Sparse Hypercube 3-Spanners

W. Duckworth
Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia
M. Zito
Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK

Abstract

A t-spanner of a graph $G=(V, E)$, is a sub-graph $S_{G}=\left(V, E^{\prime}\right)$, such that $E^{\prime} \subseteq E$ and for every edge $(u, v) \in E$, there is a path from u to v in S_{G} of length at most t. A minimum-edge t-spanner of a graph G, S_{G}^{\prime}, is the t-spanner of G with the fewest edges. For general graphs and for $t=2$, the problem of determining for a given integer s, whether $\left|E\left(S_{G}^{\prime}\right)\right| \leq s$ is NP-Complete [2]. Peleg and Ullman [3], give a method for constructing a 3 -spanner of the n-vertex Hypercube with fewer than $7 n$ edges. In this paper we give an improved construction giving a 3 -spanner of the n-vertex Hypercube with fewer than $4 n$ edges and we present a lower bound of $\frac{3 n}{2}-o(1)$ on the size of the optimal Hypercube 3 -spanner.

Key words: Hypercube, Spanner, Cartesian Product, Dominating Set.

1 Introduction

A t-spanner of a graph $G=(V, E)$, is a sub-graph $S_{G}=\left(V, E^{\prime}\right)$, such that $E^{\prime} \subseteq E$ and for every edge $(u, v) \in E$, there is a path from u to v in S_{G} of length at most t.

Spanners were introduced in [3] and have been studied in many papers. They have applications in communication networks, distributed computing, robotics, computational geometry and a host of other computing related topics. We refer to the parameter t as the dilation of the spanner.

A minimum-edge t-spanner S_{G}^{\prime}, of a graph G, is the t-spanner with the fewest edges. For general undirected graphs, and $t=2$, the problem of determining
for a given integer s, whether $\left|E^{\prime}\left(S_{G}^{\prime}\right)\right| \leq s$ is NP-Complete [2]. Kortsarz and Peleg [1] have an approximation algorithm for constructing sparse 2-spanners of general undirected graphs with an approximation ratio of $O(\log (|E| /|V|)$.

For Hypercubes, the minimum dilation of a spanner is 3 since a Hypercube is a bipartite graph. Peleg and Ullman [3], give a method for constructing a 3 -spanner of the n-vertex Hypercube with fewer than $7 n$ edges. The only known lower bound on the size of the optimal Hypercube 3 -spanner is $n-1$ (since S_{G}^{\prime} is a connected spanning subgraph of G). In this paper we show that a more careful analysis of the Peleg-Ullman result [3] for Hypercubes of specific dimensions gives a 3 -spanner with fewer than $3 n$ edges. By exploiting this result and using a slightly different construction, we are able to show a general upper bound for this problem of $4 n$. Finally a general lower bound of $\frac{3 n}{2}-o(1)$ is proved on the size of the optimal Hypercube 3 -spanner.

In the following section we remind the reader of a few well known graphtheoretic properties and present the Lemmas that we will use to construct a sparse 3 -spanner. Section 3 gives the upper bound and Section 4 describes our lower bound result. In the final section we present our conclusions and comment on the further improvement of these bounds.

2 Preliminaries

The Hypercube H_{d}, is a graph with $n=2^{d}$ vertices. If we label all the vertices with the binary representations of the numbers $0, \ldots, 2^{d}-1$, then two vertices are connected by an edge if and only if their labels differ in precisely one bit position (if the labels differ in bit position i then that edge is said to belong to the $i^{\text {th }}$ dimension). Each label has precisely d bits. The Hypercube H_{d} can be represented as a Cartesian product of two smaller Hypercubes. If $H_{d}=H_{p} \times H_{q}$, then $d=p+q$ and H_{d} can be partitioned into 2^{q} (vertex disjoint) copies of H_{p} and 2^{p} copies of H_{q} so that each $v \in V\left(H_{d}\right)$ belongs to exactly one copy of H_{p} and one copy of H_{q}.

A dominating set of a graph $G=(V, E)$, is a set $U \subseteq V$, such that for every vertex $v \in V, U$ contains either v itself or some neighbour of v.

Throughout the remainder of this paper we use the notation $D S_{d}$ to represent a dominating set of H_{d}. We also use S_{d} to denote a 3 -spanner of H_{d}.

Lemma 1 and Lemma 2 are recalled from [3] and are based on standard results from coding theory enabling us to calculate small dominating sets for Hypercubes using Hamming Codes.

Lemma 1 For every positive integer k, the Hypercube H_{d}, where $d=2^{k}-1$, has a minimum dominating set of size exactly $\frac{2^{d}}{d+1}$.

Lemma 2 For every $d \geq 1$, the Hypercube H_{d} has a dominating set of size at most 2^{d-r}, where r is the largest integer such that $2^{r}-1 \leq d$.

3 Constructing Sparse Hypercube 3-Spanners

A corollary of the result in [3] is that for Hypercubes of specific dimensions, we are able to construct a sparse 3 -spanner with fewer than $3 n$ edges. The bound in Theorem 5 is mainly due to exploiting this fact. By using another slightly different construction, we are able to prove the general upper bound of $4 n$. The method described in [3], considers H_{d} as the Cartesian product of two smaller Hypercubes, H_{p} and H_{q} and adds to the spanner every edge of the forms:

Type (1) : $\left\{(x, y),\left(x, y^{\prime}\right)\right\} \mid\left(y^{\prime} \in D S_{q}\right.$ and $\left.\left\{y, y^{\prime}\right\} \in E\left(H_{q}\right)\right)$
Type (2) : $\left\{(x, y),\left(x^{\prime}, y\right)\right\} \mid\left(x^{\prime} \in D S_{p}\right.$ and $\left.\left\{x, x^{\prime}\right\} \in E\left(H_{p}\right)\right)$
Type (3) : $\left\{(x, y),\left(x, y^{\prime}\right)\right\} \mid\left(x \in D S_{p}\right.$ and $\left.\left\{y, y^{\prime}\right\} \in E\left(H_{q}\right)\right)$
Type (4) : $\left\{(x, y),\left(x^{\prime}, y\right)\right\} \mid\left(y \in D S_{q}\right.$ and $\left.\left\{x, x^{\prime}\right\} \in E\left(H_{p}\right)\right)$
where for each $v \in V\left(H_{d}\right)$, if i and j are the labels of v in H_{p} and H_{q}, then the concatenation (i, j) labels v in H_{d}. These edges form a 3 -spanner of the Hypercube H_{d}. In fact, all other edges of H_{d} are of the forms:

Type (5) : $\left\{(x, y),\left(x, y^{\prime}\right)\right\} \mid\left(x \notin D S_{p}\right.$ and $y, y^{\prime} \notin D S_{q}$ and $\left.\left\{y, y^{\prime}\right\} \in E\left(H_{q}\right)\right)$
Type (6) : $\left\{(x, y),\left(x^{\prime}, y\right)\right\} \mid\left(y \notin D S_{q}\right.$ and $x, x^{\prime} \notin D S_{p}$ and $\left.\left\{x, x^{\prime}\right\} \in E\left(H_{p}\right)\right)$
Let $\left\{(x, y),\left(x, y^{\prime}\right)\right\}$ be an edge of Type (5) (the argument for edges of Type (6) is analogous). Notice that vertex x is not a member of a dominating set in any copy of H_{p} or else the edge $\left\{(x, y),\left(x, y^{\prime}\right)\right\}$ would be of Type (3) and have already been added to the spanner. Vertex $x \in V\left(H_{p}\right)$ must be dominated by a vertex $\bar{x} \in V\left(H_{p}\right)$ and now edges $\left\{(\bar{x}, y),\left(\bar{x}, y^{\prime}\right)\right\},\{(x, y),(\bar{x}, y)\}$ and $\left\{\left(x, y^{\prime}\right),\left(\bar{x}, y^{\prime}\right)\right\}$ all are in the spanner because they are of Type (3), (2) and (2) respectively. We therefore have a path of length 3 for every edge not already in the spanner.

If p and q are chosen as close to each other as possible, this construction gives a general upper bound of $7 n$ edges in the 3 -spanner for all values of d (see [3]).

However, for specific values of d, we have the following Lemma.
Lemma 3 For every integer k, the Hypercube H_{t}, where $t=2^{k}-2$, has a 3 -spanner of size at most $\left(3-\frac{4}{t+2}\right) 2^{t}$.

PROOF. The Hypercube H_{t}, can be considered as the Cartesian product $H_{r} \times H_{r}$, where $r=\frac{t}{2}$. By Lemma 1, each copy of H_{r} has a minimum dominating set of size $\frac{2^{r}}{r+1}$. A 3 -spanner in H_{t} is built following the construction described above.

Counting precisely the number of edges added to construct the spanner, we have:

Type (1) : $\frac{r 2^{r}}{r+1}\left(2^{r}-\frac{2^{r}}{r+1}\right)$
Type (2) : $\frac{r 2^{r}}{r+1}\left(2^{r}-\frac{2^{r}}{r+1}\right)$
Type (3) : $\frac{r 2^{r} 2^{r-1}}{r+1}$
Type (4) : $\frac{r 2^{r} 2^{r-1}}{r+1}$
If $\left|E\left(S_{t}\right)\right|$ is the number of edges in our spanner, we have:

$$
\begin{aligned}
\left|E\left(S_{t}\right)\right| & \leq \frac{r 2^{r}}{r+1}\left(2^{r}-\frac{2^{r}}{r+1}\right)+\frac{r 2^{r}}{r+1}\left(2^{r}-\frac{2^{r}}{r+1}\right)+\frac{r 2^{r} 2^{r-1}}{r+1}+\frac{r 2^{r} 2^{r-1}}{r+1} \\
& \leq\left(3-\frac{4}{t+2}\right) 2^{t}
\end{aligned}
$$

Our main result is based on exploiting the bound proved in Lemma 3. For every d, rather than choosing the values of p and q close together, we fix p close to the value of $2^{k}-2$ for some k and choose q consequently. Then we

- Build a sparse 3 -spanner in each copy of H_{p}
- For every vertex that is a member of the dominating set for H_{p}, (based on the construction of the 3 -spanner in H_{p}), add a full copy of H_{q}.

These edges also form a 3-spanner of the Hypercube H_{d}. Building a spanner in each copy of H_{p} ensures that each edge in each copy is either in the spanner for that copy of H_{p} or there is a path of length three contained entirely within that copy of H_{p} for every non-present edge. Consider an edge $\left\{(x, y),\left(x, y^{\prime}\right)\right\}$, of a copy of H_{q}, that has not been added so far. Since the 3 -spanner for each copy of H_{p} is built using the construction in [3], every edge connected to every member of the dominating set for H_{p} is present in the spanner. Vertex x is
then dominated by a vertex \bar{x} in H_{p}, hence both edges $\{(x, y),(\bar{x}, y)\}$ and $\left\{\left(x, y^{\prime}\right),\left(\bar{x}, y^{\prime}\right)\right\}$ belong to the 3 -spanner. The edge $\left\{(\bar{x}, y),\left(\bar{x}, y^{\prime}\right)\right\}$ is also in the spanner as it belongs to one of the full copies of H_{q}. We therefore have a path of length 3 for all edges that are not already in the spanner.

In order to prove our main result, we need to establish the following Lemma.
Lemma 4 The Hypercube H_{p}, where $p=2^{k}-1$ for some integer value of k, has a 3-spanner of size at most 3×2^{p}.

PROOF. The Hypercube H_{p}, can be considered as the Cartesian product of H_{t} and H_{1}, where $t=2^{k}-2$. From Lemma 3, each copy of H_{t} has a 3 -spanner of size at most $\left(3-\frac{4}{t+2}\right) 2^{t}$. Constructing a 3 -spanner in H_{t} using the method described in Lemma 3 defines the dominating set for H_{t} which is of size at most $\frac{2^{t+1}}{t+2}$. There are precisely 2 copies of H_{t} in H_{p}. This gives a dominating set in H_{p} of size at most $\frac{2^{p+1}}{p+1}$. We construct this spanner in each copy of H_{t} which gives a total of $\left(3-\frac{4}{t+2}\right) 2^{p}$ edges added so far. We then add a copy of H_{1} for each of the members of the dominating set in H_{t}.

Again, denoting the number of edges in the spanner by $\left|E\left(S_{p}\right)\right|$, we have:

$$
\begin{aligned}
\left|E\left(S_{p}\right)\right| & \leq\left|E\left(S_{t}\right)\right| \times 2+\left|D S_{t}\right| \\
& \leq 2\left(3-\frac{4}{t+2}\right) 2^{t}+\frac{2^{t+1}}{t+2} \\
& \leq 3 \times 2^{p}
\end{aligned}
$$

We are now ready to prove our main result. We construct our spanner in the following way. We consider the Hypercube H_{d}, for $d>1$, as the Cartesian product of two smaller Hypercubes, H_{p} and H_{q}. We chose the value of k such that $2^{k}-1<d \leq 2^{k+1}-1$ and fix $p=2^{k}-1$. We construct a 3 -spanner in each copy of $H_{2^{k}-1}$ and connect these in such a way as to ensure a 3 -spanner for the Hypercube H_{d}.

By Lemma 4, each copy of H_{p} has a 3 -spanner of size $\leq 3 \times 2^{p}$. There are precisely 2^{q} copies of H_{p}, giving a total of 3×2^{d} edges. For each member of the dominating set in H_{p} that is used to construct the 3-spanner in that copy, we add a copy of H_{q} and this completes the 3 -spanner in H_{d}.

Based on the construction of the 3-spanners in each copy of H_{p}, each copy of H_{p} in H_{d} has a dominating set of size of at most $\frac{2^{p+1}}{p+1}$.

Theorem 5 For every integer $d \geq 1$, the size of a minimum-edge 3-spanner for H_{d} is at most 4×2^{d}.

PROOF. If $\left|E\left(S_{d}\right)\right|$ is the number of edges in our spanner, then we have

$$
\begin{aligned}
\left|E\left(S_{d}\right)\right| & \leq\left|E\left(S_{p}\right)\right| \times 2^{q}+\left|D S_{p}\right| \times\left|E\left(H_{q}\right)\right| \\
& \leq\left(3 \times 2^{p}\right) 2^{q}+\frac{2^{p+1} q 2^{q-1}}{p+1} \\
& \leq 3 \times 2^{d}+\frac{q 2^{d}}{p+1} .
\end{aligned}
$$

As p is fixed, q increases linearly with d and so we have a bound on the size of q, namely $1 \leq q \leq 2^{k}$. In terms of p this is $1 \leq q \leq p+1$, which gives:

$$
\left|E\left(S_{d}\right)\right| \leq 4 \times 2^{d}
$$

4 Lower Bounding the Size of a Sparse 3-Spanner

A strong constraint on our construction is the use of dominating sets. It is not known whether, for all d, H_{d} has a dominating set of size $\frac{2^{d}}{d+1}$. A variation on our construction, would in this case give an upper bound of $3 n$ on the size of a 3 -spanner for all d. This remark raises the natural question about the existence of much sparser 3-spanners in Hypercubes. Although we are not able to give a conclusive answer to this question the following result gives the first non-trivial lower bound.

Theorem 6 A 3-spanner of the Hypercube H_{d} has at least $\frac{3 d 2^{d}}{2(d+3)}$ edges.

PROOF. Let S_{d} be a 3 -spanner of the d-dimensional Hypercube. For any path of length 3 in S_{d} spanning an edge not in S_{d} with edges e, f, e^{\prime} it must be that e and e^{\prime} are in the same dimension, say j. We then say e and e^{\prime} are " i-useful" where i is the dimension of f, and we say the edge f is " j-spoiled". Note that f cannot be j-useful because, for that, either e or e^{\prime} would have to be missing from S_{d}.

For each edge missing from S_{d} in dimension i there is a 3-path as above, in which the two terminal edges of the 3 -path are i-useful. Note that these i -
useful edges are distinct from any other i-useful edges that are part of the 3 -path for any other edge missing from S_{d} in dimension i. So, letting $u(i)$ denote the number of i-useful edges in S_{d}, we have

$$
\left|E\left(H_{d}\right)\right|-\left|E\left(S_{d}\right)\right|=\frac{1}{2} \sum_{i=1}^{d} u(i)
$$

Since a j-spoiled edge can only be adjacent to two edges in dimension j, there can only be one pair of edges which cause it to be j-spoiled. Each pair of useful edges spoil one edge, so if $s(j)$ is the number of j-spoiled edges, we have

$$
\sum_{j=1}^{d} s(j)=\frac{1}{2} \sum_{i=1}^{d} u(i)
$$

Since no edge is both i-spoiled and i-useful, we also have

$$
u(j)+s(j) \leq\left|E\left(S_{d}\right)\right|
$$

Summing this over $1 \leq j \leq d$ and using the previous equations, we get

$$
\left|E\left(H_{d}\right)\right|-\left|E\left(S_{d}\right)\right| \leq \frac{d}{3}\left|E\left(S_{d}\right)\right|
$$

from which the statement follows since $\left|E\left(H_{d}\right)\right|=d 2^{d-1}$.

5 Conclusions

In this paper we considered the problem of finding sparse 3-spanners for Hy percubes. We have shown that for all values of $d \geq 1$, the Hypercube H_{d} has a 3 -spanner of size at most 4×2^{d}. We have also shown that the optimal 3 -spanner for H_{d} has at least $\frac{3 d 2^{d}}{2(d+3)}$ edges. A strong constraint on the construction we use in order to prove our upper bound is the use of dominating sets. Much sparser 3-spanners may exist, but we feel different constructions are needed.

Acknowledgements

The authors gratefully acknowledge the assistance of N.C. Wormald for the proof of the lower bound in Section 4.

References

[1] G. Kortsarz and D. Peleg. Generating Sparse 2-Spanners. Journal of Algorithms, 17(2):222-236, 1994.
[2] D. Peleg and A. A. Scha̋ffer. Graph Spanners. Journal of Graph Theory, 13(1):99116, 1989.
[3] D. Peleg and J. D. Ullman. An Optimal Synchroniser for the Hypercube. SIAM Journal on Computing, 18(4):740-747, 1989.

