
1 
 

 A framework for plasticity-based topology optimization of continuum structure 1 

Xue Zhang1,*, Xifan Li1, Yujia Zhang1 2 

1. Department of Civil Engineering and Industrial Design, School of Engineering, 3 

University of Liverpool, Liverpool, UK 4 

 5 

Abstract  6 

In this paper, a framework is proposed for topology optimization of continuum structures 7 

considering plasticity. The method merges the rigid-plastic analysis and the density-based 8 

topology optimization. To obtain a clean black-and-white design, the density in the objective 9 

function is penalized using an exponential function. The solution of the final plasticity-based 10 

topology optimization problem exhibits as a sequence of second-order cone programming 11 

(SOCP) problems that can be resolved efficiently using the advanced primal-dual interior point 12 

method. Compared to the conventional stress-constrained topology optimization techniques, 13 

the developed method accounts for plasticity and the finite element analysis of structures does 14 

not need to be carried out separately. Furthermore, the proposed method requires no relaxation 15 

techniques for imposing local stress-constrain and possesses good computational efficiency for 16 

large-scale problems. 17 

 18 

Keywords: topology optimization; yield criterion; stress constraint; density-based method; 19 

SOCP 20 

 21 

*Corresponding author 22 

  Email address:  xue.zhang2@liverpool.ac.uk 23 

 24 

 25 

mailto:xue.zhang2@liverpool.ac.uk


2 
 

1. Introduction 26 

Since the landmark work on the homogenization method for topology optimization of 27 

structures [1], the research field of topology design has been attracting extensive attention from 28 

both academia and industry. To date, numerous approaches have been developed to solve the 29 

problem of topology optimization such as the density-based method [2, 3], the level set method 30 

[4, 5], the evolutionary structural optimisation method [6] and its variants [7, 8], the phase field 31 

method [9], and the moving morphable components [10, 11] to name a few. A comprehensive 32 

review of these methods was provided in [12] for comparison.  33 

 34 

The density-based method is maybe the most widely used one among these topology 35 

optimization approaches. Despite vast efforts devoted to the algorithm development for the 36 

density-based topology design, the focuses of earlier works are majorly placed on the 37 

conventional stiffness-based design of elastic continua. For instance, the problem commonly 38 

presents as a minimization of elastic strain energy of a structure subjected to given external 39 

loads and a volume constraint of materials [13]. The material is considered as elastic, and the 40 

strain energy is a function of the displacement and a newly introduced continuous ‘density’, 41 

ranging from 0 to 1, to indicate whether a point of space is occupied by materials. The 42 

formulation of topology optimization for elastic materials is well-established and can be 43 

resolved efficiently using mathematical programming. However, the optimal design led from 44 

this approach does not guarantee the feasibility of the stress states with respect to material 45 

strength. In other words, it is likely that the stress states of the designed structure are above the 46 

yield limit of the material when subjected to the considered external load. Remarkably, the 47 

strength of structures is among the most important concerns in practical applications. Hence, 48 

in real-world applications, structures from the conventional stiffness-based topology 49 

optimization are subjected to sequential modifications and improvement in a later stage to 50 



3 
 

ensure the strength criteria of materials [14]. 51 

 52 

Further inclusion of stress criteria in the optimization routine is regarded stress constrained 53 

topology optimization [12, 15]. One way to achieve this goal is by including the yield criterion 54 

as additional constraints in the conventional stiffness-based topology optimization. Despite the 55 

forthright extension in terms of the mathematical formulation, the resulting problem is much 56 

more difficult to address. Alternatively, the stress constrained topology optimization can be 57 

formulated as the minimization of the volume subjected to equilibrium equations which also 58 

satisfy the stress constraint. Although this strategy is widely used for considering stress 59 

constraints, several challenges burden its application [12]. A pronounced issue is the so-called 60 

stress singularity [16]. When the density approaches zero, the low stiffness may cause high 61 

deformation and sequentially large local stresses. The local constraints thereby saturate which 62 

prevents the removal of materials and results in a solution of the substantial grey region 63 

whereas a crisp solid/void result is desired [17]. To alleviate the singularity problem, relaxation 64 

techniques such as the 𝜀-relaxation approach [16] and the 𝑞𝑝-approach [18] have to be applied. 65 

Another issue is the high computational demand when the stress constraints are enforced at the 66 

local points of each element, for example, the numerical integration points of each element. To 67 

reduce the computational cost of design with local stress constraints, a single global stress 68 

constraint is enforced in the topology optimization using aggregating functions such as the 𝑝-69 

norm or the Kreisselmeier-Steinhauser (KS) function [19, 20] which, however, leads to a 70 

weaker control of the local stress. A compromise approach is to group the elements into blocks 71 

based on which regional constraints on stresses are enforced [21]. This strategy reduces the 72 

number of constraints dramatically compared to the local-constraints approach while retaining 73 

control of the stress behaviour.  74 

 75 
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More recently, a topology optimization approach was proposed for plane strain problems 76 

accounting for material strength [22]. Neglecting the elastic behaviour, this approach targets 77 

the final plastic limit state of structures by combining the direct limit analysis and the density-78 

based topology optimization in the same framework. Specifically, the optimal design problem 79 

is exhibited as the minimization of material volume subjected to a stress field which is both 80 

statically admissible (i.e., fulfilling the equilibrium equations, stress vector continuity and 81 

stress boundary conditions) and plastically admissible (i.e., satisfying 𝑓(σ) ≤ 0 where 𝑓(σ) is 82 

the plastic yield criterion of the material). The material density and stress are the design 83 

variables and the material strength is proportional to the material density [23]. The stress 84 

constraints are enforced at the element level. Later, Herfelt et al. [24] proposed a more general 85 

formulation for this approach that both the lower bound and upper bound limit analyses can be 86 

carried out conveniently in the optimal design by using adequate elements. Consequently, the 87 

optimal design can be bounded by using the upper bound and relaxed lower bound elements. 88 

In the form of a standard convex optimization problem, the final optimization problem is 89 

resolved forthrightly using the primal-dual interior point method which also ensures the 90 

solution is the global optimum. Despite its novelty, the topology optimization method 91 

developed in [24] only leads to a grey-scale design which dramatically reduces its attraction.   92 

 93 

In this paper, a plasticity-based topology optimization framework is developed based on [24]. 94 

Similar to [24], the developed method combines limit analysis and density-based topology 95 

optimization. However, the plasticity-based topology optimization method developed in this 96 

study leads to a black-and-white design, rather than a grey scale design as in [24], which is 97 

more realizable in manufacturing. The method is developed by first merging the density-based 98 

technique into the rigid plastic analysis, resulting in a plasticity-based topology optimization 99 

formulation. Further embracing the Solid Isotropic Microstructure with the Penalization for 100 
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intermediate densities (SIMP) method to steer the intermediate density, the formulation leads 101 

to black-and-white layouts instead of grey designs via iterations. Because of the discontinuity 102 

of the stress field between elements in the proposed formulation, the filtering operation is 103 

introduced for improving the optimal design. Compared to the conventional stress-constrained 104 

topology optimization with SIMP, the topology optimization problem presented in this study 105 

is resolved straightforward using the advanced primal-dual interior point method with high 106 

computational efficiency. It is also found that black-and-white designs can be obtained using 107 

this approach without employing any relaxation techniques. Further, the layout from the 108 

developed approach is more economical given the concern of plasticity in the developed 109 

approach. The correctness and robustness of the proposed method are demonstrated by 110 

simulating some typical topology optimization problems. 111 

 112 

2. Formulation of topology optimization 113 

2.1 Rigid-perfectly-plastic theory 114 

For a rigid-perfectly-plastic body with volume Ω and surface Γ = Γ𝑢 ∪ Γ𝑡 where Γ𝑢 and Γ𝑡 are 115 

the kinematic and traction boundaries, respectively, with Γ𝑢 ∪ Γ𝑡 = ∅, the governing equations 116 

consist of 117 

•  Equilibrium equation 118 

 119 

𝛁𝑇𝝈 + 𝒃 = 𝟎   in Ω 
(1) 

 120 

• The strain-displacement relation 121 

𝛆 = 𝛁𝑇𝒖 
(2) 
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 122 

• The constitutive relation  123 

 𝛆 = �̇�
𝜕𝑓(𝝈)

𝜕𝝈
 

�̇� 𝑓(𝝈) = 0; �̇� ≥ 0;  𝑓(𝝈) ≤ 0 

(3) 

 124 

• The boundary conditions 125 

𝐮 = �̅� on Γ𝑢 
(4) 

𝑵𝑇𝝈 = 𝛼�̅�𝟎  on Γ𝑡 
(5) 

where  126 

𝝈 is the Cauchy stress; 127 

𝐛 is the body force; 128 

𝛆 is the strain; 129 

𝐮 is the displacement; 130 

�̇� is the plastic multiplier; 131 

𝑓(𝝈)is the yield function; 132 

�̅� is the prescribed displacements (i.e. �̅� = 0); 133 

�̅� is the prescribed traction; 134 

𝛼 is the collapse load factor; 135 

𝑵 consists of components of the outward normal to the boundary Γ𝑡; 136 

and 𝛁𝑇 is the transposed gradient operator, in a plane-stress case, taking the form of  137 

 138 
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𝛁𝑇 =

[
 
 
 
 
𝜕

𝜕𝑥
𝟎

𝜕

𝜕𝑦

𝟎
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 

 (6) 

 139 

According to [25, 26], the rigid-perfectly-plastic analysis can be formulated as the following 140 

min-max optimization problem 141 

min
𝑢
  max
(𝝈,𝛼)

     𝛼 + ∫ 𝝈𝑇𝛁𝑇(𝒖)𝑑Ω
Ω

−∫ 𝒃𝑇𝐮𝑑Ω −
Ω

𝛼∫ �̅�𝑇𝒖𝑑Γ
Γ𝑡

 

                subject to      𝑓(𝝈) ≤ 0 

 

(7) 

In the above, the maximization part renders the principle of maximum plastic dissipation. The 142 

minimization part, on the other hand, concerns the total potential energy and corresponds to 143 

equilibrium enforcement. The upper and lower bound theorems follow as special cases of the 144 

optimization problem (7). The equivalence between the optimization problem (7) and the 145 

governing equations listed in (1)-(5) has been demonstrated in [25, 26] where the Karush-146 

Kuhn-Tucker (KKT) conditions associated with (7) are derived.  147 

 148 

Using mixed finite elements, the interpolation for the stress and displacement fields are 149 

                                             𝝈(𝒙) ≈ 𝑵𝜎�̂�, 
𝒖(𝒙) ≈ 𝑵𝑢�̂�,    𝛁

𝑇𝒖 ≈ 𝑩𝑢�̂� 

 

(8) 

 150 

Substituting the above interpolations into the min-max problem (7) results in  151 

 152 
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min
�̂�
  max
(�̂�,𝛼)

     𝛼 +∆�̂�𝑇𝑩𝑇�̂� − �̂�𝑇𝐟𝑏 − 𝛼�̂�𝑇𝐟𝑒 

subject to    𝑓𝑗(�̂�) ≤ 0,          𝑗 = 1, 2,···, 𝑁𝐺 

 

(9) 

where 𝑁𝐺  is the total number of interpolation points for the stress field, and  153 

𝑩𝑇 = ∫ 𝑩𝑢
𝑇𝑵𝜎𝑑Ω

Ω

 (10) 

𝐟𝑏 = ∫ 𝑵𝑢
𝑇𝒃dΩ

Ω

 

 

(11) 

𝐟𝑒 = ∫ 𝑵𝑢
𝑇 �̅�

Γt

dΓ 

 

(12) 

 154 

The minimization part of principle (9) with respect to the displacement �̂� can be resolved 155 

analytically leading to a maximization problem  156 

                                          max
(�̂�,𝛼)

            𝛼 

                                         subject to   𝑩𝑇�̂� = 𝐟𝑏 + 𝛼𝐟𝑒 

                                                            𝑓𝑗(�̂�) ≤ 0,    𝑗 = 1, 2,···, 𝑁𝐺 

(13) 

 157 

According to [26], problem (13) results in a rigorous upper bound when the mixed finite 158 

element shown in Figure 1 is employed. It should be stressed that a solution to the limit analysis 159 

problem is a pair of fields (𝝈, 𝒖). The solution can be sought via either the statical (or lower 160 

bound) method, which involves only stresses as variables, or the kinematical (or upper bound) 161 
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method which involves only displacement. However, the mixed approach, involving both 162 

stresses and displacements, in some particular cases can reproduce rigorous upper bound 163 

solutions as indicated in [26-28]. The mixed element used in this study is from [26] that the 164 

corner nodes are used for approximating the stress field, which are also numerical integration 165 

points, whereas both the corner nodes and the nodes at the middle point of edges are for the 166 

displacement field. As a result, the stress field varies linearly within the element and is 167 

discontinuous between elements. The displacement field on the other hand is quadratic within 168 

the element and continuous between elements. Such a mixed finite element is indicated as an 169 

upper bound element in [26], which is also the one used for upper bound limit analysis in the 170 

commercial software OptumG2 [29].  171 

 172 

 173 

Figure 1 An illustration of the mixed finite element [26]. 174 

 175 

2.2 Plasticity-based topology optimization 176 

The plasticity-based topology optimization can be constructed in the framework of rigid-177 

perfectly-plastic analysis. By introducing a new design variable - ‘density’ 𝜌 ∈ [0,1] , the 178 

optimal problem presents as a minimization of the material volume subjected to force balance 179 

equations and yield criteria as below 180 
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                                                    min
(�̂�,𝛼)

    ∫ 𝜌𝑑Ω
Ω

 

                                          subject to      𝑩𝑇�̂� = 𝐟𝑏(𝜌) + 𝛼𝐟𝑒 

                                                                𝑓𝑗(�̂�, 𝜌) ≤ 0,     𝑗 = 1, 2,···, 𝑁𝐺 

 

(14) 

where both 𝐟𝑏and the yield function depend on the density 𝜌. In the topology optimization 181 

problem (14), 𝛼 is a known factor since the given external load is denoted by 𝛼�̅�0. 182 

 183 

The von Mises yield criterion which is prevalent in the stress constrained topology optimization 184 

[15] is adopted in this study. The corresponding yield function is  185 

𝑓(𝝈, 𝜌) = √3𝐽2 − 𝜌𝑓𝑦 ≤ 0 (15) 

where  𝑓𝑦 is the yield stress and  𝐽2 is the second invariant of the deviatoric stress. In plane 186 

stress cases, it is expressed as 187 

𝐽2 =
1

6
(𝜎𝑥 − 𝜎𝑦)

2 +
1

6
𝜎𝑥

2 +
1

6
𝜎𝑦

2 + 𝜏𝑥𝑦
2  (16) 

When a point has 𝜌 = 0 denoting a void point, all stress components are null due to (15), which 188 

mean this point cannot sustain any stresses. Because the yield criteria are enforced on all the 189 

stress interpolation points, the density field is approximated in the same way as the stress field 190 

which is  191 

𝜌(𝒙) ≈ 𝑵𝜌�̂� (17) 

Substituting Eq. (17) into (14), the optimal design problem is  192 
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                                                   min
(�̂�,�̂�)

       𝑳�̂� 

subject to     𝑩𝑇�̂� − 𝑯�̂� = 𝛼𝐟𝑒 

                                        𝑓𝑗(�̂�, �̂�𝑗) ≤ 0,     𝑗 = 1, 2,···, 𝑁𝐺 

(18) 

where  193 

𝑳 = ∫ 𝑵𝜌𝑑Ω
Ω

 
(19) 

𝑯 = ∫ 𝑵𝑢
𝑇𝒃𝑵𝜌𝑑Ω

Ω

 (20) 

 194 

The derived topology optimization problem (18) is similar to the one presented in [24]. By 195 

introducing a new set of variables 196 

�̂� = 𝐃 [

�̂�𝑥
�̂�𝑦
�̂�𝑥𝑦

]    with  𝐃 =

[
 
 
 
 
 1 −

1

2
0

0
√3

2
0

0 0 √3]
 
 
 
 
 

 

 

(21) 

the von Mises yield criterion is reformulated as  197 

𝑓 = √�̂�𝑇�̂� − 𝜌𝑓𝑦 ≤ 0 (22) 

 198 

Thus, the topology optimization problem (18) turns to  199 
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                                                          min
(�̂�,ρ̂)

         𝐋�̂� 

                                           subject to     𝐁𝐓�̂� − 𝐇�̂� = 𝛼𝐟𝑒 

                                                                     {

�̂�𝑗 = 𝐃𝑗�̂�𝑗

√�̂�𝑗
𝑇
�̂�𝑗 − 𝜌𝑗𝑓𝑦 ≤ 0

     𝑗 = 1,2,···, 𝑁𝐺 

 

(23) 

which is a standard Second-Order Cone Programming (SOCP) problem and can be resolved 200 

efficiently using the interior-point method available in advanced optimization engines. It is 201 

remarkable that, theoretically, the density 𝜌 can be treated as an integer (i.e., either 0 or 1) in 202 

mathematical programming. The resulting mixed-integer SOCP, however, is difficult and 203 

extremely slow to solve. Thus the density 𝜌  is treated as continuous for the sake of 204 

computational efficiency in [24] which leads to a ‘grey’ optimal design. In this paper, the 205 

derived topology optimization problem will be further modified via the penalization of 206 

intermediate density 𝜌 to result in a black-and-white solution which is more desirable. 207 

 208 

3. Penalization and Filtering  209 

To penalize the intermediate density, the objective function ∫ 𝜌𝑑Ω
Ω

 in (14) is replaced by 210 

∫ ℎ(𝜌)𝑑Ω
Ω

 in which ℎ(𝜌) = 𝜌𝑒𝑝(1−𝜌) with 𝑝 being a factor greater than or equal to 1. Because 211 

of the exponential term in the objective function, the discretized problem is a non-SOCP 212 

problem and cannot be resolved as for (18). To seek its solution, the function is approximated 213 

as ℎ(𝜌) = 𝑐𝑛𝜌 where 𝑐𝑛 is a known factor calculated based on the density obtained from the 214 

last iteration step, for instance 215 

𝑐𝑛 = 𝑒𝑝(1−𝜌𝑛) (24) 

where subscript n indicates the corresponding variable at nth iteration step. Then the discretized 216 

topology optimization with penalization reads 217 
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                                                     min
(�̂�,ρ̂)

        �̃��̂� 

                                            subject to     𝐁𝐓�̂� − 𝐇�̂� = 𝛼𝐟𝑒 

                                                                      {

�̂�𝑗 = 𝐃𝑗�̂�𝑗

√�̂�𝑗
𝑇
�̂�𝑗 − 𝜌𝑗𝑓𝑦 ≤ 0

     𝑗 = 1,2,···, 𝑁𝐺 

 

(25) 

where 218 

�̃� = ∫ �̃�𝜌𝑑Ω
𝛀

 (26) 

�̃�𝜌 = [𝑐𝑛
1𝑁𝜌

1 𝑐𝑛
2𝑁𝜌

2 𝑐𝑛
3𝑁𝜌

3] (27) 

 219 

Problem (25) is now a standard SOCP problem that can be resolved forthrightly using the 220 

primal-dual interior point method which will be briefly summarized in the next section.   221 

 222 

To sum up, the solution algorithm for the proposed plasticity-based topology optimization with 223 

penalization is as follows: 224 

(i) Assume the density 𝜌 = 1 for the entire computational domain; 225 

(ii) Calculate 𝑐𝑛 at stress interpolation points based on the known density 𝜌𝑛 using (24);  226 

(iii) Solve the optimization problem (25) using the primal-dual interior point method to 227 

attain the density field and the stress field; 228 

(iv)  Perform density filtering across the domain; 229 

(v)  Stop the iteration if convergence criterion is satisfied (i.e., the objective function, 230 

𝑂𝑏𝑗 = �̃��̂� in Eq. (25), in two iterations fulfils 
‖𝑂𝑏𝑗n+1−𝑂𝑏𝑗n‖

𝑂𝑏𝑗n+1
≤ 1 × 10−4 ); otherwise 231 

go to step (ii). 232 

 233 
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The density filtering operation in (iv) is carried out by first calculating the density of each 234 

element, 𝜌𝑒, as an average of the density at the three corner nodes of the element. According 235 

to [30], the filtered density of an element is then  236 

  237 

�̃�𝑒 =
∑ 𝑤(𝑥𝑖)𝑣𝑖𝜌𝑖

𝑒
𝑖∈𝑁𝑒

∑ 𝑤(𝑥𝑖)𝑣𝑖𝑖∈𝑁𝑒

 
(28) 

 238 

where 𝑣𝑖 and 𝜌𝑖
𝑒 are the volume and the density of the ith element, respectively, and 𝑁𝑒  denotes 239 

the total number of elements located in the filtering region of the element, which is a circle of 240 

radius 𝑅. The weighting function is 𝑤(𝑥𝑖), and the Gaussian (bell shape) distribution function is 241 

used such that 242 

𝑤(𝑥𝑖) = 𝑒
−
1
2
(
‖𝑥𝑖−𝑥𝑒‖
𝜎𝑑

)
2

 
(29) 

in which 𝑥𝑒 is the coordinate of the centroid of the element whose density is filtered and 𝑥𝑖 is 243 

the coordinate of the centroid of the ith element within the filtering region. The parameter 𝜎𝑑 244 

is 𝑅/2 with 𝑅 being 1.5 times the mesh size. 245 

 246 

Remarkably, because the proposed topology optimization problem (25) is derived from the 247 

rigid-perfectly-plastic analysis problem (13), the layout resulting from (25) fulfils the 248 

governing equations (1)-(5). In other words, the applied force in fact is the maximum force the 249 

designed structure can sustain based on the plastic theory. This contrasts with the conventional 250 

stress-constrained topology optimization which provides a more conservative solution. This 251 

point will be further discussed in the numerical example section. 252 

 253 

4. Primal-dual interior point method for SOCP 254 
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In general, a second-order cone programming (SOCP) problem can be written in the form  255 

                                                            min
𝒙
    𝒄𝑇𝒙 

subject to  𝑨𝒙 = 𝒃 

                                                                      𝒙𝑖 ∈ 𝐾𝑖      (𝑖 = 1, 2, … ,𝑁)    
 

(30) 

where 𝒄, 𝒙 ∈ 𝑅𝑛, 𝒃 ∈ 𝑅𝑚, 𝑨 ∈ 𝑅𝑚×𝑛, and 𝐾𝑖 is one of the following cones: 256 

 Quadratic cone  257 

𝒦𝑞 = {𝒙 ∈ 𝑅𝑙: 𝑥1 ≥ √𝑥2
2 + 𝑥3

2 +⋯+ 𝑥𝑙
2} 

 

(31) 

Rotated quadratic cone 258 

𝒦𝑟 = {𝒙 ∈ 𝑅𝑔: 2𝑥1𝑥2 ≥ √𝑥3
2 + 𝑥4

2 +⋯+ 𝑥𝑔2}   with 𝑥1, 𝑥2 ≥ 0 
(32) 

 259 

Apparently, both the objective function and the equality constraint in the final optimization 260 

problem (25) are linear as these in (30). The inequality constraints in (25) are also the standard 261 

quadratic cones, for instance, the cone in (31). Thus, the final optimization problem (25) is a 262 

standard SOCP problem of the form (30). 263 

 264 

The advanced primal-dual interior point method for solving the standard SOCP problem (30) 265 

has been detailed in [31]. To seek the solution, the dual problem of (30) is first defined  266 

                                                        max
(𝒚,𝒔)

    𝒃𝑇𝒚 

subject to  𝑨𝑇𝒚 + 𝒔 = 𝒄 

                                                                 𝒔𝑖 ∈ 𝐾𝑖
∗ (𝑖 = 1, 2, … , 𝑁)    

(33) 
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where 𝐾𝑖
∗ is the dual cone of 𝐾𝑖 such that 267 

𝐾𝑖
∗  = {𝒔𝑖 ∈ 𝑅

𝑔: 𝒔𝑖
𝑇𝒙𝑖 ≥ 0, ∀𝒙𝑖 ∈ 𝐾𝑖} (34) 

Noting that the cone 𝐾𝑖 in (30) is self-dual meaning 𝐾𝑖 = 𝐾𝑖
∗, the dual problem (33) is then 268 

expressed as   269 

  max
(𝒚,𝒔)

    𝒃𝑇𝒚 

                                                  subject to  𝑨𝑇𝒚 + 𝒔 = 𝒄 

                                                                    𝒔𝑖 ∈ 𝐾𝑖  (𝑖 = 1, 2, … ,𝑁)    
 

(35) 

According to the duality theory [32], solving primal problem (30) or dual problem (35) is 270 

equivalent to solving the system 271 

{
 

 
𝑨𝒙 = 𝒃
𝑨𝑇𝒚 + 𝒔 = 𝒄

𝒙𝑖
𝑇𝒔𝑖 = 𝟎

𝒙𝑖 ∈ 𝐾𝑖;  𝒔𝑖 ∈ 𝐾𝑖 (𝑖 = 1, 2, … ,𝑁)

 (36) 

The above system (i.e. (36)) involves neither the gradients nor Hessians of the nonlinear cone 272 

constraints for defining the optimal point of the SOCP problem. Indeed, system (36) can be 273 

regarded as a generalization of linear programming as indicated in [33]. It can be resolved 274 

efficiently by employing a generalization of the Goldman-Tucker homogeneous model for 275 

linear optimization. We refer readers to [31] where the equivalence between the SOCP problem 276 

(30) and the system (36) is proven and an efficient algorithm, namely the primal-dual interior 277 

point method, for solving (36) is introduced in detail. Note that the algorithm documented in 278 

[31] also leads to an advanced optimization engine MOSEK [34] which is adopted in this study 279 

for solving the final topology optimization problem (25) which is a SOCP problem. 280 
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 281 

5. Numerical Examples 282 

In this section, three examples are shown to demonstrate the correctness and robustness of the 283 

proposed method. All simulations are performed on a DELL PC with a 2.20 GHz CPU and 284 

32.0 GB memory on Microsoft Windows server (Version 10.0). The final SOCP problem (25) 285 

is solved using the optimisation engine MOSEK [31, 34], an advanced modern optimization 286 

tool for solving large-scale optimization problems, in MATLAB environment (R2020a). In all 287 

simulations, the penalization factor 𝑝 = 5 is adopted if not otherwise specified. 288 

   289 

5.1 A plate under shear load 290 

The first example concerns a plate subjected to a shear load as shown in Figure 2. This is a 291 

well-known stress-constrained topology problem. Despite its simplicity, this problem clearly 292 

illustrates the difficulties of topology design with stress constraints and, thus, serves as a 293 

classical benchmark for stress-constrained topology optimization schemes [18, 20, 35-37]. In 294 

this study, the setup of the problem is in line with that in [18]. The size of the plate is 4 m × 8 295 

m and the left side is clamped. The applied shear force, 𝐹 = 1 kN, is distributed along a central 296 

portion of length 1.5 m on the right surface. The yield stress of the material is 𝑓𝑦 = 1 kPa. The 297 

black region around the load application zone is enforced to be full material.  298 

 299 
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 300 

Figure 2 A plate under shear load. 301 

 302 

Figure 3 illustrates the layout and the normalized von Mises stress (i.e. the ratio of von Mises 303 

stress and 𝑓𝑦) obtained from the developed approach and the PolyStress code developed in [38] 304 

– a code for local stress-constrained topology optimization using the augmented Lagrangian 305 

method. The mesh size (e.g., the edge length of a typical element) in both simulations is ℎ𝑒 =306 

0.05  m. Clearly, similar material layouts are produced by the plasticity-based topology 307 

optimization method developed in this study and the conventional local stress-constrained 308 

topology optimization method, for instance, PolyStress in [38].  309 

 310 
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 311 

Figure 3 Converged material layouts obtained from (a) PolyStress available from [38] and (b) 312 

the developed plasticity-based method in this study, and the normalized von Mises stress 313 

distribution from (c) the PolyStress and (d) the developed method.  314 

 315 

 316 

Figure 4 Illustrations of (a) an elastic perfectly plastic material behaviour and (b) the force-317 

displacement response of a continuum structure made of such materials. 318 

 319 
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However, it should be stressed that a perfect agreement between layouts from these two 320 

methods is not essential given the significant differences in the fundamentals underpinning the 321 

two approaches. To clarify this point, we consider an elastic perfectly plastic material whose 322 

behaviour is shown in Figure 4(a). The conventional stress-constrained topology optimization 323 

solves the elastic equilibrium equation, and the yielding of all material points is suppressed. In 324 

other words, it searches for solutions within the range that a continuum structure behaves in 325 

elasticity. Thus, in this approach, the structure is deemed to fail when any local yielding starts 326 

(see Figure 4(b)) which is too conservative. On the other hand, the developed plasticity-based 327 

topology optimization approach accounts for the plastic deformation, implying that local 328 

yielding at the material point level is allowed if the global structure is still stable. This targets 329 

the real limit load of the whole structure (see Figure 4(b)). Hence, theoretically, the volume 330 

ratio (defined as the volume of the designed layout over the volume of the original domain) 331 

from the conventional stress-constrained method will be larger than that from the developed 332 

plasticity-based approach. This can be demonstrated in Figure 5 where the convergence history 333 

of the two approaches for this problem is illustrated.  A converged solution is attained with 6 334 

iterations for the developed approach and around 15 iterations are required in PolyStress. The 335 

conventional stress-based approach produces a more conservative solution (volume ratio of 336 

0.276) than the developed plasticity-based approach does (volume ratio of 0.256). 337 

 338 

Noteworthily, holes are observed in the solutions from both approaches as shown in Figure 3(a) 339 

and (b). This is because a very fine mesh is used in the simulation and the stress state in these 340 

areas is quite low. Consequently, in the iterations, the corresponding materials are suppressed 341 

in these areas leading to small holes. As indicated in [13], this is a commonly observed 342 

phenomenon in density-based topology optimization and can be alleviated by adopting a 343 

relatively larger mesh if no detailed design is required. As shown in Figure 6(a), with a larger 344 
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mesh size (i.e., ℎ𝑒 = 0.2) the final layout from the proposed method does not have any holes. 345 

Figure 6(b) and (c) show the layouts from [18] where the conventional stress-constrained 346 

topology optimization method is adopted using the same mesh size. As seen, relaxation 347 

techniques must be employed otherwise a blurry solution is obtained (Figure 6(b)). Note that 348 

the PolyStress also employs the relaxation technique to attain those black-and-white layouts 349 

shown in Figure 3(a). The developed plasticity-based topology optimization method, on the 350 

contrary, can result in a black-and-white design without the use of any relaxation technique, 351 

which is majorly attributed to the strong convergence properties of the primal-dual interior 352 

point method for second-order cone programming problems [31, 34]. 353 

 354 

 355 

Figure 5 Convergence history for a plate under shear load using the developed plasticity-356 

based approach and PolyStress: the volume ratio versus the iteration number. 357 

 358 
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 359 

Figure 6 Material layouts obtained from (a) the developed plasticity-based method, (b) the 360 

conventional method without relaxation techniques [18], and (c) the conventional method 361 

with relaxation techniques [18]. The mesh size is ℎ𝑒 = 0.2. 362 

 363 

5.2 Clamped beam 364 

The second example is a double-clamped beam as plotted in Figure 7. This problem has been 365 

considered using different topology optimization techniques [39-41]. In this study, the setup is 366 

in line with that reported in [39]. The length of the beam is 20 m, and the height is 5 m. The 367 

yield stress of the material is set to be 300 kPa. A uniformly distributed vertical force of 383.2 368 

kN is applied along 2.5 m at the centre of the top surface. Due to symmetry, only the right half 369 

of the domain is optimized.  370 

 371 

Figure 7 An illustration of a double clamped beam. 372 

 373 
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 374 

Figure 8 The layout obtained from the developed plasticity-based topology optimization 375 

method with (a) 0 iteration, (b) 2 iterations, (c) 3 iterations, and (d) 5 iterations. 376 

 377 

In the topology design, the mesh size is ℎ𝑒 = 0.1 m. The dark region shown in Figure 7 has a 378 

fixed density of 1. Figure 8 illustrates the evolutionary history of the structure in the optimal 379 

design using the proposed method. As seen, if no iteration is carried out meaning the approach 380 

proposed in [24] is used, the solution is a grey layout. With 5 iterations, a satisfactory black-381 

and-white layout is attained. Further iterations (i.e. iteration number greater than 5) have little 382 

influence on the black-and-white layout, although the convergence criterion (i.e. 383 

‖𝑂𝑏𝑗n+1−𝑂𝑏𝑗n‖

𝑂𝑏𝑗n+1
≤ 1 × 10−4) is fulfilled at the 10th iteration for the proposed method (Figure 9). 384 

Figure 9 also shows that the converged volume ratio from the conventional stress-constrained 385 

method (i.e., PolyStress) is higher than that from the plasticity-based method developed in this 386 

study which echoes the statement in section 3. Despite that, the final layouts from PolyStress 387 

and the developed method are similar as shown in Figure 10. Additionally, it can be seen from 388 

Figure 10 that, for areas of low von Mises stress, the corresponding material density is low. 389 

This is the expected case for both the PolyStress simulation and the simulation using the 390 
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developed plasticity-based method.  391 

 392 

Figure 9 Convergence history for the clamped beam problem using the developed plasticity-393 

based approach and PolyStress: the volume ratio versus the iteration number. 394 

 395 

 396 

Figure 10 Distributions of the material density and normalized von Mises (VM) stress 397 

obtained from the conventional stress-constrained method – PolyStress ((a) and (b)) and the 398 

plasticity-based topology optimization method developed in this study ((c) and (d)). 399 

 400 
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To investigate the influence of the parameter 𝑝 of the exponential penalization function on the 401 

design, the problem is re-analyzed using 𝑝 = 0 − 6, and 10. The converged layouts from 402 

different simulations are shown in Figure 11. A very grey design is attained for 𝑝 = 0 since in 403 

this case no penalization is enforced. An increase of 𝑝 leads to a clearer solution. For  𝑝 = 5, a 404 

satisfactory clean black-and-white layout is obtained. Further increase of 𝑝 has little influence 405 

on the black-and-white design. For instance, the layout from 𝑝 = 5 coincides with these from 406 

𝑝 = 6 and 10. Thus, 𝑝 ≥ 5 is recommended for the proposed method. 407 

 408 

 409 

Figure 11 Layouts from the plasticity-based topology optimization method using different 410 

values for 𝑝. 411 

 412 

5.3 Bridge design 413 
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The last example considers the problem of bridge design. Figure 12 depicts the domain which 414 

is a rectangle of size 180 m × 40 m. The bridge is proposed to be clamped at the two bottom 415 

supports of size 5 m × 2 m, for instance, the two dark grey parts at the bottom of the domain. 416 

A uniformly distributed traffic load F = 150 kPa is applied on the top surface of the black strip. 417 

The strip is positioned 25 m from the top and 14 m from the bottom of the domain. The yield 418 

stress of the material is 10 MPa and the problem is treated as plane stress. Owing to the 419 

symmetry, only half of the domain is concerned and discretized using a total of 182,677 420 

triangular elements and 366,674 nodes. 421 

 422 

 423 

Figure 12 An illustration of the domain for the bridge design. 424 

 425 

Figure 13 shows the optimization history of the bridge obtained from the proposed design 426 

method. It is shown that a converged black-and-white design can be achieved with 10 427 

iterations. In this example, we set the iteration number to be 50 even though the convergence 428 

criterion is fulfilled at the 10th iteration. As shown in Figure 13, there is little difference in the 429 

layouts after 10 iterations. This verifies the good convergence property of the proposed 430 

iteration approach for seeking a black-and-white design.  431 

 432 

 433 
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 434 

Figure 13 The evolutions of the normalized von Mises stress and density in the process of 435 

topology optimization 436 

 437 
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 438 

Figure 14 Computational demand of the proposed method against the number of stress 439 

constraints in the proposed topology optimization 440 

 441 

It is recognized that the computational cost of stress-constrained topology optimization 442 

depends heavily on the total number of stress constraints. Thus, efforts are devoted to reducing 443 

the total stress constraint number by developing a global stress constraint approach and grouped 444 

aggregation approach [21, 36, 42]. To disclose the relationship between the computational 445 

demand of the proposed method and the number of stress constraints, the problem is re-446 

analyzed using elements of sizes he ranging from 0.2 m (1/900 of the bridge length) to 1.0 m 447 

(1/180 of the bridge length). The case of ℎ𝑒 = 0.2 m leads to 284,574 elements and 570,661 448 

nodes while the case of ℎ𝑒 = 1.0 m results in 11,416 elements and 23,157 nodes. As three 449 

integration points are associated with each element and each integration point has one stress 450 

constraint, there are 853,722 and 34,248 stress constraints for ℎ𝑒 = 0.2 m  and 1.0 m, 451 

respectively. The computational demands for all cases are shown in Figure 14. Overall, the cost 452 

of the proposed method is linearly proportional to the total number of stress constraints. This 453 

is an admirable feature given that computational cost normally increases polynomially with the 454 
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number of degrees of freedom in the conventional stress-constrained topology optimization 455 

method. 456 

 457 

6. Conclusions 458 

In this paper, a method for black-and-white topology optimization of continuum structures is 459 

proposed accounting for plasticity theory. The method is exhibited as a sequence of continuous 460 

convex topology optimization problems, in the standard SOCP form, that can be resolved 461 

efficiently using the advanced primal-dual interior point method available in modern 462 

optimization engines. The penalization of the density is performed in the objective function to 463 

steer the intermediate density towards integers 0 and 1 and results in a black-and-white optimal 464 

design with the help of the density filtering operation.  465 

 466 

Compared to the conventional stress constrained topology optimization, the proposed method 467 

requires no separate finite element analysis of the continua since the density and the stress field 468 

can be solved simultaneously in the used primal-dual interior point method. Additionally, the 469 

relaxation techniques commonly required in the conventional density-based topology 470 

optimization with stress constraints are not necessary for the proposed method. Because the 471 

proposed method is developed based on the rigid-perfectly-plastic analysis, the design targets 472 

the limit load of the continuum structure rather than the load under which the structure behaves 473 

in pure elasticity. Despite the high nonlinearity of the strength-based topology optimization, 474 

the proposed approach shows a good computational efficiency that the computational demand 475 

is linearly proportional to the number of used element nodes. 476 

 477 

 478 
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