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MARIO GERMÁN TRUJILLO-VELA1,2, SERGIO ANDRÉS GALINDO-TORRES1∗,
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Abstract. Debris flows are natural events with a high potential of damage due to the materials, volume,

and velocity they can reach once the flows were triggered. Mathematical models and numerical schemes

constitute a transcendental way to get a deeper comprehension of these natural phenomena. Thus, the

coupling of numerical methods is becoming more relevant to describe the behaviour of debris flows. The

coupling of Smooth Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) is presented

in this work to show the capability to represent the interaction of several materials simultaneously. SPH

is employed to represent the fluid and soil by using different constitutive models, from a continuum ap-

proach. On the other hand, DEM describes immersed objects to represent large boulders and unmoveable

boundary conditions. Thus, it is possible to couple the behaviour occurring at very different scales, fines

and water through the continuum approach, and boulders with the discrete one. A hypothetical case here

presented shows the potential of our coupling method for simulating debris flows.

1 INTRODUCTION

Debris flows are mixtures of water, soil, and large boulders that descend the basins and destroy everything

on their path. The study of such phenomena is crucial for hazard assessment and mitigation plans. That

is why there is considerable interest in developing mathematical models and numerical techniques to

obtain suitable results in respect to debris flows. The improvement of the computational resources and

numerical methods has allowed increasing the complexity of modelling these phenomena, adding the

third dimension, more phases and the interaction with obstacles [1, 2]. Hence, meshless approaches have

been gaining importance. These techniques also allow handling complex geometries, interaction with

several methods and materials in a more natural manner. For example, Smooth Particle Hydrodynamics,

SPH henceforth, has been employed to model many cases in soil mechanics, and fluid mechanics [3, 4,

5, 6, 7].
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SPH has been coupled with other techniques such as Discrete Element Method, DEM henceforth, to

represent the interaction with solids [8, 9, 10, 11]. These two methods were developed to tackle prob-

lems at different scales: SPH to represent large scales directly by using constitutive laws, and DEM to

obtain the general behaviour through the implementation of interaction laws in a small scale of granular

assemblies [12, 13]. Nevertheless, DEM can represent big objects with complex shapes and be useful to

set up boundary conditions, fluid-structures, fluid-soils and fluid-soil-structures interaction problems.

[8] included rigid bodies into a fluid flow where the discretisation of the solids with SPH particles is still

needed. [9] have coupled DEM to the traditional equations that describe the flow in porous media, where

the mass conservation equation and the Darcy law are combined, neglecting the momentum equation.

An analytical expression gives the interaction force after integrating the pressure on the surface of the

spheres. Such pressure is computed by interpolating the variable from the established grid [9]. [10]

implemented an algorithm to represent polyhedral DEM particles coupled with fluid SPH particles, where

the normal force is based on the fluid pressure. [11] modelled rigid and deformable structures that interact

with soil SPH particles, which normal force is based on a penetration method.

Also, [14] and [15] represented the soil employing DEM particles and the water using SPH particles,

to reproduce landslide-induced waves where the SPH-DEM coupling is based on a drag force term,

which involves an empirical formula. Other methods such as Finite Volumes Method (FVM), Finite

Elements Method (FEM), Material Point Method (MPM) and Lattice Boltzmann Method (LBM) have

been coupled to DEM to predict the interaction of debris flows with moving and flexible barriers [2,

16, 17]. To model large-deformation problems using mesh-based methods (i.g., FVM, FEM and LBM)

requires re-meshing, meshing areas with no flow in specific time-steps, or additional treatments on the

free surface of the flow.

This work aims to develop a new approach to couple SPH-DEM for discretising a proposed three-

dimensional three-phases model to simulate debris flows. SPH is used to describe the fluid and soil

phases through the continuum assumption, whereas, DEM is employed to model large boulders as single

objects and the boundary conditions with the sphero-polyhedra approach as presented by [18, 13]. The

continuous approach is employed to get suitable results with a reasonable computational cost. Discrete

elements are employed to avoid extra SPH particles in the boundary conditions or moving objects that

interact with the fluid or soil.

2 NUMERICAL DISCRETISATION

The conservation equations used to represent the fluid were discretised using the Weakly Compressible

(WCSPH) approach. Thus the mass conservation and momentum equations are written as follows,

Dρi

Dt
=ρi

n

∑
j=1

m j

ρ j

ui j ·∇iW (ri j,h)+Dδ (1)
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Dui

Dt
= g−

n

∑
j=1

m j

(

pi

ρ2
i

+
p j

ρ2
j

+RT +Πi j

)

∇iW (ri j,h)

+
n

∑
j=1

4m j

(µi +µ j)

(ρi +ρ j)2
·ui j∇iW (ri j,h)−a

f s
i +

F
f N
i

mi

(2)

where the subindex i and j denote the point in the matter and the surrounding points, respectively. n

is the number of neighbouring particles. ui j = ui −u j is the difference of the velocity between the two

particles i and j, xi j = xi −x j is the vector that contains the distance between the two particles, m is the

mass, ρ represents the density, p is the thermodynamic pressure [19], and g is the gravity. W (ri j,h) the

interpolating kernel, ∇i denotes the gradient of the kernel taken with respect to the coordinates of particle

i. The second term in Equation 1 is diffusive known as δ-SPH [20], which is employed to eliminate the

noise in the pressure field. Πi j is the artificial viscosity employed solely when shock wave phenomena

are going to be treated, which is presented in detail in [21, 7]. The second and third terms on the right-

hand side of Equation 2 were discretised such as proposed by [21, 22] to handle discontinuities. a
f s
i

represents the acceleration coming from forces due to the soil particles. F
f N
i = F

f N

i(n)+F
f N

i(τ) is the net

exerted force on the fluid particle by DEM objects, which is explained below Equation 13.

The mass conservation of soil is the same as Equation 1 without dissipative term, whereas the conserva-

tion of momentum is described such as,

Dui

Dt
= g−

n

∑
j=1

m j

(

σ′
i

ρ2
i

+
σ′

j

ρ2
j

+RT +Πi jδ
αβ

)

∇iW (ri j,h)+a
s f
i +

FsN
i

mi

(3)

where σ′
i is the effective stress tensor that is computed using elastic perfectly-plastic model with the

Drucker-Prager yield criterion [3]. RT is the artificial stress that is added to the components of the stress

tensor which were in tension [23, 7]. Πi j is an artificial viscosity and δαβ is the Kronecker delta. a
s f
i

represents the acceleration coming from forces due to the fluid particles. FsN
i = FsN

i(n)+FsN
i(τ) is the net

exerted force on the soil particle by DEM objects as shown by Equation 17. If the interaction does not

involves a DEM object FNs
i = 0.

Equations 4 and 5 are the expressions employed to compute the interaction forces between the two SPH

phases, fluid and soil. The interaction forces for the fluid and soil, respectively, are [24, 7, 25]:

a
f s
i =

n

∑
j=1

ms

fseepage

ρ f ρs

W (r f s,h) (4)

a
s f
i =

n

∑
j=1

m f

fseepage

ρ f ρs

W (r f s,h)−
n

∑
j=1

m f

p f

ρ f ρs

∇iW (rs f ,h) (5)

The subindex f and s denote fluid and soil particle, respectively. The second term in Equation 5 repre-

sents the pore fluid pressure exerted on soil particles. fseepage = (µ/k)(u f −us) is the seepage force based
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on Darcy’s law. k = khµ/ρ f g is the intrinsic permeability, kh is the Darcy hydraulic conductivity (unit,

L/T), µ and ρ f are the fluid viscosity and density, respectively. Dimensionally, k is an area (L2) [26]. By

using a laboratory-scale series of experiments, [7, 25, 27, 28] have demonstrated that the physics imple-

mented in this work for the coupling of soil-water interaction forces can produce satisfying agreements

with experimental data.

The equation that describes the movement of the boulders is computed using the DEM so that:

mk

duk

dt
= mkg+

n

∑
j=1

F j +
n

∑
i=1

F
N p
i (6)

where m is the mass, u is the velocity, g the gravity, F j is the exerted force on the k DEM element by j

DEM particles, and F
N p
i is the exerted force on the DEM element by a SPH particle i of any SPH phase

p (fluid or soil) [29, 30].

2.1 Coupled SPH-DEM

One single DEM particle will represent the DEM object, and there are not other SPH particles to represent

or discretise the DEM objects. All DEM particles have a halo to avoid any “penetration” between SPH

and DEM. Before starting any computation between the two methods, it is necessary to verify if the DEM

object is inside the range radius (i.e., the compact support domain κh) of the SPH particle in the matter.

The main idea of this interaction approach is that the algorithm seeks the closest contact point between

a DEM particle (sphere, segment or plane) and the SPH particle in concern. When the DEM particle is a

segment, as the SPH particle (blue particle) is located, the virtual SPH particle (purple particle) will be

placed based on the minimum distance (Figure 1b). This part of the algorithm is explained in detail in

[18]. If the object is a sphere, a virtual SPH particle will be placed at the nearest point on the surface of

the sphere (Figure 1a). Such virtual SPH particle will be placed as long as SPH particle is close enough

to the DEM particle. Then, a point on the surface of the DEM sphere xs is found by using the following

expression,

xs = xdem + rn (7)

Thus, xs gives the position of the virtual SPH particle (purple particle in Figure 1) to compute the inter-

action between SPH real particle (blue particle in Figure 1) and the surface of the DEM particle. r is the

radius of the sphere and n = (xsph −xdem)/|xsph −xdem| is the unit normal vector, xsph is the position of

the SPH particle and xdem is the centre of the DEM object. Then, the distance d between the real and

virtual particle is given by Equation 8, and the overlapping distance δ between the SPH particle and the

DEM halo is computed by Equation 9 (Figure 1).

d =|xsph −xs| (8)

δ =ε−d (9)
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Figure 1: Coupling SPH-DEM scheme. (a) DEM sphere interacting with SPH particles. (b) DEM

segments or planes are interacting with SPH particles. The blue particle represents the SPH particle, the

purple particle is a virtual particle, and the circular and flat objects are DEM particles, whose positions

are xsph, xs, and xdem, respectively.

where ε is the thickness of the halo. It has been verified that a value of the half of the initial SPH particle

distribution (i.e., ε = ∆x/2) seems to be appropriate in this study. When the distance between the SPH

particle and the DEM object surface is lower than the compact support domain (i.e., d < κh). Then, the

tangential force for fluid-DEM interaction will be computed as shown in Section 2.1.1. On the other

hand, if the overlapping distance between the SPH particle and the DEM halo is greater than zero (i.e.,

δ > 0), then the tangential force for the soil-DEM interaction can be computed as shown in Section 2.1.2.

In contrast, the normal force is computed indistinctly of the involved phase (soil or water) by assuming

an elastic interaction defined as

F
N p

i(n) = Knδn (10)

where Kn and n are the normal stiffness coefficient and the normal unit vector, respectively. The constant

value of the normal stiffness is computed only at the begging of the simulation as Kn = 0.1mmin/∆t2,

being mmin the minimum value of the mass over all the particles inside the domain either SPH or DEM

particles, and ∆t is the initial computational time-step. The time-step is selected as the minimum required

to keep SPH particles’ stability, either fluid or soil. Besides, an adaptative time-step is used for the rest of

the simulation, as detailed by [25]. The normal force is dependent on the allowed penetration of the SPH

particle into the DEM halo. The total force exerted on DEM objects is the summation of the force coming

from all SPH particles that interact with it [29, 30]. This definition of the normal force ensures that the

SPH particle does not break through the DEM particles and the normal stiffness expression guarantees

the stability of the solution [31]. Now, let us define the relative velocity between the SPH particle and

DEM object such as,

urel = usph −udem −ωdem × (xs −xdem) (11)

where ωdem is the angular velocity of the DEM object, xdem is the position of the centre of the DEM
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Jorge Alberto Escobar-Vargas

particle and xs is point on the surface of the DEM object (virtual SPH particle) (Figure 1). After the

previous calculations, the following steps depend on what SPH material (fluid or soil) is interacting with

the DEM object as it will be explained below.

2.1.1 Fluid-solid interaction force

The interaction term between the SPH fluid particle and DEM is defined by an extra viscous term aτ

(Equation 12) with the same form as appear in Equation 2.

aτ =
1

ρi

∇ · (µi∇ui) =
4mi

3hD

(2µi)

(2ρi)
2

urel

d

∇iW (d,h)

W (0,h)
(12)

The expression 2ρi is because the virtual particle’s density equals the density of the real SPH particle

i, and the same principle is employed with the viscosity µi. d is the distance between the real and

virtual SPH particle. The additional term that multiplies Equation 12, i.e., 2/[3hDW (0,h)], is used to

compensate for the lack of SPH particles at the boundaries in a similar way as suggested by [10].

The total force exerted from the DEM object to the SPH particle is described as follows;

F
f N
i = F

f N

i(n)+miaτ (13)

where the normal force F
f N

i(n) is computed as shown in Equation 10 and the second term on the right hand

is the tangential force for fluid-DEM interaction F
f N

i(τ) = miaτ. Equation 13 shows the net force exerted

on the SPH particle by a DEM element. The third Newton’s law is used to compute the net force from

the SPH to the DEM particles.

2.1.2 Soil-solid interaction force

When the soil particle is interacting with a DEM object, the normal force FsN
i(n) will be computed in the

same way when the interaction is fluid-DEM, Equation 10. Whereas the frictional force depends on the

relative velocity and the friction coefficient. Thus, the tangential velocity is defined by Equation 14 [11],

and the tangential component of the contact force acting on soil particle i is computed by Equation 15.

uτ =urel − (urel ·n)n (14)

δτ =δτ +∆tuτ (15)

δ∗τ =

{

µφ|Fn|
Kn

nτ, if |δτ|> µφ|Fn|/Kn

δτ, otherwise
(16)

where ∆t is the time-step and δτ the distance on which the SPH particle and the DEM particle are under

tangential contact. The rectification of the tangential distance is given as shown by Equation 16, to ensure
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that the maximum frictional force is not exceeded. µφ is the frictional coefficient between soil and the

surface of the structure, and nτ = δτ/|δτ| when |δτ| > 0 to avoid division by zero. The net force acting

on the soil particle i is given by Equation 17.

FsN
i = FsN

i(n)−Knδ∗τ (17)

The normal force FsN
i(n) is computed as shown in Equation 10 and the second term on the right hand is the

tangential force for soil-DEM interaction FsN
i(τ) = Knδ∗τ . The net force exerted on the DEM object satisfies

the third Newton’s law.

3 RESULTS OF A HYPOTHETICAL DEBRIS FLOW

A potential application of the coupling for debris flow is here explored. It has been noticed that debris

flows can drag large boulders that might have a diameter comparable to the flow depth and reach 11 m in

diameter [32, 33]. Then, large boulders are included in the mixture of soil and water to test the behaviour

of having all the materials simultaneously. Thus, it is possible to test the coupling forces among all the

materials in one single case, given by Equations 10, 13, 17. The configuration of this simulation is based

on the Yangbaodi landslide presented by [34]. However, several changes were performed in the initial

configuration so that it is not the intention to reproduce the Yangbaodi event. Three boulders (DEM

spheres) were placed into the fluid-soil mixture, as shown in Figure 2a. The soil was assumed to be 100

% saturated. Hence, the same shape of the initial condition for the soil was employed for water. The fluid

and soil mass were discretised using a distance among points of ∆x = ∆y = 0.5 m, with a total of 7662

SPH points at the beginning and 8216 SPH particles at the end due to the inlet flow. The final time of the

simulation was 30 s. A variable discharge was implemented upstream as might occur in dam-break or

overtopping problems, common in debris flows (Figure 2b). The main parameters of this case are shown

in Table 1.
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Figure 2: (a) Initial configuration of the fluid and soil SPH particles, and DEM boulders (fuchsia points).

(b) Hydrograph of the inlet flow using a Gumbel shaped function.

Figure 3 shows the fluid phase as well as the boulders descending by the slope at six time-steps. The

colour map shows the magnitude of the velocity of each fluid SPH particle. The velocity field in both

phases have similar behaviour, and a slight difference is given in the fluid phase mainly caused by the

inlet flow. The fuchsia points denote the position of each boulder at that time-step.
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Figure 4 presents the colour map of the pore fluid pressure at the same six-time steps. The most relevant

characteristic is that the pore fluid pressure is interrupted horizontally by such big boulders. In contrast,

the pore fluid pressure field seems to be more continuous in the x direction when no boulders are included

[29, 30].

Table 1: Debris flow parameters.

Parameter Units Value

Soil density, ρs kg/m3 2000

Friction angle, φ ◦ 28

Dilation angle, ψ ◦ 0

Young modulus, E MPa 10

Cohesion, c kPa 10

Intrinsic permeability, k m2 1×10−8

Poisson ratio, ν 0.3

Porosity, n 0.428

Gravity, g m/s2 9.81

Boulder density, ρB kg/m3 2200

Boulder radius, RB m 2

Boulder friction coefficient, µφ tan18◦

Bed friction coefficient, µφ tan18◦

Fluid density, ρ f kg/m3 2200

Fluid viscosity, µ Pa·s 1 ×10−3

t=0 s t=5 s 

t=10 s t=15 s 

t=20 s t=30 s 

Figure 3: Norm of the velocity vector |u| of SPH fluid particles and DEM boulders going downhill.
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The kinetic energy was checked from a control volume setup at the beginning of the horizontal zone

(x=193.1 m) since this is the point were the mass reach the maximum velocity. Any material (soil, fluid

and boulders) that was crossing the control volume, whose width was ∆x = 0.5 m, were added to obtain

the total kinetic energy measured at that time (Figure 5a).
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Figure 4: Pore fluid pressure during the displacement of the entire mass and boulders (fuchsia points).

Figure 5b presents the kinetic energy of the numerical solution with boulders (solid black line) and

without boulders (dashed blue line) into the mixture. The simulation with no boulders is employed as

a reference case to observe the importance of including large and heavy objects into the simulations

when required. Figure 5b shows that the average behaviour that is given by the SPH particles in both

cases is similar. It is also noticeable when each boulder crosses the control volume since the kinetic

energy increases five times, which is marked by the three peaks in Figure 5b. The boulders decrease the

kinetic energy dissipation rate while they are moving, which increases the potential of damage. Such

an increment is not just given by the mass of the boulder taken into account in the control volume, but

by their velocities; as one is zero, there is not kinetic energy coming from DEM spheres. [35] have

demonstrated that the force coefficient, which is employed to estimate the impact force on rigid barriers,

is strongly dependent on both the diameter of the particles and the Froude number of the flow. Larger

particles have a higher force coefficient, increasing the impact force. The quantitative estimation of the

energy and force in such phenomena is essential to consider the damage level of a specific structure or

provide data for designing the retention structures.
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Figure 5: (a) Scheme of the control volume to measure the kinetic energy as a function of time. (b)

Measurement of the kinetic energy at the distance of x = 193.1 m for the entire depth of the flow with

boulders (black line) and with no boulders (blue line).

4 CONCLUSIONS

- The main advantage of the coupling methodology here implemented relies on two facts. There is

no longer concern that particles can penetrate the wall, as can occur with traditional treatments on

the boundary conditions for SPH solvers. Moreover, the computational effort produced to calcu-

late the variables such as velocity, pressure and stresses for particles that belong to the boundary

conditions or floating objects is wholly avoided.

- The projection of this numerical strategy in debris flows shows consistent results: velocity, deposit

profile and energy present appropriate behaviour. A significant difference could be noticed when

large boulders are crossing the control volume as well as the soil and fluid materials, which can

contribute to structure design of retaining barrier for debris flows. However, this requires validation

with field data.
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J.A. Smooth particle hydrodynamics and discrete element method coupling scheme for the simula-

tion of debris flows. Comput and Geotech. (2021) 125:103669.

[30] Trujillo-Vela, M.G. Numerical modelling of debris flows with large boulders. PhD thesis, Pontificia

Universidad Javeriana, Bogotá D.C., Colombia, (2021).
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