

x,t (QT ) ∩ C∞x,t(QT ), r > 2 (2.1.12)

and

uε0
w
⇀ u0 weakly in L2(Ω) (2.1.13)

then we can extract a subsequence (still denoted by {uε}ε), such that{
uε → u in L2(QT )

pε
w
⇀ p weakly in L

2r
2+r (QT ) .

(2.1.14)
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Moreover, the limit u satisfies the Brinkman Stokes equation

∂tu−∆u+ curl(v)Ju+∇p+Mu = f , (x, t) ∈ QT ,

div (u) = 0, (x, t) ∈ QT ,

u(σ, t) = 0, (σ, t) ∈ ST ,

u(x, 0) = u0(x), x ∈ Ω,

(2.1.15)

where M is the positive definite symmetric matrix-valued function de-

fined by(∇wε
λ)

Tvε
w
⇀Mλ weakly in L

r
2−2r (QT )

∇wε
λ : ∇wε

µ
w
⇀Mλ · µ weakly ∗ in M(QT ) and in L

r
2−2r (QT ),

(2.1.16)

for λ, bµ ∈ R2. Moreover, the zero-order term of (2.1.15) is given by

the convergence(∇uε)T(vε − v)
w
⇀Mu weakly in L2−2r(QT )

∇uε : ∇wε
λ

w
⇀Mu · λ weakly ∗ in M(QT ) and in L2−2r(QT ).

(2.1.17)

The energy relation for the limit equation (2.1.15) is

‖u(t)‖2
H(Ω)+

∫ T

0

‖u(τ)‖2
V(Ω) dτ +M

∫ T

0

‖u(τ)‖2
V(Ω)dτ

6 ‖u0‖2
L2(Ω) + C2

Ω

∫ t

0

‖f(τ)‖2
L2(Ω)dτ .

(2.1.18)

The rest of the chapter is organized as follows. In Section 2.2, we

prove the existence and uniqueness theorem for the solution for the

drift nonstationary Stokes equation (2.1.1). Section 2.3 is devoted to

the proof of the main theorem (Theorem 2.1.2).
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Notation. In this chapter, ∇u :=
(
∂ui

∂xj

)
16i,j6N

for u : RN → RN .

Lq(Ω), (q > 1) denotes the classical Lebesgue space with norm ‖f‖q =

(
∫

Ω
|f |qdx)1/q, the Sobolev space of functions with all its k-th partial

derivatives in L2(Ω) will be denoted by Hk(Ω), and its dual space is

H−k(Ω). We use 〈f , g〉 =
∫

Ω
fgdx to denote the standard inner prod-

uct on the Hilbert space L2(Ω). Given any Banach space X with norm

‖ · ‖X and p ≥ 1, the space of measurable functions u = u(t) from

[0, T ) into X such that ‖u‖X ∈ Lq([0, T )) will be denoted Lq([0, T );X).

And C([0, T ); w-Hk(Ω)) will denote the space of continuous function

from [0, T ) into w-Hk(Ω). This means that for every ϕ ∈ H−k(Ω), the

function 〈ϕ,u(t)〉 is in C([0, T )).

2.2 Proof of the Existence and Unique-

ness

We will prove the existence and uniqueness theorem for solution for the

drift nonstationary Stokes equation (2.1.1) in this section. The strategy

of the proof is motivated by Leray’s seminal work on the incompress-

ible Navier-Stokes equations [35], see also [61, 17, 19]. It proceeds in

six steps. We can construct a sequence of approximate solutions by

any method that yields a consistent weak formulation and an energy

relation. We will employ the Faedo-Galerkin method to approximate

our drift Stokes equation by a sequence of Cauchy problems for suitable

systems of ODEs in finite dimensional spaces. The structure of these

steps was enlightened by my supervisor Prof. Lin [38, 39, 40, 41].

Step 1: Construction of approximate solutions {uεm}m by the Faedo-

Galerkin method.

17



First, we select a countable orthonormal basis {ei}∞i=1 of the space

H1
0 (Ω) ∩ C∞c (Ω). For any m ∈ N, we define the approximate solution

uεm(x, t) of (2.1.1) by

uεm(x, t) =
m∑
i=1

cεim(t)ei(x), (2.2.1)

with cεim(t) ∈ H1[0, T ), 0 < T <∞.

Let now introduce, for any m ∈ N, the finite dimensional approximate

problem for (2.1.1)
〈uεm′(x, t), ek〉+

∫
Ω
∇uεm : ∇ek dx+B(uεm,v

ε, ek) = 〈f(x, t), ek〉 ,

in D′[0, T ), ∀k = 1, · · · ,m

uεm(x, 0) = uε0m(x),

(2.2.2)

where uε0m is the orthogonal projection of uε0 onto the space spanned

by {e1, e2, · · · , em} in H1
0 (Ω).

From the initial condition in this problem, we have

m∑
i=1

cεim(0)ei = uεm(0) = uε0m =
m∑
i=1

〈uε0, ei〉 ei,

which implies cεim(0) = 〈uε0, ei〉, since {e1, e2, · · · , em} are linearly in-

dependent.

From classical results concerning Hilbert spaces, we have that

uε0m(x)→ uε0(x) strongly in L2(Ω)

as m→∞ so that

‖uε0m‖L2(Ω) 6 ‖uε0‖L2(Ω).
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Moreover, applying the Cauchy-Schwarz inequality and the Poincaré

inequality, these solutions will satisfy the regularized version of the

energy relation (2.1.10) as the equality

‖uεm(t)‖2
H(Ω) +

∫ t

0

‖uεm(τ)‖2
V(Ω)dτ = ‖uε0m‖2

L2(Ω) +C2
Ω

∫ T

0

‖f(τ)‖2
L2(Ω)dτ

(2.2.3)

for all t ∈ [0, T ).

Consequently, problem (2.2.2) is a system of m linear ordinary differ-

ential equations of the first order with unknowns c1m, · · · , cmm. By

Picard’s local existence theory, the system of linear ODEs (2.2.2) has a

unique solution on some interval (0, tm), 0 < tm < T . Furthermore, the

energy relation (2.2.3) provides a global L2(Ω) bound on the solutions,

ensuring that they are global. The detail is referred to [61].

Step 2: Show that {uεm}m converges strongly to {uε} in L2(QT ) as

m→∞.

Thanks to the energy inequality (2.1.10) and the energy space (2.1.5),

we can obtain

(a) {uεm}m is bounded in L2
(
[0, T );V(Ω)

)
;

(b) {∂tuεm}m is bounded in L2
(
[0, T );V−1(Ω)

)
;

(c) V(Ω) is compactly embedded in H(Ω) and L2(Ω) is continuously

embedded in V−1(Ω).

From the Aubin-Lions lemma (see [61]), we can know that the injection

of the space L2
(
[0, T );V(Ω)

)
into L2(QT ) is compact, which implies

that {uεm}m admits a strongly converging subsequence in L2(QT ).

Step 3: Passage to the limit as m→∞.
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We want to pass to the limit as m → ∞ in (2.2.2) using the energy

estimate (2.2.3). We recall that at the present time ε > 0 is fixed, and

we are only concerned with a passage to the limit as m → ∞. First,

Step 2 and the energy estimate (2.2.3) ensures that we can extract a

subsequence (still denoted by m), such that
uεm → uε strongly in L2(QT )

uεm
′ w
⇀ uε′ weakly in L2

(
[0, T );V−1(Ω)

)
uε0m → uε0 strongly in L2(Ω).

(2.2.4)

Now let ϕ(x) ∈ V(Ω) and choose a ψ(t) ∈ D[0, T ) such that ψ(0) = 1

and ψ(T ) = 0. Multiply the equation in (2.2.2) by 〈ϕ, ei〉L2(Ω)ψ and

sum over k from 1 to m. After integration in t over [0, T ), we get

−
∫
QT

uεm(x, t)ψ′(t)ϕ(x) dxdt+

∫
QT

∇uεm(x, t) : ∇ϕ(x)ψ(t) dxdt

+

∫ T

0

B(uεm(x, t),vε(x, t),ϕ(x))ψ(t) dt

=

∫
QT

f(x, t)ψ(t)ϕ(x) dxdt+ 〈uε0m(x),ϕ(x)〉.

(2.2.5)

Note that for the first term in this equation, due to the following iden-

tity∫
QT

∂tu
ε
mψ(t)ϕ(x) dxdt

=

∫
QT

( d
dt

(
uεm(x, t)ψ(t)

)
− uεm(x, t)ψ′(t)

)
ϕ(x) dxdt

=

∫
Ω

(
uεm(x, T )ψ(T )− uεm(x, 0)ψ(0)

)
ϕ(x) dx−

∫
QT

uεmψ
′(t)ϕ(x) dxdt

=− 〈uε0m(x),ϕ(x)〉 −
∫
QT

uεm(x, t)ψ′(t)ϕ(x) dxdt.

We now let m → ∞ here. All the terms pass to the limit, thanks to
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convergences (2.2.4), we have∫
QT

uεm(x, t)ψ′(t)ϕ(x) dxdt→
∫
QT

uε(x, t)ψ′(t)ϕ(x) dxdt as m→∞ ,

∫
QT

∇uεm : ∇ϕ(x)ψ(t) dxdt→
∫
QT

∇uε : ∇ϕ(x)ψ(t) dxdt as m→∞ ,

∫ T

0

B(uεm,v
ε,ϕ)ψ(t) dt→

∫ T

0

B(uε,vε,ϕ)ψ(t) dt as m→∞ ,

and

〈uε0m(x),ϕ(x)〉 → 〈uε0(x),ϕ(x)〉 as m→∞ .

Summing up the above convergence results, we finally get that uε sat-

isfies the integral identity

−
∫
QT

uε(x, t)ψ′(t)ϕ(x) dxdt+

∫
QT

∇uε(x, t) : ∇ϕ(x)ψ(t) dxdt

+

∫ T

0

B(uε(x, t),vε(x, t),ϕ(x))ψ(t) dt

=

∫
QT

f(x, t)ψ(t)ϕ(x) dxdt+ 〈uε0(x),ϕ(x)〉,

(2.2.6)

which is exactly the variational equation in (2.1.7) since ψ and ϕ are

arbitrary respectively in D[0, T ) and H1
0 (Ω). This shows that uε is the

weak solution of (2.1.1).

Step 4: The energy inequality.

To recover the energy inequality (2.1.10) from the energy relation (2.2.3),

first we note that the regularized initial data uε0m(x) converges to uε0(x)

strongly in L2(Ω) as m tends to infinite so that

‖uε0m‖L2(Ω) → ‖uε0‖L2(Ω) .
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The convergence of uεm in L2(QT ) together with the fact that the norm

of the weak limit of a sequence is a lower bound for the inferior limit

of the norms, yields

‖uε(t)‖2
L2 6 lim inf

m→∞
‖uεm(t)‖2

L2 , 0 < t < T <∞ .

Similarly, the convergence of uεm in L2(QT ) implies∫ T

0

‖∇uε(τ)‖2
L2dτ 6 lim inf

m→∞

∫ T

0

‖∇uεm(τ)‖2
L2dτ .

By combining the above inequalities, we obtain from (2.2.3) the energy

inequality

‖uε(t)‖2
H+

∫ t

0

‖uε(τ)‖2
V dτ 6 ‖uε0‖2

L2(Ω)+C
2
Ω

∫ T

0

‖f(τ)‖2
L2(Ω)dτ (2.2.7)

for all t ∈ [0, T ), where CΩ is the Poincaré constant which is indepen-

dent of ε.

Step 5: Proof of the uniqueness.

Since the nonstationary Stokes equation (2.1.1) is linear, the unique-

ness follows immediately from the energy inequality. Let uε1,u
ε
2 be two

solutions corresponding to the same data of (2.1.1) then their difference

uε ≡ uε1 − uε2 satisfies the equation
∂tu

ε + curl(vε)Juε = ∆uε, (x, t) ∈ QT ,

uε(σ, t) = 0, (σ, t) ∈ ST ,

uε(x, 0) = 0, x ∈ Ω ,

(2.2.8)

and the energy inequality

‖uε(t)‖2
L2 +

∫ T

0

‖∇uε(τ)‖2
L2dτ 6 0 . (2.2.9)
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The energy inequality (2.2.9) implies that

‖uε(t)‖2
L2 = 0, 0 6 t <∞ ,

and the uniqueness is proved.

Step 6: The existence of the pressure pε.

Since uε ∈ W exists and is unique in the nonstationary drift Stokes

equation, we have the following equation for pε

∇pε = ∆uε − ∂tuε − curl(vε)Juε + f, (x, t) ∈ QT . (2.2.10)

Taking divergence to the both sides of the equation, we have

div (∇pε) = ∆(div (uε))− ∂t(div (uε))− div (curl(vε)Juε) + divf .

Since uε is divergence free, the above equation turns to the Poisson

equation

∆pε = −div (curl(vε)Juε). (2.2.11)

Then the existence and uniqueness of the Poisson equation ensures that

there exists a unique pε such that the equation (2.1.1) holds in D′(Ω).

From the boundedness of vε in W 1,0,r
x,t (QT ) and uε in L2

(
[0, T );V(Ω)

)
,

we have

curl(vε)Juε ∈ L
2r

2+r

(
[0, T );L

2r
2+r−2r (Ω)

)
, (2.2.12)

then it follows immediately that,

∆pε = −div (curl(vε)Juε) ∈ L
2r

2+r

(
[0, T );W−1, 2r

2+r−2r (Ω)
)
. (2.2.13)

Finally from the regularity property we deduce the boundedness of pε

pε ∈ L
2r

2+r

(
[0, T );W 1, 2r

2+r−2r (Ω)
)
. (2.2.14)
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Since the space W 1, 2r
2+r−2r (Ω) ⊂ L

2r
2+r−2r (Ω) is a compact embedding

and L
2r

2+r−2r (Ω) ⊂ L
2r

2+r (Ω) for r > 2, we can assert that

pε ∈ L
2r

2+r (QT ). (2.2.15)

That is, pε is bounded in L
2r

2+r (QT ). Due to the reflexivity of the space

L
2r

2+r (QT ) for r > 2, up to a subsequence the following convergence

holds

pε
w
⇀ p weakly in L

2r
2+r (QT ). (2.2.16)

This completes the proof of Theorem 2.1.1.

2.3 Proof of the Homogenization Result

In this section, we will give the proof of homogenization limit theorem

2.1.2. We first rewrite the weak formulation as

−
∫
QT

uε(x, t)ψ′(t)ϕ(x) dxdt+

∫
QT

∇uε(x, t) : ∇ϕ(x)ψ(t) dxdt

+

∫ T

0

B(uε(x, t),vε(x, t),ϕ(x))ψ(t) dt

=

∫
QT

f(x, t)ψ(t)ϕ(x) dxdt+ 〈uε0(x),ϕ(x)〉,

(2.3.1)

for every ϕ(x) ∈ H1
0 (Ω) and some ψ(t) ∈ D[0, T ) such that ψ(0) = 1

and ψ(T ) = 0. Meanwhile, we have the energy inequality

‖uε(t)‖2
H(Ω) +

∫ t

0

‖uε(τ)‖2
V(Ω) dτ 6 ‖uε0‖2

L2(Ω) + C2
Ω

∫ T

0

‖f(τ)‖2
L2(Ω)dτ.

(2.3.2)

Similar to the Step 2 above, we obtain the convergence of uε as ε→ 0,

uε → u strongly in L2(QT ), (2.3.3)
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due to Aubin-Lions lemma, which shows that the injection of the space

L2
(
[0, T );V(Ω)

)
into L2(QT ) is compact.

Convergence results of the test function.

To derive the homogenization limit of (2.1.1), we imitate Tartar ap-

proach and construct a nonstationary linearized Stokes equation using

the test function wε
λ for λ ∈ R2

∂tw
ε
λ −∆wε

λ + div
(
(vε − v)⊗ λ

)
+∇qελ = 0, (x, t) ∈ QT ,

div (wε
λ) = 0, (x, t) ∈ QT ,

wε
λ(σ, t) = 0, (σ, t) ∈ ST ,

wε
λ(x, 0) = wε

0λ(x), x ∈ Ω.

(2.3.4)

According to the results in [34] (see Theorem 6, p. 100), suppose that

∂Ω ∈ C1. Let vε ∈ W 1,0,r
x,t (QT ) ∩ C∞x,t(QT ) with r > 2. The spaces

W k,l,p
x,t (QT ) occuring here consists of all the elements of Lp(QT ), which

possess generalized derivatives with respect to x up to order k, and

with respect to t up to order l (inclusive) in Lp(QT ). The norm in this

space is defined as

‖u‖Wk,l,p
x,t (QT ) =

(∫
QT

( k∑
α=0

|Dx
αu|p +

l∑
α=0

|Dt
αu|p

)
dxdt

) 1
p
.

Then we have

F (x, t) = −div
(
(vε − v)⊗ λ

)
∈ Lr(QT ) (2.3.5)

and

α(x) = wε
0λ(x) ∈ W 2− 2

r
,r(Ω). (2.3.6)

We also assume that

wε
0λ

w
⇀ w0λ = 0 weakly in W 2− 2

r
,r(Ω) as ε→ 0 . (2.3.7)
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By the differentiability properties of the nonstationary linearized Navier-

Stokes equation, the problem (2.3.4) possesses a unique solution wε
λ,

qελ, such that

wε
λ ∈ W

2,1,r
x,t (QT ), ∇qελ ∈ Lr(QT ), (2.3.8)

and the following estimates holds

‖wε
λ‖W 2,1,r

x,t (QT ) + ‖∇qελ‖Lr(QT ) 6 C
(
‖F ‖Lr(QT ) + ‖wε

0λ‖W 2− 2
r ,r(Ω)

)
.

(2.3.9)

Since

vε
w
⇀ v weakly in W 1,0,r

x,t (QT ) ∩ C∞x,t(QT ), (2.3.10)

this shows that in bounded smooth domain Ω,

F = −div
(
(vε − v)⊗ λ

) w
⇀ 0 as ε→ 0 . (2.3.11)

Combining with (2.3.7), we obtain

‖wε
λ‖W 2,1,r

x,t (QT ) + ‖∇qελ‖Lr(QT ) 6 C
(
‖F ‖Lr(QT ) + ‖wε

0λ‖W 2− 2
r ,r(Ω)

)
→ 0.

(2.3.12)

By maximum principle, we are led to the conclusion thatw
ε
λ

w
⇀ 0 weakly in W 2,1,r

x,t (QT )

qελ
w
⇀ 0 weakly in W 1,0,r

x,t (QT )/R .
(2.3.13)

Then in bounded smooth domain Ω,

(∇wε
λ)

T w
⇀ 0 weakly in W 1,r(QT ). (2.3.14)

However, the weak convergence (2.3.10) of vε and (2.3.14) does not

guarantee the convergence of the product (∇wε
λ)

Tvε. Indeed, we have

the following convergence instead,

(∇wε
λ)

Tvε
w
⇀ 0 · v +Mλ = Mλ weakly in Lq(QT ), (2.3.15)
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where 1
q

= 1
r
− 1 + 1

r
− 1 = 2−2r

r
and the term M is a positive definite

symmetric matrix-valued function, it is a kind of measure. The more

details of measures can be found in [12]. Similarly,

∇wε
λ : ∇wε

µ
w
⇀Mλ · µ weakly ∗ in M(QT ) and in L

r
2−2r (QT ).

(2.3.16)

(2.3.15) and (2.3.16) are exactly the convergence results (2.1.16).

Let ϕ(x) ∈ C∞c (Ω) be a scalar function, choose ψ(t) ∈ D[0, T ) with

ψ(0) = 1 and ψ(T ) = 0. Following Tartar’s oscillating test function

method we put ϕψwε
λ and ϕψuε as test function in equation (2.1.1)

and (2.3.4) respectively. The weak formulation of (2.1.1) is

∫
QT

∂tu
ε · ϕψwε

λ dxdt

+

∫
QT

∇uε : ∇wε
λϕψ dxdt+

∫
QT

∇uε : (wε
λ(∇ϕ)T)ψ dxdt

+

∫
QT

(∇uε)Tvε · ϕψwε
λ dxdt−

∫
QT

(vε ⊗ uε) : ∇wε
λϕψ dxdt

−
∫
QT

(vε ⊗ uε) : (wε
λ(∇ϕ)T)ψ dxdt+

∫
QT

(vε · uε)∇ϕ ·wε
λψ dxdt

−
∫
QT

pε(∇ϕ ·wε
λ)ψ dxdt =

∫
QT

fϕψwε
λ dxdt.

(2.3.17)

As wε
λ

w
⇀ 0 weakly in W 2,1,r

x,t (QT ), some of the terms in (2.3.17) vanish

except the second and the fifth terms, consequently the formulation

(2.3.17) turns to

∫
QT

∇uε : ∇wε
λϕψ dxdt−

∫
QT

(vε ⊗ uε) : ∇wε
λϕψ dxdt = o(1).

(2.3.18)
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On the other hand, the weak formulation of (2.3.4) is

−
∫
QT

wε
λ · ∂t

(
ψ(t)uε

)
ϕdxdt− 〈wε

0λu
ε
0, ϕ〉

+

∫
QT

∇wε
λ : ∇uεϕψ dxdt−

∫
QT

wε
λ · div

(
uε(∇ϕ)T

)
ψ dxdt

+

∫
QT

(
(vε − v)⊗ λ

)
: ∇uεϕψ dxdt−

∫
QT

qελ(∇ϕ · uε) dxdt

−
∫
QT

(
(vε − v)⊗ λ

)
:
(
uε(∇ϕ)T

)
ψ dxdt = 0.

(2.3.19)

The convergence (2.3.10) and the strong convergence of uε in L2(QT )

implies∫
Ω

(
(vε−v)⊗λ

)
:
(
uε(∇ϕ)T

)
ψ dx→ 0 for all 0 6 t < T. (2.3.20)

By energy estimate and the Cauchy-Schwarz inequality∣∣∣∣∫
Ω

(
(vε − v)⊗ λ

)
:
(
uε(∇ϕ)T

)
ψ dx

∣∣∣∣
6 |ψ| ‖(vε − v)⊗ λ‖L∞ ‖∇ϕ‖L2 ‖uε(t)‖H
6C ‖uε(t)‖H

(2.3.21)

for all 0 6 t < T . Therefore, by Lebesgue dominated theorem∫
QT

(
(vε − v)⊗ λ

)
:
(
uε(∇ϕ)T

)
ψ dxdt→ 0 as ε→ 0. (2.3.22)

Then applyingthe convergences (2.3.7) and (2.3.13), for the same reason

as before we can rewrite the weak formulation (2.3.19) as∫
QT

∇wε
λ : ∇uεϕψ dxdt−

∫
QT

(
(vε − v)⊗ λ

)
: ∇uεϕψ dxdt = o(1).

(2.3.23)

Note that for a matrix A and vectors v,u, the following identity holds

(v ⊗ u) : A = ATv · u.
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In this way the weak formulations (2.3.18) and (2.3.23) can be written

as∫
QT

∇uε : ∇wε
λϕψ dxdt−

∫
QT

(∇wε
λ)

Tvε · uεϕψ dxdt = o(1) (2.3.24)

and∫
QT

∇wε
λ : ∇uεϕψ dxdt−

∫
QT

(∇uε)T(vε − v) · λϕψ dxdt = o(1).

(2.3.25)

Then the equation (2.3.24) gives the weak convergence

∇uε : ∇wε
λ

w
⇀ (∇wε

λ)
Tvε · uε in D′(QT ). (2.3.26)

Taking difference of (2.3.24) and (2.3.25) yields the weak convergence

(∇uε)T(vε − v) · λ w
⇀ (∇wε

λ)
Tvε · uε in D′(QT ). (2.3.27)

We may now consider the convergence of the term (∇wε
λ)

Tvε·uε. Recall

the result we obtained before

(∇wε
λ)

Tvε
w
⇀ 0 · v +Mλ = Mλ weakly in L

r
2−2r (QT ), (2.3.28)

and the strong convergence of uε

uε → u strongly in L2(QT ), (2.3.29)

we conclude that

(∇wε
λ)

Tvε · uε w
⇀Mu · λ weakly in Lq(QT ), (2.3.30)

where 1
q

= 2−2r
r

+ 1
2

= 1
2−2r

.

According to (2.3.26), (2.3.27) and (2.3.30), it follows that(∇uε)T(vε − v)
w
⇀Mu weakly in L2−2r(QT )

∇uε : ∇wε
λ

w
⇀Mu · λ weakly ∗ in M(QT ) and in L2−2r(QT ).

(2.3.31)
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Passage to the limit as ε→ 0.

The task is now to discuss the convergence of the weak formulation

(2.3.1) as ε→ 0. First, it follows directly from the hypothesis (2.1.13)

that

〈uε0(x),ϕ(x)〉 → 〈u0(x),ϕ(x)〉 as ε→ 0 . (2.3.32)

For the first term in the weak formulation (2.3.1), by energy inequality

and Cauchy-Schwarz inequality, we have

|〈uε(t), ψ′(t)ϕ(x)〉| 6 sup
06t<T

|ψ′(t)| ‖uε(t)‖H(Ω) ‖ϕ‖L2(Ω) 6 C ‖uε(t)‖H(Ω) .

(2.3.33)

Then the convergence (2.3.3) and Lebesgue dominated convergence the-

orem ensure the convergence∫
QT

uε(x, t)ψ′(t)ϕ(x) dxdt→
∫
QT

u(x, t)ψ′(t)ϕ(x) dxdt as ε→ 0 .

(2.3.34)

Since uε is bounded in L2
(
[0, T );V(Ω)

)
, on account of the fact that

V(Ω) is compactly embedded into H(Ω), we have

∇uε w
⇀ ∇u weakly in L2(QT ). (2.3.35)

By energy estimate and the Cauchy-Schwarz inequality

| 〈∇uε(t),∇ϕψ〉 | 6 sup
06t<T

|ψ| ‖∇uε(t)‖L2(Ω) ‖∇ϕ‖L2(Ω)

6C ‖∇uε(t)‖L2(Ω)

for all 0 6 t < T . It follows by Lebesgue’s dominated convergence

theorem that∫
QT

∇uε(x, t) : ∇ϕ(x)ψ(t) dxdt→
∫
QT

∇u(x, t) : ∇ϕ(x)ψ(t) dxdt.

(2.3.36)
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It remains to show the convergence of the trilinear form

B(uε,vε,ϕ) = 〈(∇uε)Tvε,ϕ〉 −
∫

Ω

(vε ⊗ uε) : ∇ϕ dx. (2.3.37)

For the first term in the trilinear form, we rewrite it as

〈(∇uε)Tvε,ϕ〉 = 〈(∇uε)T(vε − v),ϕ〉+ 〈(∇uε)Tv,ϕ〉. (2.3.38)

We first consider the first term in the RHS of (2.3.38), it follows from

(2.3.31) that

〈(∇uε)T(vε − v),ϕ〉 → 〈Mu,ϕ〉. (2.3.39)

In addition, the convergence ∇uε w
⇀ ∇u weakly in L2(QT ) implies

〈(∇uε)Tv,ϕ〉 → 〈(∇u)Tv,ϕ〉. (2.3.40)

Together with (2.3.39) and (2.3.40), we obtain the limit of 〈(∇uε)Tvε,ϕ〉,

〈(∇uε)Tvε,ϕ〉 → 〈(∇u)Tv,ϕ〉+ 〈Mu,ϕ〉. (2.3.41)

On the other hand, from the strong convergence (2.3.3) of uε and the

weak convergence (2.1.12) of vε impliy the convergence

vε ⊗ uε w
⇀ v ⊗ u weakly in L

2r
2+r

(
[0, T );L

2r
2+r−2r (Ω)

)
. (2.3.42)

Thus we can derive the limit of the second term in the trilinear form∫
Ω

(vε ⊗ uε) : ∇ϕ dx→
∫

Ω

(v ⊗ u) : ∇ϕ dx as ε→ 0 . (2.3.43)

Putting (2.3.41) and (2.3.43) together, we have the convergence of the

trilinear form

B(uε,vε,ϕ)→ B(u,v,ϕ) + 〈Mu,ϕ〉 as ε→ 0 . (2.3.44)
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We can deduce from the energy estimate and Cauchy-Schwarz inequal-

ity that∣∣〈(∇uε)Tvε,ϕ〉ψ
∣∣ 6 sup

06t<T
|ψ| ‖vε‖L∞ ‖∇u

ε(t)‖L2 ‖ϕ‖L2

6C ‖∇uε(t)‖L2

(2.3.45)

and∣∣∣∣∫
Ω

(vε ⊗ uε) : ∇ϕ dxψ
∣∣∣∣ 6 sup

06t<T
|ψ| ‖vε‖L∞ ‖u

ε(t)‖H ‖∇ϕ‖L2

6C ‖uε(t)‖H .
(2.3.46)

Combining (2.3.32), (2.3.34), (2.3.36) and (2.3.44), by Lebesgue domi-

nated theorem we conclude that the limit u satisfies the weak formu-

lation

−
∫

QT
u(x, t)ψ′(t)ϕ(x) dxdt+

∫
QT

∇u(x, t) : ∇ϕ(x)ψ(t) dxdt

+

∫ T

0

B(u(x, t),v(x, t),ϕ(x))ψ(t) dt+

∫
QT

Mu(x, t)ϕ(x)ψ(t) dxdt

=

∫
QT

f(x, t)ψ(t)ϕ(x) dxdt+ 〈u0(x),ϕ(x)〉.

(2.3.47)

Moreover, it follows from (2.2.16) that

∇pε w
⇀ ∇p weakly in L

2r
2+r ([0, T );W−1, 2r

2+r (Ω)). (2.3.48)

Therefore we can write the limit equation of the nonstationary per-

turbed Stokes equation as

∂tu−∆u+ curl(v)Ju+∇p+Mu = f . (2.3.49)

In addition, for the divergence of uε, the weak convergence of uε to

u in L2
(
[0, T );V(Ω)

)
, and the fact that V(Ω) is compactly embedded

into H(Ω) give that

divuε
w
⇀ divu weakly in L2(QT ). (2.3.50)
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Finally, the desired homogenization equation (2.1.15) is obtained.

Convergence of the Energy:

The energy associated with (2.1.1) is given by

Eε(uε)(t)
def≡ ‖uε(t)‖2

H(Ω) +

∫ t

0

‖uε(τ)‖2
V(Ω) dτ. (2.3.51)

First we have the compactness of Eε(uε).

Lemma 2.3.1. Eε(uε) is a relatively compact set in C[0, T ) for all

0 < T <∞.

Proof. As discussed in the previous sections, according to the Arzelà-

Ascoli theorem, it is equivalent to show

(a) |Eε(uε)(t)| < C1, for all t ∈ [0, T ).

(b) |Eε(uε)(t + h) − Eε(uε)(t)| 6 θ(h), uniformly with respect to ε,

for all t ∈ [0, T ) and for all h > 0, where θ tends to zero as h goes

to zero.

(a) follows immediately by Cauchy-Schwarz and the energy inequalities.

For the second statement (b), observe that the weak formulation yields

|Eε(uε)(t+ h)− Eε(uε)(t)| 6
∣∣∣∣ ∫ t+h

t

|〈f(t),uε(t)〉dt
∣∣∣∣

6 h
1
2‖f‖L2(QT )‖uε‖L2((0,T );V(Ω))

where we have use the Cauchy-Schwarz inequality, energy relation and

the assumption of the initial condition and nonhomogeneous term f .

Hence there exists a subsequence still denoted by {Eε(uε)}ε and a

function E(u) ∈ C[0, T ) such that

Eε(uε)→ E(u) in C[0, T ) .
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The same discussion as Step 4 in Section 2.2, we have

‖u(t)‖2
H(Ω) +

∫ t

0

‖u(τ)‖2
V(Ω) dτ 6 lim inf

ε→∞
Eε(uε)(t)

6‖u0‖2
L2 + C2

Ω

∫ T

0

‖f(τ)‖2
L2(Ω)dτ .

As we have seen, the product of two weakly convergent sequences does

not converge in general, to the product of the limits, and this is the

principal difficulty when trying to characterize the limit E(u);

lim
ε→0

Eε(uε)(t)
def≡ E(u)(t) 6= ‖u(t)‖2

H(Ω) +

∫ t

0

‖u(τ)‖2
V(Ω) dτ .

The weak convergence would only give a compactness of Eε(uε) in

C[0, T ), so it is difficult to find the limit energy from (2.3.51) directly.

However, using the homogenization limit or (2.3.31), we have

E(u)(t) = ‖u(t)‖2
H(Ω) +

∫ t

0

‖u(τ)‖2
V(Ω) dτ +M

∫ t

0

‖u(τ)‖2
V(Ω)dτ .

(2.3.52)

The extra M -term is induced by homogenization.
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Chapter 3

Homogenization of an
Anelastic Stokes System
arising from the Lake
Equations

In this chapter, we will study the Homogenization of an Anelastic Stokes

System arising from the Lake Equations. This is the analogue of the

Stokes equation for the lake equation where the eddy viscosity coeffi-

cient ν = 1, turbulent drag coefficient η = 0 and the nonlinear term

div(buε ⊗uε) is replaced by −1
2
(uε · vε)∇b+ b curl(vε)Juε. In Section

3.1, we introduce a two-dimensional viscous lake equation and deduce

some important identities. In Section 3.2, we discuss the anelastic

Stokes equation with drift term and prove the existence of the weak

solution to the boundary value problem of the anelastic Stokes system

using Lax-Milgram Theorem. In Section 3.3, we study the homoge-

nization of the anelastic Stokes equation with drift term and give the

homogenization result.
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3.1 Introduction

We consider the two-dimensional viscous lake equations

∂t(bu) + div(bu⊗ u) + bηu+ b∇h = div(νbΣ(u)) + bf , (3.1.1)

div(bu) = 0, (3.1.2)

for (x, t) = (x1, x2, t) ∈ Ω×(0,∞) with Ω ⊂ R2, a bounded and smooth

domain. The vector field u = (u1, u2)T is a function of (x, t) ∈ R2×R+

denoting the fluid velocity, the scalar function h = h(x, t) stands for

the surface height, f(x, t) is the wind forcing defined over Ω× [0,∞),

u⊗ u = (uiuj), and

Σ(u) = 2D(u)− div(u) I

=

[
∂1u1 − ∂2u2 ∂1u2 + ∂2u1

∂1u2 + ∂2u1 −∂1u1 + ∂2u2

]
(3.1.3)

where I is the 2 × 2 identity matrix and D(u) = 1
2
(∇u + (∇u)T) is

the deformation tensor. Here ν(x) and η(x) are positive eddy viscosity

coefficient and a non-negative turbulent drag coefficient defined over Ω,

the bottom function b = b(x) is a given smooth function to denote the

depth of the basin, which is assumed to be non-degenerate, i.e., that

there exist two positive constants b1 and b2 such that

0 < b1 6 b(x) 6 b2, x ∈ Ω . (3.1.4)

This means that lakes and oceans have vertical lateral boundaries, like

swimming pools. The initial condition is assumed to be weighted in-

compressible

u(x, 0) = u0(x), div(bu0) = 0, x ∈ Ω. (3.1.5)
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We also impose the Navier boundary conditions as

u · n = 0, ντ ·
(
∇u+ (∇u)T

)
· ∇ = −βτ · u, x ∈ ∂Ω , (3.1.6)

where n(x) and τ (x) are the outward unit normal and a unit tangent to

∂Ω at x and β(x) is a non-negative turbulent boundary drag coefficient

defined on ∂Ω. (3.1.6) are usually called the (general) Navier boundary

conditions, which were first used by Navier in 1827 (see [7, 42]) and

mean that there is a stagnant layer of fluid close to the wall allowing

a fluid to slip, and the slip velocity is proportional to the shear stress.

Since b depends on x only, b = b(x) and satisfies (3.1.2), assuming

f = 0, we can rewrite (3.1.1)–(3.1.3) as

∂tu+ (u ·∇)u+ ηu+∇h = b−1div(νbΣ(u)), div(bu) = 0, (3.1.7)

for (x, t) ∈ QT = Ω×[0, T ). This system has been derived in [28, 36, 37]

to model the evolution of the vertical averaged horizontal component

of the three-dimensional velocity to the incompressible Euler equations

confined to a shallow basin with varying bottom topography.

Notice that we have the identity

2div(bu⊗u)−∇(b|u|2) =

[
2∂2(bu1u2) + ∂1(bu2

1)− ∂1(bu2
2)

2∂1(bu1u2) + ∂2(bu2
2)− ∂2(bu2

1)

]
. (3.1.8)

Using the b-weighted divergence free condition div(bu) = 0, the first

and second components of (3.1.8) can be rewritten respectively as2∂2(bu1u2) + ∂1(bu2
1)− ∂1(bu2

2) = −|u|2∂1b− 2b2u2ωb

2∂1(bu1u2) + ∂2(bu2
2)− ∂2(bu2

1) = −|u|2∂2b+ 2b2u1ωb

(3.1.9)

where

ωb =
1

b
curl(u) =

1

b
∇× u =

1

b
(∂1u2 − ∂2u1) (3.1.10)
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is the potential vorticity associated with the lake equation (3.1.1)–

(3.1.2). Therefore (3.1.8) can be rewritten as

2div(bu⊗ u)−∇(b|u|2) = −|u|2∇b+ 2b2ωbu
⊥

= −|u|2∇b+ 2b curl(u)Ju
(3.1.11)

where

J =

[
0 −1
1 0

]
and u⊥ = Ju =

[
−u2

u1

]
. (3.1.12)

We can extend (3.1.11) to any two b-weighted divergence free vector

functions u and v, i.e., div(bu) = div(bv) = 0;

2div(bu⊗ v)−∇(bu · v) =

[
2∂2(bu1v2) + ∂1(bu1v1)− ∂1(bu2v2)

2∂1(bu2v1) + ∂2(bu2v2)− ∂2(bu1v1)

]
= −(u · v)∇b+ b curl(u)Jv − b(∇v)u+ b(∇u)Tv .

(3.1.13)

Note that the extra term −|u|2∇b in (3.1.11) (or −(u·v)∇b in (3.1.13))

shows the nonlinear effect induced by the varying topography of the lake

equation. When v = u, we have

−(∇u)u+ (∇u)Tu = (∇× u)u⊥ = curl(u)Ju (3.1.14)

and (3.1.13) will reduce to (3.1.11). In particular, when b = 1, ωb =

ω = curl(u), (3.1.11) and (3.1.13) will become

2div(u⊗ u)−∇(|u|2) =

[
∂1 2∂2

−∂2 2∂1

] [
u2

1 − u2
2

u1u2

]
= 2ωu⊥ = 2curl(u)Ju

(3.1.15)

and

2div(u⊗ v)−∇(u · v) = curl(u)Jv − (∇v)u+ (∇u)Tv (3.1.16)

respectively.
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In this chapter, we employ the following notations. The weighted square

integrable space L2
b(Ω) consists of all measurable functions f that sat-

isfy ∫
Ω

|f(x)|2 b(x)dx <∞.

The resulting L2
b(Ω)-norm of f is defined by

‖f‖L2
b(Ω) =

(∫
Ω

|f(x)|2 b(x)dx

) 1
2

.

The space L2
b(Ω) is a Hilbert space equipped with the following inner

product

〈f , γ〉b =

∫
Ω

f · γb(x)dx.

The weighted Sobolev space H1
b (Ω) consists of all functions f with weak

derivatives ∇f satisfying

‖f‖H1
b (Ω) =

(∫
Ω

(|f(x)|2 + |∇f(x)|2)b(x)dx

) 1
2

<∞.

We also introduce the spaces Hb(Ω), Vb(Ω) and V−1
b (Ω) defined by

Hb(Ω) =
{
u ∈ L2

b(Ω) | div(bu) = 0, u · n = 0, x ∈ ∂Ω
}
,

Vb(Ω) =
{
u ∈ H1

b (Ω) | div(bu) = 0, u · n = 0, x ∈ ∂Ω
}
,

and

V−1
b (Ω) =

{
u ∈ H−1

b (Ω) | div(bu) = 0, u · n = 0, x ∈ ∂Ω
}
.
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3.2 Anelastic Stokes equation with drift

term

One can extend Tartar’s pioneer work on the homogenization of Stokes

equation perturbed by a drift [57, 58] to the lake equation;

−div(bΣ(uε))− 1

2
(uε · vε)∇b+ b curl(vε)Juε + b∇pε = bf , (3.2.1)

div(buε) = 0, x ∈ Ω (3.2.2)

with the Navier boundary conditions

uε ·n = 0, τ ·
(
∇uε+(∇uε)T

)
·∇ = −βτ ·uε, x ∈ ∂Ω . (3.2.3)

This is the analogue of the Stokes equation for the lake equation (3.1.1)–

(3.1.3) where the eddy viscosity coefficient ν = 1, turbulent drag coef-

ficient η = 0 and the nonlinear term div(buε ⊗ uε) is replaced by

−1

2
(uε · vε)∇b+ b curl(vε)Juε (3.2.4)

based on the identities (3.1.8)–(3.1.16). Here we assume vε ∈ L∞b (Ω).

Note that from (3.1.3) we have

div(bΣ(uε)) = div

[
b(∂1u

ε
1 − ∂2u

ε
2) b(∂1u

ε
2 + ∂2u

ε
1)

b(∂1u
ε
2 + ∂2u

ε
1) b(−∂1u

ε
1 + ∂2u

ε
2)

]

=

[
∂1[b(∂1u

ε
1 − ∂2u

ε
2)] + ∂2[b(∂1u

ε
2 + ∂2u

ε
1)]

∂1[b(∂1u
ε
2 + ∂2u

ε
1)] + ∂2[b(−∂1u

ε
1 + ∂2u

ε
2)]

]

=

[
∇b · ∇uε1 +∇b · ∇⊥uε2 + b∆uε1

∇b · ∇uε2 −∇b · ∇⊥uε1 + b∆uε2

]
= ∇b ·

(
∇uε −∇⊥(uε)⊥

)
+ b∆uε

(3.2.5)
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where ∇⊥ = J∇ =

[
−∂2

∂1

]
is the orthogonal gradient then

div
(
bΣ(uε)

)
· vε = ∇b ·

(
∇uε −∇⊥(uε)⊥

)
· vε + b∆uε · vε

= ∇b · (vε1∇uε1 + vε2∇uε2) +∇b · (vε1∇⊥uε2 − vε2∇⊥uε1)

+ b(vε1∆uε1 + vε2∆uε2).
(3.2.6)

We will integrate (3.2.6) separately. First

∫
Ω

∇b · ∇uε · vεdx =

∫
Ω

∇b ·
( 2∑
j=1

vεj∇uεj
)
dx =

2∑
j=1

∫
Ω

∇uεj · vεj∇bdx .

(3.2.7)

Next, since div(bvε) = 0, we have

−
(
∇b · ∇⊥(uε)⊥

)
· vε = −∇b ·

(
vε1∇⊥(−uε2) + vε2∇⊥uε1

)
= −vε1∂1b∂2u

ε
2 + vε1∂2b∂1u

ε
2 + vε2∂1b∂2u

ε
1 − vε2∂2b∂1u

ε
1

= −(vε1∂1b∂2u
ε
2 + vε2∂2b∂2u

ε
2) + vε2∂2b∂2u

ε
2 + vε1∂2b∂1u

ε
2

+ vε2∂1b∂2u
ε
1 − (vε2∂2b∂1u

ε
1 + vε1∂1b∂1u

ε
1) + vε1∂1b∂1u

ε
1

= −(vε · ∇b)(∂2u
ε
2 + ∂1u

ε
1) + ∂1b(v

ε
1∂1u

ε
1 + vε2∂2u

ε
1)

+ ∂2b(v
ε
1∂1u

ε
2 + vε2∂2u

ε
2)

= b(divvε)(divuε) + ∂1b(v
ε
1∂1u

ε
1 + vε2∂2u

ε
1) + ∂2b(v

ε
1∂1u

ε
2 + vε2∂2u

ε
2)

= b(divvε)(divuε) + div(bvε · ∇uε)− b(∇uε)T : (∇vε)T .
(3.2.8)

Here A : B denotes the matrix product

A : B
def≡ tr(ABT) =

2∑
i,j=1

aijbij . (3.2.9)
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Integrating (3.2.8) over Ω and using the divergence theorem we have

−
∫

Ω

∇b · ∇⊥(uε)⊥ · vεdx =

∫
Ω

(divvε)(divuε)bdx

−
∫

Ω

(∇uε)T : (∇vε)Tbdx+

∫
∂Ω

(bvε · ∇uε) · ∇ds .
(3.2.10)

Since Ω ⊂ R2 and uε · ∇ = vε · ∇ = 0 on ∂Ω, we have (see [32] Lemma

4.1)

(vε · ∇uε) · ∇ = −κuε · vε = −κ(uε · τ )(vε · τ ), x ∈ ∂Ω (3.2.11)

where κ(x) is the curvature of ∂Ω at x, and thus (3.2.10) becomes

−
∫

Ω

∇b · ∇⊥(uε)⊥ · vεdx =

∫
Ω

b(divvε)(divuε)bdx

−
∫

Ω

(∇uε)T : (∇vε)Tbdx− κ
∫
∂Ω

(uε · τ )(vε · τ )bds.

(3.2.12)

Similarly, by Green’s identity we have∫
Ω

b∆uε · vεdx =
2∑
j=1

∫
Ω

bvεj∆u
ε
jdx =

2∑
j=1

∫
Ω

bvεj (div∇uεj)dx

=
2∑
j=1

∫
Ω

bvεj (div∇uεj) +∇(bvεj ) · ∇uεjdx−
2∑
j=1

∫
Ω

∇(bvεj ) · ∇uεjdx

=
2∑
j=1

∫
Ω

div(bvεj∇uεj)dx−
2∑
j=1

∫
Ω

∇uεj · (b∇vεj + vεj∇b)dx

=

∫
Ω

div(bvε · ∇uε)dx−
2∑
j=1

∫
Ω

(b∇uεj · ∇vεj +∇uεj · vεj∇b)dx

=

∫
∂Ω

(bvε · ∇uε) · ∇ds−
2∑

i,j=1

∫
Ω

∂iu
ε
j∂iv

ε
jbdx−

2∑
j=1

∫
Ω

∇uεj · vεj∇bdx

=

∫
∂Ω

(vε · ∇uε) · ∇bds−
∫

Ω

∇uε : ∇vεbdx−
2∑
j=1

∫
Ω

∇uεj · vεj∇bdx
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which becomes∫
Ω

b∆uε · vεdx =− κ
∫
∂Ω

(uε · τ )(vε · τ )bds−
∫

Ω

∇uε : ∇vεbdx

−
2∑
j=1

∫
Ω

∇uεj · vεj∇bdx

(3.2.13)

after using (3.2.11) again. Now adding (3.2.7), (3.2.12) and (3.2.13)

together and using the identity

Σ(uε) : Σ(vε) = tr
[(

2D(uε)− divuεI
)(

2D(vε)− divvεI
)T
]

= 4D(uε) : D(vε)− 2divuε divvε

= 2
(
∇uε : ∇vε + (∇uε)T : (∇vε)T − divuε divvε

)
(3.2.14)

we have

−
∫

Ω

div(bΣ(uε)) · vεdx

= −
∫

Ω

(divuε)(divvε)bdx+ 2

∫
∂Ω

κ(uε · τ )(vε · τ )bds

+

∫
Ω

∇uε : ∇vεbdx+

∫
Ω

(∇uε)T : (∇vε)Tbdx

=
1

2

∫
Ω

Σ(uε) : Σ(vε)bdx+ 2

∫
∂Ω

κ(uε · τ )(vε · τ )bds .

(3.2.15)

Therefore we can define the bilinear form a(uε,vε) : Vb × Vb 7→ R as

a(uε,vε) =
1

2

∫
Ω

Σ(uε) : Σ(vε)bdx+2

∫
∂Ω

κ(uε ·τ )(vε ·τ )bds . (3.2.16)

Since

1

2
Σ(uε) : Σ(uε) = 2D(uε) : D(uε)− (divuε)2

= (∂1u
ε
2 + ∂2u

ε
1)2 + (∂1u

ε
1 − ∂2u

ε
2)2 > 0,
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it is easy to see that a(uε,vε) is coercive ([31], [36], [55]);

a(uε,uε) =
1

2

∫
Ω

Σ(uε) : Σ(uε)bdx+ 2

∫
∂Ω

κ(uε · τ )(uε · τ )bds

> b1

(
1

2

∫
Ω

Σ(uε) : Σ(uε)dx+ 2

∫
∂Ω

κ|uε · τ |2ds
)

= b1

∫
Ω

(∂1u
ε
2 + ∂2u

ε
1)2 + (∂1u

ε
1 − ∂2u

ε
2)2dx

+ 2b1

∫
∂Ω

κ|uε · τ |2ds

= b1‖∇uε‖2
L2
b(Ω) − b1

∫
∂Ω

κ|uε|2ds+ 2b1

∫
∂Ω

κ|uε|2ds

= b1‖∇uε‖2
L2
b(Ω) + c1‖uε‖2

L2
b(Ω)

> C‖uε‖2
H1

b (Ω) ,

(3.2.17)

where C = min{b1, c1}.

From the representation formula (3.1.13)

b curl(vε)Juε =2div(buε ⊗ vε)−∇(buε · vε)

+ (uε · vε)∇b+ b(∇uε)Tvε − b(∇vε)uε
(3.2.18)

we define the integrals Ii, i = 1, · · · , 4 by

I1 = −1

2

∫
Ω

(uε · vε)∇ log b ·ϕbdx,

I2 = −2

∫
Ω

uε ⊗ vε : ∇ϕbdx,

I3 =

∫
Ω

(∇uε)vε ·ϕbdx,

I4 =

∫
Ω

(∇vε)Tuε ·ϕbdx .

(3.2.19)
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Therefore the variational formulation of (3.2.1)–(3.2.3) is given by

a(uε,ϕ) + (uε,vε,ϕ) = L(ϕ) (3.2.20)

where (uε,vε,ϕ) = I1 + I2 + I3 + I4 is the trilinear form and the linear

form L : Vb 7→ R defined by

L(ϕ)
def≡ 〈f ,ϕ〉b =

∫
Ω

f ·ϕbdx, (3.2.21)

for all ϕ ∈ H1
b (Ω) satisfying div(bϕ) = 0 in Ω and ϕ · ∇ = 0 on ∂Ω.

For uε,ϕ ∈ Vb, by Cauchy-Schwarz inequality and trace theorem we

have

|a(uε,ϕ)| 62‖D(uε)‖L2
b(Ω)‖D(ϕ)‖L2

b(Ω) + 2‖divuε‖L2
b(Ω)‖divϕ‖L2

b(Ω)

+ 2‖κ‖L∞(∂Ω)‖uε‖L2
b(∂Ω)‖ϕ‖L2

b(∂Ω)

6C ′‖uε‖H1
b (Ω)‖ϕ‖H1

b (Ω)

(3.2.22)

Now we need to estimate the trilinear term (uε,vε,ϕ). Using Cauchy-

Schwarz inequality and Poincaré inequality, we have

|I1| =
1

2

∣∣∣∣∫
Ω

(uε · vε)∇ log b ·ϕbdx
∣∣∣∣

6
1

2
‖vε‖L∞(Ω) ‖∇ log b‖L∞(Ω) ‖u

ε‖L2
b(Ω) ‖ϕ‖L1

b(Ω)

6 C1 ‖uε‖H1
b (Ω) ‖ϕ‖H1

b (Ω) ,

|I2| =
∣∣∣∣2 ∫

Ω

uε ⊗ vε : ∇ϕbdx
∣∣∣∣ 6 2‖uε ⊗ vε‖L2

b(Ω)‖∇ϕ‖L2
b(Ω)

6 ‖vε‖L∞(Ω) ‖u
ε‖L2

b(Ω) ‖∇ϕ‖L2
b(Ω)

6 C2‖uε‖H1
b (Ω)‖ϕ‖H1

b (Ω) ,
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|I3| =
∣∣∣∣∫

Ω

(∇uε)vε ·ϕbdx
∣∣∣∣ 6 ‖vε‖L∞(Ω) ‖∇u

ε‖L2
b(Ω) ‖ϕ‖L2

b(Ω)

6 C3‖uε‖H1
b (Ω)‖ϕ‖H1

b (Ω)

and

|I4| =
∣∣∣∣∫

Ω

(∇vε)Tuε ·ϕbdx
∣∣∣∣ 6 ‖∇vε‖L∞(Ω) ‖u

ε‖L2
b(Ω) ‖ϕ‖L2

b(Ω)

6 C4‖uε‖H1
b (Ω)‖ϕ‖H1

b (Ω).

Hence

|(uε,vε,ϕ)| ≤ C0‖uε‖H1
b (Ω)‖ϕ‖H1

b (Ω) . (3.2.23)

Therefore B(uε,ϕ) = a(uε,ϕ) + (uε,vε,ϕ) is bounded. Let ϕ = uε in

(3.2.23) we get

|(uε,vε,uε)| ≤ C0‖uε‖2
H1

b (Ω).

Choosing C̃ = C − C0 > 0, combine with the coercivity of a(uε,vε),

we have

B(uε,uε) > C̃‖uε‖H1
b (Ω). (3.2.24)

Therefore B(uε,ϕ) is coercive.

Then, according to the Lax-Milgram theorem there exists a unique

solution uε of equation (3.2.1) in H1
b (Ω). To determine the existence of

the pressure pε, we take the divergence of (3.2.1), then the pressure pε

satisfies the nonhomogeneous strictly elliptic equation of the divergence

form

div
(
b∇pε

)
= div

(
div(bΣ(uε))+

1

2
(uε ·vε)∇b−b curl(vε)Juε+bf

)
≡ F.

(3.2.25)

Since uε ∈ H1
b (Ω), it follows that div(bΣ(uε)) ∈ H−1

b (Ω) and F ∈
H−2
b (Ω). By regularity theorem of elliptic equations (see Theorem 9.15

in[27]), the space of pε has two more regularities than the space of F ,
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then we can assert that there exists a unique solution pε ∈ L2
loc(Ω)/R.

Thus we have the following result:

Theorem 3.2.1. Let Ω ⊂ R2 be a smooth simply connected bounded

domain with nonnegative curvature κ(x) > 0 for all x ∈ ∂Ω. For ε > 0

fixed there exists at least one weak solution (uε, pε) to the boundary

value problem of the anelastic Stokes system (3.2.1)–(3.2.3).

3.3 Homogenization of the Anelastic Stokes

Equation

In this section we will find the limit equation of weak formulation

(3.2.20) for equation (3.2.1)-(3.2.3) when ε→ 0.

First, using the coercivity of the bilinear form and Cauchy-Schwarz

inequality, we get the energy estimate

C ‖uε‖2
H1

b (Ω) ≤ a(uε,uε) + (uε,vε,uε) = |〈f ,uε〉|b

≤ ‖f‖L2
b(Ω) ‖u

ε‖L2
b(Ω) ≤ ‖f‖L2

b(Ω) ‖u
ε‖H1

b (Ω) ,

that is,

‖uε‖2
H1

b (Ω) ≤ C1 ‖f‖L2
b(Ω) . (3.3.1)

So we can deduce that uε is bounded inH1
b (Ω) and weakly converges, up

to a subsequence {uε}ε, to a function u in H1
b (Ω), due to the reflexivity

of the Sobolev space H1
b (Ω)

uε
w
⇀ u weakly in H1

b (Ω). (3.3.2)
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Furthermore, it follows that
uε → u strongly in L2

b(Ω)

∇uε w
⇀ ∇u weakly in L2

b(Ω)

∆uε
w
⇀ ∆u weakly in H−1

b (Ω).

(3.3.3)

For pε ∈ L2
loc(Ω)/R, since the space L2

loc(Ω)/R is reflexive, we find

pε
w
⇀ p weakly in L2

loc(Ω)/R. (3.3.4)

For vε ∈ L∞b (Ω), since L∞b (Ω) ⊂ Lrb(Ω) for 1 6 r 6∞v
ε w
⇀ v weakly in Lrb(Ω)

∇vε w
⇀ ∇v weakly in W−1,r

b (Ω).
(3.3.5)

By convergences (3.3.3)–(3.3.5), we can derive the following conver-

gence ∫
Ω

∇b · (∇uεϕ)dx→
∫

Ω

∇b · (∇uϕ)dx, (3.3.6)∫
Ω

∇b · [∇⊥(uε)⊥ϕ]dx→
∫

Ω

∇b · [∇⊥(u)⊥ϕ]dx (3.3.7)

and ∫
Ω

b∆uε ·ϕdx→
∫

Ω

b∆u ·ϕdx. (3.3.8)

Combining (3.3.6)–(3.3.8) together we have∫
Ω

div(bΣ(uε)) ·ϕdx→
∫

Ω

div(bΣ(u)) ·ϕdx. (3.3.9)

In the same way, we obtain∫
Ω

1

2
(uε · vε)∇b ·ϕdx→

∫
Ω

1

2
(u · v)∇b ·ϕdx. (3.3.10)
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We now turn to the third term b curl(vε)Juε in (3.2.1). By the repre-

sentation formula (3.2.18)

b curl(vε)Juε =2div(buε ⊗ vε)−∇(buε · vε)

+ (uε · vε)∇b+ b(∇uε)Tvε − b(∇vε)uε.
(3.3.11)

It is easy to deduce the following convergences∫
Ω

2div(buε ⊗ vε)dx→
∫

Ω

2div(bu⊗ v) ·ϕdx, (3.3.12)

∫
Ω

∇(buε · vε) ·ϕdx→
∫

Ω

∇(bu · v) ·ϕdx, (3.3.13)∫
Ω

(uε · vε)∇b ·ϕdx→
∫

Ω

(u · v)∇b ·ϕdx, (3.3.14)

and ∫
Ω

(∇vε)uε ·ϕb dx→
∫

Ω

(∇v)u ·ϕb dx. (3.3.15)

Since the weak convergence of ∇uε w
⇀ ∇u in L2

b(Ω) and vε
w
⇀ v in

Lrb(Ω) do not guarantee the convergence of the product b(∇uε)Tvε. So

we have to proceed to determine the limit of b(∇uε)Tvε.

According to Tartar’s oscillating test function method, we construct a

similar homogenized equation using the test function wε
λ with λ ∈ R2

−div
(
bΣ(wε

λ)
)

+ b div
(
(vε − v)⊗ λ

)
+ b∇qελ = 0, x ∈ Ω

div(bwε
λ) = 0, x ∈ Ω

wε
λ · ∇ = 0, x ∈ ∂Ω.

(3.3.16)

First, we write down the weak formulation of (3.3.16)

a(wε
λ,ϕ) = 〈f ε,ϕ〉b , (3.3.17)
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where the bilinear form

a(wε
λ,ϕ) =

1

2

∫
Ω

Σ(wε
λ) : Σ(ϕ)b dx+ 2

∫
∂Ω

κ(wε
λ · τ )(ϕ · τ )b ds,

and

f ε = div
(
(vε − v)⊗ λ

)
.

Using the result (3.2.17) in Section 3.2 we can obtain the coercivity of

the bilinear form

a(wε
λ,w

ε
λ) =

1

2

∫
Ω

Σ(wε
λ) : Σ(wε

λ)b dx+ 2

∫
∂Ω

κ(wε
λ · τ )(wε

λ · τ )b dx

≥ C ‖wε
λ‖

2
H1

b (Ω) .

(3.3.18)

Meanwhile, we have

|a(wε
λ,ϕ)| ≤ C1 ‖wε

λ‖
H1
b

(Ω)
‖ϕ‖

H1
b

(Ω)
. (3.3.19)

Therefore by the Lax-Milgram Theorem there exists a unique solution

wε
λ ∈ H1

b (Ω) for (3.3.16). Moreover, we have the energy estimate

C ‖wε
λ‖

2
H1

b (Ω) ≤ a(wε
λ,w

ε
λ) = |〈f ε,wε

λ〉b|

≤ ‖f ε‖L2
b(Ω) ‖w

ε
λ‖L2

b(Ω) ≤ ‖f
ε‖L2

b(Ω) ‖w
ε
λ‖H1

b (Ω) ,
(3.3.20)

that is,

‖wε
λ‖H1

b (Ω) ≤ C ′ ‖f ε‖L2
b(Ω) . (3.3.21)

In addition, since vε
w
⇀ v in Lrb(Ω), it follows that

‖f ε‖L2
b(Ω) =

∥∥div
(
(vε − v)⊗ λ

)∥∥
L2
b(Ω)
→ 0 as ε→ 0. (3.3.22)

Therefore

wε
λ

w
⇀ 0 weakly in H1

b (Ω). (3.3.23)
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In this way∫
Ω

div(bΣ(wε
λ)) ·ϕdx = −

∫
Ω

Σ(wε
λ) : (∇ϕ)b dx→ 0,

and so

div(bΣ(wε
λ))

w
⇀ 0 weakly in H−1

b (Ω). (3.3.24)

Then for qελ, it follows that

b∇qελ = div
(
bΣ(wε

λ)
)
− b div

(
(vε − v)⊗ λ

) w
⇀ 0 weakly in H−1

b (Ω),

and

∇qελ
w
⇀ 0 weakly in H−1

b (Ω).

According to the regularity theorem of elliptic equations, we have the

convergence of qε

qελ
w
⇀ 0 weakly in L2

loc(Ω)/R. (3.3.25)

Let ϕ ∈ C∞c (Ω) be a scarlar function with ∇ϕ = 0. Following the

Tartar’s method we put ϕwε
λ as test function in equation (3.2.1) and

ϕuε in equation (3.3.16), using the fact that wε
λ

w
⇀ 0 we have∫

Ω

Σ(uε) : Σ(wε
λ)ϕb dx− 2

∫
Ω

(uε ⊗ vε) : ∇(wε
λ)ϕb dx = o(1)

(3.3.26)

and∫
Ω

Σ(wε
λ) : Σ(uε)ϕb dx−

∫
Ω

(
(vε−v)⊗λ

)
: uεϕb dx = o(1). (3.3.27)

In addition, it is fact that

uε ⊗ vε : (∇wε
λ) = (∇wε

λ)
Tvε · uε(

(vε − v)⊗ λ
)

: ∇uε = (∇uε)T(vε − v) · λ
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In consequence, we rewrite (3.3.26) and (3.3.27) as∫
Ω

Σ(uε) : Σ(wε
λ)ϕb dx− 2

∫
Ω

(∇wε
λ)

Tvε · uεϕb dx = o(1) (3.3.28)

∫
Ω

Σ(wε
λ) : Σ(uε)ϕbdx−

∫
Ω

(∇uε)T(vε − v) · λϕbdx = o(1). (3.3.29)

The equation (3.3.28) shows that

Σ(uε) : Σ(wε
λ)

w
⇀ 2(∇wε

λ)
Tvε · uε weakly in D′(Ω). (3.3.30)

The task is now to determine the convergence of (∇wε
λ)

Tvε. The con-

vergence ∇wε
λ

w
⇀ 0 in L2

b(Ω) and vε
w
⇀ v in Lrb(Ω) do not guarantee the

convergence of (∇wε
λ)

Tvε. Indeed, we have the following convergence

instead.

Lemma 3.3.1. There exists a positive definite symmetric matrix-valued

function M such that (up to a subsequence)(∇wε
λ)

Tvε
w
⇀ 0 · v +Mλ = Mλ weakly in L

2r
2+r

b (Ω)

∇wε
λ : ∇wε

µ
w
⇀Mλ · µ weakly ∗ in M(Ω) and L

2r
2+r

b (Ω)

(3.3.31)

for λ,µ ∈ R2. Moreover, since uε → u in L2
b(Ω), we have

(∇wε
λ)

Tvε ·uε w
⇀Mu ·λ weakly ∗ in M(Ω) and L

r
1+r

b (Ω). (3.3.32)

Then we conclude from (3.3.30) that

Σ(uε) : Σ(wε
λ)

w
⇀ 2Mu · λ weakly ∗ in M(Ω) and L

r
1+r

b (Ω).

(3.3.33)

On the other hand, the equation (3.3.29) shows that the term

(∇uε)T(vε − v) · λ
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has the same weak limit with Σ(wε
λ) : Σ(uε), hence

(∇uε)T(vε − v) · λ w
⇀ 2Mu · λ weakly ∗ in M(Ω) and L

r
1+r

b (Ω),

(3.3.34)

thus

(∇uε)T(vε − v)
w
⇀ 2Mu weakly in L

r
1+r

b (Ω). (3.3.35)

Consequently,

(∇uε)Tvε = (∇uε)T(vε − v) + (∇uε)Tv
w
⇀ 2Mu+ (∇u)Tv. (3.3.36)

Moreover, since the Navier boundary conditions

uε · n = 0, τ ·
(
∇uε + (∇uε)T

)
· ∇ = −βτ · uε, x ∈ ∂Ω,

are linear, the weakly compactness of uε in H1
b (Ω) guarantees the pas-

sage of limit of Navier boundary conditions, in this way

uε · n w
⇀ u · n = 0 (3.3.37)

and

τ ·
(
∇uε + (∇uε)T

)
·∇+βτ ·uε w

⇀ τ ·
(
∇u+ (∇u)T

)
·∇+βτ ·u = 0 .

(3.3.38)

Finally we get:

Theorem 3.3.2. The solution uε of (3.2.1) converges weakly in H1
b (Ω)

to the solution u of the Brinkman equation−div(bΣ(u))− 1

2
(u · v)∇b+ b curl(v)Ju+ b∇p+ 2Mu = bf

div(bu) = 0, x ∈ Ω
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with the Navier boundary conditions

u · n = 0, τ ·
(
∇u+ (∇u)T

)
· ∇ = −βτ · u, x ∈ ∂Ω ,

where M is the positive definite symmetric matrix-valued function de-

fined by(∇wε
λ)

Tvε
w
⇀ 0 · v +Mλ = Mλ weakly in L

2r
2+r

b (Ω)

∇wε
λ : ∇wε

µ
w
⇀Mλ · µ weakly ∗ in M(Ω) and L

2r
2+r

b (Ω)

for λ,µ ∈ R2.
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Chapter 4

Homogenization of the
Viscous Lake Equations

In this chapter, we discuss the viscous lake equation with the Navier

boundary conditions and the initial condition. In Section 4.1, we give

the proof of the existence and uniqueness of the solution of lake equation

using Faedo-Galerkin method. In Section 4.2, we study the homoge-

nization of the viscous lake equation by constructing a homogenized

equation of the test function wε
λ according to Tartar’s method.

4.1 Existence and Uniqueness of the So-

lution for the Viscous Lake equation

In this section we discuss the viscous lake equation

∂t(bu
ε)− 1

2
(uε · vε)∇b+ b curl(vε)Juε + b∇pε = div(bΣ(uε)) + bf ,

(4.1.1)

div(buε) = 0, (x, t) ∈ QT (4.1.2)
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with the Navier boundary conditions

uε · n = 0, τ ·
(
∇uε + (∇uε)T

)
· ∇ = −βτ · uε, (σ, t) ∈ ST

(4.1.3)

and the initial condition

uε(x, 0) = uε0(x), x ∈ Ω (4.1.4)

where QT = Ω × [0, T ) with Ω ⊂ R2, a bounded and smooth domain,

and ST = ∂Ω× [0, T ) for all 0 < T <∞.

We first state the existence and uniqueness result for (4.1.1).

Theorem 4.1.1. Assume f ∈ L2(QT ), vε ∈ L∞(QT ), and uε0 ∈ L2(Ω).

We define the solution space associated with (4.1.1);

V 2(QT ) =

{
u ∈ L2([0, T );Vb(Ω)), u′ =

∂u

∂t
∈ L2([0, T );V−1

b (Ω))

}
which is a Banach space with respect to the norm

‖u‖V 2(QT ) = ‖u‖L2([0,T );Vb(Ω)) + ‖u′‖L2([0,T );V−1
b (Ω)) . (4.1.5)

Then there exists a pair of function (uε, pε) such that

uε ∈ V 2(QT ) and ∇pε ∈ W−1,∞([0, T );V−1
b (Ω)) (4.1.6)

and satisfies the weak formulation of (4.1.1) in the sense of distribution

−
∫
QT

uε(x, t)ψ′(t)ϕ(x)b(x)dxdt+

∫ T

0

a(uε(x, t),ϕ)ψ(t)dt

+

∫ T

0

(uε(x, t),vε(x, t),ϕ(x))ψ(t)dt

=

∫
QT

f(x, t)ψ(t)ϕ(x)b(x)dxdt+ 〈uε0(x),ϕ(x)〉b,

(4.1.7)
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for all T ∈ (0,∞) and for all ϕ ∈ C∞c (Ω) with div(bϕ) = 0 in Ω and

ϕ · ∇ = 0 on ∂Ω, and ψ ∈ D[0, T ), where ψ(0) = 1 and ψ(T ) = 0.

Here the bilinear form a(uε,ϕ) is defined by

a(uε,ϕ) =
1

2

∫
Ω

Σ(uε) : Σ(ϕ)b(x)dx+ 2

∫
∂Ω

κ(uε · τ )(ϕ · τ )b(x)ds ,

(4.1.8)

and the trilinear form

(uε(x, t),vε(x, t),ϕ(x))

= −1

2

∫
Ω

(uε · vε)∇b ·ϕdx+

∫
Ω

b curl(vε)Juε ·ϕdx,

Moreover, there exists a constant c depending on Ω and T such that

‖uε‖V 2(QT ) + ‖uε‖L∞([0,T );L2(Ω)) 6 c
(
‖uε0‖L2(Ω) + ‖f‖L2(QT )

)
. (4.1.9)

We will prove the existence and uniqueness theorem for the solution

for the viscous lake equation. The strategy of the proof is motivated

by Leray’s seminal work on the incompressible Navier-Stokes equations

[35], see also [61]. It proceeds in seven steps. We can construct a

sequence of approximate solutions by any method that yields a con-

sistent weak formulation and an energy relation. We will employ the

Faedo-Galerkin method to approximate our drift Stokes equation by

a sequence of Cauchy problems for suitable systems of ODEs in finite

dimensional spaces.

Step 1: Construction of approximate solution uεm by the Faedo-Galerkin

method.

Take a countable orthonormal basis {ei}∞i=1 of the spaceH1
b (Ω)∩C∞c (Ω).

For any m ∈ N, we define the approximate solution by eigenfunction
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expansion

uεm(x, t) =
m∑
i=1

cεim(t)ei(x). (4.1.10)

The coefficients cεim(t) will satisfy the m nonlinear ordinary differential

equations by inserting uεm, ei for i, k = 1, 2, · · · ,m, in (4.1.1)-(4.1.8).

Let now introduce, for any m ∈ N, the finite dimensional approximate

problem for (4.1.1)

〈uεm(t2), ei〉b − 〈u
ε
m(t1), ei〉b = I1 + I2 + I3

≡ −
∫ T

0

a(uεm, ei)dt−
∫ T

0

(uεm,v
ε, ei(x))dt+

∫
QT

f(x, t)eidxdt

(4.1.11)

in D′[0, T ), for all 0 < T < ∞ and for all i = 1, · · · ,m with initial

condition

uεm(x, 0) = uε0m(x), (4.1.12)

where uε0m is the orthogonal projection of uε0 onto the space spanned

by {e1, e2, · · · , em} in H1
0 (Ω).

From the initial condition in this problem, we have

m∑
i=1

cεim(0)ei = uεm(0) = uε0m =
m∑
i=1

〈uε0, ei〉 ei,

which implies cεim(0) = 〈uε0, ei〉, since {e1, e2, · · · , em} are linearly in-

dependent.

From classical results concerning Hilbert spaces, we have that

uε0m(x)→ uε0(x) strongly in L2(Ω)

as m→∞ so that

‖uε0m‖L2(Ω) 6 ‖uε0‖L2(Ω).
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Moreover, these solutions will satisfy the regularized version of the en-

ergy relation (4.1.9) as the equality

‖uεm(T )‖2
H(Ω) + C

∫ T

0

‖uεm(τ)‖2
V (Ω)dτ

=‖uε0m‖2
L2(Ω) +

1

C

∫ T

0

‖f(τ)‖2
L2(Ω)dτ.

(4.1.13)

Consequently, problem (4.1.11) is a system of m linear ordinary dif-

ferential equations of the first order with unknowns c1m, · · · , cmm. By

Picard’s local existence theory, the system of linear ODEs (4.1.11) has a

unique solution on some interval (0, tm), 0 < tm < T . Furthermore, the

energy relation (4.1.13) provides a global L2(Ω) bound on the solutions,

ensuring that they are global. The detail is referred to [61].

Step 2: Show that the sequence {uεm}m is a relatively compact set in

C([0, T ); w-Hb(Ω)) ∩ w-L2
loc ([0, T );Vb(Ω)) .

We deduce from the energy bound (4.1.13) that

{uεm}m is bounded in L∞ ([0, T );Hb(Ω)) (4.1.14)

{uεm}m is bounded in L2
loc ([0, T );Vb(Ω)) . (4.1.15)

Because norm bounded sets are relatively compact in weak-∗ topologies,

which is the same as the weak topologies on these reflexive spaces, then

we obtain from (4.1.15) that

{uεm}m is relatively compact in L2
(
[0, T );Vb(Ω)

)
. (4.1.16)

We conclude from the classical compactness argument that there exists

a subsequence of {uεm}m, which is still denoted by {uεm}m and

uε ∈ L∞ ([0, T ),Hb(Ω)) ∩ L2
(
[0, T );Vb(Ω)

)
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such that

uεm
w
⇀ uε weakly ∗ in L∞ ([0, T );Hb(Ω))

uεm
w
⇀ uε weakly in L2

(
[0, T );Vb(Ω)

)
.

(4.1.17)

The uniform bound (4.1.14) also shows that {uεm(t)} is a relatively

compact set in w-Hb(Ω) for all t > 0. However, compactness requires

more than just boundedness because of the strong topology over the

time variable t. We appeal to the Arzelà-Ascoli theorem, which asserts

that {uεm}m is a relatively compact set in v if and only if

(a) {uεm(t)}m is a relatively compact set in w-Hb(Ω) for all t > 0;

(b) {uεm}m is equicontinuous in C
(
[0,∞); w-Hb(Ω)

)
.

Condition (a) is satisfied. In order to establish (b), we will estimate

the three integrals I1, I2 and I3 of (4.1.11) separately. Let B ⊂ C∞c (Ω)

be an enumerable set which is dense in Hb(Ω), then from the energy

relation (4.1.13) for any ei ∈ B, due to the boundedness result (3.2.22)

in Section 3.2

|a(uεm, ei)| ≤ C ‖uεm‖H1
b (Ω) ‖ei‖H1

b (Ω) ,

using the Cauchy-Schwarz inequality, we have

|I1| ≤ α ‖ei‖H1
b (Ω)

∫ t2

t1

‖uεm‖H1
b (Ω) dτ

≤ α ‖ei‖H1
b (Ω) |t2 − t1|

1
2
( ∫ ∞

0

‖uεm‖
2
H1

b (Ω) dτ
) 1

2 ≤ C1 |t2 − t1|
1
2 .

Similarly, from the estimate (3.2.23) in Section 3.2

|(uεm,vε, ei)| ≤ C0‖uεm‖H1
b (Ω)‖ei‖H1

b (Ω) (4.1.18)
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it follows that

|I2| ≤ β ‖ei‖H1
b (Ω)

∫ t2

t1

‖uεm‖H1
b (Ω) dτ

≤ β ‖ei‖H1
b (Ω) |t2 − t1|

1
2
( ∫ ∞

0

‖uεm‖
2
H1

b (Ω) dτ
) 1

2 ≤ C2 |t2 − t1|
1
2 ,

For I3, we also see that

|I3| ≤ ‖ei‖L2(Ω) |t2 − t1|
1
2

(∫ t2

t1

‖f‖2
L2
b(Ω) dt

) 1
2

≤ C3 |t2 − t1|
1
2 .

Collecting the above estimates,

| 〈uεm(t2), ei〉b − 〈u
ε
m(t1), ei〉b | 6 C|t2 − t1|

1
2 , i = 1, 2, 3, · · ·

Therefore

| 〈uεm(t2), ei〉b − 〈u
ε
m(t1), ei〉b | → 0 as |t2 − t1| → 0.

Since {ei}∞i=1 forms an enumerable dense subset of Hb(Ω), it follows

from the density argument that

|〈uεm(t2),ϕ〉b − 〈u
ε
m(t1),ϕ〉b| → 0 as |t2 − t1| → 0 (4.1.19)

for all ϕ ∈ H1
b (Ω) ∩ C∞c (Ω). This proves the equi-continuity of uεm in

the space C([0, T ),w-Hb(Ω)).

Step 3: Show that the sequence {uεm}m is a relatively compact set in

L2
loc ([0, T );Hb(Ω))

endowed with the strong topology.

The proof is based on the following embedding

C ([0, T ); w-Hb(Ω)) ∩ w-L2
loc ([0, T );Vb(Ω)) ↪→ L2

loc ([0, T );Hb(Ω))

(4.1.20)
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is continuous. The key step is the Rellich lamma for weighted Sobolev

space, which states that Vb(Ω) ↪→ Hb(Ω) is a compact embedding. Step

2 states that {uεm}m is a relatively compact set in C ([0, T ); w-L2
b(Ω))

and w-L2
loc ([0, T );Vb(Ω)), and because the compact operator maps

weakly convergent sequences into strong convergent sequences, it fol-

lows that {uεm}m is strongly convergent in L2
loc ([0, T );Hb(Ω)).

Step 4: Passage to the limit as m→∞.

We want to pass to the limit as m → ∞ in (4.1.11) using the energy

estimate (4.1.13). We recall that at the present time ε > 0 is fixed,

and we are only concerned with a passage to the limit as m → ∞.

First, Step 2 and the energy estimate (4.1.13) ensures that there exists

a subsequence of {uεm}m, which we still denote by {uεm}m, such that
uεm

w
⇀ uε weakly ∗ in L∞ ([0, T );Hb(Ω))

uεm
w
⇀ uε weakly in L2

(
[0, T );Vb(Ω)

)
uε0m → uε0 strongly in L2(Ω).

(4.1.21)

Now let ϕ(x) ∈ Vb(Ω) and choose a ψ(t) ∈ D[0, T ) such that ψ(0) = 1

and ψ(T ) = 0. Multiply the equation in (4.1.11) by 〈ϕ(x), ei〉bψ(t) and

sum over i from 1 to m. After integration in t over [0, T ), we get

−
∫
QT

uεm(x, t)ψ′(t)ϕ(x)b(x)dxdt+

∫ T

0

a(uεm,ϕ)ψ(t)dt

+

∫ T

0

(uεm,v
ε,ϕ(x))ψ(t)dt

=

∫
QT

f(x, t)ψ(t)ϕ(x)b(x)dxdt+ 〈uε0(x),ϕ(x)〉b.

(4.1.22)
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Note that for the first term in this equation, due to the following iden-

tity

∫
QT

∂tu
ε
mψ(t)ϕ(x)b(x)dxdt

=

∫
QT

( d
dt

(
uεm(x, t)ψ(t)

)
− uεm(x, t)ψ′(t)

)
ϕ(x)b(x)dxdt

=

∫
Ω

(
uεm(x, T )ψ(T )− uεm(x, 0)ψ(0)

)
ϕ(x)b(x)dx

−
∫
QT

uεmψ
′(t)ϕ(x)b(x)dxdt

= −〈uε0m(x),ϕ(x)〉b −
∫
QT

uεm(x, t)ψ′(t)ϕ(x)b(x)dxdt.

We now let m → ∞ here. All the terms pass to the limit, thanks to

the convergence (4.1.21), we have

∫
QT

uεm(x, t)ψ′(t)ϕ(x)b(x)dxdt→
∫
QT

uε(x, t)ψ′(t)ϕ(x)b(x)dxdt

∫ T

0

a(uεm,ϕ)ψ(t)dt→
∫ T

0

a(uε,ϕ)ψ(t)dt

∫ T

0

(uεm,v
ε,ϕ(x))ψ(t)dt→

∫ T

0

(uε,vε,ϕ(x))ψ(t)dt

and

〈uε0m(x),ϕ(x)〉b → 〈uε0(x),ϕ(x)〉b

Summing up the above convergence results, we finally get that uε sat-
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isfies the integral identity

−
∫
QT

uε(x, t)ψ′(t)ϕ(x)b(x)dxdt+

∫ T

0

a(uε,ϕ)ψ(t)dt

+

∫ T

0

(uε,vε,ϕ(x))ψ(t)dt

=

∫
QT

f(x, t)ψ(t)ϕ(x)b(x)dxdt+ 〈uε0(x),ϕ(x)〉b,

(4.1.23)

which is exactly the variational equation in (4.1.7) since ψ and ϕ are

arbitrary respectively in D[0, T ) and H1
0 (Ω). This shows that uε is the

weak solution of (4.1.1).

Step 5: Existence of the pressure pε.

Now we are in a position to show the existence of the pressure pε. First,

we set, for t ∈ [0, T )

ũε(t) =

∫ t

0

uε(τ)dτ,

βε(t) =

∫ t

0

−1

2
(uε(τ) · vε)∇b+ b curl(vε)Juε(τ)dτ,

f̃(t) =

∫ t

0

f(τ)dτ.

(4.1.24)

Then for uε ∈ w-L2
loc([0, T );Vb(Ω)) is a solution of (4.1.1),

ũε,βε, f̃ ∈ C([0, T );V−1
b (Ω)). (4.1.25)

Integrating (4.1.1) for t ∈ [0, T ); setting

p̃ ε(t) =

∫ t

0

pε(τ)dτ, (4.1.26)
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we obtain

buε(t)− buε0 − div(bΣ(ũε(t))) + βε(t) + b∇p̃ ε(t) = f̃(t). (4.1.27)

Then from the regularity property of elliptic equations (see Proposition

I.1.1 and Proposition I.1.2 in [61]), we get for every t ∈ [0, T ), the

existence of some function p̃ ε(t) ,

p̃ ε(t) ∈ L2
b(Ω) (4.1.28)

such that the formulation (4.1.27) satisfied. Since the gradient operator

is an isomorphism from L2(Ω)/R into H−1(Ω), observing that

b∇p̃ ε(t) = f̃(t)− βε(t) + div(bΣ(ũε(t)))− buε(t) + buε0, (4.1.29)

we conclude that ∇p̃ ε(t) belongs to C([0, T );H−1
b (Ω)) and therefore

p̃ ε ∈ C([0, T );L2
b(Ω)). (4.1.30)

This enables us to differentiate (4.1.27) in sence of distribution in QT ,

thus we obtain (4.1.1). The pressure appears in general as a distribution

on QT defined by (4.1.26) and (4.1.30). By application of Proposition

I.1.2 in [61] it follows that

pε ∈ L∞([0, T );H1
b (Ω)). (4.1.31)

Step 6: The sequence {pε}ε converges weakly ∗ in L∞([0, T );H1
b (Ω)).

From (4.1.1), we can represent pε as

b∇pε = −∂t(buε) +
1

2
(uε · vε)∇b− b curl(vε)Juε + div(bΣ(uε)) + bf .

(4.1.32)
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From the results (3.2.22) and (3.2.23) in Section 3.2, for uε,ϕ ∈ Vb

and every t ∈ [0, T ),

|a(uε(t),ϕ)| =
∣∣∣∣−∫

Ω

div(bΣ(uε(t))) ·ϕdx
∣∣∣∣ 6 C ′‖uε(t)‖H1

b (Ω)‖ϕ‖H1
b (Ω)

(4.1.33)

and

|(uε(t),vε(t),ϕ)| ≤ C0‖uε(t)‖H1
b (Ω)‖ϕ‖H1

b (Ω) . (4.1.34)

On the other hand, applying the Cauchy-Schwarz inequality and the

Poincaré inequality,

|〈f(t),ϕ〉b| 6 ‖f(t)‖L2
b(Ω)‖ϕ‖L2

b(Ω) 6 c‖f(t)‖H1
b (Ω)‖ϕ‖H1

b (Ω) , (4.1.35)

using the weak formulation (4.1.7),∣∣∣∣−∫
Ω

∂tu
ε(t) ·ϕbdx

∣∣∣∣
= |−a(uε(t),ϕ)− (uε(t),vε(t),ϕ) + 〈f(t),ϕ〉b| 6 C‖ϕ‖H1

b (Ω)

(4.1.36)

for every t ∈ [0, T ). Therefore, the terms in RHS of the identity (4.1.32)

are all bounded in H1
b (Ω). Therefore for all t ∈ [0, T ), b∇pε(t) is also

bounded in space H1
b (Ω). Consequently, there exists a subsequence of

{pε}ε still denoted by {pε}ε and p ∈ L∞([0, T );H1
b (Ω)) such that

pε
w
⇀ p weakly ∗ in L∞([0, T );H1

b (Ω)). (4.1.37)

Step 7: The energy inequality.

To recover the energy inequality (4.1.10) from the energy relation (4.1.13),

first we note that the regularized initial data uε0m(x) converges to uε0(x)

strongly in L2(Ω) as m tends to infinite so that

‖uε0m‖L2(Ω) → ‖uε0‖L2(Ω) .
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The convergence of uεm in C([0, T ),w-Hb(Ω)) together with the fact

that the norm of the weak limit of a sequence is a lower bound for the

inferior limit of the norms, yields

‖uε(t)‖2
L2
b(Ω) 6 lim inf

m→∞
‖uεm(t)‖2

L2
b(Ω) , 0 < t < T <∞ .

Then we obtain from (4.1.13) the energy inequality

‖uε(T )‖2
H(Ω) +C

∫ T

0

‖uε(τ)‖2
V (Ω)dτ 6 ‖uε0‖2

L2(Ω) +
1

C

∫ T

0

‖f(τ)‖2
L2(Ω)dτ.

(4.1.38)

Step 8 : Proof of the uniqueness.

Since the lake equation (4.1.1) is linear, the uniqueness follows imme-

diately from the energy inequality. Let uε1,u
ε
2 be two solutions corre-

sponding to the same data of (4.1.1) then their difference U ε ≡ uε1−uε2
satisfies the equation

∂t(bU
ε)− 1

2
(U ε · vε)∇b+ b curl(vε)JU ε = div

(
bΣ(U ε)

)
,

div(bU ε) = 0, (x, t) ∈ QT ,

U ε(σ, t) = 0, (σ, t) ∈ ST ,

U ε(x, 0) = 0, x ∈ Ω ,

(4.1.39)

and the energy inequality

‖U ε(t)‖2
L2
b

+

∫ t

0

‖U ε(τ)‖2
H1

b
dτ 6 0 . (4.1.40)

The energy inequality (4.1.40) implies that

‖U ε(t)‖2
L2
b

= 0, 0 6 t <∞ ,

and the uniqueness is proved. This completes the proof of Theorem

4.1.1.
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4.2 Homogenization of the Viscous Lake

equation

Now we will discuss the convergence of the weak formulation (4.1.7) as

ε→ 0. First, we give the following lemmas.

Lemma 4.2.1. {uε}ε is a relatively compact set in

C([0, T ); w-Hb(Ω)) ∩ w-L2
loc([0, T );Vb(Ω)).

Lemma 4.2.2. The sequence {uε}ε is a relatively compact set in

L2
loc ([0, T );Hb(Ω))

endowed with the strong topology.

The proof of Lemma 4.2.1 and Lemma 4.2.2 are the same as Step 2 and

Step 3 in Section 4.1. The detail is omitted.

Lemma 4.2.1 ensures that there exists a subsequence of {uε}ε, which

we still denote by {uε}ε, and u ∈ C
(
[0, T );Hb(Ω)

)
such that

uε → u in C
(
[0, T ); w-Hb(Ω)

)
as ε→ 0. (4.2.1)

We deduce from Lemma 4.2.2 that {uε}ε is bounded in L2
loc ([0, T );Vb(Ω)).

This implies that there exists a subsequence of {uε}ε (still denoted by

{uε}ε) and a function

u ∈ L2
loc

(
[0, T );Vb(Ω)

)
such that

uε
w
⇀ u in w-L2

loc

(
[0, T ); w-Vb(Ω)

)
∇uε w

⇀ ∇u in w-L2
loc

(
[0, T ); w-Hb(Ω)

)
∆uε

w
⇀ ∆u in w-L2

loc

(
[0, T ); w-V−1

b (Ω)
)
.

(4.2.2)
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In addition, we suppose the weak convergence of the initial condition

uε0
w
⇀ u0 weakly in L2(Ω). (4.2.3)

Then the convergence (4.2.1)–(4.2.3) imply the following convergences∫
Ω

uε(x, t)ψ′(t)ϕ(x)b(x)dx→
∫

Ω

u(x, t)ψ′(t)ϕ(x)b(x)dx∫
Ω

div(bΣ(uε)) ·ϕdx→
∫

Ω

div(bΣ(u)) ·ϕdx

〈uε0(x),ϕ(x)〉b → 〈u0(x),ϕ(x)〉b

(4.2.4)

for all ϕ ∈ L2(Ω) ∩ C∞c (Ω) and ψ ∈ D[0, T ). By energy estimate and

the Cauchy-Schwarz inequality∣∣∣∣∫
Ω

uε(x, t)ψ′(t)ϕ(x)bdx

∣∣∣∣ 6 sup
06t<T

|ψ′(t)| ‖uε‖L2
b(Ω) ‖ϕ‖L2(Ω)

6 C ‖uε‖L2
b(Ω)

(4.2.5)

for all 0 < t < ∞. Then the convergence (4.2.4) and Lebesgue domi-

nated convergence theorem ensure the convergence∫
QT

uε(x, t)ψ′(t)ϕ(x)b(x)dxdt→
∫
QT

u(x, t)ψ′(t)ϕ(x)b(x)dxdt.

(4.2.6)

Similarly, from the convergence (4.2.4), the boundedness result (3.2.22)

and the Lebesgue dominated convergence theorem imply the conver-

gence ∫ T

0

a(uε(x, t),ϕ)ψ(t)dt→
∫ T

0

a(u(x, t),ϕ)ψ(t)dt. (4.2.7)

Now we need to consider the convergence of the trilinear term∫ T

0

(uε(x, t),vε(x, t),ϕ(x))ψ(t)dt (4.2.8)
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in the weak formulation (4.1.7). As we shown in Section 3.3, the con-

vergences (3.3.12)-(3.3.15) also hold for uε(x, t) and (x, t) ∈ QT . The

boundedness result (3.2.23) of the trilinear form and the Lebesgue dom-

inated convergence theorem ensure the convergences of the terms in the

trilinear form expect the term b(∇uε(x, t))Tvε. For the same reason

as in Section 3.3, we have to determine the limit of b(∇uε(x, t))Tvε.

In this way, we imitate Tartar approach and construct a homogenized

equation of the test function wε
λ for λ ∈ R2

∂t(bw
ε
λ) + b div

(
(vε − v)⊗ λ

)
+ b∇qελ = div(bΣ(wε

λ)),

div(bwε
λ) = 0, x ∈ Ω

wε
λ(x, 0) = wε

λ0(x), x ∈ Ω

wε
λ · n = 0, x ∈ ∂Ω.

(4.2.9)

Moreover, we assume that

wε
λ0

w
⇀ wλ0 = 0 weakly in L2(Ω) as ε→ 0 . (4.2.10)

First, we give the energy estimate of (4.2.9) as

‖wε
λ(T )‖2

L2
b(Ω) + C

∫ T

0

‖wε
λ(τ)‖2

H1
b (Ω)dt

6 ‖wε
λ0‖2

L2(Ω) +

∫
QT

F ε ·wε
λb(x)dxdt

(4.2.11)

where F ε = −div
(
(vε− v)⊗λ

)
. Since vε

w
⇀ v weakly in L∞(QT ) and

L∞(QT ) ⊂ Lr(QT ) for 1 6 r <∞, then

vε
w
⇀ v weakly in Lr(QT ) .

This shows that for bounded smooth domain Ω,

F ε = −div
(
(vε − v)⊗ λ

) w
⇀ 0 as ε→ 0 ,
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or ∫
QT

F ε ·wε
λb(x)dxdt→ 0 as ε→ 0 . (4.2.12)

Then we obtain

‖wε
λ‖L∞([0,T );Hb(Ω)) + ‖wε

λ‖L2([0,T );Vb(Ω))

6 ‖wε
λ0‖2

L2(Ω) +

∫
QT

F ε ·wε
λb(x)dxdt

(4.2.13)

Therefore,

{wε
λ} is bounded in L∞([0, T );Hb(Ω)) ∩ L2([0, T );Vb(Ω)).

(4.2.14)

Using the same method as Step 2 and 3 in Section 4.1, we can assert

that the sequence {wε
λ}ε is a relatively compact set in

C([0, T ); w-Hb(Ω)) ∩ w-L2
loc([0, T );Vb(Ω))

and in strong topology of L2
loc ([0, T );Hb(Ω)). Hence there exists a

subsequence of {wε
λ}ε, which we still denote by {wε

λ}ε, and wλ ∈
C
(
[0, T );Hb(Ω)

)
such thatw

ε
λ → 0 in C

(
[0, T ); w-Hb(Ω)

)
wε
λ

w
⇀ 0 in w-L2

loc

(
[0, T ); w-Vb(Ω)

) (4.2.15)

as ε → 0. Now back to the equation (4.2.9), using the convergence of

wε
λ, same as convergences (4.2.4) we obtain for ε→ 0∫
QT

wε
λ(x, t)ψ

′(t)ϕ(x)b(x)dxdt→
∫
QT

wλ(x, t)ψ
′(t)ϕ(x)b(x)dxdt∫

QT

div(bΣ(wε
λ)) ·ϕdx→

∫
QT

div(bΣ(wλ)) ·ϕdx

〈wε
λ0(x),ϕ(x)〉b → 〈wλ0(x),ϕ(x)〉b.

(4.2.16)
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From the equation (4.2.9), qελ satisfies the following equation

b∇qελ = −∂t(bwε
λ) + div(bΣ(wε

λ))− b div
(
(vε − v)⊗ λ

)
, (4.2.17)

then by the convergences (4.2.12) and (4.2.16), we have

b∇qελ = −∂t(bwε
λ) + div(bΣ(wε

λ))− b div
(
(vε − v)⊗ λ

) w
⇀ 0. (4.2.18)

Due to the regularity theorem of the elliptic equations,

qελ
w
⇀ 0 weakly ∗ in L∞([0, T );H1

b (Ω)). (4.2.19)

The weak formulation of (4.1.1) is∫
QT

Σ(uε) :Σ(wε
λ)ϕ(x)ψ(t)b(x)dxdt

− 2

∫
QT

(uε ⊗ vε) : ∇wε
λϕ(x)ψ(t)b(x)dxdt

=−
∫
QT

uε(x, t)ψ′(t)ϕwε
λb(x)dxdt

− 1

2

∫
QT

Σ(uε) : Σ(wε
λ∇ϕ I)ψ(t)b(x)dxdt

− 2

∫
ST

κ(uε · τ )(wε
λ · τ )ϕ(x)ψ(t)b(x)dsdt

+
1

2

∫
QT

(uε · vε)∇ log b ·wε
λϕψ(t)b(x)dxdt

−
∫
QT

(∇uε)vε ·wε
λϕψb(x)dxdt

−
∫
QT

(∇vε)Tuε ·wε
λϕψb(x)dxdt+

∫
QT

fwε
λϕψb(x)dxdt

+ 〈uε0(x), ϕwε
λ〉b .

(4.2.20)
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Here we use the identity

div(bϕwε
λ) = ϕdiv(bwε

λ) + bwε
λ∇ϕ = 0

so we let ∇ϕ = 0. Due to the convergence wε
λ

w
⇀ 0 the RHS of the

equation (4.2.20) tends to 0, consequently the formulation (4.2.20) can

be written as∫
QT

Σ(uε) : Σ(wε
λ)ϕ(x)ψ(t)b(x)dxdt

− 2

∫
QT

(uε ⊗ vε) : ∇wε
λϕ(x)ψ(t)b(x)dxdt = o(1).

(4.2.21)

In the same way, we write the weak formulation of (4.2.9) as∫
QT

Σ(wε
λ) : Σ(uε)ϕ(x)b(x)dxdt

−
∫
QT

(
(vε − v)⊗ λ

)
: ∇uεϕ(x)b(x)dxdt = o(1).

(4.2.22)

Recall that

(uε ⊗ vε) : ∇wε
λ = (∇wε

λ)
Tvε · uε

and (
(vε − v)⊗ λ

)
: ∇uε = (∇uελ)T(vε − v) · λ.

Therefore, the equations (4.2.21) an (4.2.22) can be rewritten as∫
QT

Σ(uε) : Σ(wε
λ)ϕ(x)ψ(t)b(x)dxdt

− 2

∫
QT

(∇wε
λ)

Tvε · uεϕ(x)ψ(t)b(x)dxdt = o(1)

(4.2.23)

and ∫
QT

Σ(wε
λ) : Σ(uε)ϕ(x)b(x)dxdt

−
∫
QT

(∇uελ)T(vε − v) · λϕ(x)b(x)dxdt = o(1).

(4.2.24)
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The remaining steps proceeds along the same lines as given in Section

3.3 with modification. We have the following lemma

Lemma 4.2.3. For λ,µ ∈ R2 and 1 6 r < ∞, there exists a pos-

itive definite symmetric matrix-valued function M such that (up to a

subsequence)(∇wε
λ)

Tvε
w
⇀ 0 +Mλ = Mλ weakly in W1

∇wε
λ : ∇wε

µ
w
⇀Mλ · µ weakly ∗ in M(QT ) and W2

(4.2.25)

where W1 = L
2r

2+r

loc

(
[0, T );L

2r
2+r

b (Ω)
)

and W2 = L1
loc

(
[0, T );L1

b(Ω)
)
. More-

over, since uε → u in C ([0, T ); w-Hb(Ω)), we have

(∇wε
λ)

Tvε · uε w
⇀Mu · λ weakly ∗ in M(QT ) (4.2.26)

and weakly in L
2r

2+r

loc

(
[0, T );L

r
1+r

b (Ω)
)
.

Taking the difference of (4.2.23) and (4.2.24), we derive that

(∇uε)T(vε − v) · λ w
⇀ 2(∇wε

λ)
Tvε · uε.

From (4.2.26),

(∇uε)T(vε − v) · λ w
⇀ 2Mu · λ,

thus

(∇uε)T(vε − v)
w
⇀ 2Mu in w-L

2r
2+r

loc

(
[0, T ); w-L1

b(Ω)
)
. (4.2.27)

Consequently,

(∇uε)Tvε = (∇uε)T(vε − v) + (∇uε)Tv
w
⇀ 2Mu+ (∇u)Tv. (4.2.28)

Moreover, for the Navier boundary conditions, due to the linearity and

the weak compactness of uε we can write the limit of the Navier bound-

ary conditions

u · n = 0, τ ·
(
∇u+ (∇u)T

)
· ∇ = −βτ · u, x ∈ ∂Ω .
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In consequence, the homogenization of the viscous lake equation can

be represented as:

Theorem 4.2.4. Let λ,µ ∈ R2. The solution uε of (4.1.1) converges

weakly to the solution u of the Brinkman equation
∂t(bu)− 1

2
(u · v)∇b+ b curl(v)Ju+ b∇p+ 2Mu = div(bΣ(u)) + bf

div(bu) = 0, (x, t) ∈ QT

u(x, 0) = u0(x), x ∈ Ω

with the Navier boundary conditions

u · n = 0, τ ·
(
∇u+ (∇u)T

)
· ∇ = −βτ · u, (σ, t) ∈ ST ,

where M is the positive definite symmetric matrix-valued function de-

fined by(∇wε
λ)

Tvε
w
⇀ 0 · v +Mλ = Mλ weakly in W1

∇wε
λ : ∇wε

µ
w
⇀Mλ · µ weakly ∗ in M(QT ) and W2

where W1,W2 are defined in Lemma 4.2.3.
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the evolutionary Navier-Stokes system, Manuscripta Math., 149,

(2016) 251–274.

[27] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equa-

tions of Second Order, Second Edition, Springer-Verlag, 1983.

[28] H. P. Greenspan, The Theory of Rotating Fluid, Cambridge Uni-

versity Press, 1968.

[29] M. Hillairet, On the homogenization of the Stokes problem in a

perforated domain, Arch. Ration. Mech. Anal., 230, (2018) 1179–

1228.,

[30] Q. Jiu and D. Niu, Vanishing viscous limits for the 2D lake equa-

tions with Navier boundary conditions, J. Math. Anal. Appl., 338,

(2008) 1070–1080.

[31] Q. Jiu, D. Niu and J. Wu, Vanishing Viscosity Limits for the De-

generate lake equations with Navier Boundary Condition, Nonlin-

earity, 25, (2012) 641–655.

[32] J. P. Kelliher, Navier-Stokes equations with Navier boundary con-

ditions for a bounded domain in the plane, SIAM J. Math. Anal.,

38, (2006) 210–232.

79



[33] C. Lacave, T. Nguyen and B. Paudaser, Topography Influence on

the Lake Equations in Bounded Domains, Journal of Mathematical

Fluid Mechanics, 16, (2014) 375–406.

[34] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous In-

compressible Flow, translated from the Russian, Mathematics and

its Applications, 2, Gordon and Breach, Science Publishers, New

York-London-Paris, 1969.

[35] J. Leray, Sur le mouvement d’um fluide visqueux emplissant

l’espace, Acta Math, (1934) 193-248.

[36] C. D. Levermore, M. Oliver and E. S. Titi, Global well-posedness

for models of shallow water in a basin with a vary bottom, Indiana

University Mathematics Journal, 45, (1996) 479–510.

[37] C. D. Levermore and M. Sammartino, A shallow water modeled

with eddy viscosity for basins with vanishing topography, Nonlin-

earity, 14, (2001) 1493–1515.

[38] C. K. Lin, C. T. Lin, Y. P. Lin and M. Mei, Exponential Satbility

of Non-monotone Traveling Wave Nicholson’s Blowflies Equation,

SIAM Journal of Mathematical Analysis, 46, (2014) 1053–1084.

[39] C. K. Lin and K. C. Wu, Singular Limits of the Klein-Gordon

Equation, Archive for Rational Mechanics and Analysis, 197,

(2010) 689–711.

[40] C. K. Lin and K. C. Wu, On the Fluid Approximation to the Klein-

Gordon Equation, Discrete and Continue Dynamical System, 32,

(2012) 2233–2251.

80



[41] C. K. Lin and K. C. Wu, Hydrodynamics Limits of the Nonlin-

ear Klein-Gordon Equation, Journal de Math. Pures et Appl., 98,

(2012) 328–345.
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numérique de I’Université d’Alger, duplicated, (1978) 34.

81



[50] G. Nguetseng, A general convergence result for a functional related

to the theory of homogenization, SIAM J. Math. Anal., 20, (1989)

608–629.

[51] E. E. Sanchez-Palencia, Solutions périodiques par rapport aux

variables d’espaces et applications, C. R. Acad. Sci. Paris, Sér.,

A-B 271, (1970) A1129–A1132.

[52] E. E. Sanchez-Palencia, Equations aux dérivées partielles dans un
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