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Abstract

A t-spanner of a graph G = (V,E), is a sub-graph SG = (V,E′), such that E′ ⊆ E
and for every edge (u, v) ∈ E, there is a path from u to v in SG of length at most t.
A minimum-edge t-spanner of a graph G, S′G, is the t-spanner of G with the fewest
edges. For general graphs and for t=2, the problem of determining for a given integer
s, whether |E(S′G)| ≤ s is NP-Complete [2]. Peleg and Ullman [3], give a method
for constructing a 3-spanner of the n-vertex Hypercube with fewer than 7n edges.
In this paper we give an improved construction giving a 3-spanner of the n-vertex
Hypercube with fewer than 4n edges and we present a lower bound of 3n

2 − o(1) on
the size of the optimal Hypercube 3-spanner.
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1 Introduction

A t-spanner of a graph G = (V,E), is a sub-graph SG = (V,E ′), such that
E ′ ⊆ E and for every edge (u, v) ∈ E, there is a path from u to v in SG of
length at most t.

Spanners were introduced in [3] and have been studied in many papers. They
have applications in communication networks, distributed computing, robotics,
computational geometry and a host of other computing related topics. We refer
to the parameter t as the dilation of the spanner.

A minimum-edge t-spanner S ′G, of a graph G, is the t-spanner with the fewest
edges. For general undirected graphs, and t=2, the problem of determining
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for a given integer s, whether |E ′(S ′G)| ≤ s is NP-Complete [2]. Kortsarz and
Peleg [1] have an approximation algorithm for constructing sparse 2-spanners
of general undirected graphs with an approximation ratio of O(log(|E|/|V |).

For Hypercubes, the minimum dilation of a spanner is 3 since a Hypercube
is a bipartite graph. Peleg and Ullman [3], give a method for constructing
a 3-spanner of the n-vertex Hypercube with fewer than 7n edges. The only
known lower bound on the size of the optimal Hypercube 3-spanner is n − 1
(since S ′G is a connected spanning subgraph of G). In this paper we show
that a more careful analysis of the Peleg-Ullman result [3] for Hypercubes of
specific dimensions gives a 3-spanner with fewer than 3n edges. By exploiting
this result and using a slightly different construction, we are able to show a
general upper bound for this problem of 4n. Finally a general lower bound of
3n
2
− o(1) is proved on the size of the optimal Hypercube 3-spanner.

In the following section we remind the reader of a few well known graph-
theoretic properties and present the Lemmas that we will use to construct
a sparse 3-spanner. Section 3 gives the upper bound and Section 4 describes
our lower bound result. In the final section we present our conclusions and
comment on the further improvement of these bounds.

2 Preliminaries

The Hypercube Hd, is a graph with n = 2d vertices. If we label all the vertices
with the binary representations of the numbers 0, . . . , 2d−1, then two vertices
are connected by an edge if and only if their labels differ in precisely one
bit position (if the labels differ in bit position i then that edge is said to
belong to the ith dimension). Each label has precisely d bits. The Hypercube
Hd can be represented as a Cartesian product of two smaller Hypercubes. If
Hd = Hp × Hq, then d = p + q and Hd can be partitioned into 2q (vertex
disjoint) copies of Hp and 2p copies of Hq so that each v ∈ V (Hd) belongs to
exactly one copy of Hp and one copy of Hq.

A dominating set of a graph G = (V,E), is a set U ⊆ V , such that for every
vertex v ∈ V , U contains either v itself or some neighbour of v.

Throughout the remainder of this paper we use the notation DSd to represent
a dominating set of Hd. We also use Sd to denote a 3-spanner of Hd.

Lemma 1 and Lemma 2 are recalled from [3] and are based on standard re-
sults from coding theory enabling us to calculate small dominating sets for
Hypercubes using Hamming Codes.
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Lemma 1 For every positive integer k, the Hypercube Hd, where d = 2k − 1,
has a minimum dominating set of size exactly 2d

d+1
.

Lemma 2 For every d ≥ 1, the Hypercube Hd has a dominating set of size at
most 2d−r, where r is the largest integer such that 2r − 1 ≤ d.

3 Constructing Sparse Hypercube 3-Spanners

A corollary of the result in [3] is that for Hypercubes of specific dimensions,
we are able to construct a sparse 3-spanner with fewer than 3n edges. The
bound in Theorem 5 is mainly due to exploiting this fact. By using another
slightly different construction, we are able to prove the general upper bound
of 4n. The method described in [3], considers Hd as the Cartesian product of
two smaller Hypercubes, Hp and Hq and adds to the spanner every edge of
the forms:

Type (1) : {(x, y), (x, y′)} | (y′ ∈ DSq and {y, y′} ∈ E(Hq))

Type (2) : {(x, y), (x′, y)} | (x′ ∈ DSp and {x, x′} ∈ E(Hp))

Type (3) : {(x, y), (x, y′)} | (x ∈ DSp and {y, y′} ∈ E(Hq))

Type (4) : {(x, y), (x′, y)} | (y ∈ DSq and {x, x′} ∈ E(Hp))

where for each v ∈ V (Hd), if i and j are the labels of v in Hp and Hq, then
the concatenation (i, j) labels v in Hd. These edges form a 3-spanner of the
Hypercube Hd. In fact, all other edges of Hd are of the forms:

Type (5) : {(x, y), (x, y′)} | (x 6∈ DSp and y, y′ 6∈ DSq and {y, y′} ∈ E(Hq))

Type (6) : {(x, y), (x′, y)} | (y 6∈ DSq and x, x′ 6∈ DSp and {x, x′} ∈ E(Hp))

Let {(x, y), (x, y′)} be an edge of Type (5) (the argument for edges of Type
(6) is analogous). Notice that vertex x is not a member of a dominating set in
any copy of Hp or else the edge {(x, y), (x, y′)} would be of Type (3) and have
already been added to the spanner. Vertex x ∈ V (Hp) must be dominated
by a vertex x̄ ∈ V (Hp) and now edges {(x̄, y), (x̄, y′)}, {(x, y), (x̄, y)} and
{(x, y′), (x̄, y′)} all are in the spanner because they are of Type (3), (2) and
(2) respectively. We therefore have a path of length 3 for every edge not already
in the spanner.

If p and q are chosen as close to each other as possible, this construction gives
a general upper bound of 7n edges in the 3-spanner for all values of d (see [3]).
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However, for specific values of d, we have the following Lemma.

Lemma 3 For every integer k, the Hypercube Ht, where t = 2k − 2, has a
3-spanner of size at most (3− 4

t+2
)2t.

PROOF. The Hypercube Ht, can be considered as the Cartesian product
Hr × Hr, where r = t

2
. By Lemma 1, each copy of Hr has a minimum dom-

inating set of size 2r

r+1
. A 3-spanner in Ht is built following the construction

described above.

Counting precisely the number of edges added to construct the spanner, we
have:

Type (1) : r2r

r+1
(2r − 2r

r+1
)

Type (2) : r2r

r+1
(2r − 2r

r+1
)

Type (3) : r2r2r−1

r+1

Type (4) : r2r2r−1

r+1

If |E(St)| is the number of edges in our spanner, we have:

|E(St)| ≤
r2r

r + 1

(
2r − 2r

r + 1

)
+

r2r

r + 1

(
2r − 2r

r + 1

)
+

r2r2r−1

r + 1
+

r2r2r−1

r + 1

≤
(

3− 4

t + 2

)
2t.

2

Our main result is based on exploiting the bound proved in Lemma 3. For
every d, rather than choosing the values of p and q close together, we fix p
close to the value of 2k − 2 for some k and choose q consequently. Then we

• Build a sparse 3-spanner in each copy of Hp

• For every vertex that is a member of the dominating set for Hp, (based on
the construction of the 3-spanner in Hp), add a full copy of Hq.

These edges also form a 3-spanner of the Hypercube Hd. Building a spanner
in each copy of Hp ensures that each edge in each copy is either in the spanner
for that copy of Hp or there is a path of length three contained entirely within
that copy of Hp for every non-present edge. Consider an edge {(x, y), (x, y′)},
of a copy of Hq, that has not been added so far. Since the 3-spanner for each
copy of Hp is built using the construction in [3], every edge connected to every
member of the dominating set for Hp is present in the spanner. Vertex x is
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then dominated by a vertex x̄ in Hp, hence both edges {(x, y), (x̄, y)} and
{(x, y′), (x̄, y′)} belong to the 3-spanner. The edge {(x̄, y), (x̄, y′)} is also in
the spanner as it belongs to one of the full copies of Hq. We therefore have a
path of length 3 for all edges that are not already in the spanner.

In order to prove our main result, we need to establish the following Lemma.

Lemma 4 The Hypercube Hp, where p = 2k − 1 for some integer value of k,
has a 3-spanner of size at most 3× 2p.

PROOF. The Hypercube Hp, can be considered as the Cartesian product of
Ht and H1, where t = 2k−2. From Lemma 3, each copy of Ht has a 3-spanner
of size at most (3− 4

t+2
)2t. Constructing a 3-spanner in Ht using the method

described in Lemma 3 defines the dominating set for Ht which is of size at
most 2t+1

t+2
. There are precisely 2 copies of Ht in Hp. This gives a dominating

set in Hp of size at most 2p+1

p+1
. We construct this spanner in each copy of Ht

which gives a total of (3 − 4
t+2

)2p edges added so far. We then add a copy of
H1 for each of the members of the dominating set in Ht.

Again, denoting the number of edges in the spanner by |E(Sp)|, we have:

|E(Sp)| ≤ |E(St)| × 2 + |DSt|

≤ 2
(

3− 4

t + 2

)
2t +

2t+1

t + 2

≤ 3× 2p.

2

We are now ready to prove our main result. We construct our spanner in the
following way. We consider the Hypercube Hd, for d > 1, as the Cartesian
product of two smaller Hypercubes, Hp and Hq. We chose the value of k such
that 2k − 1 < d ≤ 2k+1 − 1 and fix p = 2k − 1. We construct a 3-spanner in
each copy of H2k−1 and connect these in such a way as to ensure a 3-spanner
for the Hypercube Hd.

By Lemma 4, each copy of Hp has a 3-spanner of size ≤ 3 × 2p. There are
precisely 2q copies of Hp, giving a total of 3 × 2d edges. For each member of
the dominating set in Hp that is used to construct the 3-spanner in that copy,
we add a copy of Hq and this completes the 3-spanner in Hd.

Based on the construction of the 3-spanners in each copy of Hp, each copy of

Hp in Hd has a dominating set of size of at most 2p+1

p+1
.
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Theorem 5 For every integer d ≥ 1, the size of a minimum-edge 3-spanner
for Hd is at most 4× 2d.

PROOF. If |E(Sd)| is the number of edges in our spanner, then we have

|E(Sd)| ≤ |E(Sp)| × 2q + |DSp| × |E(Hq)|

≤ (3× 2p)2q +
2p+1q2q−1

p + 1

≤ 3× 2d +
q2d

p + 1
.

As p is fixed, q increases linearly with d and so we have a bound on the size
of q, namely 1 ≤ q ≤ 2k. In terms of p this is 1 ≤ q ≤ p + 1, which gives:

|E(Sd)| ≤ 4× 2d.

2

4 Lower Bounding the Size of a Sparse 3-Spanner

A strong constraint on our construction is the use of dominating sets. It is
not known whether, for all d, Hd has a dominating set of size 2d

d+1
. A variation

on our construction, would in this case give an upper bound of 3n on the
size of a 3-spanner for all d. This remark raises the natural question about
the existence of much sparser 3-spanners in Hypercubes. Although we are not
able to give a conclusive answer to this question the following result gives the
first non-trivial lower bound.

Theorem 6 A 3-spanner of the Hypercube Hd has at least 3d2d

2(d+3)
edges.

PROOF. Let Sd be a 3-spanner of the d-dimensional Hypercube. For any
path of length 3 in Sd spanning an edge not in Sd with edges e, f , e′ it must
be that e and e′ are in the same dimension, say j. We then say e and e′ are
“i-useful” where i is the dimension of f , and we say the edge f is “j-spoiled”.
Note that f cannot be j-useful because, for that, either e or e′ would have to
be missing from Sd.

For each edge missing from Sd in dimension i there is a 3-path as above, in
which the two terminal edges of the 3-path are i-useful. Note that these i-
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useful edges are distinct from any other i-useful edges that are part of the
3-path for any other edge missing from Sd in dimension i. So, letting u(i)
denote the number of i-useful edges in Sd, we have

|E(Hd)| − |E(Sd)| =
1

2

d∑
i=1

u(i).

Since a j-spoiled edge can only be adjacent to two edges in dimension j, there
can only be one pair of edges which cause it to be j-spoiled. Each pair of useful
edges spoil one edge, so if s(j) is the number of j-spoiled edges, we have

d∑
j=1

s(j) =
1

2

d∑
i=1

u(i).

Since no edge is both i-spoiled and i-useful, we also have

u(j) + s(j) ≤ |E(Sd)|.

Summing this over 1 ≤ j ≤ d and using the previous equations, we get

|E(Hd)| − |E(Sd)| ≤
d

3
|E(Sd)|

from which the statement follows since |E(Hd)| = d2d−1.

2

5 Conclusions

In this paper we considered the problem of finding sparse 3-spanners for Hy-
percubes. We have shown that for all values of d ≥ 1, the Hypercube Hd

has a 3-spanner of size at most 4× 2d. We have also shown that the optimal
3-spanner for Hd has at least 3d2d

2(d+3)
edges. A strong constraint on the con-

struction we use in order to prove our upper bound is the use of dominating
sets. Much sparser 3-spanners may exist, but we feel different constructions
are needed.
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