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Abstract: This work proposes a Bayesian updating approach, called parallel Bayesian optimization 9 
and quadrature (PBOQ). It is rooted in Bayesian updating with structural reliability methods (BUS) 10 
and offers a coherent Bayesian approach for the BUS analysis by assuming Gaussian process priors. 11 
The first step of the method, i.e., parallel Bayesian optimization, effectively explores a constant 𝑐𝑐 in 12 
BUS by a novel parallel infill sampling strategy. The second step (parallel Bayesian quadrature) then 13 
infers the posterior distribution by another parallel infill sampling strategy using subset simulation. 14 
The proposed approach enables to make the fullest use of prior knowledge and parallel computing, 15 
resulting in a substantial reduction of the computational burden of model updating. Four numerical 16 
examples with varying complexity are investigated for demonstrating the proposed method against 17 
several existing methods. The results show the potential benefits by advocating a coherent Bayesian 18 
fashion to the BUS analysis.   19 
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1. Introduction 23 

In a number of engineering fields, numerical models are a popular tool for assessing the response 24 
of a physical system. However, there are inevitable discrepancies between model predictions and the 25 
actual behavior of the system. These discrepancies are mainly caused by a multitude of uncertainties, 26 
such as the modeling errors, measurement errors, and unknown or varying model inputs, that must 27 
be appropriately considered in the models. Bayesian model updating provides a robust and coherent 28 
probabilistic framework for calibrating the current model and reducing epistemic uncertainty on the 29 
inputs, given new system observations [1,2].  30 

In Bayesian model updating, uncertainties are represnted by a prior distribution over the model 31 
inputs, and then updated to a posterior distribution using the likelihood function that quantifies the 32 
discrepancy between the model predictions and observations. In this context, the computation of the 33 
posterior distribution is a major task of Bayesian model updating, and the Markov chain Monte Carlo 34 
(MCMC) methods have constituted a widely used class of sampling methods to estimate the posterior 35 
[3-5]. In particular, to avoid the convergence issue in MCMC, Beck and Au [4] proposed the adaptive 36 
Metropolis-Hasting (AMH) algorithm, that gradually pushes samples from the prior to posterior by 37 
means of a sequence of the intermediate distributions which converge to the posterior. Subsequently, 38 
Ching and Chen [6] proposed the transitional Markov chain Monte Carlo (TMCMC) algorithm, which 39 
adopts a resampling scheme to improve the efficiency of the AMH algorithm. TMCMC has been used 40 
in numerous engineering applications attributed its capability in inferring large number of inputs at 41 
one time (i.e., up to 24) [7] and sampling from complex-shaped distributions [8,9].  42 

More recently, another novel class of the sampling methods has been introduced by Straub and 43 
Papaioannou [10], called Bayesian updating with structural reliability methods (BUS). The principal 44 
idea behind BUS is reformulating the Bayesian updating problem into a rare event estimation; hence, 45 
it explores the possibility of using reliability analysis methods to draw samples from the posterior. In 46 
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particular, the subset simulation techniques [11,12] have constituted a widely used reliability analysis 47 
method enabling efficient estimation of the probability of the rare event (i.e., failure probability), and 48 
have been incorporated into BUS [13,14]. The combination of BUS with subset simulation has shown 49 
great efficiency in estimating the posterior distribution; however, it still requires a significant number 50 
of likelihood evaluations which can be infeasible if the likelihood function involves time-consuming 51 
models, such as finite element (FE) models. 52 

On the contrary, surrogate model-based methods have become more popular for estimating the 53 
failure probability. These methods aim to substitute the expensive-to-evaluate performance function 54 
for an inexpensive-to-evaluate surrogate using a limited number of observations of the performance 55 
function. Typical surrogate models include, e.g., response surfaces [15], polynomial chaos expansions 56 
[16,17], artificial neural networks [18], and Gaussian process regression (GPR, also known as Kriging) 57 
[19,20]. In order to avoid non-informative observations, there has been growing attention to the infill 58 
sampling criteria that effectively suggest more informative points which contribute to improving the 59 
accuracy of the surrogate model. In this context, the Kriging model is of particular interest due to its 60 
capability of quantifying uncertainty of the prediction, which can be used to define an infill sampling 61 
criterion and assess the accuracy of the surrogate [20]. Wang and Shafieezadeh [21] recently proposed 62 
a method, termed Bayesian updating using adaptive Kriging (BUAK), within the BUS framework, in 63 
which the so-called U learning function [20] with the Kriging model is employed as the infill sampling 64 
criterion. Moreover, the similar infill sampling criterion is adopted in Kitahara et al. [22] with subset 65 
simulation and in Song et al. [23] with sequential importance sampling.  66 

Another challenge in BUS is the choice of a constant 𝑐𝑐 in the context of the rejection principle. To 67 
guarantee the theoretical correctness of the analogy, on the one hand, its value must be less than the 68 
reciprocal of the maximum value of the likelihood function, which is generally unknown a priori. On 69 
the other hand, selecting its value conservatively small decreases the efficiency of the method. While 70 
its optimal choice can be achieved by solving an optimization problem that maximizes the likelihood 71 
function, it could be intractable if the likelihood function involves computationally expensive models. 72 
Alternatively, adaptive approaches have been also developed for the combination of BUS with subset 73 
simulation, where the constant 𝑐𝑐 is adaptively learnt during the subset simulation procedure [13,14]. 74 
However, as already mentioned, these approaches can still render high computational burden. Rossat 75 
et al. [24] hence recently proposed to use the polynomial chaos Kriging (PCK) as the surrogate of the 76 
likelihood function within the adaptive approach combining BUS with subset simulation.  Moreover, 77 
Liu et al. [25] developed a two-step approach, where the first step finds the constant 𝑐𝑐 by constructing 78 
the Kriging surrogate of the likelihood function, whereas the second-step aims to sample the posterior 79 
distribution by constructing the Kriging surrogate of the performance function in BUS. 80 

In summary, BUS can be interpreted to comprise two different tasks, i.e., the optimization of the 81 
likelihood function to explore the constant 𝑐𝑐 and the quadrature of the failure probability to estimate 82 
the posterior distribution. So as to deal with these two tasks within a unified and efficient framework, 83 
this study proposes a novel method, termed two-step parallel Bayesian optimization and quadrature 84 
(PBOQ). Bayesian optimization [26] has been widely employed for the optimization of expensive-to-85 
evaluate objective functions by treating the discretization errors due to a limited number of function 86 
evaluations as uncertainty, which is quantified and reduced within a Bayesian framework. Bayesian 87 
quadrature (also known as probabilistic integration) [27] similarly quantifies and reduces uncertainty 88 
which prevents us from inferring the true integral value according to Bayes‘ theorem. In recent years, 89 
it has been intensively investigated also to the rare event estimation by the second author and his co-90 
workers [28,29]. 91 

The Bayesian optimization step starts to place a Gaussian process (GP) prior over the likelihood 92 
function, and then the prior is updated to a posterior over the likelihood function by observations of 93 
the likelihood function. The posterior, in turn, is employed to design an infill sampling criterion, and 94 
the expected improvement (EI) criterion [26] has been widely used in the field of global optimization. 95 
The EI criterion quantifies the expectation that any point in the search space will give a better solution 96 
than the current best solution within the maximization process. Hence, its convergence provides the 97 
maxima of the likelihood function, from which the constant 𝑐𝑐 can be obtained. It should be noted that 98 
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this step is similar to the first-step in Ref. [25], where the Kriging surrogate of the likelihood function 99 
is constructed by the EI criterion. However, this procedure is sequential in nature, hindering the use 100 
of ever-growing parallel computing facilities. To tackle the limitation, we propose a novel multi-point 101 
infill sampling criterion combining the 𝑘𝑘-means clustering with the EI criterion to enable identifying 102 
a batch of informative and diverse points at each iteration, and hence parallel distributed processing. 103 
After the constant 𝑐𝑐 is determined, the Bayesian quadrature step then similarly places a GP prior over 104 
the performance function in BUS, and then it is updated to a posterior over the performance function 105 
by observations of the performance function. This, in turn, arrives at a posterior distribution over the 106 
failure probability, which is not achieved in existing surrogate methods. The posterior over the failure 107 
probability leads to an infill sampling criterion that enables better uncertainty reduction on the failure 108 
probability estimation, compared to the U learning function used in Refs. [21-25], since the latter gives 109 
only an indirect measure of the uncertainty on the failure probability estimation. Specifically, we use 110 
a multi-point infill sampling criterion which combines the 𝑘𝑘-means clustering with the upper-bound 111 
posterior variance contribution (UPVC) learning function [28]. We further develop a novel numerical 112 
integrator for the above Bayesian quadrature process by subset simulation to assess very small failure 113 
probabilities without generating a tremendously large number of samples. In this way, the proposed 114 
method provides a coherent Bayesian approach to the BUS analysis and its implementation supports 115 
fully parallel distributed processing. 116 

The rest of this paper is organized as follows. In Section 2, we review the fundamental theory of 117 
Bayesian model updating and BUS. Section 3 outlines the details of the proposed Bayesian updating 118 
method: two-step parallel Bayesian optimization and quadrature (PBOQ). Then, the performance of 119 
the method is illustrated in Section 4 upon four numerical examples of increasing complexity. Finally, 120 
concluding remarks are presented in Section 5. 121 

2. Bayesian updating  122 

A key advantage of Bayesian model updating lies in its ability to combine the prior knowledge 123 
on the model with some new observations to yield a stochastic characterization of model inputs to be 124 
inferred.  125 

Let 𝒙𝒙 ∈ 𝒟𝒟𝒙𝒙 mean the model inputs of dimension 𝑝𝑝 and 𝒚𝒚 be 𝑚𝑚 newly available observations that 126 
are gathered in a vector. The prior belief on the inputs 𝒙𝒙 represented by a probability density function 127 
(PDF) is updated using the well-known Bayes’ theorem as [1]: 128 

𝑃𝑃(𝒙𝒙|𝒚𝒚) =
𝐿𝐿(𝒚𝒚|𝒙𝒙)𝑃𝑃(𝒙𝒙)

𝑐𝑐𝐸𝐸
 (1) 

where 𝑃𝑃(𝒙𝒙) denotes the prior distribution of 𝒙𝒙, reflecting one’s initial belief on 𝒙𝒙; 𝑃𝑃(𝒙𝒙|𝒚𝒚) indicates the 129 
posterior distribution which represents the posterior state of knowledge on 𝒙𝒙; 𝐿𝐿(𝒚𝒚|𝒙𝒙) is the likelihood 130 
function that is theoretically defined as the probability density of 𝒚𝒚 given 𝒙𝒙; 𝑐𝑐𝐸𝐸  refers to the so-called 131 
evidence that normalizes the posterior distribution.  132 

In order to link observations 𝒚𝒚 to model predictions 𝑀𝑀(𝒙𝒙), the deviation, 𝜺𝜺 = 𝒚𝒚 − 𝑀𝑀(𝒙𝒙), between 133 
them that is caused by modeling errors and measurement errors is modeled by the PDF 𝑓𝑓𝜺𝜺. This leads 134 
to the likelihood function formulated as: 135 

𝐿𝐿(𝒚𝒚|𝒙𝒙) = 𝑓𝑓𝜺𝜺�𝒚𝒚 − 𝑀𝑀(𝒙𝒙)� (2) 

While 𝑓𝑓𝜺𝜺 is typically assumed to be a multivariate Gaussian distribution with zero mean, it can be any 136 
other unbiased distribution. For 𝑚𝑚 independent observations, the likelihood function can be written 137 
as: 138 

𝐿𝐿(𝒚𝒚|𝒙𝒙) = �𝐿𝐿𝑖𝑖(𝑦𝑦𝒊𝒊|𝒙𝒙)
𝑚𝑚

𝑖𝑖=1

= �𝑓𝑓𝜀𝜀𝑖𝑖�𝑦𝑦𝒊𝒊 − 𝑀𝑀𝑖𝑖(𝒙𝒙)�
𝑚𝑚

𝑖𝑖=1

 (3) 

where 𝐿𝐿𝑖𝑖 means the likelihood function of the 𝑖𝑖th observation 𝑦𝑦𝒊𝒊; 𝑓𝑓𝜀𝜀𝑖𝑖  refers to the PDF of the deviation, 139 
𝜀𝜀𝑖𝑖, between 𝑦𝑦𝒊𝒊 and the corresponding model prediction 𝑀𝑀𝑖𝑖(𝒙𝒙). 140 
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Another key component in Eq. (1) is the evidence 𝑐𝑐𝐸𝐸 (also known as marginal likelihood), whose 141 
definition is expressed as: 142 

𝑐𝑐𝐸𝐸 = � 𝐿𝐿(𝒚𝒚|𝒙𝒙)𝑃𝑃(𝒙𝒙)𝑑𝑑𝒙𝒙
𝒟𝒟𝒙𝒙

 (4) 

The evidence 𝑐𝑐𝐸𝐸 is a measure of the plausibility of the assumed model class. In the context of Bayesian 143 
model class selection [30], it allows to evaluate the posterior plausibility of each model class to decide 144 
the most probable model. Hence, it is advantageous if 𝑐𝑐𝐸𝐸 can be estimated as a by-product of Bayesian 145 
updating methods. 146 

2.1. Bayesian updating with structural reliability methods (BUS) 147 

The main idea of BUS is based on the simple rejection principle, introducing an auxiliary random 148 
variable which is uniformly distributed, 𝜋𝜋 ∈ 𝒟𝒟𝜋𝜋 = [0, 1], to the input space 𝒟𝒟𝒙𝒙. The Bayesian updating 149 
problem in Eq. (1) is then regarded as a reliability analysis problem in the augmented space 𝒟𝒟𝒙𝒙 × 𝒟𝒟𝜋𝜋, 150 
where the failure domain 𝛺𝛺 and corresponding performance function 𝑔𝑔(𝒙𝒙,𝜋𝜋) are defined as: 151 

𝛺𝛺 = {[𝒙𝒙,𝜋𝜋] ∈ 𝒟𝒟𝒙𝒙 × 𝒟𝒟𝜋𝜋|𝑔𝑔(𝒙𝒙,𝜋𝜋) ≤ 0} (5) 

𝑔𝑔(𝒙𝒙,𝜋𝜋) = 𝜋𝜋 − 𝑐𝑐 ∙ 𝐿𝐿(𝒚𝒚|𝒙𝒙) (6) 

Where 𝑐𝑐 is a constant chosen such that 𝑐𝑐 ∙ 𝐿𝐿(𝒚𝒚|𝒙𝒙) ≤ 1 holds true for any 𝒙𝒙. In this context, the quantity 152 
𝑐𝑐 ∙ 𝐿𝐿(𝒚𝒚|𝒙𝒙) can be expressed as [14]: 153 

𝑐𝑐 ∙ 𝐿𝐿(𝒚𝒚|𝒙𝒙) = � 𝑑𝑑𝜋𝜋
0≤𝜋𝜋≤𝑐𝑐∙𝐿𝐿(𝒚𝒚|𝒙𝒙)

 (7) 

Consequently, Eq. (1) is written as: 154 

𝑃𝑃(𝒙𝒙|𝒚𝒚) = 𝑐𝑐𝐸𝐸−1𝑐𝑐−1 � 𝑃𝑃(𝒙𝒙)𝑑𝑑𝜋𝜋
0≤𝜋𝜋≤𝑐𝑐∙𝐿𝐿(𝒚𝒚|𝒙𝒙)

 (8) 

The integral in the right-hand side of Eq. (8) can be performed by sampling in the failure domain 𝛺𝛺 155 
according to the prior distribution 𝑃𝑃(𝒙𝒙). Hence, sampling from the posterior distribution is converted 156 
into sampling from the failure domain 𝛺𝛺. Moreover, the evidence in Eq. (4) can be expressed as: 157 

𝑐𝑐𝐸𝐸 = 𝑐𝑐−1 � � 𝑃𝑃(𝒙𝒙)𝑑𝑑𝜋𝜋
0≤𝜋𝜋≤𝑐𝑐∙𝐿𝐿(𝒚𝒚|𝒙𝒙)

𝑑𝑑𝒙𝒙
𝒟𝒟𝒙𝒙

= 𝑐𝑐−1𝑃𝑃𝑓𝑓  (9) 

where 𝑃𝑃𝑓𝑓 denotes the failure probability corresponding to the failure domain 𝛺𝛺.  158 
A key component in the BUS formulation is the constant 𝑐𝑐. As already mentioned, its reciprocal 159 

needs to be selected as close as possible to the maximum value of the likelihood function, while such 160 
value is generally not known a priori. The task to find the constant 𝑐𝑐 can be regarded as the following 161 
optimization problem: 162 

𝑐𝑐−1 = max
𝒙𝒙∈𝒟𝒟𝒙𝒙

𝐿𝐿(𝒚𝒚|𝒙𝒙) (10) 

where the likelihood function 𝐿𝐿(𝒚𝒚|𝒙𝒙) is treated as a black-box model. In general, global optimization 163 
algorithms, such as the genetic algorithm, need a large number of function evaluations to solve such 164 
black-box problem; and thus can be computationally intractable especially if each such evaluation is 165 
expensive. In order to alleviate the computational burden, a parallel Bayesian optimization approach 166 
is developed in the following section as the first step of the proposed PAOQ. 167 

After the constant 𝑐𝑐 is chosen, the remaining task is the quadrature of the integrals given in Eqs. 168 
(8) and (9). Analytical solutions to these integrals are unavailable for the performance function in BUS 169 
which is generally given as black-box. Thus, numerical approximation techniques are necessary, and 170 
subset simulation and surrogate model-based methods have been successfully utilized in this context. 171 
Existing methods, however, still suffers from there respective limitations as already discussed, which 172 
motivates us to develop a parallel Bayesian quadrature approach as the second step of the proposed 173 
PBOQ. 174 
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3. Two-step parallel Bayesian optimization and quadrature (PBOQ) 175 

3.1. Preliminary 176 

For convenience, let us first transform the performance function in Eq. (6) to the standard normal 177 
space 𝒟𝒟𝒖𝒖: 178 

𝑔𝑔(𝒖𝒖) = Φ(𝑢𝑢1) − 𝑐𝑐 ∙ 𝐿𝐿�𝒚𝒚|𝑇𝑇(𝒖𝒖∗)� (11) 

whereby 𝒖𝒖 = [𝑢𝑢1,𝒖𝒖∗] ∈ 𝒟𝒟𝒖𝒖 ⊆ ℝ𝑑𝑑  with 𝑢𝑢1 = Φ−1(𝜋𝜋) and 𝒖𝒖∗ = 𝑇𝑇−1(𝒙𝒙) indicates a vector of 𝑑𝑑(= 𝑝𝑝 + 1) 179 
independent standard normal variables that follow the joint PDF 𝑓𝑓𝑼𝑼(𝒖𝒖); Φ(∙) indicates the cumulative 180 
distribution function (CDF) of a standard normal variable; 𝑇𝑇−1(∙) is the inverse transformation, such 181 
as Nataf or Rosenblatt transformation. 182 

By doing so, the optimization problem in Eq. (10) can be expressed as: 183 

𝑐𝑐−1 = max
𝒖𝒖∗∈𝒟𝒟𝒖𝒖

𝐿𝐿(𝒚𝒚|𝒖𝒖∗) (12) 

The likelihood function 𝐿𝐿(𝒚𝒚|𝒖𝒖∗) is often strongly nonlinear, which makes it inappropriate to place a 184 
GP prior over the likelihood function. Thus, we use the logarithm ℒ�𝒚𝒚|𝑇𝑇(𝒖𝒖∗)� = log 𝐿𝐿�𝒚𝒚|𝑇𝑇(𝒖𝒖∗)� of the 185 
likelihood function instead, leading to Eq. (12) being rewritten as: (leaving dependence on 𝒚𝒚 implicit) 186 

𝑐𝑐 = exp �− max
𝒖𝒖∗∈𝒟𝒟𝒖𝒖

ℒ(𝒖𝒖∗)� (13) 

Similarly, Eq. (11) is rewritten as: 187 

ℊ(𝒖𝒖) = logΦ(𝑢𝑢1) − log 𝑐𝑐 − ℒ(𝒖𝒖∗) (14) 

Its failure indicator function can be then given by:  188 

𝐼𝐼(𝒖𝒖) = �1,ℊ(𝒖𝒖) ≤ 0 
0, otherwise (15) 

where 𝑍𝑍 = {𝒖𝒖 ∈ 𝒟𝒟𝒖𝒖|ℊ(𝒖𝒖) ≤ 0} refers to the failure domain in the standard normal space. Accordingly, 189 
the failure probability is expressed as: 190 

𝑃𝑃𝑓𝑓 = � 𝐼𝐼(𝒖𝒖)𝑓𝑓𝑼𝑼(𝒖𝒖)𝑑𝑑𝒖𝒖
𝒟𝒟𝒖𝒖 

 (16) 

which will be inferred by the Bayesian quadrature procedure. 191 

3.2. First-step: Parallel Bayesain optimization 192 

Under the black-box assumption, no knowledge on the inner structure of the likelihood function, 193 
e.g., concavity and linearity, is available, while we can evaluate the function at some points to observe 194 
its values. According to the Bayes’ theorem, our prior beliefs on the likelihood function before seeing 195 
any observations can be modeled by placing a prior distribution over the likelihood function. In this 196 
study, we employ a GP prior over the log-likelihood function ℒ(𝒖𝒖∗) instead of the original likelihood 197 
function: 198 

ℒ0~𝒢𝒢𝒢𝒢 �𝑚𝑚ℒ0(𝒖𝒖∗),𝑘𝑘ℒ0(𝒖𝒖∗,𝒖𝒖∗′)� (17) 

where ℒ0 means the prior distribution of ℒ prior to seeing any observations; 𝑚𝑚ℒ0(𝒖𝒖∗) and 𝑘𝑘ℒ0(𝒖𝒖∗,𝒖𝒖∗′) 199 
denote the prior mean and covariance functions, respectively. Among many options available in the 200 
literature, we utilize the widely used constant mean and squared exponential kernel functions: 201 

𝑚𝑚ℒ0(𝒖𝒖∗) = 𝑏𝑏 (18) 

𝑘𝑘ℒ0(𝒖𝒖∗,𝒖𝒖∗′) = 𝜎𝜎02exp�−
1
2
��

𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖′

𝑙𝑙𝑖𝑖
�
2𝑑𝑑

𝑖𝑖=2

� (19) 

where 𝜎𝜎02 means the process variance, 𝑙𝑙𝑖𝑖 is the correlation length in the 𝑖𝑖th direction. The GP prior is 202 
thus parametrized by a set of 𝑑𝑑 + 1 hyperparameters, i.e., 𝜽𝜽 = [𝑏𝑏,𝜎𝜎0, 𝑙𝑙2, … , 𝑙𝑙𝑑𝑑]. 203 
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Now assume that we have obtained some observations by evaluating the log-likelihood function 204 
at some points. Let 𝒖𝒖�∗ = �𝒖𝒖∗(𝑗𝑗)�

𝑗𝑗=1
𝑛𝑛  be an 𝑛𝑛 × 𝑑𝑑 matrix with its 𝑗𝑗th row being 𝑗𝑗th observed point 𝒖𝒖∗(𝑗𝑗), 205 

and 𝒛𝒛�1 = �𝑧𝑧1
(𝑗𝑗)�

𝑗𝑗=1

𝑛𝑛
 be an 𝑛𝑛 × 1 vector with its 𝑗𝑗th element being 𝑗𝑗th observed value, 𝑧𝑧1

(𝑗𝑗) = ℒ�𝒖𝒖∗(𝑗𝑗)�, of 206 

the log-likelihood function. The hyperparameters 𝜽𝜽 involved in the GP prior can be learned from the 207 
observations 𝓓𝓓1 = {𝒖𝒖�∗, 𝒛𝒛�1} by obtaining the maximum likelihood estimate, see, e.g., Ref. [31]. 208 

Conditioning on the observations 𝓓𝓓1, the posterior distribution over the log-likelihood function 209 
turns out to be a GP: 210 

ℒ𝑛𝑛~𝒢𝒢𝒢𝒢 �𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗), 𝑘𝑘ℒ𝑛𝑛(𝒖𝒖∗,𝒖𝒖∗′)� (20) 

where ℒ𝑛𝑛 means the posterior distribution of ℒ after seeing 𝑛𝑛 observations; 𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) and 𝑘𝑘ℒ𝑛𝑛(𝒖𝒖∗,𝒖𝒖∗′) 211 
denote the posterior mean and covariance functions, closed-form expressions of which are available 212 
as: 213 

𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) = 𝑚𝑚ℒ0(𝒖𝒖∗) + 𝑘𝑘ℒ0(𝒖𝒖∗,𝒖𝒖�∗)𝑇𝑇𝑲𝑲ℒ0
−1(𝒖𝒖�∗,𝒖𝒖�∗) �𝒛𝒛�1 − 𝑚𝑚ℒ0(𝒖𝒖�∗)� (21) 

𝑘𝑘ℒ𝑛𝑛(𝒖𝒖∗,𝒖𝒖∗′)  = 𝑘𝑘ℒ0(𝒖𝒖∗,𝒖𝒖∗′) − 𝑘𝑘ℒ0(𝒖𝒖∗′,𝒖𝒖�∗)𝑇𝑇𝑲𝑲ℒ0
−1(𝒖𝒖�∗,𝒖𝒖�∗)𝑘𝑘ℒ0(𝒖𝒖�∗,𝒖𝒖∗′) (22) 

where 𝑚𝑚ℒ0(𝒖𝒖�∗) is an  𝑛𝑛 × 1 mean vector, whose 𝑗𝑗th element is 𝑚𝑚ℒ0�𝒖𝒖
∗(𝑗𝑗)�, 𝑘𝑘ℒ0(𝒖𝒖∗,𝒖𝒖�∗) means an 𝑛𝑛 × 1 214 

covariance vector between 𝒖𝒖∗ and 𝒖𝒖�∗, with its 𝑗𝑗th element being 𝑘𝑘ℒ0�𝒖𝒖
∗,𝒖𝒖∗(𝑗𝑗)�; 𝑘𝑘ℒ0(𝒖𝒖∗′,𝒖𝒖�∗) is defined 215 

in a similar way to 𝑘𝑘ℒ0(𝒖𝒖∗,𝒖𝒖�∗); 𝑲𝑲ℒ0(𝒖𝒖�∗,𝒖𝒖�∗) represents an 𝑛𝑛 × 𝑛𝑛 covariance matrix between 𝒖𝒖�∗ and 𝒖𝒖�∗, 216 
whose (𝑗𝑗, 𝑙𝑙)th entry being 𝑘𝑘ℒ0�𝒖𝒖

∗(𝑗𝑗),𝒖𝒖∗(𝑙𝑙)�. In this context, the posterior mean function 𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) can be 217 
used as a predictor, whereas the posterior variance function 𝜎𝜎ℒ𝑛𝑛

2 (𝒖𝒖∗) = 𝑘𝑘ℒ𝑛𝑛(𝒖𝒖∗,𝒖𝒖∗) enables to measure 218 
the prediction uncertainty. 219 

 In order to infer the maximum of the log-likelihood function using as few function evaluations 220 
as possible, our main concern is to design an infill sampling criterion to effectively select points where 221 
the log-likelihood function should be observed. This task can be achieved by combining the 𝑘𝑘-means 222 
clustering with the EI criterion. Let ℒmax = max

1≤𝑗𝑗≤𝑛𝑛
𝑧𝑧1

(𝑗𝑗) be the current best solution observed so far. The 223 
improvement at the point 𝒖𝒖∗ over ℒmax can be defined as [32]: 224 

𝐼𝐼max(𝒖𝒖∗) = max�𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) − ℒmax , 0� = �𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) − ℒmax, if 𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) > ℒmax
0, otherwise                                            

 (23) 

The EI criterion over the current maximum consists of taking expectation of 𝐼𝐼max(𝒖𝒖∗), and is derived 225 
in a closed-form expression as: 226 

𝐸𝐸𝐼𝐼max(𝒖𝒖∗) = �𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) − ℒmax �Φ �
𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) − ℒmax

𝜎𝜎ℒ𝑛𝑛(𝒖𝒖∗)
�+ 𝜎𝜎ℒ𝑛𝑛(𝒖𝒖∗)ϕ�

𝑚𝑚ℒ𝑛𝑛(𝒖𝒖∗) − ℒmax
𝜎𝜎ℒ𝑛𝑛(𝒖𝒖∗) � (24) 

where ϕ(∙) indicates the PDF of a standard normal variable. This criterion measures the improvement 227 
of the current best solution at the point 𝒖𝒖∗. 228 

On the other hand, the 𝑘𝑘-means clustering [33] enables to partition a dataset into 𝑘𝑘 clusters that 229 
are given by 𝑘𝑘 centroids. However, the conventional 𝑘𝑘-means clustering algorithm does not consider 230 
weight information of the data. To tackle the limitation, we propose a weighted clustering algorithm, 231 
termed EI-weighted 𝑘𝑘-means clustering, which identify 𝑘𝑘 centroids by using 𝑁𝑁1 samples �𝒖𝒖∗(𝑗𝑗)�

𝑗𝑗=1
𝑁𝑁1  of 232 

𝒖𝒖∗ while considering their EI values as weights. Therefore, the 𝑘𝑘 centroids correspond to the batch of 233 
points we wish to select. Once the 𝑘𝑘 points are obtained, evaluation of the true log-likelihood function 234 
on these points can be distributed in parallel. A pseudocode of the weighted clustering algorithm is 235 
shown in Algorithm 1. The above infill sampling process is continued until our improvement will be 236 
sufficiently small. In view of this, we also propose a stopping criterion as: 237 

max�𝐸𝐸𝐼𝐼max(𝒖𝒖∗)�
ℒmax − ℒmin

< 𝜖𝜖1 (25) 

where ℒmin is the current worst solution; 𝜖𝜖1 is a pre-determined tolerance. If the stopping criterion is 238 
satisfied twice in succession, the constant 𝑐𝑐 can be obtained as �̂�𝑐 = exp(−ℒmax). 239 
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Algorithm 1 Weighted 𝑘𝑘-means clustering algorithm 

Input: The weight function (i.e., EI criterion), number of clusters 𝑘𝑘, and dataset �𝒖𝒖∗(𝒋𝒋)�𝑗𝑗=1
𝑁𝑁1  

1. Initialization. Randomly select 𝑘𝑘 points from the dataset �𝒖𝒖∗(𝒋𝒋)�𝑗𝑗=1
𝑁𝑁1  as the initial centroids, denoted by 

𝓢𝓢 = �𝒔𝒔(𝒊𝒊)�𝑖𝑖=1
𝑘𝑘 ; 

2. Assignment step. Assign each point among �𝒖𝒖∗(𝒋𝒋)�𝑗𝑗=1
𝑁𝑁1  to the nearest cluster by the least squared Euclidian 

distance. The 𝑖𝑖th cluster is denoted as 𝓒𝓒(𝒊𝒊) = �𝒄𝒄𝒋𝒋
(𝒊𝒊)�

𝑗𝑗=1

𝑁𝑁(𝑖𝑖)

, where 𝒄𝒄𝒋𝒋
(𝒊𝒊) indicates the 𝑗𝑗th point in the 𝑖𝑖th cluster; 

𝑁𝑁(𝑖𝑖) is the number of points in the 𝑖𝑖th cluster; 
3. Update step. The 𝑖𝑖th centroid is updated by the weighted mean of the points belonging to the 𝑖𝑖th cluster: 

𝒔𝒔(𝒊𝒊) =
∑ 𝐸𝐸𝐼𝐼max �𝒄𝒄𝒋𝒋

(𝒊𝒊)� × 𝒄𝒄𝒋𝒋
(𝒊𝒊)𝑁𝑁(𝑖𝑖)

𝑗𝑗=1

∑ 𝐸𝐸𝐼𝐼max �𝒄𝒄𝒋𝒋
(𝒊𝒊)�𝑁𝑁(𝑖𝑖)

𝑗𝑗=1

 

4. Iteration. Repeat Steps 2 and 3 until the centroids do not change or the pre-specified number (e.g., 100) of 
iteration is reached. 

Output: 𝑘𝑘 centroids 

Lastly, it should be noted that the best solution ℒmax identified by the aforementioned Bayesian 240 
optimization procedure will be very likely smaller than the true maximum value of the log-likelihood 241 
function. Nevertheless, this does not prevent us from producing samples which follow the posterior 242 
distribution, provided that the number of samples 𝑁𝑁1 is selected large enough. The readers can refer 243 
to Ref. [13] for the detailed discussion on the asymptotic validity of the constant 𝑐𝑐 chosen through the 244 
simulation. 245 

3.3. Second-step: Parallel Bayesain quadrature 246 

Due to large discontinuity of the failure indicator function in Eq. (16), it is challenging to directly 247 
place a GP prior over it. Alternatively, the parallel Bayesian quadrature step starts to place a GP prior 248 
over the performance function in Eq. (14): 249 

ℊ0~𝒢𝒢𝒢𝒢 �𝑚𝑚ℊ0(𝒖𝒖), 𝑘𝑘ℊ0(𝒖𝒖,𝒖𝒖′)� (26) 

where ℊ0 indicates the prior distribution of ℊ prior to seeing any observations; 𝑚𝑚ℊ0(𝒖𝒖) and 𝑘𝑘ℊ0(𝒖𝒖,𝒖𝒖′) 250 
denote the prior mean and covariance functions, respectively. As in the previous step, the prior mean 251 
function is assumed to be an unknown constant and the prior covariance function utilizes the squared 252 
exponential kernel. 253 

Suppose that we have obtained some observations 𝓓𝓓2 = {𝒖𝒖�, 𝒛𝒛�2}, where 𝒛𝒛�2 = �𝑧𝑧2
(𝑗𝑗)�

𝑗𝑗=1

𝑛𝑛
 denotes an 254 

𝑛𝑛 × 1 vector with its 𝑖𝑖th element being 𝑖𝑖th observed performance function value 𝑧𝑧2
(𝑗𝑗) = ℊ�𝒖𝒖(𝑗𝑗)�. Note 255 

that, we can reuse the observations of the log-likelihood function in the previous step to obtain initial 256 
observations of ℊ as 𝒛𝒛�2 = �𝑧𝑧2

(𝑗𝑗)�
𝑗𝑗=1

𝑛𝑛1
, where 𝑧𝑧2

(𝑗𝑗) = logΦ�𝑢𝑢1
(𝑗𝑗)� − log 𝑐𝑐 − 𝑧𝑧1

(𝑗𝑗); 𝑛𝑛1 means the total number 257 

of samples in which the log-likelihood function is evaluated in the previous step; 𝑢𝑢1
(𝑗𝑗) is the 𝑖𝑖th newly 258 

generated standard normal sample. According to Bayes’ theorem, the posterior distribution of ℊ that 259 
is conditional on 𝓓𝓓2 turns out to be a GP: 260 

ℊ𝑛𝑛~𝒢𝒢𝒢𝒢 �𝑚𝑚ℊ𝑛𝑛(𝒖𝒖), 𝑘𝑘ℊ𝑛𝑛(𝒖𝒖,𝒖𝒖′)� (27) 

where ℊ𝑛𝑛 indicates the posterior distribution of ℊ after seeing 𝑛𝑛 observations; 𝑚𝑚ℊ𝑛𝑛(𝒖𝒖) and 𝑘𝑘ℊ𝑛𝑛(𝒖𝒖,𝒖𝒖′) 261 
denote the posterior mean and covariance functions, closed-form expressions of which are available 262 
as similar to Eqs. (21) and (22); thus, we do not repeat them for the sake of brevity. 263 

This then follows that the posterior distribution of the failure indicator function 𝐼𝐼 conditional on 264 
𝓓𝓓2 admits a generalized Bernoulli process [28]: 265 

𝐼𝐼𝑛𝑛~𝒢𝒢ℬ𝒢𝒢 �𝑚𝑚𝐼𝐼𝑛𝑛(𝒖𝒖), 𝑘𝑘𝐼𝐼𝑛𝑛(𝒖𝒖,𝒖𝒖′)� (28) 
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where 𝐼𝐼𝑛𝑛 denotes the posterior distribution of 𝐼𝐼 after obtaining 𝑛𝑛 observations; 𝑚𝑚𝐼𝐼𝑛𝑛(𝒖𝒖) and 𝑘𝑘𝐼𝐼𝑛𝑛(𝒖𝒖,𝒖𝒖′) 266 
represent the posterior mean and covariance functions of 𝐼𝐼, respectively. The posterior mean function 267 
𝑚𝑚𝐼𝐼𝑛𝑛(𝒖𝒖) is given by: 268 

𝑚𝑚𝐼𝐼𝑛𝑛(𝒖𝒖) = Φ�−
𝑚𝑚ℊ𝑛𝑛(𝒖𝒖)
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) � (29) 

where 𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) = �𝑘𝑘ℊ𝑛𝑛(𝒖𝒖,𝒖𝒖) is the posterior standard deviation function of ℊ. Instead of the posterior 269 

covariance function, 𝑘𝑘𝐼𝐼𝑛𝑛(𝒖𝒖,𝒖𝒖′), no closed-form expression of which is available, the posterior variance 270 
function 𝜎𝜎𝐼𝐼𝑛𝑛

2 (𝒖𝒖) is given by: 271 

𝜎𝜎𝐼𝐼𝑛𝑛
2 (𝒖𝒖) = Φ�−

𝑚𝑚ℊ𝑛𝑛(𝒖𝒖)
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) �Φ�

𝑚𝑚ℊ𝑛𝑛(𝒖𝒖)
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) � (30) 

The induced posterior distribution 𝑃𝑃𝑓𝑓,𝑛𝑛 of the failure probability 𝑃𝑃𝑓𝑓 should hence follow a certain 272 
random variable. Whilst its exact distribution type is not known yet, its posterior mean 𝑚𝑚𝑃𝑃𝑓𝑓,𝑛𝑛 and an 273 
upper-bound of its posterior variance 𝜎𝜎�𝑃𝑃𝑓𝑓,𝑛𝑛

2  can be given as [28]: 274 

𝑚𝑚𝑃𝑃𝑓𝑓,𝑛𝑛 = � 𝑚𝑚𝐼𝐼𝑛𝑛(𝒖𝒖)𝑓𝑓𝑼𝑼(𝒖𝒖)𝑑𝑑𝒖𝒖
𝒟𝒟𝒖𝒖

= � Φ�−
𝑚𝑚ℊ𝑛𝑛(𝒖𝒖)
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖)� 𝑓𝑓𝑼𝑼

(𝒖𝒖)𝑑𝑑𝒖𝒖
𝒟𝒟𝒖𝒖

 (31) 

𝜎𝜎�𝑃𝑃𝑓𝑓,𝑛𝑛
2 = � � 𝜎𝜎𝐼𝐼𝑛𝑛(𝒖𝒖)𝜎𝜎𝐼𝐼𝑛𝑛(𝒖𝒖′)𝑓𝑓𝑼𝑼(𝒖𝒖)𝑓𝑓𝑼𝑼(𝒖𝒖′)𝑑𝑑𝒖𝒖𝑑𝑑𝒖𝒖′

𝒟𝒟𝒖𝒖𝒟𝒟𝒖𝒖

= �� �Φ�−
𝑚𝑚ℊ𝑛𝑛(𝒖𝒖)
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖)�Φ�

𝑚𝑚ℊ𝑛𝑛(𝒖𝒖)
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) � 𝑓𝑓𝑼𝑼

(𝒖𝒖)𝑑𝑑𝒖𝒖
𝒟𝒟𝒖𝒖

�

2

 
(32) 

In this context, the posterior mean 𝑚𝑚𝑃𝑃𝑓𝑓,𝑛𝑛 can be employed as the failure probability estimator, and the 275 
upper-bound of the posterior variance 𝜎𝜎�𝑃𝑃𝑓𝑓,𝑛𝑛

2  measures the maximum possible prediction uncertainty. 276 
It is noted that the exact posterior variance of the failure probability can be also derived [29], whereas 277 
its computation is quite expensive. Hence, we use its upper-bound instead to measure the prediction 278 
uncertainty. The interested readers refer to Ref. [29] for the derivation of the posterior variance of the 279 
failure probability and Refs. [34,35] for its Monte Carlo simulation (MCS) estimator. 280 

This further brings an open task to approximate the analytically intractable integrals in Eqs. (31) 281 
and (32). The most straightforward solution is to use the crude MCS. However, a prohibitively large 282 
number of samples is necessary to achieve a satisfactory accuracy if the true failure probability is very 283 
small (e.g., 𝑃𝑃𝑓𝑓 ≤ 10−4). This can make the Bayesian quadrature procedure time-consuming and even 284 
cause the memory problem. Since samples located in the failure domain 𝑍𝑍 contribute the most to the 285 
integrals, methods which allow more efficient exploration of the failure domain can provide effective 286 
numerical integrators for these integrals, and subset simulation is one of such methods that have been 287 
widely employed within the BUS framework. 288 

Subset simulation [11,12] is an adaptive MCMC approach and its principal idea is to express the 289 
failure domain 𝛧𝛧 by means of a sequence of intermediate nested domains 𝒟𝒟𝒖𝒖 = 𝛧𝛧0 ⊃ 𝛧𝛧1 ⊃ ⋯ ⊃ 𝛧𝛧𝑟𝑟 =290 
𝛧𝛧. The intermediate domain is defined as 𝛧𝛧𝑖𝑖 = {ℊ(𝒖𝒖) ≤ 𝑏𝑏𝑖𝑖}, where 𝑏𝑏𝑖𝑖 is the threshold that holds +∞ =291 
𝑏𝑏0 > 𝑏𝑏1 > ⋯ > 𝑏𝑏𝑟𝑟 = 0. As such, the failure probability can be written as: 292 

𝑃𝑃𝑓𝑓 = 𝑃𝑃 ��𝛧𝛧𝑗𝑗

𝑟𝑟

𝑖𝑖=0

� = �𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)
𝑟𝑟

𝑖𝑖=1

 (33) 

As similar to Eqs. (31) and (32), the posterior distribution ℊ𝑛𝑛 of the 𝑔𝑔-function results in the posterior 293 
distribution of the conditional probability 𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1), the posterior mean and an upper-bound of the 294 
posterior variance of which are expressed by: 295 

𝑚𝑚𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛 = � Φ�−
𝑚𝑚ℊ𝑛𝑛(𝒖𝒖) − 𝑏𝑏𝑖𝑖
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) �𝑓𝑓𝑼𝑼(𝒖𝒖)𝑑𝑑𝒖𝒖

𝒟𝒟𝒖𝒖
 (34) 
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𝜎𝜎�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛
2 = �� �Φ�−

𝑚𝑚ℊ𝑛𝑛(𝒖𝒖) − 𝑏𝑏𝑖𝑖
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) �Φ�

𝑚𝑚ℊ𝑛𝑛(𝒖𝒖) − 𝑏𝑏𝑖𝑖
𝜎𝜎ℊ𝑛𝑛(𝒖𝒖) �𝑓𝑓𝑼𝑼(𝒖𝒖)𝑑𝑑𝒖𝒖

𝒟𝒟𝒖𝒖
�

2

 (35) 

Their numerical integrators are then given by: 296 

𝑚𝑚�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛 =
1
𝑁𝑁2

�Φ�−
𝑚𝑚ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1

(𝑗𝑗) � − 𝑏𝑏𝑖𝑖

𝜎𝜎ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1
(𝑗𝑗) �

�
𝑁𝑁2

𝑗𝑗=1

 (36) 

𝜎𝜎��𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛
2 = �

1
𝑁𝑁2

��Φ�−
𝑚𝑚ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1

(𝑗𝑗) � − 𝑏𝑏𝑖𝑖

𝜎𝜎ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1
(𝑗𝑗) �

�Φ�
𝑚𝑚ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1

(𝑗𝑗) � − 𝑏𝑏𝑖𝑖

𝜎𝜎ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1
(𝑗𝑗) �

�
𝑁𝑁2

𝑗𝑗=1

�

2

 (37) 

where �𝒖𝒖𝑖𝑖−1
(𝑗𝑗) �

𝑗𝑗=1

𝑁𝑁2
 represents 𝑁𝑁2 samples of 𝒖𝒖 drawn in 𝛧𝛧𝑖𝑖−1. Samples in 𝛧𝛧0(= 𝒟𝒟𝒖𝒖) can be simply drawn 297 

from the joint PDF 𝑓𝑓𝑼𝑼(𝒖𝒖) by MCS, whereas for each 𝑖𝑖 ∈ {1,⋯ , 𝑟𝑟 − 1}, samples in 𝛧𝛧𝑖𝑖 are generated by 298 
MCMC procedure. The threshold values {𝑏𝑏𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1} are adaptively chosen as the 𝑃𝑃𝑡𝑡 percentile 299 
of 𝑚𝑚ℊ𝑛𝑛(𝒖𝒖𝑖𝑖−1) so that the corresponding conditional probabilities {𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1): 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1} are equal 300 
to a pre-defined target probability 𝑃𝑃𝑡𝑡. By doing so, the posterior estimate of the failure probability is 301 
given by 𝑚𝑚�𝑃𝑃𝑓𝑓,𝑛𝑛 = ∏ 𝑚𝑚�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛

𝑟𝑟
𝑖𝑖=1 . This, in turn, implies the posterior estimate of the evidence as �̃�𝑐𝐸𝐸 =302 

𝑐𝑐−1𝑚𝑚�𝑃𝑃𝑓𝑓,𝑛𝑛. 303 
Another issue to be solved within the Bayesian quadrature framework is how to design an infill 304 

sampling criterion to effectively select points where the performance function is observed. As in the 305 
previous step, we propose a parallel infill sampling criterion combining the 𝑘𝑘-means clustering with 306 
the UPVC learning function [28], which attempts to make the fullest possible use of the posterior GP 307 
and parallel computing simultaneously. The UPVC learning function for the conditional probability 308 
𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1) can be defined as: 309 

UPVC(𝒖𝒖𝑖𝑖−1) = �Φ�−
𝑚𝑚ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1

(𝑗𝑗) � − 𝑏𝑏𝑖𝑖

𝜎𝜎ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1
(𝑗𝑗) �

�Φ�
𝑚𝑚ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1

(𝑗𝑗) � − 𝑏𝑏𝑖𝑖

𝜎𝜎ℊ𝑛𝑛 �𝒖𝒖𝑖𝑖−1
(𝑗𝑗) �

� 𝑓𝑓𝑼𝑼(𝒖𝒖𝑖𝑖−1) (38) 

It should be noted that, the UPVC learning function holds that 𝜎𝜎�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛 = ∫ UPVC(𝒖𝒖𝑖𝑖−1)𝑑𝑑𝒖𝒖𝒟𝒟𝒖𝒖
. Thus, 310 

it measures the contribution of our uncertainty on the conditional probability estimation at the point 311 
𝒖𝒖𝑖𝑖−1. By taking the UPVC values as weights, a weighted 𝑘𝑘-means clustering algorithm, that is similar 312 
to the one in Algorithm 1, determines a batch of 𝑘𝑘 points using the dataset �𝒖𝒖𝑖𝑖−1

(𝑗𝑗) �
𝑗𝑗=1

𝑁𝑁2
. For convenience,  313 

the number of samples 𝑘𝑘 in a batch is assumed to be same as in the previous step, while it should not 314 
to be. Once the 𝑘𝑘 points are given, evaluation of the true 𝑔𝑔-function on these points can be distributed 315 
in parallel. This, in turn, updates the posterior GP in Eq. (27), and hence the threshold value 𝑏𝑏𝑖𝑖. The 316 
above infill sampling process is continued until our uncertainty will be sufficiently small. In view of 317 
this, this study also propose a stopping criterion as: 318 

𝜎𝜎��𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛
𝑚𝑚�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛

< 𝜖𝜖2 (39) 

where the left-hand side of the inequality is the estimated upper-bound of the posterior coefficient of 319 
variation (COV) of the conditional probability; 𝜖𝜖2 denotes a pre-determined tolerance. Note that, the 320 
true estimation COV would be certainly small compared to the upper-bound; thus, a relatively large 321 
value can be selected as the tolerance. If the stopping criterion is satisfied, 𝑏𝑏𝑖𝑖 is obtained and samples 322 
in 𝛧𝛧𝑖𝑖 can be generated by the current posterior GP of ℊ. 323 

3.4. Numerical implementation procedure 324 

The numerical implementation procedure of the proposed PBOQ, which is also summarized in 325 
Fig. 1, consists of the following main steps: 326 
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Step 1.1: Generate standard normal samples  327 

To check the stopping criterion and enrich the dataset, a set of 𝑁𝑁1 standard normal samples need 328 
to be generated, which are denoted as 𝓤𝓤∗ = �𝒖𝒖∗(𝑗𝑗)�

𝑗𝑗=1
𝑁𝑁1 . 329 

Step 1.2: Obtain an initial dataset 𝓓𝓓1 from the log-likelihood function 330 

In order to start the first step, i.e., parallel Bayesian optimization, of the proposed PBOQ , a set 331 
of 𝑛𝑛0 initial samples of 𝒖𝒖�∗ = �𝒖𝒖∗(𝑗𝑗)�

𝑗𝑗=1
𝑛𝑛0  needs to be drawn by Latin hypercube sampling (LHS). In this 332 

study, the number of initial samples 𝑛𝑛0 is selected as 𝑛𝑛0 = 10. These 𝑛𝑛0 samples are evaluated on the 333 
log-likelihood function in parallel, and the corresponding observations are denoted by 𝒛𝒛�1 = �𝑧𝑧1

(𝑗𝑗)�
𝑗𝑗=1

𝑛𝑛0
. 334 

The initial dataset is then constructed by 𝓓𝓓1 = {𝒖𝒖�∗, 𝒛𝒛�1}. Let 𝑛𝑛 = 𝑛𝑛0. 335 

Step 1.3: Infer the GP posterior of ℒ 336 

The GP posterior of ℒ conditional on 𝓓𝓓1 can be inferred as Eq. (20). This step mainly consists of 337 
learning the hyper-parameters using maximum likelihood estimation. All the numerical examples in 338 
this study are performed by the fitrgp function in MATLAB Statistics and Machine Learning Toolbox.    339 

Step 1.4: Check the stopping criterion 340 

If the stopping criterion given in Eq. (25) is satisfied twice in succession, go to Step 1.6; else, go 341 
to Step 1.5. In this study, the tolerance 𝜖𝜖1 is specified as 𝜖𝜖1 = 0.01. 342 

Step 1.5: Enrich the dataset by the EI-weighted 𝑘𝑘-means clustering 343 

This step consists of identifying 𝑘𝑘 new points 𝒖𝒖�+∗ = �𝒖𝒖+
∗(𝑗𝑗)�

𝑗𝑗=1

𝑘𝑘
 from 𝓤𝓤∗ using the EI-weighted 𝑘𝑘-344 

means clustering. In this study, the number of samples 𝑘𝑘 in a batch is assumed to be 𝑘𝑘 = 4. Then, the 345 
corresponding observations of ℒ(𝒖𝒖∗) at these 𝑘𝑘 points are obtained in parallel, which are denoted by 346 
𝒛𝒛�1+ = �𝑧𝑧1+

(𝑗𝑗)�
𝑗𝑗=1

𝑘𝑘
. The dataset 𝓓𝓓1 is enriched with 𝓓𝓓1+ = {𝒖𝒖�+∗ , 𝒛𝒛�1+}, i.e., 𝓓𝓓1 = 𝓓𝓓1 ∪ 𝓓𝓓1+. Let 𝑛𝑛 = 𝑛𝑛0 + 𝑘𝑘, 347 

and go to Step 1.3. 348 

Step 1.6: End of the first step 349 

The first step stops and the constant 𝑐𝑐 is obtained from the last best solution as �̂�𝑐 = exp(−ℒmax). 350 
Let 𝑛𝑛 = 𝑛𝑛1 and 𝑖𝑖 = 1. 351 

Step 2.1: Generate samples conditional on 𝛧𝛧𝑖𝑖−1 352 

To approximate 𝑚𝑚�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛  and 𝜎𝜎��𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛
2 , check the stopping criterion, and enrich the dataset, 353 

a set of 𝑁𝑁2 samples, 𝓤𝓤𝑖𝑖−1 = �𝒖𝒖𝑖𝑖−1
(𝑗𝑗) �

𝑗𝑗=1

𝑁𝑁2
, conditional on 𝛧𝛧𝑖𝑖−1 need to be generated by MCS for 𝑖𝑖 = 1; else, 354 

by MCMC using ℊ𝑛𝑛 obtained in Step 2.3. If 𝑖𝑖 = 1, go to Step 2.2; else, go to Step 2.4. 355 

Step 2.2: Obtain an initial dataset 𝓓𝓓2 from the 𝑔𝑔-function 356 

In order to start the second step, i.e., parallel Bayesian quadrature, of the proposed PBOQ, a set 357 
of 𝑛𝑛1 standard normal samples of 𝒖𝒖�1 = �𝑢𝑢1

(𝑗𝑗)�
𝑗𝑗=1

𝑛𝑛1
 needs to be produced. The initial sample points are 358 

then denoted as 𝒖𝒖� = {𝒖𝒖�1,𝒖𝒖�∗}. The corresponding observations are obtained using 𝒛𝒛�1 and are denoted 359 
by 𝒛𝒛�2 = �𝑧𝑧2

(𝑗𝑗)�
𝑗𝑗=1

𝑛𝑛1
. The initial dataset is then constructed by 𝓓𝓓2 = {𝒖𝒖�, 𝒛𝒛�2}. 360 

Step 2.3: Infer the GP posterior of ℊ 361 

The GP posterior of ℊ conditional on 𝓓𝓓2 can be inferred as Eq. (27).  362 

Step 2.4: Choose the threshold 𝑏𝑏𝑖𝑖  363 

The threshold 𝑏𝑏𝑖𝑖 is chosen as the 𝑃𝑃𝑡𝑡 percentile of 𝑚𝑚ℊ𝑛𝑛(𝓤𝓤𝑖𝑖−1). In this study, the target probability 364 
𝑃𝑃𝑡𝑡 is selected as 𝑃𝑃𝑡𝑡 = 0.1. 365 



 11 of 22 

 

Step 2.5: Infer the GP posterior of 𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1) 366 

The GP posterior of 𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1) conditional on 𝓓𝓓2 can be inferred using ℊ𝑛𝑛 and 𝑏𝑏𝑖𝑖. The posterior 367 
mean 𝑚𝑚𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛 and an upper-bound of the posterior variance 𝜎𝜎�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛

2  are approximated by Eqs. 368 
(36) and (37).  369 

Step 2.6: Check the stopping criterion 370 

If the stopping criterion given in Eq. (39) is not satisfied, go to Step 2.7. Otherwise, if 𝑏𝑏𝑖𝑖 ≤ 0, go 371 
to Step 2.8; else, let 𝑖𝑖 = 𝑖𝑖 + 1 and go to Step 2.1. In this study, the tolerance 𝜖𝜖2 is specified as 𝜖𝜖2 = 0.1. 372 

Step 2.7: Enrich the dataset by the UPVC-weighted 𝑘𝑘-means clustering 373 

This step consists of selecting 𝑘𝑘 new points 𝒖𝒖�+ = �𝒖𝒖+
(𝑗𝑗)�

𝑗𝑗=1

𝑘𝑘
 from 𝓤𝓤𝑖𝑖−1 using the UPVC-weighted 374 

𝑘𝑘-means clustering. The corresponding observations of ℊ(𝒖𝒖) at these points are obtained in parallel, 375 
denoted by 𝒛𝒛�2+ = �𝑧𝑧2+

(𝑗𝑗)�
𝑗𝑗=1

𝑘𝑘
. The dataset 𝓓𝓓2 is enriched with 𝓓𝓓2+ = {𝒖𝒖�+, 𝒛𝒛�2+}, i.e., 𝓓𝓓2 = 𝓓𝓓2 ∪ 𝓓𝓓2+. Let 376 

𝑛𝑛 = 𝑛𝑛1 + 𝑘𝑘, and go to Step 2.3. 377 

Step 2.8: End of the second step 378 

The second step stops and the evidence is given as �̃�𝑐𝐸𝐸 = �̂�𝑐−1𝑚𝑚�𝑃𝑃𝑓𝑓,𝑛𝑛, with 𝑚𝑚�𝑃𝑃𝑓𝑓,𝑛𝑛 = ∏ 𝑚𝑚�𝑃𝑃(𝛧𝛧𝑖𝑖|𝛧𝛧𝑖𝑖−1)𝑛𝑛
𝑟𝑟
𝑖𝑖=1 . 379 

Furthermore, the samples conditional on the failure domain can be drawn by the last GP posterior of 380 
ℊ, from which samples that follow the posterior distribution 𝑃𝑃(𝒙𝒙|𝒚𝒚) are obtained by using the inverse 381 
transformation. 382 

 383 
Fig. 1. Schematic of the proposed PBOQ method. 384 

4. Numerical applications 385 

In the following section, four numerical applications with varying complexities are investigated 386 
to demonstrate the efficiency and accuracy of the PBOQ method. For comparison, other state-of-the-387 
art methods within the BUS framework, i.e., adaptive BUS (aBUS) [13], aBUS with PCK (aBUS-PCK) 388 
[24], BUS with two-step adaptive Kriging (BUS-AK2) [25], BUAK with subset simulation (BUAK-SuS) 389 
[21], BUAK with adaptive importance sampling (BUAK-AIS) [23], and BUS with adaptive Kriging 390 
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Markov chain Monte Carlo (BUS-AK-MCMC) [22] are implemented if applicable. Note that, the first 391 
three methods enable to infer the constant 𝑐𝑐 within their procedures, whereas the others do not. Thus, 392 
the optimal choice of the constant 𝑐𝑐 is directly employed in the BUAK-SuS, BUAK-AIS, and BUS-AK-393 
MCMC methods.  394 

4.1. One-dimensional illustrative application 395 

A toy example proposed in Ref. [24] is investigated as the first example for illustrative purposes. 396 
The problem involves a one-dimensional random variable, 𝑥𝑥, the prior distribution of which follows 397 
a standard normal distribution. The likelihood function can be expressed as: 398 

𝐿𝐿(𝑦𝑦|𝑥𝑥) =
1

√2𝜋𝜋𝜎𝜎
exp �−

1
2𝜎𝜎2

(𝑀𝑀(𝑥𝑥) − 𝑦𝑦)2� , with 𝑀𝑀(𝑥𝑥) = 1 + cos �
𝑥𝑥
2
� + 3exp(−4(𝑥𝑥 − 2)2) (40) 

where 𝑦𝑦 = 𝑀𝑀(2) is an observation; 𝜎𝜎 = 0.4 denotes the standard deviation of the prediction error.  399 
A semi-analytical solution of the problem is available and used as the benchmark. The posterior 400 

mean and standard deviation are 𝜇𝜇 = 1.942 and 𝜎𝜎 = 0.134, respectively. In addition, the evidence is 401 
𝑐𝑐𝐸𝐸 = 0.024 and the optimal choice of the constant 𝑐𝑐 is 𝑐𝑐opt = 1. This means that the failure probability 402 
associated with the reliability problem in BUS approaches 𝑃𝑃𝑓𝑓 = 0.024. 403 

Table 1 summarizes the results of the proposed PBOQ method as well as aBUS, aBUS-PCK, and 404 
BUS-AK-MCMC. In the table, 𝑁𝑁 denotes the number of samples per each subset in aBUS, aBUS-PCK, 405 
and BUS-AK-MCMC, 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  is the total number of model evaluations, 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟  is the number of iterations 406 
required for the infill sampling procedure in aBUS-PCK, BUS-AK-MCMC, and the proposed method,  407 
and �̂�𝜇 and 𝜎𝜎� mean the estimated posterior mean and standard deviation, respectively. The results of 408 
aBUS-PCK are directly taken from Ref. [24]. AK-BUS-MCMC and the PBOQ method are carried out 409 
20 independent runs and the results are averaged. In aBUS and BUS-AK-MCMC, the parameters 𝑛𝑛0 410 
and 𝑃𝑃𝑡𝑡 are set to be the same as those in the PBOQ . It is worth mentioning that, from an implementing 411 
viewpoint, BUS-AK-MCMC and the second step of the PBOQ are very similar procedures, where the 412 
differences are only the infill sampling criterion and stopping criterion employed.  413 

Table 1. Bayesian updating results of the one-dimensional application. 414 
Method  𝑁𝑁, 𝑁𝑁1 𝑁𝑁2⁄  𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 �̂�𝑐 �̂�𝜇 𝜇𝜇⁄  𝜎𝜎� 𝜎𝜎⁄  

aBUS  3 × 103 9 × 103 – 1.0027 1.0001 1.0012 
aBUS-PCK [24] 𝑘𝑘 = 25 5 × 103 50 + 50 = 100 3 – 1.0000 1.0299 
BUS-AK-MCMC  1 × 104 10 + 68.3 = 78.3 69.3 – 0.9994 1.0010 
Proposed PBOQ 𝑘𝑘 = 4 1 × 105 1 × 104⁄  10 + 14.4 + 13.2 = 29.5 7.9 1.0044 0.9997 0.9833 
Note: The results of aBUS-PCK are directly taken from Ref. [24] and averaged over 50 independent runs. 

As can be seen in Table 1, with 9000 model evaluations, aBUS enables to provide accurate results 415 
with �̂�𝑐 = 1.0027, �̂�𝜇 𝜇𝜇⁄ = 0.9695, and 𝜎𝜎� 𝜎𝜎⁄ = 1.0228. By employing the PCK or Kriging surrogate, 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  416 
can be significantly reduced, such that aBUS-PCK and BUS-AK-MCMC provide accurate results with 417 
100 and 78.3 model evaluations on average, respectively. Although aBUS-PCK enables inferring the 418 
the constant 𝑐𝑐 during the subset simulation procedure, its identified value is not provided in Ref. [24]; 419 
thus it is not given in Table 1. Compared to these two methods, the PBOQ method requires much less 420 
model evaluations, while its accuracy (�̂�𝑐 = 1.0044, �̂�𝜇 𝜇𝜇⁄ = 0.9997, and 𝜎𝜎� 𝜎𝜎⁄ = 0.9833) is sufficient. This 421 
indicates that the infill sampling criterion and stopping criterion by the UPVC learning function are 422 
more effective to select points on which the performance function is observed, compared to those by 423 
the conventional U learning function. Furthermore, aBUS-PCK and the proposed PBOQ can sensibly 424 
reduce 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟  compared to the non-parallel methods by the 𝑘𝑘-means clustering. Finally, the proposed 425 
PBOQ enables to provide an estimate for the evidence as �̂�𝑐𝐸𝐸 = 0.023 as a byproduct, which is close to 426 
the true value 𝑐𝑐𝐸𝐸 = 0.024. 427 

Fig. 2 presents an illustration of the first step, i.e., parallel Bayesian optimization, of the proposed 428 
PBOQ. It can be observed that the parallel Bayesian optimization step gradually approaches the exact 429 
global maximum of the log-likelihood function as the infill sampling process goes on. Moreover, these 430 
added points are more densely distributed around the global maximum, and hence very informative 431 
for our purpose. 432 
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 433 
Fig. 2. Illustration of the first step of PBOQ. 434 

Fig. 3 shows the posterior distribution estimated as a histogram by 1000 realizations of 𝑥𝑥 that are 435 
drawn by the inverse transformation of 𝑢𝑢 located in the failure domain. As can be seen, the posterior 436 
samples quite accurately approximate the analytical posterior distribution.  437 

 438 
Fig. 3. Estimated posterior distribution. 439 

4.2. Unimodal distribution application 440 

As the second application, a unimodal distribution problem from Ref. [14,21,23] is investigated 441 
to demonstrate the proposed method for high-dimensional problems. The problem involves the prior 442 
distribution as the product of 𝑝𝑝 independent standard normal distributions. The likelihood function 443 
can be expressed as: 444 

𝑃𝑃𝐿𝐿(𝒙𝒙) = �
1
𝜎𝜎𝑙𝑙
𝜙𝜙 �

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑙𝑙
𝜎𝜎𝑙𝑙

�
𝑝𝑝

𝑖𝑖=1

 (41) 

where 𝜎𝜎𝑙𝑙 is a constant value 0.2, and 𝜇𝜇𝑙𝑙 is given as: 445 

𝜇𝜇𝑙𝑙 = �−2(1 + 𝜎𝜎𝑙𝑙2) ln �𝑐𝑐𝐸𝐸
1 𝑝𝑝⁄ �2𝜋𝜋�1 + 𝜎𝜎𝑙𝑙2� (42) 
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where 𝑐𝑐𝐸𝐸 represents the model evidence. In this study, two cases, i.e., Case I: 𝑘𝑘 = 2 and 𝑐𝑐𝐸𝐸 = 10−4 and 446 
Case II: 𝑘𝑘 = 10 and 𝑐𝑐𝐸𝐸 = 10−5 are considered.  447 

An analytical solution is available for each case and is utilized as the benchmark. The mean and 448 
standard deviation of the posterior distribution for Case I are 𝜇𝜇 = 2.659 and 𝜎𝜎 = 0.1961 while those 449 
for Case II are 𝜇𝜇 = 0.6542 and 𝜎𝜎 = 0.1961. Furthermore, the optimal choice of the constant 𝑐𝑐 is 𝑐𝑐opt =450 
0.0503 for Case I and 𝑐𝑐opt = 2.00 × 10−4 for Case II. By accounting for the chosen evidence, the failure 451 
probability approaches the order of 10−6 for Case I and 10−9 for Case II. 452 

The results for Case I are shown in Table 2. The results of BUAK-SuS and BUAK-AIS are directly 453 
taken from Ref. [23]. BUS-AK-MCMC and the proposed method are performed 20 independent runs 454 
and the results are averaged. As can be seen, aBUS can provide accurate results but the computational 455 
burden is substantially large. By adopting the Kriging surrogate, 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  can be drastically reduced for 456 
BUAK-SuS, BUAK-AIS, and BUS-AK-MCMC. Among them, BUAK-AIS is the most efficient and only 457 
12.9 𝑔𝑔-function calls need on average. All these methods enable to provide accurate results. Similarly, 458 
the proposed PBOQ can also provide accurate estimates (�̂�𝜇 𝜇𝜇⁄ = 1.0032 and 𝜎𝜎� 𝜎𝜎⁄ = 0.9649). Note that, 459 
PBOQ requires more model evaluations than BUAK-AIS, because the former learns the constant 𝑐𝑐 in 460 
its first step whilst the latter adopts its optimal choice. Nevertheless, PBOQ requires only 26.8 model 461 
evaluations on average and achieves the lowest 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟  by exploring parallel computing. Moreover, the 462 
estimated evidence by the PBOQ method is �̂�𝑐𝐸𝐸 = 2.68 × 10−4, that is permissible compared to the true 463 
value 𝑐𝑐𝐸𝐸 = 10−4. 464 

Table 2. Bayesian updating results of the unimodal distribution application (Case I). 465 
Method 𝑁𝑁, 𝑁𝑁1 𝑁𝑁2⁄  𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 �̂�𝑐 �̂�𝜇 𝜇𝜇⁄  𝜎𝜎� 𝜎𝜎⁄  

aBUS 3 × 103 2.1 × 104 – 0.0503 1.0011 1.0295 
BUAK-SuS [23] 1 × 103 7 + 24 = 31 25 – 1.0271 1.0544 
BUAK-AIS [23] 1 × 103 7 + 5.9 = 12.9 6.9 – 1.0030 1.0226 
BUS-AK-MCMC 1 × 104 10 + 34.7 = 44.7 35.7 – 1.0044 0.9168 
Proposed PBOQ 1 × 105 1 × 104⁄  10 + 16.4 + 0.4 = 26.8 6.1 0.0611 1.0032 0.9649 
Note: The results of BUAK-SuS and BUAK-AIS are taken from Ref. [23] and averaged over 20 runs. 

Fig. 4 gives an illustration of the second step, i.e., parallel Bayesian quadrature, of the proposed 466 
PBOQ. Fig. 4 (a) shows realizations of the sample set {𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2]} of each subset. In total, five subsets 467 
are utilized until convergence, implying that the failure probability reaches the order of 10−5, that is 468 
very small to effectively explore by MCS. As can be seen, the subset gradually approaches the failure 469 
domain, and the satisfactory acceptance rate (i.e., 21.3 %) is achieved in the final subset. The accepted 470 
samples are also shown in Fig. 4 (b) as the posterior samples, which indicate a good agreement with 471 
the analytical posterior distribution. Moreover, the observed points are also shown in Fig. 4 (b). Note 472 
that, in this specific run, all the points are added in the first step, implying that these observations are 473 
sufficient to precisely infer the failure probability, and hence the posterior distribution. As such, the 474 
proposed method can reuse the observations in its first step to further reduce the computational cost. 475 

Fig. 4. Illustration of the second step of PBOQ: (a) realizations of each subset; (b) posterior samples. 476 
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Besides, the results for Case II are detailed in Table 3. aBUS can provide accurate results but the 477 
computational cost is even larger compared to Case I. By employing the Kriging surrogate, 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  can 478 
be significantly reduced for BUAK-SuS, BUAK-AIS, and BUS-AK-MCMC. Among them, BUAK-AIS 479 
is the most efficient and 90.5 𝑔𝑔-function calls need on average. Compared to these methods, the PBOQ 480 
method is capable of providing accurate estimates (�̂�𝜇 𝜇𝜇⁄ = 1.0266 and 𝜎𝜎� 𝜎𝜎⁄ = 0.9899). The larger 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  481 
compared to BUAK-SuS and BUAK-AIS is justified accounting for its ability to obtain the constant 𝑐𝑐. 482 
Until convergence, the second step of PBOQ adopts nine subsets, implying that the failure probability 483 
reaches the order of 10−9. The estimated evidence by the proposed method is �̂�𝑐𝐸𝐸 = 3.20 × 10−5, which 484 
is permissible compared to the true value 𝑐𝑐𝐸𝐸 = 10−5. Consequently, this example shows the capability 485 
of PBOQ addressing moderately high-dimensional problems.  486 

Table 3. Bayesian updating results of the unimodal distribution application (Case II). 487 
Method 𝑁𝑁, 𝑁𝑁1 𝑁𝑁2⁄  𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 �̂�𝑐 �̂�𝜇 𝜇𝜇⁄  𝜎𝜎� 𝜎𝜎⁄  

aBUS 3 × 103 3 × 104 – 3.95 × 10−4 0.9955 0.9886 
BUAK-SuS [23] 1 × 104 67 + 36 = 103 37 – 1.0271 1.0544 
BUAK-AIS [23] 1 × 104 67 + 23.5 = 90.5 24.5 – 1.0030 1.0226 
BUS-AK-MCMC 1 × 104 10 + 213.5 = 223.5 214.5 – 0.9927 0.8607 
Proposed PBOQ 1 × 106 1 × 104⁄  10 + 34.4 + 80.8 = 125.2 38.8 1.78 × 10−3 1.0266 0.9899 
Note: The results of BUAK-SuS and BUAK-AIS are taken from Ref. [23] and averaged over 20 runs. 

4.3. Two degree of freedom shear building model application 488 

A two degree of freedom (DOF) structural dynamic problem [4,13,21] is investigated as the third 489 
application. The configuration of the system is shown in Fig. 5 (a). The first and second story masses 490 
are considered to be fixed values, i.e., 𝑚𝑚1 = 16.531 × 103 kg and 𝑚𝑚2 = 16.131 × 103 kg. Moreover, the 491 
first and second interstory stiffnesses are modeled as 𝑘𝑘1 = 𝑘𝑘𝑥𝑥1 and 𝑘𝑘2 = 𝑘𝑘𝑥𝑥2, where 𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2] is the 492 
inferred parameters, and 𝑘𝑘 = 29.7 × 106  N m⁄  denotes the nominal value. The prior distribution of 𝒙𝒙 493 
follows an uncorrelated log-normal distribution with the modes 1.3 and 0.8 for 𝑥𝑥1 and 𝑥𝑥2 respectively 494 
and the unit standard deviations. By adopting the first two natural frequencies 𝑓𝑓1 = 3.13 Hz and 𝑓𝑓2 =495 
9.83 Hz as the observation (i.e., 𝒚𝒚 = �𝑓𝑓1, 𝑓𝑓2�), the likelihood function is expressed as: 496 

𝐿𝐿(𝒚𝒚|𝒙𝒙) ∝ exp �−
𝑀𝑀(𝒙𝒙)
2𝜎𝜎𝜀𝜀2

� (43) 

where 𝜎𝜎𝜀𝜀 = 1 16⁄ ; 𝑀𝑀(𝒙𝒙) is the modal measure-of-fit function given by: 497 

𝑀𝑀(𝒙𝒙) = �𝜆𝜆𝑖𝑖2 �
𝑓𝑓𝑖𝑖2(𝒙𝒙)
𝑓𝑓𝑖𝑖2

− 1�
22

𝑖𝑖=1

 (44) 

where 𝜆𝜆𝑖𝑖 = 1 denotes the mean of the prediction error for 𝑖𝑖th natural frequency; 𝑓𝑓𝑖𝑖(𝒙𝒙) refers to the 𝑖𝑖th 498 
natural frequency evaluated as the model output. Fig. 5 (b) illustrates the posterior distribution of 𝒙𝒙, 499 
which clearly indicates the non-uniqueness of the solution. 500 

  501 
Fig. 5. (a) 2-DOF shear building model; (b) Posterior distribution of 𝒙𝒙. 502 
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A semi-analytical solution of the problem is available and used as the benchmark. The posterior 503 
mean and standard deviation are 𝜇𝜇 = 1.125 and 𝜎𝜎 = 0.659 for 𝑥𝑥1 and 𝜇𝜇 = 0.583 and 𝜎𝜎 = 0.326 for 𝑥𝑥2, 504 
respectively. Furthermore, the evidence and the optimal choice of the constant 𝑐𝑐 are 𝑐𝑐𝐸𝐸 = 0.0015 and 505 
𝑐𝑐opt = 1, respectively; hence, the failure probability would be 𝑃𝑃𝑓𝑓 = 0.0015. 506 

The results are summarized in Tables 4 and 5. The results of aBUS-PCK and BUS-AK2 are directly 507 
taken from Refs. [24] and [25], respectively, whilst the proposed PBOQ is carried out 20 independent 508 
runs and the results are averaged. As can be seen, aBUS enables to provide accurate estimates but the 509 
computational cost is substantially large. By using the PCK or Kriging surrogate, 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  is successfully 510 
reduced for aBUS-PCK and BUS-AK2, whereas both methods can provide satisfactory accurate results. 511 
Note that, the posterior estimates are provided in a different form (i.e., for each mode identified) in 512 
Ref. [24], and thus the results are not shown in Table 5. The readers can refer to Ref. [24] for the results 513 
of aBUS-PCK. Compared to these two methods, the proposed PBOQ method achieves the lowest 𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  514 
and 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 , while its accuracy (�̂�𝜇 𝜇𝜇⁄ = 0.9868, 𝜎𝜎� 𝜎𝜎⁄ = 0.9985 for 𝑥𝑥1, �̂�𝜇 𝜇𝜇⁄ = 1.0232, 𝜎𝜎� 𝜎𝜎⁄ = 1.0001 for 𝑥𝑥2) 515 
is sufficient. The obtained evidence is �̂�𝑐𝐸𝐸 = 0.00149 and is very close to the true value 𝑐𝑐𝐸𝐸 = 0.0015. 516 

Table 4. Bayesian updating results of the 2-DOF model application (Efficiency). 517 
Method  𝑁𝑁, 𝑁𝑁1 𝑁𝑁2⁄  𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 

aBUS  3 × 103 1.5 × 104 – 
aBUS-PCK [24] 𝑘𝑘 = 40 5 × 103 320 4 
BUS-AK2 [25]  – 171 – 
Proposed PBOQ 𝑘𝑘 = 4 1 × 105 1 × 104⁄  10 + 44.6 + 11.4 = 66.0 24.0 
Note: The results of aBUS-PCK are taken from Ref. [24] and averaged over 50 independent runs;  
The results of BUS-AK2 are taken from Ref. [25] and are averaged over 10 independent runs. 

Table 5. Bayesian updating results of the 2-DOF model application (Accuracy). 518 

Method  
 𝑥𝑥1  𝑥𝑥2  

�̂�𝑐 �̂�𝜇 𝜇𝜇⁄  𝜎𝜎� 𝜎𝜎⁄  �̂�𝜇 𝜇𝜇⁄  𝜎𝜎� 𝜎𝜎⁄  

aBUS  1.0001 1.0758 1.0155 0.9428 1.0139 
BUS-AK2 [25]  1.0033 0.9996 1.0006 1.0002 0.9991 
Proposed PBOQ 𝑘𝑘 = 4 1.0021 0.9868 0.9985 1.0232 1.0001 
Note: The results of BUS-AK2 can be found in Ref. [25]. 

 519 
Fig. 6. Realizations of each subset by the proposed method. 520 
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Fig. 6 shows realizations of the sample set {𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2]} for each subset in the proposed method. 521 
In total, three subsets are utilized until convergence, implying that the failure probability reaches the 522 
order of 10−3. As can be observed, the subset gradually approaches the failure domain. The accepted 523 
samples in the final subset are also presented in Fig. 7 as the posterior samples, which demonstrate a 524 
favorable agreement with the analytical posterior distribution. Furthermore, the observed points are 525 
also illustrated in Fig. 7. It can be seen that, these observed points effectively reach the failure domain 526 
corresponding to the posterior distribution and are well distributed in both two modes. 527 

 528 
Fig. 7. Posterior samples of 𝒙𝒙. 529 

4.4. Seismic-isolated bridge pier model application 530 

The FE model updating of a seismic-isolated bridge pier is investigated as the fourth example to 531 
demonstrate the applicability of the PBOQ method for complex applications. The target bridge shown 532 
in Fig. 8 is a five-span seismic-isolated bridge with lead rubber bearings and reinforced concrete (RC) 533 
piers, designed based on the specifications for highway bridges in Japan [36]. Structural descriptions 534 
of its isolated bridge pier are summarized in Table 6. The isolated bridge pier is numerically modeled 535 
as a FE model with 60 DOFs. In this model, the RC pier is represented by four Euler-Bernoulli beam 536 
elements and a rotational spring at the bottom. The shear force acting from the superstructure is taken 537 
into account as a lumped mass and is connected to the top of the pier using a horizontal spring of the 538 
rubber bearings. The footing is characterized as a lumped mass and is connected to the bottom of the 539 
pier by a beam element. The boundary condition is modeled by a pair of the sway and rocking springs 540 
to consider the soil-structure interaction effect.  541 

Table 6. Descriptions of the seismic-isolated bridge pier. 542 
 Structural parameter Nominal value 
Superstructure Mass 𝑀𝑀𝑆𝑆 (kg) 6040000 
Rubber bearings Yield stiffness 𝐾𝐾𝐵𝐵 (N m⁄ ) 40000000 
RC pier Young’s modulus of the concrete (N m2⁄ ) 21000000 
 Density of the concrete (N m3⁄ ) 2400 
 Cross-sectional area of the upper part (m2) 26.4 
 Cross-sectional area of the lower part (m2) 11 
 Flexural rigidity of the upper part 𝐸𝐸𝐼𝐼1 (Nm2) 10000000000 
 Flexural rigidity of the lower part 𝐸𝐸𝐼𝐼2 (Nm2) 30614000000 
 Yield bending moment (Nm) 34840960 
 Yield rotational angle (m2 s⁄ ) 0.00309 
Footing Mass 𝑀𝑀𝐹𝐹 (kg) 227500 
 Moment of inertia 𝐼𝐼𝐹𝐹 (kgm2) 876800 
 Sway spring stiffness (N m⁄ ) 1396500000 
 Rocking spring stiffness (Ns m⁄ ) 17248000000 
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 543 
Fig. 8. Target seismic-isolated bridge (unit: mm) and its numerical modeling. 544 

Among various structural parameters that are summarized in Table 6, three key parameters, i.e., 545 
the yield stiffness of the rubber bearings and the flexural rigidity of the upper and lower parts of the 546 
RC pier, are accounted for as random variables. The other parameters are considered to be constants. 547 
According to Adachi [37], these material properties can vary due to manufacturing tolerance, and the 548 
mean corresponds to their nominal values and the coefficient of variation (COV) is 0.07 for all of them. 549 
Meanwhile, these material properties can also vary due to aging deterioration. In particular, the yield 550 
stiffness of the rubber bearings is known to increase around 120 % due to the hardening of the rubbers 551 
[38]. Seismic-isolated bridges are typically designed to dissipate the earthquake energy by the rubber 552 
bearings so as to reduce the seismic force on the RC piers where the plastic deformation is undesirable. 553 
Hence, the change in the yield stiffness of the rubber bearings strongly affect the seismic capacity of 554 
the entire bridge system, and it is essential to precisely assess its current value by means of structural 555 
health monitoring. 556 

In view of this, we consider the model updating of the target isolated bridge pier by measuring 557 
its natural frequencies up to fifth modes. The above three parameters are parameterized as 𝐾𝐾𝐵𝐵 = 𝐾𝐾�𝐵𝐵𝑥𝑥1, 558 
𝐸𝐸𝐼𝐼1 = 𝐸𝐸𝐼𝐼���1𝑥𝑥2, and 𝐸𝐸𝐼𝐼2 = 𝐸𝐸𝐼𝐼���2𝑥𝑥3, where 𝐾𝐾�𝐵𝐵, 𝐸𝐸𝐼𝐼���1, and 𝐸𝐸𝐼𝐼���2 indicate the nominal values given in Table 6; 𝒙𝒙 =559 
[𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3] denotes the inputs to be updated. The prior distribution of 𝒙𝒙 is assumed as an independent 560 
normal distribution with the unit means and the standard deviation 0.14. It is noted that, the standard 561 
deviation is chosen as a larger value compared to the one to express the manufacturing tolerance (i.e., 562 
0.07) so as to also consider the aging deterioration. Assigning 𝒙𝒙 = [1.2,1.0,1.0], the natural frequencies 563 
up to fifth modes are obtained by the subspace method as [𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3, 𝑓𝑓4, 𝑓𝑓5] = [1.03,3.67,5.08, 8.29,8.67]. 564 
Hereby, 𝑥𝑥1 = 1.2 accounts for the hardening of the bearings.  Among them, the three dominant modal 565 
frequencies, i.e., 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓5, are utilized as the features of interest. The frequency measurements of 566 
𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓5 are however inevitable to be corrupted with noises. The noises are assumed to follow a 567 
normal distribution with zero mean and the standard deviation set as 5 % of the above nominal value 568 
of 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓5, respectively. In this study, 100 independent realizations of these frequencies are hence 569 
generated by adding such noises and employed as the observations. 570 

The likelihood function is modeled to follow a normal distribution and assuming independence 571 
between individual observations, it is expressed as follows: 572 

𝐿𝐿(𝒚𝒚|𝒙𝒙) = �
1

√2𝜋𝜋𝜎𝜎1𝜎𝜎2𝜎𝜎3

100

𝑗𝑗=1

exp �−
�𝑓𝑓1

(𝑗𝑗) − 𝑓𝑓1(𝒙𝒙)�
2

2𝜎𝜎12
−
�𝑓𝑓2

(𝑗𝑗) − 𝑓𝑓2(𝒙𝒙)�
2

2𝜎𝜎22
−
�𝑓𝑓3

(𝑗𝑗) − 𝑓𝑓3(𝒙𝒙)�
2

2𝜎𝜎32
� (44) 

where 𝜎𝜎𝑖𝑖 indicates the standard deviation of the noise on the 𝑖𝑖th modal frequency; 𝑓𝑓𝑖𝑖
(𝑗𝑗) means the 𝑗𝑗th 573 

realization of the 𝑖𝑖th modal frequency; 𝑓𝑓𝑖𝑖(𝒙𝒙) is the 𝑖𝑖th modal frequency obtained by assigning 𝒙𝒙.  574 
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Table 7 shows the results of aBUS and the proposed PBOQ. PBOQ are performed 20 independent 575 
runs and the results are averaged. It can be seen that both aBUS and PBOQ enable to provide accurate 576 
posterior estimates that well correspond to the assigned target values 𝒙𝒙 = [1.2,1.0,1.0]. In particular, 577 
both methods successfully assess the change in the yield stiffness of the rubber bearings. While aBUS 578 
requires a substantially large number of model evaluations for convergence, the proposed PBOQ only 579 
requires 36.4 model evaluations on average. Finally, Fig. 9 shows the posterior distribution estimated 580 
by the proposed method as a histogram by 1000 realizations of 𝒙𝒙. The horizontal axes correspond to 581 
the 99.7 % confidence interval of the prior distribution. As can be observed, the posterior distribution 582 
is well sharped and converged around the true target values.   583 

Table 7. Bayesian updating results of the seismic-isolated bridge pier model application. 584 

Method 
   𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

𝑁𝑁, 𝑁𝑁1 𝑁𝑁2⁄  𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑁𝑁𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 𝜇𝜇 𝜇𝜇 𝜇𝜇 

aBUS 3 × 103 1.5 × 104 – 1.1999 1.0270 1.0339 
Proposed PBOQ 1 × 105 1 × 104⁄  10 + 16.4 + 10.0 = 36.4 7.6 1.2019 1.0187 1.0290 

 585 
Fig. 9. Posterior distribution of 𝒙𝒙. 586 

5. conclusions 587 

This paper presented a novel Bayesian updating method, termed parallel Bayesian optimization 588 
and quadrature (PBOQ), to provide a coherent and efficient approach for the BUS analysis. The BUS 589 
analysis comprises two different tasks. The first task is the optimization of the likelihood function to 590 
find the constant 𝑐𝑐 that is employed to define a rare event estimation problem. The second task is the 591 
quadrature of the probability of the rare event (i.e., failure probability) that aims to infer the posterior 592 
distribution by means of the samples conditional on the failure domain. The PBOQ method offers a 593 
coherent framework to quantify, propagate, and reduce the numerical uncertainty in these two tasks 594 
in a Bayesian fashion by placing GP priors. This results in a significant reduction of the computational 595 
burden of model updating (i.e., the number of model evaluations).  596 

Compared to other state-of-the-art methods within the BUS framework relying on GP modeling, 597 
the PBOQ method has several unique features. First, PBOQ can take advantage of parallel computing 598 
thanks to two new parallel infill sampling criteria, called EI-weighted 𝑘𝑘-means clustering and UPVC-599 
weighted 𝑘𝑘-means clustering. These parallel infill sampling strategy can substantially reduce the total 600 
number of iteration compared to the conventional purely sequential infill sampling strategy. Second, 601 
the UPVC learning function enables the direct measuring of the uncertainty on the failure probability 602 
estimation; hence, it is more effective to suggest informative points than the conventional U learning 603 
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function. Furthermore, PBOQ can properly address extremely small failure probabilities thanks to a 604 
new numerical integrator by subset simulation to estimate the posterior failure probability. 605 

The performance of the proposed method is illustrated by means of four numerical applications 606 
with increasing complexity, involving a one-dimensional analytical problem, a unimodal distribution 607 
problem with 2- and 10-dimensional inputs, a 2-DOF dynamic problem, and the FE model updating 608 
of a seismic-isolated bridge pier. Compared to several existing methods, the proposed method shows 609 
improved performance for the BUS analysis in regards of efficiency. Nevertheless, the PBOQ method, 610 
in its current form, is only applicable to problems with up to medium-dimensional random variables, 611 
due to the limitation of GP modeling. For very high-dimensional applications, further research efforts 612 
are still needed in the future. 613 
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