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Abstract 

Gearbox has a compact structure, a stable transmission capability, and a high transmission 

efficiency. Thus, it is widely applied as a power transmission system in various applications, 

such as wind turbines, industrial machinery, aircraft, space vehicles, and land vehicles. The 

gearbox usually operates in harsh and non-stationary working environments, expediting the 

degradation process of the gear surface. The degradation process may lead to severe gear 

failures, such as tooth breakage and root crack, which could damage the gear transmission 

system. Therefore, it is essential to assess the progression of gear surface degradation in order 

to ensure a reliable operation. The digital twin is an emerging technology for machine health 

management. A high-fidelity digital twin model can help reflect the operation status of the 

gearbox and reveal the corresponding degradation mechanism, which could benefit the 

remaining useful life (RUL) prediction and the predictive maintenance-based decision-making 

framework. This paper develops a digital twin-driven intelligent health management method 

to monitor and assess the gear surface degradation progression. The developed method can 

effectively reveal the gear wear propagation characteristics and predict the RUL accurately. 

Furthermore, the knowledge learned from digital twin models can be well transferred to the 
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surface wear assessment of the physical gearbox in wide industrial applications, which is of 

great practical significance. Two endurance tests with different dominant degradation 

mechanisms were conducted to validate the effectiveness of the proposed methodology for gear 

wear assessment. 

Keywords: gearbox, digital twin, surface degradation, health management, wear assessment 

1 Introduction 

Thanks to its compact structure, stable transmission performance, and high transmission 

efficiency, the gearbox has been widely utilized as a crucial transmission system in various 

industrial applications, such as wind turbines, vehicles, machinery, and aircraft [1-4]. However, 

the gearbox transmission system usually operates under harsh conditions such as inevitable 

fluctuating speeds and variable applied loads [5]. The adverse working environment expedites 

the degradation process of the gearbox transmission system. The gear degradation would lead 

to severe damage to gears, including gear tooth crack, gear surface spalling, and gear tooth 

breakage, all of which could destroy the transmission system. Thus, the health status of the 

gearbox has a significant impact on the safe operation of machinery and its corresponding 

production efficiency [6]. Therefore, it is crucial to assess the gear surface wear propagation 

process so that reliable predictive maintenance can be scheduled in advance to avoid the sudden 

shutdown of the gear transmission system. 

Gear surface wear is an inevitable degradation behavior in the gearbox lifespan [7-11]. 

Abrasive wear and fatigue pitting are two typical gear wear mechanisms. The propagation of 

abrasive wear would reduce the tooth thickness of meshing gear pairs and increase the risk of 

gear tooth breakage, which may cause the sudden shutdown of the gear transmission system. 

Fatigue pitting usually exists in the transmission system with lubrication, and its propagation 

can significantly reduce the durability of the gear surface and affect transmission efficiency. In 

practice, there is a complex dynamic interaction between abrasive wear and fatigue pitting, and 
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this dynamic interaction brings a great challenge to the health management of the gearbox 

transmission system [9, 12, 13]. The development of gear wear monitoring techniques would 

bring significant benefits to industry practices. 

Up to the present, the wear particle analysis technique has been the most widely utilized tool 

for gear wear analysis [14, 15]. The gearbox's degradation status can be identified by analyzing 

the particle size, concertation, and distribution. Nevertheless, in general, wear particle analysis 

is an offline technique. Also, it is laborious and costly to collect wear particles from the 

machinery under operation. In addition, some techniques use coordinate measurement to 

achieve gear wear monitoring. For example, a coordinate measurement machine was utilized 

in [16] to evaluate the actual gear tooth profile; these measurements were combined with the 

dynamic model and Archard wear model for gear wear monitoring. It should be mentioned that 

the gear tooth profile assessment was implemented once at the healthy condition in [16], and 

the coordinate measurement machine was not applied for real-time gear wear monitoring. The 

reason might be that this coordinate measurement technique requires an interruption of the 

normal gear transmission system. In addition, the Klingelnberg P40 (Hückeswagen, Germany) 

coordinate measuring machine and TalyScan 150 scanning instrument by Taylor Hobson 

(Leicester, UK) were applied in [17] for assessing the worn tooth surface. Unfortunately, this 

process also requires the dismantling of the gearbox, and it could not be used for online gear 

wear monitoring. A Talysurf Intra 50 profilometer was utilized in [18] to acquire the gear tooth 

profiles; however, due to the installation requirement of the profilometer, applying it for real-

time gear wear monitoring is challenging. Therefore, it is worthwhile to develop online 

machine condition monitoring techniques which can efficiently and effectively reveal the 

degradation progression of the gearbox transmission system. 

As a popular tool for real-time gear health management, vibration analysis has attracted 

considerable attention from the research community and the industry [19-22], and it has been 
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utilized to monitor gear wear propagation [23]. For instance,  it was found that the gear wear 

propagation could bring increments to the gear meshing harmonics, and thus the magnitude of 

the gear meshing harmonics (higher-order) was applied in [24] to assess the propagation 

process of gear wear. Amplitudes of the quefrencies of cepstrum and gear meshing harmonics 

were used in [25] to assess gear wear progression. In industrial practice, the propagation 

process of gear wear is highly complicated. An intense competition can exist among multiple 

wear mechanisms (such as fatigue pitting and abrasive wear) during the wear progression [26-

28]. As a result, the changes in gear mesh harmonics are not determined, although the average 

meshing gear tooth profile geometry stays deviating from the initial one during the whole wear 

process. More specifically, some specific gear meshing harmonics may have an increasing 

trend in a certain period, but a decreasing trend might appear in the subsequent period. Two 

new vibration indicators were developed in [29] to consider all the possible meshing harmonics 

of gear tooth that demonstrate noticeable changing behaviors. The effectiveness of these two 

indicators in gear wear monitoring was validated by two run-to-failure tests with different 

initial tooth surface morphologies. 

Apart from the wear monitoring techniques developed on the basis of the gear meshing 

harmonics, some other analysis methodologies were also employed or developed for 

monitoring gear wear progression. For instance, the ability of RMS was investigated to evaluate 

the gear wear progression (mainly induced by gear fatigue pitting) in [30]. FM4 and NA4 were 

applied in [31] to monitor the gear system degradation behavior caused by wear. Interestingly, 

the results of studies [29, 32, 33] contradicted the ability of FM4 and NA4 to assess gear wear 

propagation. The underlying reason is that FM4 and NA4 were initially developed for the 

detection of local gear faults (such as gear root crack) [29], while gear wear is generally 

uniformly distributed on each gear tooth, which is different from the localized failures. Thus 

FM4 and NA4 might have a limited capability in monitoring gear wear propagation. Later, 
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modulation bispectrum of vibration and motor current signals was applied in [33, 34] to 

monitor gear wear propagation, and its effectiveness was validated using experiments. In 

addition, the correlation analysis was applied on the residual signal [32] to evaluate the gear 

wear propagation. 

Based on the above discussions, it can be found that the gear surface wear monitoring 

techniques are yet to be well established and fully developed. The internal relationship between 

the underlying gear meshing physics and the unique gear wear features has not been well 

understood. Thus, it might be challenging to apply the current gear wear monitoring 

methodologies to track the surface degradation progression and fully reveal its complex 

degradation mechanisms. 

Digital twin (DT) is an emerging technology to address the above-mentioned issues. DT is a 

virtual representation (mirror) of a physical structure along its lifecycle. Through real-time 

interaction between the virtual model and physical structure, the degradation status of the 

system and its RUL can be reflected and evaluated effectively. Thanks to its unique feature, 

DT has received substantial attention from the research community over the last decades. For 

example, a digital twin framework was developed in [35] to achieve structure damage detection, 

and the simulation signal was applied to demonstrate its performance. A digital twin-based 

toolbox was designed in [36] to identify high-value information from the data with high 

uncertainty. Also, a transfer learning-based digital twin was developed to detect the localized 

torsional friction in deviated wells [37]. Furthermore, with the help of the data-driven dynamic 

model updating and optimization-based operating condition estimation, a digital twin approach 

was developed in [38] for the on-load tap changers' health state estimation. However, due to 

the complex structures and harsh operation conditions, research on DT-based condition 

monitoring of mechanical transmission systems is rare. Moreover, the existing conceptual 

approaches [39-41] have limitations in indicating the specific contact status and providing 
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insights into the degradation stage of mechanical transmission systems, which are of great 

value to health management and RUL prediction. Therefore, it is necessary to develop DT-

based methodologies for machinery health management.  

However, there are some critical issues which impede the digital twin techniques from widely 

applied in gearbox health management, including gear wear monitoring. The first challenge is 

the establishment of a high-fidelity digital twin model.  The gearbox transmission system 

usually consists of shafts, coupling, bearings, and gears. For each component, some properties, 

such as mass, inertia, stiffness, and damping coefficient, may vary under different operating 

conditions. Thus, it is challenging to tune these parameters manually to realize a high coherence 

between the simulated response and the realistic response from the physical structure. The 

second challenge is the practicability of the digital twin model in gear wear assessment. The 

gear wear propagation process is highly complex. The dynamic interactions between gear 

surface wear and gear dynamic response, lubrication conditions, and gear surface morphology 

are continuously changing in the gear lifespan. Accordingly, some inevitable feature 

differences exist in the responses of the digital twin model and gearbox physical structures 

during the gear wear progression. Also, the manufacturing, installation, and operation process 

would render the health status/performance of each gearbox different, even though they are 

designed and manufactured for the same. These issues would impede the digital twin 

techniques for wide applications in industrial practices. 

To address the aforementioned issues, a digital twin-driven intelligent health management 

method is developed to assess gear wear progression critically in this paper. The highlights and 

contributions of this work are summarized as follows: 

• High-fidelity digital twin models are established with the help of model updating. An 

intelligent approach is developed to build the digital model by interacting with the 

measurements from physical structures. This approach can eliminate the errors and 
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deficiencies induced by manually tuning the models, and it can ensure a high coherence 

between the simulated response and the realistic response from the physical structure. 

• A transfer learning algorithm is developed and utilized to transfer the knowledge from the 

digital twin model and apply the learned knowledge to assess the surface wear of physical 

structure. This transfer learning algorithm can handle the feature differences that exist in 

the responses of the digital twin model and gearbox physical structures, increasing the 

practicability of the digital twin techniques for gear health management in wide industrial 

applications. 

In summary, the developed digital twin-driven gear wear assessment method can effectively 

reveal the gear surface degradation status and predict the RUL accurately. Also, the knowledge 

learned from digital twin models can be well transferred for the surface wear assessment of the 

physical gearbox, which is of significant practical value. Two run-to-failure tests (with 

different dominant degradation mechanisms) are arranged to verify the effectiveness of the 

developed methodology for gear system health management. 

The organization of this paper is as follows: Section 2 describes the digital twin-driven gear 

wear monitoring methodology, including the establishment of the high-fidelity digital twin 

model and the development of the transfer learning algorithms for surface degradation 

assessment of the physical gearbox. The surface degradation assessment results are presented 

and discussed in Section 3 with the help of the endurance tests. Conclusions and 

recommendations for further research are given in Section 4. 

2 Methodology 

In this section, the digital twin-driven intelligent gear surface degradation assessment method 

is developed. Also, the details of the high-fidelity digital twin model establishment and transfer 

learning algorithm development are presented. 



8 

 

2.1 Digital twin-driven gear wear propagation assessment methodology 

 

Figure 1 Basic procedure of the developed digital twin-based gear wear monitoring methodology 

The basic procedure of the digital twin-driven gear wear monitoring scheme is illustrated in 

Figure 1. The digital twin-driven gear wear monitoring methodology mainly consists of two 

parts: 1) establishing a high-fidelity digital twin model with the assistance of the measurements 

from physical structures; and 2) developing a transfer learning algorithm for gear wear 

assessment. With the proposed digital twin-driven methodology, the gear wear severity can be 

accurately assessed non-destructively by inputting the measurement data collected during the 
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process of gear surface wear propagation. It can provide valuable information on the gear 

system degradation status so that proper predictive maintenance can be scheduled to guarantee 

the safe operation of the gearbox transmission system. 

It should note that the high-fidelity digital twin models will be established based on the spur 

gearbox test rig at the University of New South Wales (UNSW), as shown in Figure 2. Also, 

the measurements from the physical test rig can be applied to bridge the digital twin models 

and physical structures. 

 
Figure 2. The spur gear test rig at UNSW. (a) Overall view of the test rig; (b) Gear meshing and accelerometers 

location; (c) The schematic diagram of the experimental test rig setup 

In the spur gearbox transmission system, two modular gears with teeth numbers of 19 and 52 

are installed. Mild steel (JIS S45C) is selected as the gear material to accelerate the wear 

propagation. An electric motor drives the input shaft, and a variable frequency drive (VFD) is 

applied to control its instantaneous speed. The applied load of the gear transmission system is 

controlled by an electromagnetic particle brake (EMP). Two encoders with 512 pulses per 

revolution are installed at the remaining free ends of the shafts. The lubrication is provided by 



10 

 

an oil bath, and the kinematic viscosity of the lubricating oil is 146 𝑚𝑚2 𝑠⁄ . Two 

accelerometers (B&K 4394 and B&K 4396) are placed on the gearbox casing, as shown in 

Figure 2(b). The following section will introduce the procedure of building the high-fidelity 

gear transmission digital twin model in detail. 

2.2 A high-fidelity digital twin model for gear transmission system 

For gear wear assessment, comprehensive dynamic digital twin models, including the dynamic 

model, the Archard gear wear model, and the fatigue pitting propagation model, are required 

to be established and calibrated intelligently. These high-fidelity digital twin models can 

represent the response of the physical structure and reveal the degradation mechanism. Also, 

the digital twin models can be applied to generate the system degradation data with low cost 

and high computation efficiency, which could benefit the degradation monitoring and RUL 

prediction of the gearbox transmission system. The intelligent construction processes of these 

high-fidelity digital twin models are introduced as follows. 

2.2.1 Gear transmission dynamic model 

A 21-degree-of-freedom (DOF) comprehensive dynamic model is built according to the spur 

gearbox test rig (Figure 2). As shown in Figure 3, the dynamic model consists of the gears, 

motor, coupling, shafts, and casing. The motion equation of the gearbox transmission system 

can be written as 

𝐌�̈� + 𝐂�̇� + 𝐊𝐱 = 𝐟 (1) 

where 𝐱 denotes the angular and translational displacements of different nodes of the gear 

transmission system, and it is in the plane perpendicular to the connecting shaft axes [42]. 
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Figure 3 A 21 DOF gear dynamic model, in which 𝜃𝑖 and (𝑥𝑖 , 𝑦𝑖) refer to the torsional and translational 

displacements, respectively 

 

The model parameters are generally determined by the analysts’ prior experience or empirical 

formulas. However, the installation process and operational conditions could amend the 

component properties, resulting in the parameter values deviating from the nominal ones, 

especially for the damping coefficients. Also, manually fine-tuning the model parameters is 

time-consuming, and the accuracy cannot be guaranteed. 

To ensure the responses of the gear transmission system can be accurately reflected by the 

established dynamic model, based on the digital twin framework, a novel model establishment 

approach is developed in this paper to calibrate the dynamic model intelligently. In the 

developed approach, the measured data from the gear system are applied to calibrate the 

dynamic model.  

The basic procedure of the intelligent model updating approach is demonstrated in Figure 4. In 

the developed approach, multiple sources are considered, such as the signal characteristics in 

the time- and frequency- domains and the natural frequencies of the gear systems. In order to 

obtain the optimal values of parameters of the dynamic model to ensure the simulated responses 
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match well with the measured ones, the optimization algorithm will be employed to update the 

model parameters. 

In the model calibrating process, multiple parameters need to be determined and updated, and 

also the simulations should match the physical measurements in multiple aspects. The 

mathematical expressions of the objective functions during the model updating process are 

expressed as: 

{
 
 

 
 𝑓1 (𝑉𝑝𝑎𝑟𝑎𝑠𝑜𝑝𝑡𝑖𝑚𝑎𝑙

) = 1 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑋𝑀𝑂𝐷, 𝑌𝑃𝐻𝑌)          

𝑓2 (𝑉𝑝𝑎𝑟𝑎𝑠𝑜𝑝𝑡𝑖𝑚𝑎𝑙
) = 1 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐹𝐹𝑇𝑀𝑂𝐷, 𝐹𝐹𝑇𝑃𝐻𝑌)

𝑓3 (𝑉𝑝𝑎𝑟𝑎𝑠𝑜𝑝𝑡𝑖𝑚𝑎𝑙
) =∑ (𝑓𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝜄

𝑀𝑂𝐷 − 𝑓𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝜄
𝑝ℎ𝑦

)
28

𝜄=1
              

(2) 

minimize: [𝑓1(𝑉𝑝𝑎𝑟𝑎𝑠𝑘), 𝑓2(𝑉𝑝𝑎𝑟𝑎𝑠𝑘), 𝑓3(𝑉𝑝𝑎𝑟𝑎𝑠𝑘)]                                

subject to: 𝑏𝑑𝑖
𝐿 ≤ 𝑏𝑑𝑖 ≤ 𝑏𝑑𝑖

𝑈                                𝑖 = 1,2,⋯ , 𝑛           
} (3) 

where 𝑉𝑝𝑎𝑟𝑎𝑠𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 are the optimal parameter values after model calibrating/updating. The 

superscript 𝑀𝑂𝐷  denotes the dynamic mode, and 𝑃𝐻𝑌 indicates the physical gear system. 

Pearson’s correlation is applied in this paper and is denoted as 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛. 𝑋 and 𝑌 are the 

time waveforms from the dynamic model and physical gear system, respectively. 𝐹𝐹𝑇 

indicates the Fourier transform. 𝑓𝑛𝑎𝑡𝑢𝑟𝑎𝑙 is the natural frequency. Note that there is no strict 

rule on the number of natural frequencies in Eq. (2). It can be adjusted based on the specific 

applications and requirements. In this paper, the first eight natural frequencies will cover the 

first five gear meshing harmonics (the input shaft speed is 20 Hz), which are usually used for 

gear condition monitoring. Therefore, the first eight natural frequencies are selected and used 

in Eq. (2). 
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Figure 4 Communication between dynamic model and physical measurements 

The multiobjective grasshopper optimization algorithm (MOGOA) has a high exploration 

capacity and breakneck convergence speed. The MOGOA is developed based on the 

grasshopper optimization algorithm (GOA) and is applied to find the optimal model parameters. 

As a metaheuristic bionic optimization algorithm, GOA simulates the grasshoppers’ swarming 

behavior in nature to search for the optimal [43]. The grasshopper's life cycle includes two 

phases, namely, nymph and adulthood. For the nymph, the main swarming behavior 

characteristics are small steps with slow motion. While for adulthood, the main swarming 

behavior characteristics are long steps with abrupt movement. Thus, the bionic principle of 

GOA is to map the small steps of nymph to local exploitation with slow motion and the long 

steps of adulthood to global exploration with abrupt movement. The mathematical model of 

the swarming behavior of grasshoppers is 

𝑃𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 (4) 
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where 𝑃𝑖  denotes the 𝑖𝑡ℎ grasshopper’s position, 𝑆𝑖  represents the social interaction between 

grasshoppers, 𝐺𝑖  is the gravity force on the 𝑖𝑡ℎ  grasshopper, and 𝐴𝑖  indicates the wind 

advection. 

The social interaction 𝑆𝑖 between grasshoppers is 

𝑆𝑖 = ∑ 𝑠(|𝑃𝑗 − 𝑃𝑖|)
𝑃𝑗 − 𝑃𝑖

|𝑃𝑗 − 𝑃𝑖|

𝐾

𝑗=1;𝑗≠𝑖

(5) 

𝐾  is the grasshopper number used for optimization, |𝑃𝑗 − 𝑃𝑖|  denotes the Euler distance 

between the 𝑖𝑡ℎ and 𝑗𝑡ℎ grasshoppers, 
𝑃𝑗−𝑃𝑖

|𝑃𝑗−𝑃𝑖|
 is the unit vector from the 𝑖𝑡ℎ to  𝑗𝑡ℎ grasshoppers, 

𝑠(∙) represents the social force: 

𝑠(𝑟) = 𝑓𝑒
−𝑟
𝑙 − 𝑒−𝑟 (6) 

where 𝑓 and 𝑙 are the intensity of attraction and the length scale of attraction, respectively. If 

𝑠(𝑟) > 0, it indicates there is an attraction between grasshoppers. On the contrary, there is a 

repulsion between grasshoppers if 𝑠(𝑟) < 0. And 𝑠(𝑟) = 0 means no attraction and repulsion 

appear between grasshoppers, which is a comfort area. The value of 𝑠(𝑟) is determined by the 

combinations of 𝑓 and 𝑙. Based on the suggestions in [43], the values of 𝑓 = 0.5 and 𝑙 = 1.5 

are used in this paper. 

However, employing the above-mentioned model could not make the solution converge to a 

specified point when arriving at the comfort area. An improved model is thus established to 

solve this problem: 

𝑃𝑖 = 𝑐 ( ∑ 𝑐
𝑢𝑏 − 𝑙𝑏
2

∑ 𝑠(|𝑃𝑗 − 𝑃𝑖|)
𝑃𝑗 − 𝑃𝑖

|𝑃𝑗 − 𝑃𝑖|

𝐾

𝑗=1;𝑗≠𝑖

𝐾

𝑗=1;𝑗≠𝑖

) + 𝐺𝑖 + 𝐴𝑖 (7) 

𝑐 = 𝑐𝑚𝑎𝑥 −𝓂
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

ℳ
(8) 

where 𝑢𝑏  and 𝑙𝑏  denote the upper and lower bounds for the optimization, 𝓂  indicates the 

current iteration, ℳ is the total iteration, and 𝑐 is the decreasing coefficient (linearly decreases 
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from 𝑐𝑚𝑎𝑥 to 𝑐𝑚𝑖𝑛). It should be mentioned that two 𝑐′𝑠 are used in Eq. (7), which are the 

external 𝑐 and internal 𝑐. The two 𝑐′𝑠 aim to reduce the search coverage and social interaction 

over the increasing iteration, respectively. 

By incorporating an archive and target selection technique into the GOA, the optimal solution 

can be estimated through the MOGOA. The approach for updating the target is the major 

difference between GOA and MOGOA. Unlike the GOA, which selects the target using the 

best solution acquired until now, MOGOA can achieve more than one solution. The following 

procedures are executed to select the optimal solution from the multiple solutions [44]: 1) 

calculate the Pareto optimal solutions and save these solutions in an archive; 2) integrate a 

roulette to select the optimal one, which can well balance all the objectives, as introduced in 

Eq. (9): 

𝑉𝑝𝑎𝑟𝑎𝑠𝑜𝑝𝑡𝑖𝑚𝑎𝑙
→ 𝑚𝑖𝑛 (𝑃𝑟𝑜𝑖 =

1

ℏ𝑖
) (9) 

where ℏ𝑖 is the number of neighboring solutions of the 𝑖𝑡ℎ solution in the archive. 

From Eq. (2) to Eq. (9), the optimal model parameters can be determined. In the process of 

determining the optimal parameters for the dynamic model, multiple measurements from 

various aspects (including time waveform, frequency spectrum, and natural frequencies) are 

utilized. This guarantees that the optimal parameters can still be obtained for the dynamic 

model by the multiobjective grasshopper optimization algorithm, even though some noise or 

errors exist in the time waveform, frequency spectrum, or the estimated natural frequencies. 

The optimization-assisted model calibration/updating approach can guarantee reliable outputs 

from the dynamic model, such as the vibration signal, transmission error, and dynamic contact 

force. Also, the dynamic model can duplicate the real-time dynamic behavior by 

communicating between the digital twin model and the physical measurements. 
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To conclude, this digital twin framework can help achieve intelligent model calibration and 

updating, which can uncover the dynamic characteristics of the gear system in real-time, 

benefiting the gear performance assessment and RUL prediction. 

2.2.2 Gear transmission degradation models 

In practice, the gearbox transmission usually operates under normal conditions. Proper routine 

maintenance or regular replacement is usually scheduled for safety operations before severe 

degradation occurs. Thus, the data labelled with various degradation severities are relatively 

rare compared with the measurements under healthy working conditions. The data with 

different degradation severities are invaluable for the RUL prediction of the gear transmission 

system and its health management. However, conducting endurance tests to generate the 

system degradation data is costly and time-consuming. To tackle the problem, degradation 

models are used to produce signals with well-defined degradation characteristics rather than 

waiting until such signals arise randomly. 

In simulating the degradation behaviors, the Archard wear model is the most widely used 

degradation model. However, in the Archard wear model, the Hertzian contact-induced 

deformation is not fully considered, which could impair its performance in modeling abrasion 

characteristics. To address this issue, an improved Archard wear model was developed in our 

recent publication [45]: 

ℎ(𝜃, 𝑡) = ∫𝐾𝑤𝑒𝑎𝑟𝑃(𝜃, 𝑡)𝜐(𝑡)𝑑𝑡 (10) 

where ℎ(𝜃, 𝑡) represents the wear depth at rotation angle 𝜃 and time 𝑡, 𝑃(𝜃, 𝑡) denotes the 

Hertzian contact pressure distribution, 𝜐(𝑡) represents the sliding velocity of the engaging 

gear-pair, and 𝐾𝑤𝑒𝑎𝑟 is the wear coefficient. Unlike the existing research, the Archard wear 

model, after improvement, considers the influences coming from adjacent gear contacting 
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points that contribute to the wear depth accumulation. As a result, a smoother surface wear 

distribution curve can be achieved, and it is well approximated to worn gear tooth profiles that 

are observed in practice. The improved Archard wear model will be employed in this paper to 

simulate the degradation behavior induced by abrasive wear progression. 

Fatigue pitting is another common surface degradation phenomenon; however, less research 

has been conducted on developing the model for simulating the surface degradation 

progression. To reveal the fatigue pitting propagation characteristics, a novel fatigue pitting 

model was recently developed in [46]. The details of the developed fatigue pitting model are 

as follows: 

The accumulated fatigue pitting density 𝐷𝑖+1 at 𝑁 + ∆𝑁 running cycles is 

𝐷𝑖+1 = 𝐷𝑖 + (exp (−
𝐾𝑝𝑖𝑡𝑡𝑖𝑛𝑔 × 𝜏0(𝜃)

𝑐 × 𝑉(𝜃) × 𝑁𝑚

𝑧0(𝜃)
ℎ

) − exp (−
𝐾𝑝𝑖𝑡𝑡𝑖𝑛𝑔 × 𝜏0(𝜃)

𝑐 × 𝑉(𝜃) × (𝑁 + ∆𝑁)𝑚

𝑧0(𝜃)
ℎ

)) (11) 

where 𝐷𝑖  is the fatigue pitting density corresponding to 𝑁 running cycles, 𝐾𝑝𝑖𝑡𝑡𝑖𝑛𝑔  is pitting 

coefficient, and 𝜏0(𝜃) , 𝑧0(𝜃)  and 𝑉(𝜃)  are the maximum shear stress, the depth of the 

maximum shear stress, and stressed volume, respectively (see Eqs. (12-14)): 

𝜏0(𝜃) = 0.3 × 𝑃𝑚𝑎𝑥(𝜃) (12) 

𝑧0(𝜃) = 0.786 × 𝑏(𝜃) (13) 

𝑉(𝜃) = 2𝑏(𝜃) × 𝑧0(𝜃) × 2𝜋 × 𝑅(𝜃) (14) 

where 𝑃𝑚𝑎𝑥  denotes the maximum Hertzian contact pressure corresponding to the rotation 

angle 𝜃, 𝑅 is the combined radius of curvature of the contact point, and 𝑏 is Hertzian contact 

width. 

Through integrating the calibrated dynamic model and the degradation models (abrasive wear 

model and fatigue pitting model), the signals with various degradation severities can be 

simulated, and a degradation archive can be obtained, which is meaningful to the gear system 
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performance assessment and its RUL prediction. The intergradation of the dynamic and 

degradation models is not the main focus of this paper; therefore, it will not be further 

introduced. More details on the model intergradation can refer to [46]. 

It should be mentioned that the model calibration process (as shown in Figure 4), based on the 

time waveforms, frequency spectra, and natural frequencies, is only applied to the dynamic 

model. The dynamic model calibration can ensure the dynamic model under healthy condition 

function well, and the realistic response can be generated from the dynamic model compared 

with the measurement from the physical structure. The gear digital twin model is achieved by 

integrating the well-calibrated dynamic model and degradation models. The introduction of 

degradation models will bring inevitable feature differences in responses between the digital 

twin model and physical structures, which are caused by the degradation rate change in 

engineering practice. The transfer learning algorithm will address this discrepancy instead of 

real-time updating based on the physical measurement, which is more practical in industrial 

practices. The proposed transfer learning algorithm will be introduced in the following section. 

2.3 A transfer learning algorithm for gear wear severity assessment 

2.3.1 Domain adaptation model development 

In order to transfer the degradation knowledge of the simulation data from the digital twin 

model to the actual evaluation process, a domain adaptation model based on deep learning is 

built in this paper. In the domain adaptation model, labeled simulation data is called source 

domain data, and it is represented by 𝒟𝑠 = {𝐱𝑖
𝑠, 𝐲𝑖

𝑠}𝑖=1
𝑛𝑠 , where 𝐱𝑠  and 𝐲𝑠  denote the source 

domain samples and corresponding labels, respectively. Moreover, actual unlabeled measured 

data is named the target domain data, and it is expressed as 𝒟𝑡 = 𝐱𝑖
𝑡
𝑖=1

𝑛𝑡
, where 𝐱𝑡 represents 

target domain samples. The architecture of the domain adaptation model is shown in Figure 5, 

which consists of a feature extractor G and a fully connected classifier C. During the model 
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training process, the simulated source domain data and the measured target domain data are 

first fed into the feature extractor simultaneously to obtain high-level features. Then, the high-

level features are processed through the classifier to obtain the predicted output of the model. 

The label data of the source domain is used to obtain the performance of extracting discrepancy 

features between different degradation conditions. In high-level feature layers, losses based on 

global domain alignment and class alignment are designed to achieve feature domain 

invariance between the simulated and measured data.  

Within the deep learning architecture, the convolutional neural network (CNN) has many 

unique advantages [47, 48], including strong nonlinear feature extraction ability, easy 

construction, and easy training. Thus, a CNN-based feature extractor G is constructed in this 

study. In the feature extractor G, five convolution modules and a fully connected module are 

built for the feature extraction of source and target domain data. In each convolution module, 

there are four operations, namely convolution (Conv), batch normalization (BN) layer, rectified 

linear units activation function (ReLu) layer, and maximum pooling (Pooling). 

The convolution module has fully connected operations, BN and ReLu. The first convolution 

module receives a one-dimensional raw vibration signal as input, and high-level features of the 

input data are obtained after five convolution modules and a fully connected module. In the 

high-level feature layer, a maximum mean discrepancy (MMD) loss and a class contrastive 

loss are built for domain-invariant learning of source and target domains. Finally, the high-

level features of the source and target domains are input into the classifier C to obtain the 

predicted output. 
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Figure 5 The architecture of the proposed domain adaptation model. 

2.3.2 Domain adaptation model optimization 

From Figure 5, it can be seen that three crucial parameters are introduced in the domain 

adaptation model to achieve accurate wear assessment results, which are ℒ𝑐𝑙𝑠 (assessment loss), 

ℒ𝑀𝑀𝐷 (MMD loss), and ℒ𝑐𝑜𝑛 (class contrastive loss). In the following, these three parameters 

will be discussed in detail. 

(1) Assessment loss 

To extract discriminative features of the different degradation conditions, the cross-entropy 

loss is adopted as the loss function. The cross-entropy loss is defined as: 
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ℒ𝑐𝑙𝑠(𝑥
𝑠, 𝑦𝑠) = −𝐸(𝑥𝑠,𝑦𝑠)∈𝒟𝑠 [∑ I[𝑘=𝑦𝑠] 𝑙𝑜𝑔( 𝐶(𝐺(𝑥

𝑠)))

𝐾

𝑘=1

] (15) 

where K is the number of health conditions. 

(2) MMD loss 

Due to a large discrepancy in feature distribution between the simulated data and the measured 

data, direct use of the deep learning model trained on the simulated signal for the degradation 

condition assessment of the measured signal could result in poor performance. Therefore, 

reducing the domain shift in the feature layer is a necessary operation that can significantly 

improve the performance of deep learning models. In this work, the MMD loss is first 

introduced in the high-level feature layer to achieve global domain alignment. MMD can 

measure the distribution difference between two domains by comparing test statistics [49]. The 

MMD loss of source domain and target domain in the high-level feature layer can be defined 

as [50]: 

ℒ𝑀𝑀𝐷(𝑥
𝑠, 𝑥𝑡) = ‖

1

𝑛1
∑𝑓(𝑥𝑖

𝑠)

𝑛1

𝑖=1

−
1

𝑛2
∑𝑓(𝑥𝑗

𝑡)

𝑛2

𝑗=1

‖

ℋ

2

 

                      =
1

𝑛1
2∑∑𝑘(𝑥𝑖

𝑠, 𝑥𝑗
𝑠)

𝑛1

𝑗=1

𝑛1

𝑖=1

−
2

𝑛1𝑛2
∑∑𝑘(𝑥𝑖

𝑠, 𝑥𝑗
𝑡)

𝑛2

𝑗=1

𝑛1

𝑖=1

+
1

𝑛2
2∑∑𝑘(𝑥𝑖

𝑡 , 𝑥𝑗
𝑡)

𝑛2

𝑗=1

𝑛2

𝑖=1

(16) 

where ℋ represents the reproducing kernel Hilbert space (RKHS), 𝑓: 𝑥𝑠, 𝑥𝑡 → ℋ. 

(3) Class contrastive loss 

MMD loss only achieves global domain alignment, and there may be some misidentified 

conditions at the decision boundary of recognition due to the large domain shift between 

simulation data and test data. Thus, a class alignment strategy is established to further improve 

the assessment performance of the proposed model. In the class alignment strategy, a class 

contrastive loss based on the instance is introduced to measure the intra-class and the inter-

class discrepancy between the source domain and target domain. The instance-based 
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contrastive loss can measure intra-class and inter-class discrepancy, which can be expressed as 

[51, 52]: 

ℓ𝑑(𝑔𝑖
𝑠, 𝑔𝑖

𝑡 , 𝑐𝑖𝑗) = {
‖𝑔𝑖

𝑠 − 𝑔𝑖
𝑡‖2                                  𝑐𝑖𝑖 = 1

𝑚𝑎𝑥(0,𝑚 − ‖𝑔𝑖
𝑠 − 𝑔𝑖

𝑡‖2)        𝑐𝑖𝑖 = 0
(17) 

ℒ𝑐𝑜𝑛(𝑥
𝑠, 𝑥𝑡) =∑ ℓ𝑑(𝑔𝑖

𝑠, 𝑔𝑖
𝑡 , 𝑐𝑖𝑖)

𝑛

𝑖=1

(18) 

where 𝑔𝑖
𝑠 and 𝑔𝑖

𝑡 indicate the feature distributions of the i-th source domain sample and the i-

th target domain sample, 𝑚 is a pre-defined distance, 𝑐𝑖𝑖 = 𝑐(𝑦𝑖
𝑠, �̃�𝑖

𝑡) can be defined as: 

𝑐(𝑦𝑖
𝑠, �̃�𝑖

𝑡) = {
1,     𝑦𝑖 = �̃�𝑖

𝑡 

0,    𝑦𝑖 ≠ �̃�𝑖
𝑡 (19) 

The proposed model is jointly trained with three losses, and the total loss can be expressed as: 

ℒ𝑎𝑙𝑙 = ℒ𝑐𝑙𝑠(𝑥
𝑠, 𝑦𝑠) + 𝛼ℒ𝑀𝑀𝐷(𝑥

𝑠, 𝑥𝑡) + 𝛽ℒ𝑐𝑜𝑛(𝑥
𝑠, 𝑥𝑡) (20) 

where  and   represent tradeoff parameters. 

The ℒ𝑎𝑙𝑙 is minimized in the model training process to seek the optimal 𝜃𝐺 and 𝜃𝐶, which can 

be expressed as: 

(𝜃𝐺 , 𝜃𝐶) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝐺,𝜃𝐶

ℒ𝑎𝑙𝑙(𝑥
𝑠, 𝑦𝑠, 𝑥𝑡) (21) 

The following section will introduce the setting details of the domain adaption model and 

demonstrate its performance in assessing the surface degradation severities, using the 

endurance tests under different dominant wear mechanisms. 

3 Validation and results 

3.1 Experimental design and data collection 

Two endurance tests were conducted to verify the effectiveness of the developed digital twin-

driven intelligent gear surface degradation assessment methodology: (i) a long-running 

endurance test with lubrication, in which the fatigue pitting is the dominant wear mechanism; 
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and (ii) a relatively short endurance test without lubrication, in which the abrasive wear is the 

dominant wear mechanism. A surface moulding technique was used periodically to duplicate 

the gear tooth surfaces during the run-to-failure tests [53] (see Figure 6). The acquired mould 

of gear tooth was then analyzed by optical microscopy and laser scanning confocal microscopy 

to obtain its surface images, which was used for further relevant analysis, like the surface 

pitting density calculation. More details about the surface duplication process using mould can 

refer to [53]. The tribology information obtained from the moulds can be applied for 

quantitative methodology validation. In addition, to quantify the profile change of the gear 

tooth during the dry test, an adhesive paper was placed at the bottom of the gearbox casing. 

The adhesive paper can collect the wear particles produced by the meshing gear surfaces (see 

Figure 7).  The weights of the collected gear wear particles were used to calculate the gear 

tooth average wear depths. And the wear depth can be applied as an index of the wear severity 

of the dry test. 

The lubricated test was performed under the applied load of 20 Nm and the operating speed of 

20 Hz. In comparison, the operating conditions were adjusted to the applied load of 5 Nm and 

the operating speed of 10 Hz for the dry test.  The vibration signals (from B&K 4394 and B&K 

4396) were recorded regularly at a sampling rate of 100 kHz for a period of 10 seconds. As 

shown in Figure 2, B&K 4396 accelerometer is close to the pinion (driving gear), and the pinion 

has much severer wear than the driven gear [53]. Therefore, the measurements from B&K 4396 

accelerometer are utilized in this paper for the corresponding gear wear assessment. 
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Figure 6 Gear pair and mould making (in lubricated test) 

 
Figure 7 Gear meshing pair and the adhesive paper (used in dry test): (a) an adhesive paper which is placed at 

the gear casing bottom; (b) the wear particles collected by the adhesive paper 

3.2 Results of gear transmission digital twin 

The dynamic model is built using Matlab R2021a Simulink, and it takes 2 minutes to generate 

the corresponding responses on the PC with NVIDIA RTX 3070 GPU. As introduced in 

Section 2.2.2, the time waveforms, frequency spectrum, and natural frequencies under healthy 

conditions will be applied to update and calibrate the dynamic model. The time waveforms 

were recorded by the B&K 4394 and B&K 4396 accelerometers, and the frequency spectra can 
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be obtained using the Fourier transform. To obtain the natural frequencies of the gear system, 

a speed ramp test was arranged. This method involves collecting vibration signals over a period 

when the gearbox is ramping up toward full speed, as shown in Figure 8. This particular test 

uses the vibration of the shaft as a forcing function to provide energy input into the gear system. 

This process is used to excite resonances when the shaft vibration passes through the critical 

speeds.  

 
Figure 8 Measured vibration during the spur gearbox ramp test: (a) rotational speed; (b) 

measured vibrations 

Power spectral density (PSD) analysis is a traditional frequency-domain analysis tool to 

identify the vibration modes/natural frequencies of mechanical systems. The underlying 

mechanism is that resonance is the amplification of a signal when its frequency is close to the 

natural frequency of a system. With the help of PSD analysis, the resonances in the spectrum 

are amplified, enabling the vibration modes of the systems to be easily detected. The PSD 

analysis of the spur gearbox is shown in Figure 9.  

From Figure 9, the modes/natural frequencies of the whole spur gear system can be identified, 

which are summarized in Table 1. These natural frequencies can be used as references to 

(a) 

(b) 
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calibrate the developed dynamic model. It should be noted that in the developed dynamic model 

(as shown in Figure 3), the foundation of the spur gearbox is not simulated and included; 

therefore, to make the natural frequency from ramp tests being comparable with the developed 

dynamic model of the gear system, the foundation of the gearbox’s natural frequencies should 

be excluded from the natural frequencies acquired from ramp tests. In this regard, an impact 

test was applied to determine the natural frequencies of the gearbox’s foundation so that it can 

be subtracted from the whole spur gear system, see Figure 10. Note that a slight load is applied 

to ensure the gear pairs are in contact when conducting the hammer test on the foundation of 

the gearbox. 

 
Figure 9 PSD analysis of the vibrations of the spur gear system 

Table 1 Identified natural frequencies from the PSD analysis of experimental measurements 

Natural frequencies (Hz) 

13 22 41 59 68 87 128 

218 270 430 512 6883 767 880 

1103 1167 1248 1367 1471 1714 1927 

 

The quadrature picking method is applied here to determine the natural frequencies/modes and 

mode shapes of the gearbox’s foundation [54]. As for the foundation of the gear system, an 
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accelerometer (B&K 4396) is fixed on the root of the gearbox casing to collect the responses 

excited by varying inputs generated by impact hammers, as shown in Figure 10. The modes of 

the foundation of the gearbox and its mode shapes can be calculated and extracted through Eq. 

(15) 

𝐻(𝜔) =
𝑋(𝜔)

𝐹(𝜔)
(15) 

where 𝐻(𝜔) is the FRF, 𝑋(𝜔) is the output of the system, and 𝐹(𝜔) is the input of the system. 

More specifically, it is assumed that more noise exists in the harmer excitation (input) signal 

than in the receiving accelerometer (output) signal, since the harmer is moving while the 

accelerometer is fixed. The FRF can be calculated by 

𝐻(𝜔) = 𝐺𝑦𝑦 𝐺𝑦𝑥⁄ (16) 

where 𝐺𝑦𝑦 is the auto spectra of output (accelerometer) signal, and 𝐺𝑦𝑥 is the cross-spectrum 

between output signal and input (harmer) signal. Five averaging times for the hammer tests 

were executed. Note that there are some advanced signal processing techniques that can 

improve the FRF estimation results; for example, singular value decomposition (SVD) was 

applied in [55] to improve the FRF. However, the FRF estimation is not the main focus of this 

paper; therefore, the advanced signal process algorithms will not be investigated here to further 

improve FRF results. 
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Figure 10 Harmer test on gearbox’s foundation 

Figure 11 gives the first four mode shapes for demonstration purposes. Based on Eq. (15) and 

Eq. (16), the FRF of the gearbox’s foundation is shown in Figure 12, including the magnitude, 

phase, and coherence. On the modes of the gear system, there would be a peak in the magnitude 

spectrum, and the corresponding phase would shift 180 degrees. Coherence is a function versus 

frequency that indicates the relationship between the input and output of FRF. It can be an 

indicator of the quality of the FRF, which evaluates the consistency of the FRF from the 

repetitive measurements: (a) coherence’s value is 1 at a particular frequency, indicating that 

the FRF amplitude and phase are very repeatable from one measurement to another 

measurement; (b) while coherence’s value is 0 indicating the opposite – the measurements are 

not repeatable, which is a possible “warning flag” that there is an error in the measurement 

setup. 

From the magnitude, phase, and coherence spectra in Figure 12, all the modes of the gearbox’s 

foundation can be identified. By subtracting the obtained modes/natural frequencies from the 

whole gear system’s modes (from the speed ramp test), the modes/natural frequencies of the 

gear system without foundation can be obtained, which are comparable with the developed 

dynamic model. 
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Figure 11 The first four mode shapes of the gearbox’s foundation 

 
Figure 12 Frequency Response Function (FRF) of the gearbox’s foundation 

From Eqs. (2)-(9), the optimal parameters from the dynamic model can be determined. The 

updated or calibrated model can reliably represent the system's dynamic response. For example, 

the natural frequencies of the dynamic model and gear system are compared in Table 2. Table 
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2 shows noticeable differences in the natural frequencies between the dynamic model and gear 

systems. After updating, the first eight natural frequencies are in good agreement between the 

experiments and the dynamic model within the discrepancy of eight percent, which is fair and 

reasonable to approximate the system response. In addition, to prove that the calibrated 

dynamic model can well reflect the gear meshing behavior, the PSD comparison results of 

transmission error (TE) signals are applied here to validate the effectiveness of the model 

parameter intelligent updating approach, as shown in Figure 13. By comparing with the 

traditionally measured vibrations from accelerometers, TE is closer to the source (such as 

contact force) than the vibration response measurements and less affected by different 

transmission paths. Thus, the TE signal can more reliably represent the gear meshing 

characteristics. From Figure 13, it can be seen that the simulation from the calibrated dynamic 

model matches well with the experimental results. The modes of the gear system are well 

captured and represented using the dynamic model, indicating that the dynamic model, after 

intelligent updating, can well reveal the gear system's dynamic characteristics. 

Table 2 Comparison of natural frequencies of the dynamic model and experimental data 

Experiments 

(Hz) 

Before intelligent updating After intelligent updating 

Dynamic model (Hz) Difference (%) Dynamic model (Hz) Difference (%) 

22 15 -31.8 23 5.1 

87 62 -28.7 81 -6.7 

218 156 -28.4 201 -7.8 

430 320 -25.6 427 -0.8 

512 598 16.8 529 3.5 

767 856 11.6 740 3.5 

1248 1543 23.6 1268 1.6 

1927 2658 37.9 1885 2.2 
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Figure 13 Comparisons of PSD spectra of transmission error signals from dynamic model and physical 

measurements (based on encoder signals) 

3.3 Results of gear wear propagation assessment 

3.3.1 Surface pitting severity assessment 

To represent and reveal the system degradation status during the gear fatigue pitting 

progression, the dynamic model and the fatigue pitting model are applied to generate the system 

response, especially the vibration response. A total of six groups of vibrations are simulated, 

corresponding to different fatigue pitting severities during the whole lifespan of the gearbox 

(the maximal pitting density reaches 20%). It should be noted that the endurance tests presented 

in this paper are accelerated degradation tests, and the data acquisition interval is around 5 

minutes, resulting in the amount of measured data is limited. Therefore, balancing the 

minimum change in each condition and the data length is required for the transfer learning 

algorithm. The number of health conditions/stages is set as six (around 3% pitting density 

change for each stage), based on our prior experience [45, 46] and suggestions from the ASM 

handbook [56]. The real pitting density corresponding to each measured signal from the 

physical gearbox can be known from the duplicated gear surface, as shown in Figure 6. The 

real pitting density information can be used here as the kind of “ground truth” to label the actual 
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degradation stages of the endurance tests. Also, the measured pitting density can be applied to 

validate the effectiveness of the developed method for gear surface degradation assessment. 

The simulated vibration signals are applied as the source domain data. The measured vibration 

signals are the target domain data, whose corresponding wear severity needs to be identified. 

Then the developed transfer learning algorithm will be implemented, as introduced in Section 

2.3. In the proposed domain model, the kernel size of each convolution operation is 9, and the 

number of channels of the convolution operation is 4, 8, 16, 32, and 64, respectively. The 

number of units in the fully connected layer is 300. The parameter settings in the experiment 

are shown in Table 3. Each experiment is performed six times, and the average value is used 

as the final surface degradation assessment result. The developed domain model is 

implemented on the PC with NVIDIA RTX 3070 GPU, and it takes 0.2s to obtain the 

assessment result once the model is pre-trained. 

Table 3 Parameter settings of the domain adaptation model 

Parameter Value Parameter Value 

Source training samples 400  Batch size  20  

Target training samples 300  Epochs  80  

Target test samples 100  α 0.1  

Initial learning rate 0.01   0.1 

To more intuitively reflect the performance of the model, the confusion matrix visualization 

technique is used to display the surface wear assessment accuracy of all conditions. In the 

confusion matrix, the numbers on the diagonal represent the correct rate of prediction for each 

condition, and the data in other positions represent the error rates for the corresponding 

incorrect condition. The confusion matrix of the developed method is shown in Figure 14 to 

show the surface wear assessment accuracy. From Figure 14, it can be seen that the average 

surface wear assessment accuracy is approximately 94.80%, which proves its excellent 

performance in surface wear evaluations. Also, the t-SNE technology is employed to visualize 

the high-level features of the target test data, as shown in Figure 15. In Figure 15, each wear 
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state in the proposed method achieves good individual clustering, indicating the effectiveness 

of the developed surface wear assessment method. 

 

Figure 14 Confusion matrix of the developed method: lubricated test 

 

Figure 15 Visualization of the developed method via t-SNE: lubricated test 

To demonstrate the superiority of the proposed domain-adaptive model for assessing the 

surface degradation severity over other conventional techniques, two comparison methods are 

designed under the same experimental scenario. The first comparison method is the 
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convolutional neural network (CNN), in which the model trained on the simulated data is 

directly used for testing the measured data. Another comparison method is MMD, in which 

only MMD loss is introduced for domain invariant learning. 

To more comprehensively evaluate the performance of the methods, each method is executed 

six times, and their average evaluation accuracies are 80.45% and 90.26%, respectively. The 

confusion matrices of these two methods are shown in Figure 16. From the comparisons 

between Figure 14 and Figure 16, it can be seen that the proposed digital twin-driven surface 

degradation assessment method can obtain much more accurate degradation assessment results 

under all degradation conditions, and the assessment performance is superior to those of the 

none-domain adaptation method and the traditional domain adaptation method.  

 
Figure 16 Lubricated test: the confusion matrices of the two methods: CNN and MMD 

To further demonstrate the superiority of the proposed method, the t-SNE technology is 

employed to visualize the high-level features of the target test data in CNN and MMD. The 

visualization results of these two methods are shown in Figure 17. From Figure 17, it can be 

seen that for the CNN method without domain adaptation, there are more feature overlaps in 

most classes. The feature overlap indicates a noticeable discrepancy in feature distribution 

between the simulation data and the test data. Consequently, the model obtained from the 

simulation data being directly used for evaluating characteristics of measured data does not 

(a)  CNN (b)  MMD 
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work well. Compared with CNN, the introduction of the MMD method improves the evaluation 

accuracy. However, there are still more feature overlaps among conditions 4, 5, and 6, which 

affect the performance of the model. In contrast, as shown in Figure 15, each class in the 

proposed method achieves better individual clustering. The comparison of Figure 15 and Figure 

17 illustrates that the proposed method can efficiently achieve both domain alignment and class 

alignment for accurate degradation condition assessment. 

 
Figure 17 Lubricated test: visualization of the methods-CNN and MMD 

3.3.2 Tooth profile change severity assessment 

In the short dry test, the dominant gear wear mechanism is the abrasive gear wear, and thus the 

gear meshing tooth profile has changed significantly. Similar to the lubricated test, by 

balancing the minimum change contained in each stage and the data length required for the 

transfer learning algorithm, four degradation stages with different tooth profile changes are 

defined for the endurance test (around 60 𝜇𝑚 tooth profile change for each stage). Note that 

the profile change of the gear tooth can be evaluated with the help of the collected wear 

particles (Figure 7). This information can serve as the kind of “ground truth” to verify the 

effectiveness of the developed method. 

(a)  CNN (b)  MMD 
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Similar procedures are implemented for the short dry tests, as introduced in Section 3.3.1. As 

for the developed method, the average gear surface degradation assessment accuracy is 92.71%, 

and the corresponding confusion matrix is shown in Figure 18. The visualization result of the 

developed method is shown in Figure 19. 

 

Figure 18 Confusion matrix of the developed method: dry test 

 

Figure 19 Visualization of the developed method via t-SNE: lubricated test 

Similar to Section 3.3.1, in order to illustrate the superiority of the proposed method in the gear 

wear assessment, CNN and MMD are applied here to implement the relevant comparisons. The 
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evaluation accuracies of these two methods are 80.13% and 85.41%, respectively. The 

corresponding confusion matrices are shown in Figure 20, and the visualization results are 

shown in Figure 21. From the comparisons, it can be seen that the proposed method achieves 

the most accurate recognition under each condition. This proves that the proposed method has 

excellent generalization performance. Also, from the visualization results shown in Figure 19 

and Figure 21, it can be observed that for stages 1, 2, and 3 with severe feature overlaps, the 

proposed method can significantly improve the feature distinguishability among them. 

 
Figure 20 Dry test: the confusion matrices of the two methods-CNN and MMD 

 
Figure 21 Lubricated test: visualization of the methods-CNN and MMD 

(a)  CNN (b)  MMD 

(a)  CNN (b)  MMD 
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4 Conclusion and future work 

Gear surface wear is a common but inevitable phenomenon in the lifespan of the gearbox, and 

its propagation can induce severe failures, which could result in unexpected economic loss and 

even severe incidents. Real-time assessment of the system degradation status could provide 

many benefits to industrial applications. In this paper, a digital twin-driven methodology has 

been proposed for intelligent gear surface degradation assessment. With the help of the 

measurements from the physical system, the high-fidelity digital twin model was established 

automatically to reveal the dynamic response of the gear system during the gear wear 

progression. The developed transfer learning algorithm was adopted to transfer the knowledge 

learned from the digital twin models to the surface wear assessment of the physical gearbox. 

The developed methodology could assess the surface wear severity accurately with a non-

destructive approach. Two kinds of endurance tests were performed to verify the effectiveness 

of the developed methodology and prove the practical values and significance of the developed 

methodology in industrial practices. Moreover, the developed methodology could improve the 

applicability of the digital twin techniques in gear wear monitoring, promoting the wide 

application of digital twin techniques in gear health management. 

In future work, other failure wear mechanisms will be considered. The digital twin model will 

also be improved so that it can be timely updated during the progression process of gear wear, 

and the actual system degradation behavior can be revealed in real-time and with high accuracy. 

The FRF estimation is crucial for gearbox modeling; thus, advanced signal processing methods 

will be investigated to improve the FRF results. Also, the current digital twin model is complex, 

bringing challenges in model establishment and calibration. Thus, the model order reduction 

techniques will be studied to reduce the complexity of gear wear assessment using the digital 

twin solution and improve its practicability. Furthermore, some advanced deep learning 
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algorithms, such as long short-term memory network (LSTM) and Transformer, will be 

investigated to further improve the diagnosis accuracy of the gearbox transmission system. 
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Appendix A 

 
Figure A1. Spur gearbox test rig with each labeled modeling component [46] 

Table A1. Mass and inertia of the dynamic model of spur gearbox system [46] 

Inertia (𝑘𝑔𝑚2) Mass (𝑘𝑔) 

𝐼1 
Inertia of motor, inertia of motor shaft and 1 2⁄  

inertia of coupling 1 
𝑚4 

Mass of pedestal and 

bearing 

𝐼2 
1 2⁄  inertia of coupling 1, 1 2⁄  inertia of coupling 2 

and inertia of torque meter shaft 
𝑚5 Mass of pinion 

𝐼3 
1 2⁄  inertia of coupling 2 and inertia of input shaft to 

bearing (not including bearing) 
𝑚6 

Mass of pedestal and 

bearing 
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𝐼5 
Inertia of pinion, inertia of input shaft (whole shaft 

section through casing) 
𝑚9 

Mass of pedestal and 

bearing 

𝐼7 
Inertia of slip ring (rotor part), adapter, coupling 3 

and shaft section outside casing (free end) 
𝑚10 Mass of gear 

𝐼8 
Inertia of slip ring (rotor part), adapter, coupling 5 

and shaft section outside casing (free end) 
𝑚11 

Mass of pedestal and 

bearing 

𝐼10 
Inertia of gear, inertia of whole output shaft section 

through casing 
  

𝐼12 
1 2⁄  inertia of coupling 4 and output shaft section to 

bearing (not including bearing) 
  

𝐼13 
Inertia of brake, inertia of brake shaft and 1 2⁄  inertia 

of coupling 4 
  

 

Table A2. Stiffness and damping of the dynamic model of spur gearbox system [46] 

Stiffness and damping 

𝑘𝑡12, 𝐶𝑡12 
Torsional stiffness and damping 

of coupling 1 
𝑘𝑦56, 𝐶𝑦56 

Vertical stiffness and 

damping of shaft 

𝑘𝑡23,  𝐶𝑡23 
Torsional stiffness and damping 

of coupling 2 
𝑘𝑦101, 𝐶𝑦101 

Vertical stiffness and 

damping of shaft 

𝑘𝑡35, 𝐶𝑡35 

Torsional stiffness and damping 

of shaft (from coupling 2 to 

pinion) 

𝑘𝑦910, 𝐶𝑦910 
Vertical stiffness and 

damping of shaft 

𝑘𝑡57, 𝐶𝑡57 
Torsional stiffness and damping 

of shaft (from pinion to slip ring) 
𝑘𝑥45, 𝐶𝑥45 

Horizontal stiffness and 

damping of shaft 

𝑘𝑡810, 𝐶𝑡810 
Torsional stiffness and damping 

of shaft (from gear to slip ring) 
𝑘𝑥56, 𝐶𝑥56 

Horizontal stiffness and 

damping of shaft 

𝑘𝑡102, 𝐶𝑡102 
Torsional stiffness and damping 

of shaft (from gear to coupling 4) 
𝑘𝑥101, 𝐶𝑥101 

Horizontal stiffness and 

damping of shaft 

𝑘𝑡123, 𝐶𝑡123 
Torsional stiffness and damping 

of coupling 4 
𝑘𝑥910, 𝐶𝑥45 

Horizontal stiffness and 

damping of shaft 

𝑘𝑦45, 𝐶𝑦45 
Vertical stiffness and damping of 

shaft 
𝑘𝑦4, 𝑘𝑦6, 𝑘𝑦9, 𝑘𝑦11 

Vertical stiffness of 

pedestal/bearing 
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