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Post-transcriptional RNA modifications are involved in a range of important cellular processes, including
the regulation of gene expression and fine-tuning of the functions of RNA molecules. To decipher the
context-specific functions of these post-transcriptional modifications, it is crucial to accurately determine
their transcriptomic locations and modification levels under a given cellular condition. With the newly
emerged sequencing technology, especially nanopore direct RNA sequencing, different RNA modifications
can be detected simultaneously with a single molecular level resolution. Here we provide a systematic
review of 15 published RNA modification prediction tools based on direct RNA sequencing data, including
their computational models, input–output formats, supported modification types, and reported perfor-
mances. Finally, we also discussed the potential challenges and future improvements of nanopore
sequencing-based methods for RNA modification detection.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Covalent modification of RNA has recently emerged as a critical
layer of gene expression regulation in living cells [1]. RNA epitran-
scriptomic modifications can specify the metabolism fates of RNA
molecules, such as the turnover rate of the RNA molecules [2,3],
the interaction between RNA and proteins [4], and translational
accuracy and efficiency [5,6]. To date, >140 types of RNA modifica-
tions have been identified on various types of cellular RNAs,
including mRNA, tRNA, rRNA, and lincRNA [7]. Among them, N6-
methyladenosine (m6A) is the most abundant modification in
eukaryotic mRNAs. m6A modifications are mainly installed by the
m6A methyltransferase complex comprised of METTL3, METTL14,
and WTAP [8]. The internal m6A modification has proven to influ-
ence fundamental cellular processes, including the regulation of
RNA decay [3,9], translation efficiency [10] and splicing [11].
Recent studies demonstrated that both over and under methyla-
tion of m6A can lead to or accelerate tumor development [12,13].
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Similar to m6A, m1A modifications are methylated by protein com-
plexes, such as TRMT6-TRMT61A [14]. m1A has been shown to
affect the RNA 2ndary structures by disturbing the Watson–Crick
base pairing through the positive charge on the modification site
[15]. Pseudouridine (w) is another commonly identified RNA mod-
ification produced from either the RNA-dependent or RNA-
independent pseudouridylation processes. w has been proposed
to regulate the splicing and translation of mRNA [16]. It can also
universally form pairs with A, U, G, and C bases, increasing the sta-
bility of RNA structures [17,18]. 20-O-methylation (Nm) is a highly
conserved RNA modification occurring on any nucleotide across
various RNA species [19]. Nm modifications are known to regulate
the mRNA and protein expression, specifically via the assistance of
small nucleolar RNAs [20].

To better understand the functional roles of RNA modifications
under various conditions, it is important to accurately predict their
genomic sites and modification levels for a given biological sample.
Most existing methods for RNA modification profiling are based on
2nd generation sequencing technology that requires reverse tran-
scription, in which the RNA modification information is removed
from the sequencing signal. Therefore, either antibody enrichment
or specific chemical treatment was combined with the standard
NGS procedure to selectively identify RNA molecule modification
sites [21]. These methods, though widely used, bear some technical
defects, including the PCR enrichment bias, difficulty in finding
antibodies and chemicals with high specificities, and lack of
single-read level detection capacities [21,22]. Thus, the 3rd gener-
ation sequencing technology has emerged as a promising novel
technique to overcome these limitations.

Nanopore sequencing technology and its supporting nanopore
sequencer MinION were developed and provided by Oxford Nano-
pore Technology (ONT) [23]. Compared to NGS, nanopore sequenc-
ing does not require reverse transcription, and the modification
information is retained on single-read level data. In addition, nano-
pore sequencing is a portable device that can detect signals in real-
time. Nanopore sequencing consists of three major components:
the polymer membrane, the nanoscale protein pore embedded in
the membrane, and the motor protein on the pore [24,25]. While
the sequencing is initiated, a voltage potential is kept constant
across the membrane. The helicase motor protein will first unwind
the DNA into a negatively charged single-stranded molecule (while
the single-stranded RNA can be sequenced directly). Next, the
nucleic acid is ratcheted from the negatively charged cis-face to
the positively charged trans-face of the membrane through the
nanopore (Fig. 1) [24,25]. This translocation will lead to the alter-
Fig. 1. Illustration of nanopore sequencing principle. a). The translocation of an RNA
recorded as ‘‘squiggles.” Published tools for RNA modification calling apply computationa
unmodified base. b). Different computational strategies such as Bayesian models and de
existing tools are trained on data of m6A and can identify only m6A modification.
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ation of voltage across the membrane and disrupt the currents
[24–27]. Since the degree of shift of the current signals is uniquely
associated with the current nucleotide and its 5-mer sequence con-
text, the captured changes of currents can be ‘‘basecalled”, i.e. to
convert ionic signals into sequence information.

The base calling procedure is mainly realized through deep
learning methods such as the recurrent neural network (RNN)
[24,25,27]. The current signals are first segmented into separate
‘‘events”. An RNN takes an input of a sequence of vectors contain-
ing current values of these events and incorporates with the hid-
den state vectors from the previously hidden layers to produce
an output of a sequence of vectors providing a probability distribu-
tion for each base [28,29]. To consider the context information
before and after the called base, bidirectional recurrent neural net-
works are applied in Guppy [28,29].

Beyond the primary sequences, the nucleotide modification
sites can be predicted directly from the read-level electrical signal
by identifying the ‘‘deviant” from the regular signal shifts of the
nucleotide (Fig. 1). To implement this procedure, current signal
intensity levels are often extracted with software such as Nanopo-
lish or Tombo to acquire a dataset containing signal statistics asso-
ciated with base calling events [30]. Currently, many software tools
have been developed to predict RNA modifications based on nano-
pore sequencing data, such as EpiNano [21,31], nano-ID [32], Dif-
fErr [33], MINES [34], Nanocompore [35], ELIGOS [36], xPore [26],
nanom6A [37], nanoRMS [38], DRUMMER [39], nanoDoc [40],
Yanocomp [41], Penguin [42], m6Anet [43] and DENA [44]. In this
review article, we will first summarize the computational strate-
gies used when developing the above tools. Following that, we
try to contrast their functionalities by enumerating the supported
modification types, the format of the input information, and their
reported performances. Therefore, these efforts may help to find
avenues to improve future development in computational methods
and sequencing devices.

2. Review of methodologies

2.1. Statistical methods

Differential statistical testing and Bayesian modeling are two
major types of statistical methods used in RNA modification pre-
diction from nanopore sequencing. The input of differential testing
depends on the site-level information, which is often the coverage
data of the base called reads or the extracted current signals
mapped at the reference sequence. The sites level information is
molecule will disturb the currents across the membrane, which are captured and
l models to capture the deviation of the current signal in the modified base from the
ep learning were realized in corresponding pipelines to achieve this purpose. Most



Fig. 2. Two major computational frameworks used in RNA modification site prediction. a). In the differential testing schemes, the input data is arranged by piling up the base
called reads or extracted current signals along the reference sequence. The counts of mismatches or normalized current signals are summarized into contingency tables and
subjected to categorical differential testing. b). In the Bayesian models framework, either means or medians of the current signals covering each k-mer position are extracted
as observed variables and are fitted by a Gaussian mixture model (GMM). The estimated weight parameter of the latent binomial variable can be regarded as the modification
rate at the given k-mer. Differential methylation can be conducted over the quantified modification rate across samples to detect the presence of significantly differentially
modified sites.
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often summarized into contingency tables and subjected to statis-
tical testing (Fig. 2a). Bayesian modeling act on the read-level
information which is means or medians of the current signals of
the base events in reads. Bayesian generative models such as Gaus-
sian mixture model (GMM) will be fitted to the signal to detect sig-
nal shifts. In case of GMM, the posterior estimates for each mixture
component can interpreted as the probability of modification at
the given base (Fig. 2b).

2.1.1. Differential testing
DiffErr [33] and DRUMMER [39] are two prediction methods

adopting G-tests under the differential testing scheme. DiffErr pre-
dicts m6A modifications by finding differences in the base calling
error rate between the target sample and the reference control
sample. The input data is the stacked read coverage at the potential
modification site labeled by base call errors. Specifically, the counts
of five bases called results (A, C, G, U, or indel) are aggregated from
each sample. An n � 5 contingency table is then generated for each
base, where n denotes the number of samples and 5 represents the
types of base calling results. A G-test is performed on this table to
identify any base with a significant change in error rates. An addi-
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tional G-test is performed on significant bases between other pair-
ings of replicates in the same condition. Benjamini-Hochberg
method with an 0.05 FDR threshold is used for multiple testing
corrections. If the sum of the G statistics in the lateral G-test is lar-
ger than the G statistic in the former one, the base will be excluded
from the candidate sites to improve stringency. Subsequently, the
log2 fold changes of mismatch to match ratio at the candidate sites
between different-conditioned samples are calculated. A base with
a log2 fold change >1 is considered a modification site. DiffErr was
tested on the nanopore direct RNA sequencing (DRS) data of Ara-
bidopsis. The result showed that the m6A modification sites
revealed by DiffErr are enriched in 30 UTRs but not enriched around
stop codons, which is consistent with the pattern of the paired
miCLIP sample. About 66 % of the m6A modification sites discov-
ered located within 5 nucleotides of miCLIP sites.

The testing method used by DRUMMER is also G-test on a 2 � 5
contingency table from the counts of basecall information for each
base. A Bonferroni approach is used to adjust multiple-hypothesis
testing. The two rows in the contingency table represent the
methyltransferase knockout samples versus the wild-type sam-
ples. The fold change of mismatch to match ratio is then calculated
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at each included base. Candidate modification sites are selected if
the site has a onefold or greater change and the adjusted G-test
p-value is less than 0.01. This algorithm was tested on the nano-
pore DRS data of the wild-type (WT) and METTL3-knockout
(M3KO) A549 cells infected with adenovirus serotype 5 (Ad5) with
matching MeRIP-Seq data. Their results showed that approxi-
mately 83.1 % of the universally predicted sites across all datasets
were located on AC motifs, with the remaining sites located within
four nucleotides away from AC motifs. The observed distances
were much smaller than random shuffled sites, suggesting a posi-
tive motif association. The sequence logo generated from the con-
text of these candidate sites resembled the commonly known m6A
DRACH motif. The predicted modification sites also overlapped
extensively with peaks detected by MeRIP-Seq.

ELIGOS [36] uses Fisher’s exact tests to predict modified bases
by comparing the base-call error profiles between the modified
and control DRS data. The training set consisted of in vitro tran-
scribed (IVT) sequence data with all target bases modified, a con-
trol IVT sample with no base modified, and a cDNA sample
reversely transcribed from the native RNA sequences called the
RNA background error model (rBEM). To apply a differential test,
ELIGOS calculates the sum of mismatches, insertions, and deletions
at each base of the reference sequence using the aligned reads.
These features are referred to as the Error of Specific Bases (ESB).
The differences in the proportion ESB (%ESB) between native RNA
and the reference sequence data constitute three 2� 2 contingency
tables, one for each reference data. Fisher’s exact tests is then per-
formed and the q-values are computed by Benjamini-Hochberg
correction. The methylation is called using user defined cut-offs
for q-values and odds ratios. ELIGOS was tested on Curlcakes and
IVT datasets having modification types from m6A, m1A, 5moU,
Psi, m7G, Ino, hm5C, and f5C. The results showed that the best
AUROC for Curlcakes data is 0.758 on all possible 5-mers and
0.973 on DRACH motifs. All the IVT data had AUROC >0.74 except
for the one containing m5C modification. In addition, ELIGOS was
further validated on DRS data of rRNAs from human cells, yeasts,
and E. coli. The resulting AUROC were 0.895–0.938, 0.861–0.962,
and 0.862–0.953, respectively.

2.1.2. Bayesian modeling
Nanocompore [45], xPore [26], and Yanocomp [41] applied

Bayesian generative models to predict the modification sites while
supporting the methylation level quantification. Nanocompore
predicts m6A modification sites by comparative analysis between
experimental and control datasets. The median signal intensity
and the log10 of dwell time of each read are extracted from raw
current signals and used as input data. Pairwise comparisons are
conducted between modified and control samples on all the possi-
ble 5-mers by the robust univariate test (Kolmogorov-Smirnov
test) or bivariate Gaussian mixture model (GMM) with a logistic
regression test. Nanocompore was first evaluated on in-silico gen-
erated data by simulating modified and unmodified current sig-
nals. This simulation was based on the current distribution from
an IVT human DRS dataset. The unmodified current signals are
mimicked by a probability density generator. The simulation of
current signals for modified bases is generated by shifting the
mean of density distribution. The evaluation results showed that
the KS test has the highest sensitivity but with the expense of
lower specificity, while the GMM models reach the lowest False
Positive Rate and the highest F1 score. GMM models outperformed
KS tests when the analysed transcripts had different sequencing
depths and were therefore used in the following analysis. In a cell
line independent validation test, Nanocompore was applied on the
nanopore RNA sequencing data of shRNA-mediated METTL3
knock-down (KD) MOLM13 cell line and wild type (WT) MOLM13
cell line. The results showed that the m6A modification sites pre-
5743
dicted were enriched near the stop codons of mRNA, resembling
the pattern previously reported by the METTL3-dependent m6A
sites. Compared with the miCLIP data of the MOLM3 cell line,
54 % of the modification sites predicted by Nanocompore over-
lapped with the miCLIP in WT cells and there exists a significant
decrease in Nanocompore predicted modification sites at miCLIP
crosslink sites. The methylation ratios at these sites are also signif-
icantly reduced from the WT to the KD cell line. Although
Nanocompore has only been tested and validated only on m6A
modification, it is potentially applicable to any modification detec-
tion with proper control samples free of modification.

xPore predicts m6A modification sites through a multi-sample
Bayesian Gaussian mixture model. The model takes input from
the normalized mean of the current signals from all reads across
different samples at each possible 5-mer. The two components of
the mixed distributions are used to denote the unmodified and
modified RNA species. The cluster closer to the theoretical distribu-
tion for unmodified RNA species is considered unmodified, while
the other is modified. A Bayes classifier is used on the posterior
probability of the soft clustering to predict modification events at
the read level. The modification rate for a given site is estimated
by the proportion of modified reads aligned at that position. xPore
was tested on the nanopore DRS data of wild-type (WT) and
METTL3 knockout (KO) HEK293T cell lines with matched m6ACE-
Seq data as reference labels. Differential analysis was then applied
to the estimated modification rates of replicates between WT and
KO to determine whether the site is modified. Benjamini-
Hochberg method with a 0.05 FDR threshold is utilized to adjust
the multiple testing P-values. At the A-centered positions
(NNANN), xPore achieved an AUROC of 0.86 and a precision of
0.6. The low precision could be a result of detecting modifications
that were missed by antibody-based prediction. Over 90 % of the
modification positions predicted with a p-value lower than 0.001
overlapped the modified DRACH motifs identified by m6ACE-Seq.
The predicted sites formed a distribution peak near the stop codon,
resembling the pattern identified by m6ACE-Seq. xPore also
demonstrated a positive correlation between the quantified m6A
levels in the HEK293T cell lines and the profiles acquired from
MAZTER-Seq and m6ACE-Seq, with Spearman’s rank correlation
coefficient equal to 0.49 and 0.66, respectively. xPore has an
advantage over other methods in that it can obtain the quantitative
m6A levels from individual DRS experiments without depending on
the associated KO samples.

Yanocomp constructs GMM based on the mean current values
of each kmer at each read. The model contains two Gaussian com-
ponents and one uniform component. The weights for the two
Gaussian components are also utilized to estimate the modification
rate at each position, followed by a G-test as the differential anal-
ysis between control and experiment samples. This algorithm was
tested on the DRS data of Arabidopsis defective in the function of
VIRILIZER (vir-1) and VIR complemented lines (VIRc). The average
modification rates dropped by 81.8 % in the defective cell line com-
pared to the WT condition. Most of the m6A modification sites
identified were located at m6A consensus motifs and almost all
the modification sites predicted were in 30UTRs. Compared with
miCLIP data, 84.1 % of the predicted modification sites were located
within 5nt of the nearest miCLIP site. The authors also intend to
improve Yanocomp to enable the prediction without the need for
paired KO experiments.

2.2. Supervised learning

The supervised learning-based prediction methods often use
heterogeneous input information, in which both the current inten-
sity and the base called sequence are input features. This can often
provide a performance advantage over statistical methods which
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typically use only one feature type. The adopted models or algo-
rithms include K-means [38], K-nearest-neighbour [38], Random
Forests [34,42], Support Vector Machine [21,31,42], XGBoost [37]
and neural networks [32,40,42–44].

Among these machine learning-based methods, EpiNano-SVM
[21,31], MINES [34], and nanoDoc [40] can only reach site-level
predictions. EpiNano-SVM uses a Support Vector Machine (SVM)
to classify the m6A-modified bases based on systematic base-
calling errors in DRS datasets. The features are composed of per-
site and per-kmer quality, mismatch, insertion, deletion, and cur-
rent intensity. It can either uses absolute feature values or differ-
ences in feature values between two comparing samples. The
SVM model was trained and tested on Curlcakes datasets with fea-
tures of per-base quality, mismatch, and deletion at the middle
position of the RRACH k-mers. The Curlcakes datasets, originally
designed and generated by the authors of EpiNano, consist of the
DRS data of the modified and control IVT sequences containing
all possible 5-mers. Two biological replicates were generated for
both modified and control datasets. The SVM model was trained
on the 1st replicate of Curlcake datasets and tested on the 2nd
replicate. The results showed that the AUROC were higher than
0.969. For cell line independent validation, the model was trained
and tested on the nanopore DRS data of polyA(+)-selected RNA
from wild-type (WT) and ime4 knockout (KO) yeast strains with
distinct subsets of features. The model reached the AUROC higher
than 0.613 with absolute feature values and 0.636 with differences
in feature values. In the recent update EpiNano 1.2, the authors
implemented another mode named EpiNano-Error, which predicts
modification sites by testing for differences in feature values
between two comparing samples. Z-score deviances and data point
residuals after fitting the linear regression models are used to
determine the modification sites. The Bonferroni method is used
to correct for multiple testing p-values. The threshold parameters
can be user-defined.

MINES classifies the m6A sites on DRACH motifs through a ran-
dom forest model using the features of modification stoichiome-
tries within a 20-bp region. The centre position (Position 0) of
the region is an adenine nucleotide in the middle of the DRACH
motifs. The modification stoichiometries are calculated by Tombo
by averaging the modification probabilities of each read. The ran-
dom forest models were trained and tested on the HEK293T cell
line using labels from matched m6ACLIP-seq datasets. The DRACH
motifs containing overlaps with m6A modification sites in label
datasets were considered as positive sites and otherwise negative
sites. The obtained results reached the accuracies ranging from
67 % to 83 %, the precisions ranging from 40 % to 92 % and the
AUROC ranging from 54 % to 76 % for all 18 models over instances
of DRACH motif. Among them, only 4 models (the ones for the
AGACT, GGACA, GGACC, and GGACT motifs) had AUROC beyond
0.67. In the independent validation on the HMEC cell line, the
m6A sites predicted by MINES were enriched near the start of
30UTR across all transcript isoforms, which resembled the results
from typical m6A-seq. In the future, MINES may upgrade to realize
read-level prediction.

nanoDoc distinguishes RNA modifications at the site level
through a combination of deep learning and machine learning. It
adopts a Deep One-Class (DOC) classification model with transfer
learning and takes normalized current signals and the dwell time
of each possible 5-mer as the input feature. Two parallel DOC clas-
sification models are constructed to calculate the Euclidean dis-
tance between the output vectors of target 5-mers in the
secondary network and output vector of other 48 similar 5-mers
in the reference network. The obtained Euclidean distances consti-
tute a distribution for each 5-mers. The reference network was
trained on IVT data free of modification. Besides, the IVT data
was also used as the control dataset to calculate the distance dis-
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tributions. During the application of nanoDoc, two pairs of parallel
DOC classification models were processed simultaneously. The dis-
tribution of distances between two IVT read datasets (control dis-
tribution) and the distribution between an IVT read dataset and a
native sequence read dataset (native distribution) were generated,
respectively. Next, these two distributions were scored through
cumulative distribution functions. With the modification present,
the score of the control distribution was expected to be greater
than that for the native distribution. To distinguish between differ-
ent classifications, the native sequence 5-mer data were processed
through a reference classification network followed by K-means
clustering. nanoDoc was tested on the nanopore DRS data of native
rRNA of E. coli and yeast with matched reference IVT sequencing
data. It tried to detect all 23 kinds of RNA modification and
achieved an AUROC of 0.96. Within 7 5-mers, 10 out of 15 types
of modifications were successfully identified with>50 % specificity.
nanoDoc was also applied on Curlcakes data to predict m6A sites
and it achieved an AUROC of 0.68 on all possible 5-mers. Most
modification sites within DRACH motifs were successfully
detected. Currently, nanoDoc cannot perform read-level predic-
tions for modification rate quantification. In the future, nanoDoc
will accumulate more data regarding different modification types
in the 5-mers and will be independent of the IVT reference data.

NanoRMS [38], nanom6A [37], and Penguin [42] implement
read-level prediction using classic machine learning algorithms
such as Random Forest (RF), Support Vector Machine (SVM), and
K-Nearest-Neighbourhood (KNN). NanoRMS predicts the modifica-
tion sites and modification levels of pseudouridine (psi) and Nm
modification via either unsupervised (K-means) or supervised
(KNN) machine learning algorithms. The authors use combined
input features of signal intensity calculated from Tombo and base
probability (trace) reported from Guppy. NanoRMS was trained
and tested on the yeast strains of wild-type (WT) and two different
knockouts for psi and Nmmodification, respectively. The predicted
per-site modification stoichiometries were verified by mass spec-
trometry results. Significant reductions in predicted stoichiome-
tries were observed at positions specific to one of the psi and
Nm-modified snRNA-depleting cell lines.. NanoRMS was also vali-
dated on data of the poly(A)-selected RNA from wild-type (WT),
Pus1 knockout, and Pus4 knockout yeast strains. The predictions
successfully recapitulated 11 % and 75 % of previously reported
Pus1- and Pus4-dependent psi modification sites, respectively.
NanoRMS also discovered some novel modification sites across
replicates. The results revealed similar mismatch patterns to previ-
ously reported psi modification sites, and the predicted sites were
predominantly responsive to the Pus1 and Pus4 knockout.

Nanom6A uses the XGBoost model to predict m6A modification
sites at RRACH motifs. The input features of the XGBoost model
include the median, standard deviation, mean, and dwell time of
the current signals over each RRACH motif extracted by the Tombo
re-squiggle function. Nanom6A was trained and tested on the Curl-
cakes dataset. The authors obtained an AUROC of 0.97 under 10-
fold cross-validation, and approximately 91–96 % of modification
sites are uncovered. For cell line independent validation, the pre-
diction over the wild type (WT) and METTLE3 knockdown (KD)
HEK293T cell line were compared with the matched SCARLET
and MeRIP-Seq data. In addition, the Arabidopsis mutant defective
in the function of VIRILIZER (vir-1) and VIR complemented lines
(VIRc) and stem-differentiating xylem (SDX) of Populus tri-
chocarpa with matched MeRIP-Seq and m6A-REF-seq data were
also compared. In the HEK293 cell line, the numbers of predicted
m6A modification sites and the predicted modification rates
showed a decline in KD samples at ACTB sites, resembling the
results reported from SCARLET and MeRIP-Seq. In the Arabidopsis
cell line, 40 % of the m6A modification sites predicted were shared
with those detected by EpiNano or MINES, and 66 % of the RRACH



X. Zhao, Y. Zhang, D. Hang et al. Computational and Structural Biotechnology Journal 20 (2022) 5740–5749
motifs with predicted modification sites were also predicted by
DiffErr. The number and modification ratios of m6A sites detected
by Nanom6A dropped in the VIRc relative to the vir-1. In the Pop-
ulus trichocarpa, Nanom6A predicted m6A with a similar enrich-
ment pattern compared with the MeRIP-Seq and m6A-REF-seq.
Approximately 81 % and 80 % of the modification sites predicted
overlapped with MeRIP-Seq and m6A-REF-seq, respectively.

Penguin predicts pseudouridine modification at all possible 5-
mers by assembling three models of Support Vector Machine
(SVM), Random Forest (RF), and Neural Network (NN). It uses
Nanopolish to extract current signal features as the model input,
including the mean, standard deviation, dwell time of the current
signals, and the k-mers of the events aligned to the reference gen-
ome. Penguin was trained and tested on the nanopore DRS data
from the HEK293 cell line, with the matched benchmark dataset
as labels. The obtained results showed that the SVM (Accuracy:
0.9338, Recall: 0.95, AUROC: 0.933, Precision: 0.92) had a higher
accuracy, recall and AUROC and a lower precision compared to
RF (Accuracy: 0.8459, Recall: 0.72, AUROC: 0.852, Precision:
0.98). The SVM also achieved comparative results with NN (Accu-
racy: 0.9335, Recall: 0.95, AUROC: 0.932, Precision: 0.92). In the
cell line independent testing on the nanopore DRS data of HeLa cell
line, NN (Accuracy: 0.9535, Recall: 1.00, AUROC: 0.953, Precision:
0.92) outperformed SVM (Accuracy: 0.9261, Recall: 0.94, AUROC:
0.926, Precision: 0.91) in all aspects. RF was excluded from the
results due to its low accuracy (<0.5). Penguin uncovered pseu-
douridine modification sites from 7148 genes at 6482 unique
genomic locations shared across the HEK293T and HeLa cell lines.
Among the top 1 % frequent pseudouridine modification genomic
locations in the HEK293T and HeLa cell lines, 15.8 % were com-
monly detected across both cell lines. In the future, Penguin may
integrate advanced deep learning methods for modification
prediction.

There are three methods using deep learning models for modi-
fication sites and quantification prediction, which are DENA [44],
m6Anet [43], and nano-ID [32]. DENA predicts m6A modification
on RRACH motifs through Bidirectional Long Short-Term Memory
(Bi-LSTM) neural network. A total of 12 Bi-LSTM neural networks
are constructed for each RRACH motif. It extracts the mean, med-
ian, standard deviation, dwell time, and base quality of the current
signals at RRACH motifs as input features through the Tombo re-
squiggle algorithm. DENA is the first neural-network-based RNA
prediction tool trained on in vivo transcribed mRNA data. The net-
work was trained and tested on the nanopore DRS data of Ara-
bidopsis defective in the function of VIRILIZER (vir-1) and
VIRILIZER complemented cell lines (VIRc). The AUROC and the
accuracies of all the 12 models reached between 0.90 and 0.97
and between 0.83 and 0.93, respectively. For validation, DENA
was applied on the wild-type (Col-0) Arabidopsis and full training
dataset (vir-1 and VIRc). A large fraction of overlap was observed
between the predicted modification sites in Col-0, VIRc, and vir-1
cell lines. A high correlation between modification rates was dis-
covered between VIRc and Col-0. The m6A sites predicted were also
enriched near the stop codon and 30UTR, similar to the expected
distribution of m6A modifications.

m6Anet is a prediction software based on Multiple Instance
Learning. The model consists of two joined modules of a read-
level encoder and a pooling layer. The encoder converts the input
features into a high-dimensional representation, followed by the
read-level prediction of modification rates with two hidden layers.
The noisy-OR pooling layer integrates the read level prediction to
estimate the probability of modification at the site level. The nor-
malized mean, standard deviation, and dwell time of the nanopore
raw signals of each read at each position (i) and the single position
before (i � 1) and after (i + 1) are used as input features in this
model. The sequence information of all possible 5-mers in the
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training data is encoded as a two-dimensional vector. The embed-
ding is also used as an input feature for the model. The labels for
the model are the binary modification status at each site marked
with 1 (modified) or 0 (otherwise). The modification status can
be observed from other sequencing methods such as m6ACE-Seq
or other gold-standard data. The training data for m6Anet was
the nanopore DRS data of the HCT116 cell line and the training
labels were the matched m6ACE-Seq data. Sites mapped to non-
DRACH motifs were all removed from training data. The trained
m6Anet model was evaluated on the HEK293T cell line using the
ground truth of the matched m6ACE-Seq and miCLIP data. The
results showed an AUROC of 0.83 and a PRAUC of 0.35 on DRACH
motifs, outperforming EpiNano and Tombo. m6Anet also achieved
the AUROC of 0.83 and 0.83 and PRAUCs of 0.43 and 0.37 on 4
motifs (AGACT, GGACA, GGACC, and GGACT) and all RRACH motifs,
respectively, outperforming MINES and nanom6A. m6Anet can
generalize well to new DRS data without the requirement of new
training data.

nano-ID predicts the sites of nucleoside analogues 5-
Ethynyluridine (5EU) at the read level via a neural network model.
5EU is a chemical modification used to identify newly synthesized
RNA, which is often generated through metabolic RNA labelling.
The neural network takes the normalized raw current signals,
base-calling event probability, and alignment mismatch properties
as the input features. The network architecture is constituted of a
batch normalization layer and two dropout layers between the
three dense layers. nano-ID was trained on the nanopore DRS data
of the myelogenous leukemia K562 cell line. The cells were
exposed to 5EU labelling for 24 h (5EU 24 h), exposed to 5EU label-
ling for 60 min (5EU 60 min), or not exposed to 5EU labelling (Con-
trol). The trained network achieved an accuracy of 0.87 and an FDR
of 0.025 on the 5EU 60 min cell line. The model achieved the
AUROC of 0.94 overall and 0.96 for reads with lengths >500nt
and 1000nt. Similar results were obtained from a random forest
classification with the same training and testing data. Improve-
ments of both the nanopore sequencing platform and the base call-
ing algorithm are expected to further improve the accuracy of
Nano-ID.
3. Discussion

Epitranscriptomics is a field that has been profoundly advanced
in recent decades. The research momentum is mainly driven by the
breakthrough of sequencing technologies that enabled the omic-
level analysis of RNA modifications. With the recent development
of third-generation sequencing technology, nanopore direct RNA
sequencing has the potential to realize the base resolution detec-
tion of RNA modification over long native RNA sequence reads
independent of sequencing biases introduced by PCR amplification
and reserve transcription.

Here we have comprehensively reviewed 15 published RNA
modification prediction tools based on direct RNA sequencing data.
Among them, 6 use statistical models and 9 are based on super-
vised machine learning (Table 1). The principles behind these
methods all depend on recognizing the perturbation of the signal
intensity in modified bases that are uniquely associated with each
k-mer context. One major difference in application is that the sta-
tistical testing-based methods often rely on the paired reference
control dataset that has no modification, which is typically
obtained from either IVT or the KD/KO experiment. In contrast,
machine learning and deep learning models can generalize the sig-
nal pattern learned from the training data set without requiring
the paired no-modification control sample.

Regarding the supported modification types of the prediction
methods, most of the methods (12/15) are trained and applied to



Table 1
Comparison over 15 published tools.

Modification Species AUROC Resolution Motif

DENA m6A Arabidopsis 0.90–0.97 Read RRACH
nanom6A Arabidopsis;

Human; IVT;
Populus trichocarpa

0.97 Read

EpiNano IVT; Yeast – Site
m6Anet Hunan 0.83 Read DRACH
MINES Human 0.54–0.76 Site
Nanocompore Human; IVT 0.9889-

0.9947
Site All possible

5-mers
xPore Human 0.86 Read
Yanocomp Arabidopsis – Read
DiffErr Arabidopsis – Site
DRUMMER Human – Site
nanoDoc Multiple modifications Yeast; E. coli;

IVT
Yeast and E. coli: 0.96
IVT: 0.68

Site

ELIGOS Human; IVT;
Yeast; E. coli

IVT: > 0.74 Human:
0.895–0.938
E. coli: 0.861-
0.962
Yeast: 0.862-
0.953

Site

NanoRMS Yeast – Read
nano-ID 5EU Human 0.94 Read
Penguin Psi Human 0.852–0.953 Read

Table 2
Overview of the features and the models used in the methods reviewed by this article.
Feature level describes the type of input features used by the software. All methods
modeled on the raw electrical current are classified into the signal intensity, and
otherwise, it is labeled as the base call error.

Feature
level

Model/
Method

URL

DENA Signal
intensity

Deep
Learning

https://github.com/weir12/DENA
m6Anet https://github.com/GoekeLab/

m6anet
nanoDoc https://github.com/

uedaLabR/nanoDoc
MINES Machine

Learning
https://github.com/YeoLab/
MINES.git

nano-ID https://github.com/
birdumbrella/nano-ID

nanom6A https://
github.com/gaoyubang/nanom6A

NanoRMS https://github.com/
novoalab/nanoRMS

Penguin https://github.com/Janga-Lab/
Penguin

EpiNano-SVM https://github.com/novoalab/
EpiNano

Nanocompore Bayesian
Modelling

https://github.com/
tleonardi/nanocompore

xPore https://github.com/GoekeLab/
xpore

Yanocomp http://www.github.com/
bartongroup/yanocomp

DiffErr Base call
error

Differential
Tests

https://github.com/bartongroup/
differr_nanopore_DRS

DRUMMER https://github.com/DepledgeLab/
DRUMMER

ELIGOS https://gitlab.com/piroonj/
eligos2

EpiNano-
Error

https://github.com/novoalab/
EpiNano
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only one type of modification (Fig. 2). However, almost all of their
computational frameworks have the potential to apply to other
modifications as long as providing a high-quality training set.
However, one of the major limitations is that the current DRS data
may not support the accurate distinction between certain kinds of
modifications due to the overlap between their signal shifts, such
as between w and m1w [46]. In addition, 7 out of 15 methods pre-
dict modification only at the site level without reporting the quan-
titative modification profile. The difference in their functionalities
can be attributed to the limitations of computational frameworks
and programming implementation.

Sequencing depth is also a strong factor influencing the detec-
tion power of modification sites, especially for the prediction tools
based on statistical models. If the sequencing depth is too low, the
differential testing can be significantly affected by the reduction of
statistical power, especially considering the relatively low
sequencing accuracy of Nanopore sequencing. Common ways of
reducing the high statistical noise of low sequencing depths are
pooling reads across replicates [44] or excluding sites below a cov-
erage threshold [21,33–35,38,39]. The default thresholds of mini-
mum read coverage often vary between different tools (see
Table 2).

Furthermore, all the currently reported methods are not free of
false positive methylation calls due to various reasons. Most of
such false positivity may be attributed to the overfitting caused
by the confounded training samples. Besides, the low differentia-
bility of the electrical signal under certain k-mer contexts may
inevitably introduce the sequence-dependent prediction error.
Some signal shifts resulting from modifications are observed near
the true modification sites, which are also likely to introduce false
positive calling. One possible approach to lowering false positivity
is to narrow the candidate sites only on consensus motifs such as
DRACH for m6A. Mistakes generated from low-quality reads and
poor alignment results are also potential causes of false positivity.
In the framework of Bayesian models, one way to reduce false pos-
itives is to only consider signal shifts in one direction. Eventually,
for all the computational frameworks, a trade-off is always
expected between accuracy and precision upon different cutoffs
of predicted values. Therefore, many variations between the pre-
diction outcomes of different methods can be attributed to the dif-
ference in the stringencies of the default thresholds.
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Multiple previous studies have tried to make comparisons
between different tools [35,37,43,44,47]. Here, we also conducted
a primary comparison between DiffErr, DRUMMER, ELIGOS,
nanom6A, MINES, and m6Anet on a single fast 5 data
(GSM3897645; HEK293TWT) [34]. All tools were run using default
settings. Interestingly, sites predicted by DiffErr and DRUMMER
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https://github.com/GoekeLab/m6anet
https://github.com/GoekeLab/m6anet
https://github.com/uedaLabR/nanoDoc
https://github.com/uedaLabR/nanoDoc
https://github.com/YeoLab/MINES.git
https://github.com/YeoLab/MINES.git
https://github.com/birdumbrella/nano-ID
https://github.com/birdumbrella/nano-ID
https://github.com/gaoyubang/nanom6A
https://github.com/gaoyubang/nanom6A
https://github.com/novoalab/nanoRMS
https://github.com/novoalab/nanoRMS
https://github.com/Janga-Lab/Penguin
https://github.com/Janga-Lab/Penguin
https://github.com/novoalab/EpiNano
https://github.com/novoalab/EpiNano
https://github.com/tleonardi/nanocompore
https://github.com/tleonardi/nanocompore
https://github.com/GoekeLab/xpore
https://github.com/GoekeLab/xpore
http://www.github.com/bartongroup/yanocomp
http://www.github.com/bartongroup/yanocomp
https://github.com/bartongroup/differr_nanopore_DRS
https://github.com/bartongroup/differr_nanopore_DRS
https://github.com/DepledgeLab/DRUMMER
https://github.com/DepledgeLab/DRUMMER
https://gitlab.com/piroonj/eligos2
https://gitlab.com/piroonj/eligos2
https://github.com/novoalab/EpiNano
https://github.com/novoalab/EpiNano


Fig. 3. The comparison of the default m6A sites called from different tools. a). The upset plot shows the number of sites predicted by DiffErr, DRUMMER, ELIGOS, nanom6A,
MINES, and m6Anet and their overlaps with each other. b). The Venn diagram of predicted sites from the top three consistent methods: nanom6A, MINES, and m6Anet.

Table 3
Overview of the capabilities of reviewed methods. The modification column only records the modification used in the training data within the initial publication. The species
column summarizes the species of the data used for training, testing, and validation. The coverage filter records the minimum sequencing depths required for some tools on
specific sequencing datasets, which can also be a user-defined parameter. The AUROC column records the performance of each method under different benchmark datasets. The
level is indicating whether the software can predict the modification in individual reads or not. The motif column summarizes the scope of the 5-mer motifs applied as input
features during modelling.

Modification Species (Coverage filter) AUROC Level Motif

DENA m6A Arabidopsis 0.90–0.97 Read RRACH
nanom6A Arabidopsis; Human; IVT; Populus trichocarpa 0.97 Read
EpiNano-SVM IVT; Yeast (>5 reads) IVT: > 0.969

Yeast: 0.613–0.693
Site

m6Anet Human 0.83 Read DRACH
MINES Human (>5 reads) 0.54–0.76 Site
Nanocompore Human (>30x); IVT 0.9889–0.9947 Site All possible 5-mers
xPore Human 0.86 Read
Yanocomp Arabidopsis Not mentioned Read
DiffErr Arabidopsis (>10 reads) Not mentioned Site
DRUMMER Human (>100x) Not mentioned Site
nanoDoc Multiple modifications Yeast; E. coli; IVT Yeast and E. coli: 0.96

IVT: 0.68
Site

ELIGOS Human; IVT; Yeast; E. coli IVT: > 0.74
Human: 0.895–0.938
E. coli: 0.861–0.962
Yeast: 0.862–0.953

Site

NanoRMS Yeast (>30 reads) Not mentioned Read
nano-ID 5EU Human 0.94 Read
Penguin Psi Human 0.852–0.953 Read
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Table 4
Preprocessing schemes used in reviewed methods. DiffErr, DRUMMER, ELIGOS, and EpiNano only use features of the base call error; thus, no feature extraction software is applied
by these methods.
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have extremely poor overlaps with the other four methods
(Fig. 3a). Both two methods have adopted statistical testing as their
prediction schemes. In contrast, nanom6A, MINES, and m6Anet
have made relatively consistent predictions (Fig. 3a), with 5110
sites commonly reported by all three methods (Fig. 3b). To be
noticed, the three methods all use the machine learning frame-
work. This primary comparison revealed that the prediction made
by different tools are likely to exhibit considerable variations, and
the computational schemes adopted may contribute significantly
to the differences. Consequently, a systematic evaluation of the
performances of different tools is necessary for the field. The codes

for this comparison are available at https://github.com/XichenZ-

hao0223/Nanopore-tools-comparison. There is also a call for defin-
ing robust evaluation metrics and strong benchmark datasets, as
most currently published tools have used different pre-
processing and evaluation schemes (Table 3) (Table 4).

The breakthrough in the accuracy of nanopore-based modifica-
tion prediction methods may eventually rely on two factors: 1.) the
preparation of high-quality, unconfounded IVT training data. 2.)
the upgrade of the 3rd generation sequencing platform that pro-
vides more differentiability between signals of modified and nor-
mal bases. Meanwhile, the new computational models can be
improved both in accuracy and computational efficiency (fast
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and small memory demands). If the above criteria have been
met, the refined computational tools can eventually enable the
detection of all modification types simultaneously within a single
RNA molecule. Such detection power can shed light on important
epitranscriptomic phenomena, such as revealing the interaction
between different modification types on a single molecular tran-
script. From a long-term perspective, RNA modification detection
based on direct RNA sequencing is a promising novel technique
to improve our understanding of epitranscriptomic.
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