
A human-centered Web-based tool for the effective
real-time motion data collection and annotation

from BLE IoT devices
Andreas Bardoutsos1,2, Dimitris Markantonatos1,2, Sotiris Nikoletseas1,2,

Paul G. Spirakis1,3, and Pantelis Tzamalis1,2

1Computer Engineering and Informatics Department, University of Patras, Patras, Greece
2Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece

3Department of Computer Science, University of Liverpool, UK
bardoutsos@ceid.upatras.gr, markantonatos@ceid.upatras.gr, nikole@cti.gr,

p.spirakis@liverpool.ac.uk, tzamalis@ceid.upatras.gr

Abstract—The effective utilization of real-world data is an
integral part of any IoT monitoring or AI-assisted system. Thus,
data collection and annotation is an important step towards
the successful development and realization of such systems.
Nevertheless, in order to create reliable datasets, current data col-
lection and annotation methodologies often require a controlled
environment while also the presence of the volunteer contributing
to the process, or any subject for that matter, and an expert,
monitoring the procedure, is mandatory. These processes are
heavily restrained by the recent COVID-19 pandemic outbreak.

To address such issues, in this paper we propose a human-
centered Web-based dataset creation and annotation tool that
utilizes the Web Bluetooth API. The user can effectively collect
gestures from a nearby device that supports the BLE protocol,
assign tags to the collected data, and store them remotely, in
real-time. The data storage, as well as its annotation, can also be
performed remotely by an expert stakeholder. An off-the-shelf
wearable sensorial device has been used indicatively for our tool
demonstration purposes. To the best of our knowledge, this is
the first attempt that exploits the Web Bluetooth API capabilities
for the development of a Browser-based real-time data collection,
storage, and annotation tool. Our tool can be also expanded to
other applications that use the sensing device with only minor
configuration changes and is also operable through any smart-
device that supports a Web-Browser. Furthermore, our tool’s
performance matches that of native applications’. Finally, the tool
is successfully deployed and validated by integrating it into our
ongoing ML platform that is related to allergic rhinitis gesture
recognition.

Index Terms—the Internet of Thing (IoT), Web Bluetooth
API, dataset creation, machine learning, mHealth, eHealth, data
annotation

I. INTRODUCTION

The world today is transforming through the technology of
the Internet of Things (IoT), as more and more smart devices
are incorporated into our everyday life. IoT enables sensing,
reaction, and interaction of devices with the physical world,
thus its adoption in the production and economic growth
activities turns Industry 4.0 vision into a realization. The
proliferation of IoT systems generates an enormous amount
of data that relay information to everyone. This information

is related to countless aspects of everyday life and almost
everything that surrounds us, thus, leading to characterize our
era as a “data-driven” one.

Some of those aspects are Human Activity Recognition
(HAR) or Human Gesture Recognition (HGR) which target the
discovery of human body movement patterns related to daily
activities and gestures. Generally speaking, body movement
is recorded by motion sensors, such as the accelerometer and
gyroscope that nowadays are common both in smartphones
and wearables. These sensors’ data from such devices is either
stored locally in the device and later are manually retrieved, or
the data is streamed to a nearby device by utilizing a wireless
transfer protocol such as WiFi or Bluetooth. Moreover, with
the recent advances in Data Analysis and Machine Learning
(ML), even tight, complicated, and heterogeneous movement
patterns can be monitored, modeled, or even get recognized
with high accuracy by exploiting the huge information that
comes from this data [1].

Following the same design principles as Industry 4.0 for
interoperability, decentralization, service orientation, and mod-
ularity, Healthcare services are also transforming towards
Healthcare 4.0 in order to better respond to the constantly
increasing demand, reduce the operational costs and provide
higher quality treatment [2]. A fundamental aspect of Health-
care 4.0 is Physical Activity Recognition and Monitoring
which includes HAR and HGR. More specifically, gaining
insights into a patient’s daily physical activity in a privacy
non-intrusive manner is a corner-stone for concepts like smart
health and smart rehabilitation, as well as Ambient Assisted
Living (AAL) [3]. Other paradigms of IoT devices utilization
in mHealth and eHealth systems include disease symptoms
detection and monitoring [4].

The problem. Nevertheless, it is widely known that a manda-
tory process to the development of successful healthcare-
related AI or monitoring systems, in order to yield better
outcomes, is the creation of large and reliable datasets. Real-
world data should be recorded as they are performed by



different subjects and in diverse attitudes, to ensure that the
data exploitation procedure is not restrained to a specific
movement occurrence. Furthermore, the data collection pro-
cedure usually requires expert supervision to guarantee that
activities are performed acceptably, as well as to provide
reliable annotation. Since pattern recognition is based on
labeled datasets for training, adequate and reliable annotation
is crucial for such systems performance. Additionally, certain
concerns have to be underlined regarding the aforementioned
procedure, especially for the HAR and HGR systems. The
data heterogeneity is highly dependent on the availability
of volunteers that contribute to performing each activity as
well as how differently each individual performs different
repetitions of the same activity. As a conclusion, an important
component is the development an application for the efficient
data transfer from a wearable device, its proper visualization,
and storage to a centralized computer node.

Despite the fact that some device manufacturers provide
applications for the efficiency of data collection, each use case
varies widely in requirements for processing and annotation. In
general, device manufacturers provide Application Program-
ming Interfaces (APIs) that allow the development of such
applications. The meeting of requirements however turns to
a challenge, in terms of human and funding resources, when
support for different platforms or devices is compelled. Hence,
dataset creation turns to a demanding task, requiring the setup
of a data collection protocol that includes the attendance of
several subjects in controlled environments as well as ensuring
the availability of specific devices and software development.
Eventually, the COVID-19 outbreak has restrained any such
research initiative that the presence of volunteers is required
but has also triggered the increased necessity for remotely
provided healthcare services.

Our contribution. In this paper, a novel Web-based tool
for the real-time data collection and annotation from IoT
devices is introduced. The designed tool enables the effective
data acquisition from BLE-enabled sensorial devices in order
to facilitate dataset creation by utilizing the Web Bluetooth
API, even remotely. The design choice to implement the tool
with the assistance of this technology, is inspired by the
fact that users do not have to install third-party applications
in order to interact with their BLE devices but instead can
access them through a platform-wide and very familiar way
which is the Browser. Web Bluetooth API’s performance (in
terms of the sampling rate achieved) is on the same level as
other solutions while also offering additional functionalities
due to its Web-based nature. User data is annotated in real-
time as far as the proper remote supervision by an expert is
guaranteed while also, said expert, is offered the same feature.
The proposed tool is accessible by any platform that supports
a Web Browser and integrates Bluetooth connectivity (with
only exception devices that run on IOS). The collected data
is labeled and streamed to a centralized data warehouse for
storage and further processing. Moreover, a non-personalized
user profile is also maintained to provide later on enhanced
insights for the subject as well as help the decision-making

process by the corresponding stakeholders. Finally, the tool
has experimentally been deployed for testing to an on-going
development platform related to HGR for Allergic Rhinitis
symptoms. The tool is heavily utilized by medical experts
for the remote data collection and annotation of a dataset,
consisting of Allergic Rhinitis gestures. While off-the-shelf
components are used for the implementation of this tool, to the
best of our knowledge, this is the first time that the technology
of the Web Bluetooth API is applied in this context.

Roadmap The rest of the paper is organized as follows.
Section II includes the related work where several approaches
related to our own, are mentioned. In III, the components
of our proposed tool are outlined. Section IV, contains the
technologies utilized for the development of our tool. Sections
V, VI, VII and VIII describe in detail the individual compo-
nents of our tool along with our development methodology
to materialize them. The deployed tool is highlighted in
IX, where its utility is validated. Our tool’s performance is
evaluated in X. Our future work is described in the final section
where the paper is concluded too.

II. RELATED WORK

There is a variety of sensing and wearable devices that
are selected to be integrated into monitoring and AI-assisted
systems. Many options are offered such as Shimmer Sensing
[5] or Mbientlab [6] that provide a variety of sensing devices.
Each manufacturer though provides an Application Program-
ming Interface (API) for interaction with the corresponding
devices. Otherwise, an application may be used such as [7], for
personnel not familiar with development processes. Android-
enabled smartphones or wearables also support sensorial data
recording by utilizing the Android sensors’ API [8].

However, not only native applications are able to com-
municate with IoT devices. [9] proposed a framework that
allows classic Web-based applications to immediately interact
with nearby devices, a functionality officially introduced by
Web Bluetooth Community Group [10]. Web Bluetooth API
allows the immediate interaction of a Web-Browser with
a BLE enabled device. A demonstration of the technology
capabilities is presented in [11]. More specifically, a frame-
work is developed for physical activity monitoring where the
capability for remote software updating of nearby sensing
devices is highlighted. Additionally, the capability of rapid de-
velopment and deployment of application-oriented algorithms
with minimal impact on available resources and continuous
operation of the devices is outlined too. The functionalities that
sensing and wearable devices offer, their non-intrusive nature
due to their small form factor, and their ability to connect
and communicate with nearby devices of higher processing
capabilities, are the reasons that such devices are selected in
many Healthcare 4.0 approaches.

In this paper, the issues that occurred during our previous
data collection procedure presented in [12] are addressed. For
the purpose of recognizing Allergic Rhinitis gestures, active
allergic patients were invited to participate in a sequence of
experiment sessions. The patients were prompted to perform



various identified allergic gestures spontaneously, under the
inspection of medical experts. Metabase MMR motion sen-
sor [13] was used for recording the patients’ hand motion.
However, the procedure was delayed and limited due to
several challenges that arose, including software compatibility
issues and familiarization of the medical personnel with the
manufacturer provided software.

Data annotation was manually performed, at one experiment
instance at a time, by encoding both data labels and patient-
related information into the recordings’ files names, which
files’ format was CSV. Cloud services that offer file-sharing
and file-syncing functionalities (such as Google Drive) were
used in order to update and distribute the collected datasets as
well as provide access to them by the interested stakeholders.
The aforementioned though delayed the data transfer proce-
dures. Eventually, due to the COVID-19 outbreak, all data
collection activities were restrained as the patients’ attendance
to specialized clinics is not encouraged.

The novelty of our tool. As a response to the ongoing
situation, an efficient remote data collection and annotation
tool has been designed and implemented. Through the uti-
lization of the Web Bluetooth API the interaction with the
patients’ sensorial devices is decentralized, hence eliminating
the requirement for the patients’ attendance in a clinic, as
long as an expert remote supervision is guaranteed. Since
connectivity and data transmission is handled by the Web-
Browser, platform-related issues are overridden. Additionally,
the data labelling and patients’ profiling procedures are accel-
erated significantly through a user-friendly Web interface (UI)
that is easily operated. All the data is uploaded and stored
to a remote database, hence enabling unified accessibility,
updating, and immediate distribution. Finally, by exploiting
the Web Bluetooth API capabilities, the tool can be easily
expanded and integrated to data preprocessing algorithms
while also supporting more BLE-enabled sensing devices.
With minor configuration changes our tool can be adopted
by similar HGR or HAR systems.

III. TOOL ARCHITECTURE

The designed tool is a human-centered data-collection tool
oriented towards motion recording that is established as a Web
Application. Access to the main interface of the application
is only provided to users that have previously completed a
registration and profile creation procedure. The tool utilizes
the data collection from a wearable BLE device that directly
communicates and exchanges data with the user’s Browser. In
particular, a stream of data is collected through the device’s
accelerometer and gyroscope sensors. Upon user’s selection,
the data can be stored in a centralized data warehouse while
simultaneously is visualized to the user’s UI through time-
series plots. A data annotation functionality is also enabled,
which labels the data that is about to be stored in real-
time. This labeling occurs while the procedure is remotely
monitored by an expert stakeholder. Last but not least, the
procedure can be also directly remotely monitored by an expert
stakeholder as a dashboard client is provided, through which

access to similar time-series plots to the user’s as well as
a labeling functionality are enabled. The tool’s architecture,
according to Fig. 1, can be broken down into four main
components which are the following:

The User Profiling Handling Component. This component
enables sign in or registration capabilities to the users along
with profile creation and update functionality. Additionally,
user authentication is also managed by this component.

The Communication and Data Management Component.
This component handles the communication with the wearable
BLE device as well as its remote programming in order to
initialize its sensors. Furthermore, the data transmitted by the
device is decoded from its raw hexadecimal format to readable
real numbers and then visualized in the main interface through
appropriate time-series plots.

The Real-time Storage Component. In this component, the
storage of the sensory data to a centralized data warehouse is
handled as well as its annotation with the remote assistance
of an expert stakeholder.

The Remote Monitoring Component. Finally, this compo-
nent handles the user’s device sensory data forwarding to the
expert’s dashboard.

The following Sections describe each functionality of the
aforementioned components in detail.

IV. UTILIZED TECHNOLOGIES AND DEVICE

The tool is essentially a modern Web Application where
cutting-edge technologies have been applied for its deploy-
ment. The front-end part is supported by JavaScript and
HTML5 and the back-end by a NodeJS server which hosts
our application and handles WebSocket connections. The
WebSocket connections were implemented with the assistance
of the NodeJS Socket.io library [14]. A NoSQL database was
selected as it is preferred for storing the sensory time-series
data which in our case was the MongoDB. The connection to
the database is assisted by the NodeJS MongooseJS framework
[15]. The communication between the Browser and the BLE
wearable device is enabled via the Web Bluetooth API. In
order to better understand the technology, an overview follows
describing the Web Bluetooth API and the communication
protocol BLE on which the API is based on.

Bluetooth Low Energy (BLE). Bluetooth Low Energy is
a wireless personal area network technology introduced by
the Bluetooth Special Interest Group (Bluetooth SIG) [16].
It is focused on low-power operation and aimed towards
applications that are in need of such a feature. As detailed
in [17] and [18], the BLE protocol stack consists of three
main components. a) The Controller that is composed of
the lowest layers in the BLE protocol stack. b) The Host
that comprises higher layers such as, the Generic Attribute
Profile (GATT) and the Attribute Protocol (ATT), which are
the two more relevant to our research purposes. The ATT
defines the communication between two devices via specific
data structures named Attributes, while the GATT is the
layer that handles the Attributes (ATT) in order to make the
device’s functionalities accessible or expose them to another



Fig. 1. High-level overview of the tool’s architecture. Highlighted with a) white coloured arrows: The User Profiling Handling Component, b) black coloured
arrows: The Communication and Data Management Component, c) grey coloured arrows: The Real-time Storage Component and d) light grey coloured arrows:
The Remote Monitoring Component.

device. Other layers are the Generic Access Profile (GAP),
Logical Link Control and Adaptation Protocol (L2CAP) and
the Security Manager Protocol (SMP). An overview of the
BLE protocol stack is depicted in Fig. 6 of Appendix B. c) The
Application which defines the application that is utilising the
Bluetooth Low Energy technology, in our case that application
is our developed tool and in extension the Browser.

A more detailed overview of the main features of ATT and
GATT is presented in the Appendix A as this analysis in not a
main focus of our research but is essential to better understand
the protocol that the Web Bluetooth API is based on.

Web Bluetooth API. The Web Bluetooth API [19] is a
JavaScript technology which allows the communication of
a Web Browser with a BLE device without the usage of
any other intermediate technology. This technology, allows
a Web Browser to manage the device’s Bluetooth Module.
Thus, the Browser is enabled to discover the nearby BLE
device’s GATT Services and Characteristics, read values from
their Characteristics or enable their notification functionality,
receive indications and notifications, and generally operate as
a GATT Client. The Web Bluetooth API is integrated into
the JavaScript libraries of the most popular Web Browsers
(with the best compatibility existing with the Google Chrome
browser).

Selected Device for Demonstration. The off-the-shelf de-
vice utilized for our research was the MetaMotionR sensor kit
(MMR) [13]. The MMR encloses a variety of motion sensors
such as 3-axial accelerometer, gyroscope and magnetometer
sensors, and a variety of environmental ones such as tem-
perature, barometric pressure and ambient light sensors. An
API is offered as well, that enables sensor data recording,
data transmission to a central device (over a BLE link) and
sensor fusion capabilities. In particular, the sensors that our
tool interacts with are the accelerometer and gyroscope sensors
contained in Bosch’s BMI160 IMU sensor [20], which record-
ing range of values is ±16 g and ±2000◦/s respectively at
sampling frequencies of 6400Hz and 1600Hz. The sampling

frequencies can be filtered to the desirable output data rate
through configuration changes by the developer. The sensor’s
support of the BLE connectivity as well its highly configurable
accelerometer and gyroscope sensors are the reasons that the
specific device is selected. As mentioned before, the use of
this device is only indicative, since our tool can be adapted to
work with any similar device that utilizes the BLE protocol.

V. THE USER PROFILING HANDLING COMPONENT

In this section, the component’s functionalities are outlined.
In particular, it offers full user management and user profiling
capabilities. Every potential user is required to create an
account to utilize the tool which maintains a high level of
privacy. Additionally, every user matches her own user profile
that contains integral information that can later on assist
processes by the rest of our tool.

User Profile Creation and Sign-In/Register/Authentication.
The main interface of our tool is only accessible by users who
have successfully concluded a registration procedure. During
registration, a potential user is asked to provide a variety of
non-sensitive personalized information about herself regarding
her physiology (i.e. weight, height) or demographic infor-
mation (i.e. gender, age). Hence, users’ profiles are created
that assist in the demographic analysis of the participants and
the more personalized filtration of the sensory data acquired
through the tool. The selection of the data which is asked to
be provided is use-case specific and highly depends on the
intentions of the application that the data collection tool is
integrated to but it can be adopted to any use-case with minor
configurations. Every user is first greeted with an appropriate
Web page which contains the corresponding widgets for the
user to perform a login or a registration to the application.
During these procedures, an authentication mechanism handles
whether the specific request will be fulfilled or not.

Privacy. As always, applications that involve a multitude
of users and require their provision of any kind of personal
information are potentially intrusive. Thus, encryption tech-



niques in user’s personal information, such as their passwords,
are also implemented. Depending on the context of the ap-
plication this tool is used for, the users might be asked to
provide some sensitive information. In those cases, an extra
step during registration is required by the user in order to
successfully register to the tool which is agreeing to a Terms
of Service and Conditions along with an EULA (End-User
License Agreement) which describe in detail the functionality
of the tool and data gathering, data sharing and data usage
practices (an example of such a case is the tool’s deployment
test case described in Section IX).

VI. THE COMMUNICATION AND DATA MANAGEMENT
COMPONENT

This component is the most important of our proposed tool.
Through it, the “magic” of connecting a Web Browser with
a BLE device is enabled. Its main purpose is to remotely
program the device for the sensors’ initialization and data
transmission. The data is encoded as BLE notifications, thus,
a decoding process is applied. While this component is part
of the front-end of our application, it is important to mention
that the code is executed on the Browser and can be seen by
everyone, the method of obfuscation was applied for the reason
of a security measure in order to protect the code visibility and
access by potential malicious users.

A. Connection to the BLE device

Through this component, the connection to the BLE device
is established. By selecting the appropriate widget from our
main interface, a potential user will be prompted to select
the device she wishes to connect to, as shown in Fig. 7 of
Appendix B. The available devices which are depicted in Fig.
7, are filtered by name (the only devices shown are the ones
that match a specific name), in order to only show the ones
that are compatible with the tool.

A communication between a Browser and a BLE device
follows a specific set of operations. Essentially, a Browser
must navigate through the Server’s GATT hierarchy with the
assistance of the Web Bluetooth API, meaning, the GATT
Profile, Services and Characteristics. These operations are
based on the asynchronous event feature of JavaScript which is
named promise, where a sequential procedure is applied for the
Client to reach and discover all the levels of the Server’s GATT
hierarchy. In order to discover and connect to the desired
GATT Service and its Characteristics, their names or 128-bit
addresses must be known and provided.

Initially, the search for the BLE device is taking place.
Upon success, a connection attempt to the device’s GATT
server occurs. In case this is successful, a connection to the
Primary Service with a particular address that we provide is
attempted. Then, in the case this concludes successfully as
well, an attempt to acquire the Characteristics that the Primary
Service contains takes place again, explicitly, according to the
Characteristics’ names or addresses. At any point, if a promise
is rejected, the connection to the device fails. The user is being

informed for every step of the process through appropriate
notification messages in the main interface.

Analyzing the device’s GATT architecture. As described
before, the connection procedure requires the knowledge of the
addresses or names of the Primary Service and its Character-
istics which are intended for the connection to be established.
Hence, a methodology must be applied to define the device’s
architecture.

Bluetooth specification has a group of predefined Services
and Characteristics which standardize selected functionali-
ties throughout BLE devices and are already appointed with
specific names and addresses. However manufacturers often
develop custom Services and Characteristics, as the predefined
only cover a limited amount of functionalities, turning the in-
teraction with them into a challenging task, especially because
of the lack of proper guidance and documentation.

As the device manufacturer has implemented her own
Services and Characteristics, the device’s architecture must
be analyzed to identify their respective custom addresses.
The application “nRF Connect” [21] was utilized for these
purposes. As shown in Fig. 8 of Appendix B, we concluded
that the device contains a custom Primary Service which
consists of two custom Characteristics (usually are named as
Unknown due to the fact the no official name is appointed
to them). By integrating the detected addresses discovered
through the application, the connection to the BLE device can
be finally completed.

Defining the Command and Notification Characteristics.
In order to derive the exact role of each of the detected Charac-
teristics, a BLE sniffer device [22] along with the “Wireshark”
software was used to monitor the connection between the
manufacturer’s official application and the BLE module. By
analyzing the transmitted packets between the device and
the application, the purpose of each value configuration was
determined. It was concluded that with the first of the two of
the Unknown Characteristics found, as depicted in Fig. 8 of
Appendix B, device setup is implemented, whereas the second,
is responsible for transmitting the sensor readings to the Client
device through notifications. Thus, the nomenclature of the two
Unknown characteristics as the Command Characteristic and
the Notification Characteristic respectively were appointed.

Sensor’s initialization. Writing a specific set of commands
to the BLE module’s Command Characteristic enables the pro-
gramming of the device to initiate and start a data stream from
the desired sensors. The user also has the ability to initialize
the desirable sensors with the optative sampling frequencies
through a selection of widgets that exist in the main interface.
Upon successful connection to the device and initialization by
the user, the appropriate commands are written to the device
via a function that performs a series of Web Bluetooth API’s
writeValue commands to the Command Characteristic. Every
value that is about to be written on a Characteristic must be
in a byte array format. The commands must be written with
a specific order to the command Characteristic otherwise the
sensor’s initialization will not occur.



Fig. 2. An overview of the time-series plot visualized in the user’s main page of the application during a sampling session. Both sensors are at 100Hz
sampling rate.

B. Decoding notifications

After the successful initialization of the device’s sensors,
the Notification Characteristic transmits raw data readings
through a stream of notifications. Each new one sensor’s
reading corresponds to a new notification. All values from
Notifications consist always of array buffers (raw data values
encoded in hexadecimal format). These values follow various
encoding methods with one of the most common one being
the IEEE-754 standard. The encoding methods though, vary
amongst sensors and manufactures, while many times custom
ones are utilized. Hence, a decoding mechanism is applied
every time a new notification is transmitted. Through our
research, we discovered that these decoding processes do
not bottleneck the performance of the tool as these kinds of
conversions occur rather quickly in the JavaScript environment
while no considerable resources are wasted. Thus, despite the
very high sampling rate of the accelerometer and gyroscope
sensors, no values are lost during the decoding process.

C. Dashboard and Data Visualization

The main interface offers a variety of functionalities to a
potential user. The user can select the sensors she desires to
initiate the recording from and at which sampling frequency
via appropriate widgets that exists in the main interface as
depicted in Fig. 9 of Appendix B. The gyroscope and the
accelerometer sensors are pre-configured to operate at their
highest recording range of values which are ±16 g and
±2000◦/s respectively.

With every selection, the appropriate time-series plots are
visualized in the main interface as depicted in Fig. 2. The data
visualization library that is used for the plotting functionality
is Chart.js [23]. The decoded sensor readings are visualized
to these time-series plots dynamically, meaning that as time
moves forward, the new values are dynamically visualized
while the older ones are being discarded. Additionally, the
y-axis of the plots also dynamically interacts according to
the incoming values. The aforementioned, enhance the real-
time monitoring experience of the user’s motions. Finally,
important to note is that once the sensors are enabled no further
configuration changes can be sent to the device by the device’s
design. This ensures that the recording session will have the

desirable settings and even in the case that it does not (wrong
labeling or undesired configuration), it can be easily identified.

VII. THE REAL-TIME STORAGE COMPONENT

The purpose of the component is to manage the storing of
the recorded decoded values to a centralized data warehouse
for further processing by an external application.

After the sensor’s initialization phase, the user can start and
stop the storing session through the corresponding widget in
the main interface, at any point. The data which is transmitted
by the device during this time-frame is collected into batches.
Every batch is temporarily stored in our application’s front-end
and once a threshold of the values that it contains is reached, it
is then being sent to the back-end (NodeJS server) for storing
to the central data warehouse. The batches are identified by the
same identification (session ID) as long as they are produced
during the same session (between a start and stop selection by
the user) and also carry the timestamp that they were created.
The batches mechanism was implemented in order to improve
the overall performance of the storing functionality as storing
sensors’ values individually to the database would create a
sizeable overhead. Before the initiation of a storing session,
the user is also capable of labeling the data, according to the
remote supervision of an expert stakeholder by typing the label
into the corresponding widget. That supervision occurs during
the whole time frame that the session lasts to ensure that the
movements performed during the session correspond to the
desirable ones.

Finally, aside from the sensory data, a variety of other in-
formation related to the session as well as the identification of
the user performing it are also added to the batch. As a result,
this additional data may expedite post collection processes and
data analysis by the corresponding stakeholders. Each batch
matches a new document in the MongoDB database as it is
presented in Fig. 10 of Appendix B.

VIII. THE REMOTE MONITORING COMPONENT

As mentioned earlier, this component is responsible for the
user’s device decoded sensory data forwarding to the expert’s
dashboard and handles the communication transactions be-
tween the two clients. The expert’s dashboard is similar in
format and functionality to the user’s main interface. Upon



user’s selection (via the corresponding widget on the user’s
main interface), a user enables a remote monitoring function-
ality and provides access to the data recorded by her device
to an expert. The data is forwarded from the user’s client to
the expert’s client through a WebSocket connection, which is
specifically established for each user, and are visualized to the
expert’s dashboard through time-series plots in almost real-
time. Consequently, the expert has the ability to initiate the
storing session as well as annotate it utilizing the respective
components that offer similar functionalities to a user, which
were described earlier.

IX. DEPLOYMENT AND VALIDATION

The proposed tool is already being integrated into our Ma-
chine Learning platform that aims to classify Allergic Rhinitis
gestures with a gesture recognition approach using wrist-worn
devices [12]. As mentioned in Section II, the methodology of
acquiring the data for the creation of our gestures datasets was
not optimal. The recent pandemic outbreak has also elevated
the need for an efficient and easily usable tool that allows
the proper data collection and annotation, even remotely with
the appropriate expert supervision. These reasons manifest a
highly suitable scenario for our tool.

An overview of the deployed tool’s architecture is high-
lighted in Fig. 3. During registration, a user profile for the
allergic rhinitis patient is created. Patient profiles provide
demographic and allergic condition information about the
patients which further assist personalized solutions. This only
occurs if the user has agreed to the EULA and Terms of
Services and Conditions. An indicative patient profile is shown
in Table I of Appendix B. Through the main interface of the
application, the user initializes the gyroscope and accelerom-
eter sensors of the compatible device while she can monitor
her motion in real-time. While the transmission of the data
is still active, a real-time storing capability is offered in the
form of a session as well as the simultaneous annotation
of this session. This procedure can be remotely monitored,
through any telecommunication platform of choice, by an
expert physician in order to be executed appropriately and
accurately. A text-based manual is also provided for the user
through the main interface delivering appropriate guidance for
the application usage and explaining which labels correspond
to the specific gestures, thus, providing further assistance in
the correct annotation process. Physicians also have the ability
to directly monitor the session and even annotate it, without
any user input, through their dashboard. The annotated sensory
data along with additional metadata, such as the time of the
session streamed and stored to the platform’s centralized data
warehouse and the identification of the patient participating in
the procedure, offer immediate accessibility by corresponding
stakeholders for further processing.

Finally, it is worth mentioning that the data collection
process was immediately expedited by the integration of
the tool to our AI platform. Consequently, our tool enables
a procedure of data acquisition that no longer requires a
controlled environment where the patient and the doctor must

Fig. 3. An overview of the Deployment Architecture.

be present. Last but not least, our tool is accessible by all the
smart-devices that integrate a Web Browser, thus minimizing
the need for specific hardware from the patients.

X. PERFORMANCE EVALUATION

A sample rate test was conducted to compare our tool’s
performance with that of a native application’s. The maximum
theoretical number of samples for a 10-second recording ses-
sion with both accelerometer and gyroscope sensors enabled
at a 100Hz recording frequency, is 2000 samples (a 1000
samples respectively). This configuration happens to be the
maximum output of the device by design (when these two
sensors are enabled), thus, no comparison was performed with
a higher throughput. As depicted in Fig. 4, both our tool
utilizing the Web Bluetooth API and the native application
can match it. Specifically, as it is shown in Fig. 4, the sample
rate of our tool is identical to the theoretical maximum. The
native application’s sample rate is only slightly lower because
between the logging screen and the initial configuration screen,
exists a confirmation step during which the actual samples are
recorded and logged in a CSV file but they are not included to
the number of samples reported by the application. This can be
confirmed by the fact that the number of samples logged in the
CSV file produced by the application, matches the theoretical
maximum as well.

From the above it is concluded that there are no perfor-
mance differences between our developed tool and a native
application. The sensor’s battery consumption and the compute
resources dedicated to the application or the tool, are also
in similar levels. In addition, the tool’s visualization of the
sensory data is noticeably more responsive than that of the
native application’s while also the fact that no data are lost
during storage, enhances our tool’s viability as a respectable
solution for these purposes, offering additional functionalities
without any significant trade-offs.

XI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel Web Application that
has the ability to effectively connect a BLE module to a
smartphone, a tablet or a personal computer with the assistance
of the Web Bluetooth API with no performance trade-offs
when compared to a native application. To the best of our



Fig. 4. Sample rate comparison between the native application and our Web-
based tool. Samples are stored in the database in batches of a 1000 samples.

knowledge this is the first tool that utilizes this new technology
and offers the ability to efficiently create and annotate datasets,
based on data recorded from BLE enabled IoT devices even
remotely, in a multi-client and human-centered environment.
Finally, its successful deployment and use in a real world
scenario through the integration to our existing AI platform
for gesture recognition related to allergy detection [12], proved
that it is a quite beneficial tool for data collection usages.

An additional enhancement to our tool would be the devel-
opment of a functionality which allows the user or the expert
to mark and then cut only the desirable parts of the movement
which better represent the movement she wishes to save. The
aforementioned will enable the creation of even clearer and
more reliable datasets that only contain the desirable move-
ment, reducing that way the time consumed by time-series data
segmentation produced from a session. Another future step in
our work would be our tool to support additional wrist-worn
BLE modules from different manufacturers or even modules
that are being worn in different parts of the body. In this way,
data could potentially be collected from a variety of different
sensors offering a more complete representation of a user’s ac-
tivity, health, and physiology. With the proper integration into
future AI assisted or remote monitoring eHealth and mHealth
systems, our proposed tool could become a valuable addition
to the data collection practices that will be needed, therefore
allowing rapid development and deployment processes of such
systems while also enhancing their robustness.

Furthermore, another major enhancement would be to have
this tool implemented as a back-end, alleviating the need of
obfuscating the code execution that, for the moment, is being
run on the front-end. Last but not least, the tool can be adapted
to work in various fields beyond the scope of Healthcare, in
systems that harness and are in need of movement data, with
only minor configuration changes. For example, by simply
changing the required profile information that is provided
by the users and the labeling process (e.g. monitoring the
movements of an animal) can create a whole new aspect
for our tool. Finally, adding support for a new device would
be relatively easy as the process is well documented and
researched as outlined in the previous sections of our paper.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH – CREATE – INNOVATE (project code:
T1EDK 02436, project name: Personal Allergy Tracer).

REFERENCES

[1] M. Kim, J. Cho, S. Lee, and Y. Jung, “Imu sensor-based hand ges-
ture recognition for human-machine interfaces,” Sensors (Switzerland),
vol. 19, no. 18, pp. 1–13, 2019.

[2] G. Aceto, V. Persico, and A. Pescapé, “Industry 4.0 and health: Internet
of things, big data, and cloud computing for healthcare 4.0,” Journal of
Industrial Information Integration, vol. 18, p. 100129, 2020.

[3] J. Qi, P. Yang, Z. Deng, Y. Zhao, A. Waraich, and Y. Yang, “Examining
sensor-based physical activity recognition and monitoring for healthcare
using internet of things: A systematic review,” Journal of Biomedical
Informatics, vol. 87, 08 2018.

[4] B. Fyntanidou, M. Zouka, A. Fourlis, A. Apostolopoulou, P. Bamidis D,
A. Billis, K. Mitsopoulos, and P. Angelidis, “IoT-based smart triage of
Covid-19 suspicious cases in the Emergency Department,” in 2020 IEEE
Global Communications Conference (GLOBECOM), 2020, pp. 8–13.

[5] “Shimer Sensing,” http://www.shimmersensing.com/, (accessed 2021).
[6] “Mbientlab,” https://mbientlab.com/, (accessed 2021).
[7] “MetaBase Application,” https://mbientlab.com/tutorials/MetaBaseApp

.html, (accessed 2021).
[8] “Android API,” https://developer.android.com/guide/topics/sensors, (ac-

cessed 2021).
[9] J. P. Espada, V. Garcı́a-Dı́az, R. Crespo, O. Martı́nez, B. C. P. Garcı́a-

Bustelo, and J. M. C. Lovelle, “Using extended web technologies to
develop bluetooth multi-platform mobile applications for interact with
smart things,” Inf. Fusion, vol. 21, pp. 30–41, 2015.

[10] J. Yasskin, “Web bluetooth community group charter.” [On-
line]. Available: https://www.w3.org/community/web-bluetooth/web-
bluetooth-community-group-charter/

[11] J. Wåhslén and T. Lindh, “A javascript web framework for rapid
development of applications in iot systems for ehealth,” in 2018 IEEE
20th International Conference on e-Health Networking, Applications and
Services (Healthcom), 2018, pp. 1–6.

[12] X. Aggelides, A. Bardoutsos, S. Nikoletseas, N. Papadopoulos, C. Rap-
topoulos, and P. Tzamalis, “A gesture recognition approach to classifying
allergic rhinitis gestures using wrist-worn devices : a multidisciplinary
case study,” in 2020 16th International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2020, pp. 1–10.

[13] “MetaMotionR sensor kit,” https://mbientlab.com/metamotionr/, (ac-
cessed 2021).

[14] “Socket.io,” https://socket.io/, (accessed 2021).
[15] “MongooseJS ODM library,” https://mongoosejs.com/, (accessed 2021).
[16] “Bluetooth Low Energy,” https://www.bluetooth.com/learn-about-

bluetooth/radio-versions/, (accessed 2021).
[17] C. Gomez, J. Oller Bosch, and J. Paradells, “Overview and evaluation

of bluetooth low energy: An emerging low-power wireless technology,”
Sensors (Basel, Switzerland), vol. 12, pp. 11 734–53, 12 2012.

[18] M. Afaneh, Intro to Bluetooth Low Energy: The Easiest Way to Learn
BLE. Amazon Digital Services LLC - KDP Print US, 2018. [Online].
Available: https://books.google.gr/books?id=0UhjvwEACAAJ

[19] “Web Bluetooth API,” https://www.w3.org/community/web-bluetooth/,
(accessed 2021).

[20] “BMI160 IMU,” https://www.bosch-sensortec.com/products/motion-
sensors/imus/bmi160.html, (accessed 2021).

[21] “nRF Connect application,” https://www.nordicsemi.com/Software-and-
tools/Development-Tools/nRF-Connect-for-mobile, (accessed 2021).

[22] “nRF sniffer for bluetooth LE,” https://www.nordicsemi.com/Software-
and-tools/Development-Tools/nRF-Sniffer-for-Bluetooth-LE, (accessed
2021).

[23] “Chart.js,” https://www.chartjs.org/, (accessed 2021).
[24] “Bluetooth GATT Specifications,” https://www.bluetooth.com/specific

ations/ gatt/, (accessed 2021).
[25] L. Leonardi, G. Patti, and L. Lo Bello, “Multi-hop real-time communi-

cations over bluetooth low energy industrial wireless mesh networks,”
IEEE Access, vol. PP, pp. 1–1, 05 2018.



APPENDIX A
ATT & GATT

The ATT defines the communication between two devices.
In more detail, a device that maintains a set of attributes and
their respective values, named the Server, is able to expose
them by notifying or indicating to a peer device, named the
Client. An attribute is a data structure that contains information
handled by the protocol running on top of it, the GATT. The
Server’s exposed attributes can be accessed by the Client by
discovering, reading, and writing to them.

As mentioned before, GATT is the Layer that is built
on top of ATT and defines a framework that utilizes ATT
and describes the way two BLE devices exchange packets.
GATT includes a hierarchical data structure which (from the
top level down) consists of the Profile, the Services and the
Characteristics. A GATT Profile defines the way that the ATT
is used to perform the various actions regarding the attributes
contained in the server (discover, read, write, notify, indicate)
and it consists of Services that are specific to a use case.
Services are composed of Characteristics or references to other
Services. A Characteristic consists of a set of data which
includes a value (the value of the reading or the state of
the functionality that the Characteristic corresponds to, for
example the battery level of a device or the reading of an
accelerometer sensor), properties (specific functionalities that
describe if the Characteristic’s value can be read, written etc.),
and optionally a Client Characteristic Configuration Descrip-
tor (CCCD) through which a Client device can configure a
Server’s Characteristic (enable/disable notifications). Services
and Characteristics are identified by a name or an 128bit
address. For example, a BLE Server device exposes a “battery
service” that contains the Characteristic “battery level” that can
be read and optionally notified [24]. A Client can read the
battery level of the device via a request or enable notifications
of the Characteristic by writing on its CCCD. An overview of
a GATT profile’s hierarchy is depicted in Fig. 5.

Fig. 5. The GATT profile’s hierarchy.

APPENDIX B
IMAGES & TABLES

TABLE I
TABLE OUTLINING A PATIENT PROFILE

Fields Possible Values
Name Text
Last Name Text
Email Email
Password Text / Symbols / Integers
Height Integer
Weight Integer
Dominant Hand Left / Right
Age Integer
Gender Male/ Female
Family member that has history of
Allergy Father/Mother/Siblings

Allergic Rhinitis Yes / No
Allergic Asthma Yes / No
Allergic Conjuctivitis Yes / No

How often my allergy affects me Rarely / Sometimes /
Often / Extremely often

Way of receiving Immunotherapy Sublingual / Injection / Other
/ Not receiving

Date started receiving Immunotherapy Date
Weeks of receiving Medicine Integer

Allergens that affect me Selection of allergens from the
USA region

My symptoms Selection of common allergen
symptoms

Fig. 6. An overview of the BLE protocol stack. Figure acquired from [25].



Fig. 7. The pop-up window showing the available Bluetooth Low Energy
devices.

Fig. 8. The “nrf Connect” Application showing the custom Service and
Characteristics of the selected module.

Fig. 9. Screenshot of the widgets the user can interact with to enable the
device’s sensors.

Fig. 10. Example of a document in the MongoDB database containing the
sensory data.


