
Extraction of Health Outcomes from Clinical
Trial Abstracts

Micheal Abaho

A thesis submitted in accordance with the requirements of the University of
Liverpool for the degree of Doctor in Philosophy.

November 2022





A C K N O W L E D G M E N T S

A quiet review and reflection of all that has transpired in course
of my PhD, humbles me and inevitably causes me to recognize a
group of people without whom, completion of the PhD’s deliverables
including this thesis would have been quite harder than it was.

With great pleasure, I first and foremost thank the Almighty God.
Without him, this would only be an imagination that would have
never come to pass, his mercies, favor and love keep me going every
single day of my life.

I would like to unequivocally appreciate the support, advice and
remarkable insight of my primary supervisor, Prof. Danushka Bolle-
gala. His profound knowledge and interest in the technical aspects
pertinent to the research made it such an incredible privilege to work
with him throughout the PhD.

Additionally, I also appreciate secondary supervisers, Prof. Paula R
Williamson and Dr. Susanna Dodd for their involvement and contri-
butions made in the build up to the completion of work in this thesis.
Their expertise in the domain the thesis investigates was immense,
particularly because they identified some of the gaps in the domain
which present the problem the thesis confronts.

I would also like to acknowledge the advisory team of Prof Xiaowei
Huang and Dr. Shan Luo for their constructive comments on the var-
ious propositions made during the course of the study.

Huge credit goes to the departments of Computer Science and
Health Data Science in the university for providing the resources that
enabled the PhD’s activities and also making the whole experience
worthwhile. Having been based in Computer Science, I was privi-
leged to work with different lecturers in a Teaching Assistant role.
The responsibility that comes along with the role was value addition
to my research, and it has equipped me for future challenges at any
academic or industrial level. Members of all research groups that I
was apart of, particularly the NLP@Liv members, were outstanding
in terms of sharing knowledge through weekly presentations on some
of the latest trending research topics of interest to me.

Many many thanks to my family and friends for their availability,
support and encouragement. My wife, Liz M, my mother Sarah N,
my uncle Robert B, my family at large and all members of Hope
Church Kensington, Liverpool. As I persevered, they advised, they
encouraged, they motivated, they stood with me every step of the
way. I sincerely express my gratitude towards all of them for all of
this.

iii





E X E C U T I V E S U M M A RY

How do clinicians determine whether a particular medical interven-
tion actually works? Ideally, they would design and perform research
studies in human beings (also called clinical trials) in order to com-
pare the effects of the intervention against alternatives, after which
they can generally establish its effectiveness and safety. To discover
this effectiveness (evidence), Evidence-based Medicine (EBM) clinical
practice recommends a framework for constructing clinical questions
by carefully aligning them to four different components, i.e. Partic-
ipants/Problem (P), Intervention (I), Comparison (C) and Outcome
(O), all together abbreviated as PICO. Sample questions they may ask
to obtain evidence include, What is the primary problem and what are
the patients’ characteristics? (e.g. young children with acute febrile illness),
What is the main intervention? (e.g. acetaminophen)? What is the main in-
tervention compared to? (e.g. no intervention, ibuprofen) and What is the
effect of the intervention? (e.g. fever).

Unfortunately, the literature that summarises clinical trials is pri-
marily disseminated in natural language articles which imposes a
significant burden on clinicians to patiently read through them to
pinpoint relevant evidence. The downside of this exercise is, it is time-
consuming, costly and prone to human error especially because there
is an astronomical volume of articles that are potential sources of ev-
idence. To ensure effective and efficient healthcare decision making,
clinicians would benefit from decision support or question answering
systems that can search through abundant literature for evidence in
a precise and timely manner. Driven by this requirement, this thesis
addresses the problem clinicians face as articulated above.

The thesis pays maximum attention to the outcome (O) element
introduced in the first paragraph. As applied to EBM, an outcome
is a measurement or an observation used to capture and assess the
effectiveness of treatment such as assessment of side effects (risk)
or benefits. Automatic detection of outcomes from unstructured text
would undoubtedly speed up access to evidence necessary in health-
care decision making, thereby improving public healthcare delivery.
This thesis adopts and applies Natural Language Processing (NLP)
techniques to automate the detection of outcomes from unstructured
text. Despite outcome detection being an under researched subject,
the thesis builds on prior efforts in detecting PICO elements to pro-
pose cost effective and optimised methods for outcome detection. The
thesis also builds on the recent advancements in NLP such as trans-
fer learning that enable the re-use of pre-trained language models
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(PLMs) in downstream tasks different from the ones they were origi-
nally trained for.

The thesis designs and implements a framework that automati-
cally corrects incorrectly captured annotations of outcomes, thereby
improving the quality of the crowdsourced annotations. It further
presents a flexible and unsupervised label denoiser which relies on
a semantic similarity based approach to align weak (noisy) labels to
standardised labels. An evaluation of these methods lead to substan-
tial gains in performance of the outcome detection tasks. The thesis
introduces “EBM-COMET”, a dataset in which 300 Randomised Clin-
ical Trial (RCT) PubMed abstracts are expertly annotated for clinical
outcomes. Unlike prior related datasets that use arbitrary outcome
classifications, EBM-COMET uses labels from a taxonomy recently
published to standardise outcome classifications. Leveraging EBM-
COMET and prior datasets, the thesis provides an in-depth analysis
of state of the art contextual language models (CLMs) in terms of
their capabilities and potential limitations in encoding and retrieving
outcomes from clinical text. One main conclusion of this analysis is
a consensus on which CLMs (BioBERT, SciBERT) are better suited to
accurately detect mentions of outcomes in clinical text.

The thesis proposes a joint learning strategy that uses both word-
level and sentence-level information to simultaneously perform out-
come span detection and outcome type classification, both of which
were previously performed separately. Experimental results on sev-
eral benchmark datasets for health outcome detection show that my
proposed joint learning method consistently outperforms decoupled
methods. The thesis also proposes a position-based prompting strat-
egy that queries language models to automatically generate health
outcomes. It uses a position-attention mechanism to capture posi-
tional information of each word in a prompt relative to the mask to
be filled, hence avoiding the need to re-construct prompts when the
prompts’ linguistic pattern changes. This approach demonstrates the
ability of eliciting answers (in a case study on health outcome gener-
ation) to not only common prompt templates like Cloze and Prefix,
but also rare ones too, such as Postfix and Mixed patterns whose
masks are respectively at the start and in multiple random places of
the prompt. More so, using various biomedical PLMs, the approach
consistently outperforms a baseline in which the default PLMs repre-
sentation is used to predict masked tokens.

The work in this thesis echoes the power and effectiveness of fine-
tuning PLMs for domain-specific tasks such as health outcome detec-
tion and others embodied within biomedical text mining. I however
recognize that it would be interesting future work to explore pre-
training LMs before fine-tuning them for health outcome detection
tasks as proposed under the future work section in the conclusion.
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In summary, this thesis has demonstrated the potential Artificial
Intelligence (AI), particularly NLP has in transforming (for the better)
the way healthcare is delivered. The various propositions it makes
and implements are timely interventions that can optimally increase
the speed of analysis of clinical text for evidence based healthcare
practices.
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1
I N T R O D U C T I O N

1.1 background and motivation

Whatever the end goal is, skimming through a sizeable portion of text
to understand and pinpoint relevant information is an extremely dif-
ficult task. It is laborious in nature, prone to error and subject to var-
ious interpretations which risk corrupting the actual communication
in the text. This predicament is not unique to a single job, however,
the ruthlessness of its damaging ripple effects can be more severe
for some jobs. One such job in which a lot of unbearable damage
can arise is health or patient care, for instance, prescription of wrong
medication or imprecise diagnosis and prognosis resulting from in-
adequate search through clinical records can lead to untimely death
[38, 132].

The need for effective and efficient searching through medical liter-
ature has never been more apparent than it is today. Hundreds if not
thousands of clinical articles, reports and studies are published every
single day in digital archives [121, 161]. To put it simply, medical lit-
erature is in overabundance. In fact, clinicians and researchers have The need for effective

and efficient searching
through medical
literature has never
been more apparent
than it is today

acknowledged the difficulty in dealing with this sheer volume of liter-
ature [159, 206] in their day to day work. The challenge this presents
is that, delivery of optimal health care is compromised when clini-
cians are unable to quickly access knowledge necessary in making
informed clinical decisions.

Fortunately, computational methods and in particular Natural Lan-
guage processing (NLP) have intervened and developed biomedical
text mining tools to provide more expeditious literature searching
and efficient clinical fact retrieval [110, 125]. For example given an
article such as in Figure 1, to infer any piece of evidence, NLP would
automatically process the article and extract the required evidence,
whereas on the other hand, clinicians would need to manually read
and interpret several segments in the article before deducing any
evidence which can at times turn out to be false too as Figure 1

shows. BioNLP which connotes Biomedical Natural Language Pro-
cessing (BioNLP) research has recently emerged under the umbrella
field of NLP to primarily enable exploration and experimentation of
text mining research methods applicable to literature from biomedi-
cal, clinical and generally health disciplines. To their credit, the NLP

research community has achieved relative success in automating sev-
eral BioNLP tasks such as chemical and disease relation extraction
[127], chemical and drug recognition [67], gene identification [193],
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2 introduction

extraction of Drug-Drug Interactions (DDI) [76, 188], protein recogni-
tion [15], de-identification or anonymisation of patient information
[157] and extraction of biomedical evidence from clinical trials [107].

This thesis fits into the body of work that automates the extrac-
tion of biomedical entities from clinical text. Specifically it focuses on
the extraction of health outcomes from Randomised Clinical Trial ab-
stracts (RCTs) which are often made publicly available in digital repos-
itories such as PubMed1, Clinical Trials Registry2 and Core Outcome
Measures in Effectiveness Trials (COMET) Initiative.3 Whereas someAn outcome is “a

measurement or an
observation used to

capture and assess the
effect of treatment

such as assessment of
side effects (risk) or

effectiveness (benefits)

authors refer to them as variables monitored during clinical trials to
assess the impact of studied interventions [52, 101, 114], the widely ac-
knowledged definition of a health outcome is “a measurement or an
observation used to capture and assess the effect of treatment such
as assessment of side effects (risk) or effectiveness (benefits) [225].
In summary, they are often thought of as biomedical evidence [26,
52, 53]. For purposes of illuminating the biomedical evidence (health
outcomes) extraction, the following section is used to broadly unveil
the task of Outcome Detection (OD), its applications, challenges and
profound relevance.

Figure 1: Given a clinical report/article/abstract, NLP systems (in contrast
to manual approaches) are capable of more efficient and effective
detection and extraction of clinically relevant information.

1.2 outcome detection

OD is subsumed by a bigger research paradigm called Evidence Based
Medicine (EBM). EBM enforces healthcare decision making through the
explicit and judicious use of current best evidence [181]. In practice,
EBM researchers predominantly use a framework entitled PICO as a
basis of formulating clinical questions to facilitate searching through
biomedical literature. Patients (P), Interventions (I), Comparators (C)

1 https://pubmed.ncbi.nlm.nih.gov/
2 https://clinicaltrials.gov/
3 https://www.comet-initiative.org/Studies

https://pubmed.ncbi.nlm.nih.gov/
https://clinicaltrials.gov/
https://www.comet-initiative.org/Studies


1.2 outcome detection 3

and Outcomes (O) (PICO) are essentially the critical elements of focus
for clinicians when searching for relevant evidence i.e. Patients (or
Population) stands for the patient/s of interest, their problem/s and
demographics such as age, gender or ethnicity, Interventions stands
for the treatment/s or therapy being considered, Comparators (or
Control) stands for a comparison treatment/s measured against the
Intervention and the Outcomes stands for the observed or monitored
evidence of effect during clinical trials [181]. Collectively consider-
ing all four elements significantly contributes towards various key
health-care delivery indicators such as identification of evidence of
the effectiveness of a certain treatment or diagnosis, strategies to eval-
uate quality of studies and mechanisms implemented in healthcare
[88].

Despite not receiving attention equitable to other BioNLP research
areas (such as disease, drug, chemical and gene recognition), the po-
tential benefits of using readily available sources of clinical informa-
tion has not completely gone unnoticed in EBM research. Of partic-
ular importance in EBM, is the identification of information about
outcomes measured on patients [52], for example, blood pressure,
fatigue, headache, pain etc. The ability to automatically detect out-
comes (or outcome phrases) contained within clinical narrative text
serves to maximise the potential of such sources. For example, GP
letters or free text fields recorded within electronic health records,
may often contain valuable clinical information which is not read-
ily accessible or analysable without manual or automated extraction
of relevant outcome. Similarly, automated identification of outcomes To minimise

compromised patient
care, clinicians need
just-in-time access to
the best available
evidence in context of
the patients’
individual conditions

mentioned in trial registry entries or trial publications could help to
facilitate systematic review processes by speeding up outcome data
extraction. More so, the benefits of automated outcome recognition
are increased further if it extends to categorisation of outcomes within
a relevant classification system such as the taxonomy proposed in [55].
While it speeds up access to the best available evidence in context of
patients’ individual conditions [52], automated identification of out-
comes is also a cost effective method that aids delivery of optimal
patient care [26].

1.2.1 Challenges in Outcome Detection

Similar to other clinically relevant entities, outcomes are primarily
mentioned in scientific publications which are disseminated as un-
structured text. This introduces two challenges, the first being iden-
tifying publications that best describe clinical trial outcomes from a
plethora of publications and second being, extracting target phrases
that correspond to outcomes from each relevant study identified [52].
Fortunately, outcomes are predominantly reported in RCTs, hence, nar-
rowing down the search space of relevant studies in the OD process.
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However, multiple researchers indicate that, there are a lot of incon-
sistencies in outcome reporting resulting from the variability in how
outcomes are defined and measured across several clinical trials [55,
88, 225]. Furthermore, Williamson et al. [225] note that, there is a
significant degree of outcome reporting bias where studies with sta-
tistically significant results on outcomes measured are more likely to
be published than others.

The above problems result from or are further exacerbated by the
lack of a uniform classification system that absorbs all outcomes that
patients regard as most important or relevant [55]. Despite the initia-
tives to standardise outcomes [210], there is hardly any dictionary nor
vocabulary for reference of all outcome terminology unlike other clin-
ical entities such as diseases which have repositories of terminologies
to support their extraction. All together, these challenges make the
task of detecting and extracting outcomes from biomedical literature
burdensome. Moreover, the subject has attracted less attention than itOutcome reporting is

inconsistent across
several RCTs because
there is no consensus

on how outcomes
should be reported.
Limited annotated

corpora has led to less
attention form the

BioNLP community

might from the BioNLP community. At this point, it is predictable that
OD is a low-resourced task with limited publicly available annotated
corpora and limited benchmarking tools and applications that can be
applied across several corpora. Nonetheless, the BioNLP community
has taken some positive strides and proposed different methods to
alleviate some of the aforementioned challenges as the next chapter
discusses.

1.2.2 Outcome Detection in NLP

Earlier work on NLP for OD cast it as a text classification task where
the goal was to classify sentences in RCTs as outcome-statements (task
(1) in Table 1), which indicated that the sentences summarised the
consequences of an intervention [23, 53]. Using classifiers like Naïve
Bayes (NB) [84], Support Vector Machines (SVM) [73], Multi-layer per-

Task Output

(1)

Outcome statement classification

Demner-Fushman et al. [52]-2006, (Boudin, Nie, and Dawes [23],

Boudin et al. [22])-2010, (Kim et al. [107],

Huang et al. [85])-2011, Wallace et al. [214]-2016

- outcome statement

(2)
Outcome Span Detection OSD)

Nye et al. [161]-2018, (Kang, Zou, and Weng [101]

Brockmeier et al. [26])-2019

- wheezing

- shortness of breath

(3)
OC)

Nye et al. [161]-2018, Abaho et al. [1]-2019

- Physiological outcome

Table 1: The evolution of OD tasks chronologically ordered from what it was
before, to what it was at the point of commencement of the work
covered in this thesis.
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ceptron (M-LP) [30, 85], these works built classification models to pre-
dict whether a sentence contains an outcome or not. Later on, the task
was re-modelled as either (a) OSD, a sequence labelling task where the
goal is to detect which text spans in a Randomised Clinical Trial (RCT)
abstract describe health outcomes (task (2) in Table 1) [26, 161], or (b)
OC, a classification task where the goal is to classify a text into a pre-
defined set of outcome types or categories depending on an outcome
that is mentioned somewhere in that text (task (3) in Table 1) [1, 161].

Despite being restrained by shortage of expertly labeled datasets,
few attempts to create EBM-oriented datasets to support OD have
been made. Wallace et al. [214] use Distant Supervision (DS) to an-
notate sentences in clinical trial articles with PICO elements. Demner-
Fushman et al. [52] use an experienced nurse and a medical student
to annotate outcomes by identifying and labelling sentences that best
summarise the consequence of an intervention. Similarly, other at-
tempts have precisely segmented PubMed abstracts into sentences
that they label one of P, I and O (I and C are collapsed into I) to re-
spectively imply Patients, Interventions and Outcomes [95, 107]. Since
annotation of the above datasets is tailored for Sentence-Level Clas-
sification (SLC), it becomes difficult to use them for individual PIO
elements extraction tasks [26, 101] such as OD. This difficulty hence-
forth propelled works such as Nye et al. [161] to annotate granular P,
I, O information within RCTs using a mixture of crowd workers (non-
experts) and expert workers, thus, producing the recently released
EBM-NLP corpus. The early OD datasets

could only support
sentence level
classification of
outcomes, however
this work builds on
recent EBM-NLP
dataset with token
level outcome
annotations to further
the task of OD.

Carefully reviewing the above as well as in several sections of the
following thesis chapters, it is rather noticeable and evident that OD

and Evidence Based Medicine-Natural Language Processing (EBM NLP)
have a dearth of expertly labelled datasets. Additionally, I am aware
of a well documented challenge (earlier mentioned in Section 1.2.1)
of the absence of a consensus on how clinical trial outcomes should
be classified [45, 53, 55], which has in turn detracted attention of com-
puter scientists from the task. These challenges therein motivate the
work covered in Chapter 3 of this thesis.

In spite of the scarcity of publicly available expertly annotated
corpora highlighted in the previous paragraph, the rapid advance-
ment in NLP techniques has accelerated EBM NLP. Several works have
adopted the impressive artificial neural network architectures such
as Bidirectional Long short-term memory (BiLSTM) [77] to enhance
automated PICO elements extraction. Using a Conditional Random
Field (CRF) [116] as an output layer, the performance achieved in PICO

elements extraction (cast as a Named entity Recognition task) has fur-
ther improved using the EBM-NLP corpus [95, 101, 161]. Of late, a
small number of authors have used Transfer Learning (TL) as a con-
duit to adopt Contextualised Language Model (CLM)s such as SciB-
ERT [18] and ClinicalBERT [8, 113] to achieve PICO extraction. CLMs
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such as the aforementioned, account for information about surround-
ing words when processing a single word, and because of this, they
have achieved unparalleled success in traditional BioNLP tasks includ-
ing disease, gene, drug and chemical name recognition [121, 211, 241].
However, the same cannot be emphatically stated for outcomes. This
then, inspired the attempt to enhance current state-of-the-art (SOTA)
performance in OD made in Chapter 4 and Chapter 5.

1.3 language models as health outcome knowledge bases

Language Model (LM)s have overwhelmingly thrived in inferential
statistics, proving an arguably indisputable mark in the interpreta-
tion, decoding and disambiguation of written language [54, 136, 167].
This success has instigated the NLP research community to further ex-
plore LMs by asking questions such as, how knowledgeable are these
LMs, in other words, what do they know and how much of it do they
know? To obtain answers, a whole new research paradigm deemed
Language models as knowledge bases (LM-as-KB) has emerged in which,
researchers probe LMs for factual knowledge that presumably was
learned during their training and as such is transferable and associa-
ble [27, 94, 128, 170, 190]. For example, if an LM learns that “doctors”How robustly is

information relating
to health outcomes
stored in Language

Models

treat “patients”, will it always be able to associate doctors with the
treatment of patients since the statement might not always be explic-
itly stated, and further more, will it be able to distinguish this “doctor-
patient” relationship from various other relationships that doctors or
patients have with other entities such as medicine. In essence, this
task queries LMs for stored retrievable world knowledge and the ex-
tent to which they have grounding in perception of facts expressed in
language [75].

Multiple works on this subject have emerged making use of “fill-
in-the-blank” statements and thereby, tasking LMs to accordingly pre-
dict the expected information in the blanks. These “fill-in-the-blank”
statements (often referred to as prompts) have severally been used in
fine-tuning and querying a Pretrained Language Model (PLM) for re-
lational knowledge between different entities. While there have been
multiple works querying for general-domain relational knowledge
such as where people live and work, where and when people were
born or died [94, 170], little has been done in terms of querying LMs
for more complicated and domain-specific relational knowledge. Us-
ing triples directly extracted from established biomedical Knowledge
base (KB)s like the Unified Medical Language System (UMLS)4 and
Comparative Toxicogenomics Database (CTD)5, Sung et al. [200] re-
cently inspected the potential utility of LMs as biomedical KBs. The
challenge with this is, not only are the biomedical entities explored

4 https://www.nlm.nih.gov/research/umls/index.html
5 http://ctdbase.org/

https://www.nlm.nih.gov/research/umls/index.html
http://ctdbase.org/
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eligible for being cast into (subject-relation-object) triples e.g. headache-
symptomOf-Pituicytoma, there is no existing KB with this relational
knowledge structure for health outcomes [55].

To investigate the utility of LMs as health outcome knowledge bases,
this thesis therefore designed a novel task named outcome genera-
tion to probe several biomedical LMs by querying them to (1) recall
outcome information encountered during training and (2) generate
outcomes using out of scope prompts or prompts never encountered
during training. This investigation is covered in Chapter 6 of the the-
sis.

Figure 2: Querying a language model (LM) as a knowledge base for factual
knowledge.

1.4 research aim and objectives

In light of the preceding discussion on the OD task, its evolution in
NLP and the identified gaps motivating this work, the chief aim of
this thesis is:

To enhance and advance automated extraction of health outcomes in
evidence-based medicine/practice using natural language processing

methods and the abundant literature in the biomedical domain. The main
focus is on the explicit identification of individual outcome spans and

classification of outcomes into outcome types to enhance the search and
retrieval of evidence.

To further unpack this aim, the specific objectives and targets that
are worked towards herein include the following, . . . Enhance and

advance the health
outcome identification
and classification.

1. To evaluate and improve the reliability of current outcome an-
notations, with a keen emphasis on weakly labelled datasets.
Subsidiary to this objective, is a list of more specific targets as
outlined below,

1.1. To tackle flaws in outcome annotations in datasets cur-
rently supporting OD.
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1.2. To denoise weakly labelled crowd sourced outcome anno-
tations.

1.3. To align outcome annotations to standardised outcome clas-
sification systems.

2. To assess and advance the OD task to new SOTA performance
on benchmark datasets. Specifically, this objective is further nar-
rowed down to these targets,

2.1. To build and fine-tune custom LM architectures that are
superior, more competent and re-usable than current OD

approaches.

2.2. To obtain a consensus on which PLMs are best suited for
the OD task.

2.3. To publicly avail PLMs that can be fine-tuned for the OD

task.This thesis seeks to
assess and advance

the task of OD to new
SOTA performance on

benchmark datasets.

3. To probe for methods that can explicitly identify categorical
outcome knowledge specific to individual outcome spans from
RCTs.

4. To empirically verify and justify the evaluation performances
obtained by methods proposed in objectives (2) and (3).

1.5 contributions

Several investigations were conducted in view of the aim, objectives
and targets stated above. As a result, a number of milestones (in-
cluded below) are arrived at, which subsequently served as a suffi-
cient pretext for the preparation of this thesis.

• A hybrid strategy to denoise flawed outcome annotations. This
re-usable strategy involves combining Part-Of-Speech tagging
and Rule-based chunking to automatically identify and correct
incorrect demarcations of outcome spans. This work is presented
in Section 3.2 and published at the International Joint Confer-
ences on Artificial Intelligence (IJCAI) 2019 KDH workshop [1].
Resources used including the code and dataset are publicly
availed.6

• A flexible, re-usable label alignment approach that extracts pseudo
parallel annotations from comparable datasets. This approach
is aimed to primarily denoise outcome label annotations by
aligning them to more recent standard outcome classification
systems that were never used in their annotation in the first
place. The approach is proposed within work published at the
Empirical Methods in Natural Language Processing (EMNLP)

6 https://github.com/MichealAbaho/pico-outcome-prediction

https://github.com/MichealAbaho/pico-outcome-prediction
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2021 conference [3] and presented in Section 3.4. The code is
published.7

• In addition to building a custom OD classification model that
consumes contextual embeddings, the thesis provides a com-
parative assessment of biomedical CLMs in the OD tasks. This
analysis is extensively covered in Chapter 4 and was published
in European Journal for Biomedical Informatics (EJBI) 2021 [2].
Both code and dataset are provided.8

• This work constructed a new dataset by collecting a set of RCTs

from PubMed and expertly annotating outcomes in the RCTs.
It additionally presented empirical evidence of the benefit of
fine-tuning several biomedical PLMs for OD using the dataset.
The dataset construction details are included in Section 3.3 and
published.9

• A joint learning strategy that simultaneously achieves health
outcomes span detection and health outcome type classifica-
tion without compromising the performance of either one of
the tasks. This work is proposed and published in EMNLP 2021

[3] and presented in Chapter 5. Code and datasets are publicly
accessible.10

• A novel position-attention prompting framework to probe LMs
for knowledge relevant to health outcomes. This prompting frame-
work is expounded on in Chapter 6 and has been published
in the Association for Computational Linguistics (ACL) 2022

BioNLP Workshop. Code used is publicly accessible.11

1.5.1 Publications

[1] Micheal Abaho, Danushka Bollegala, Paula Williamson, and
Susanna Dodd. “Correcting crowdsourced annotations to im-
prove detection of outcome types in evidence based medicine.”
In: CEUR Workshop Proceedings. Vol. 2429. 2019, pp. 1–5. url:
http://ceur-ws.org/Vol-2429/paper1.pdf.

[2] Micheal Abaho, Danushka Bollegala, Paula Williamson, and
Susanna Dodd. “Assessment of contextualised representations
in detecting outcome phrases in clinical trials.” In: European
Journal of Biomedical Informatics 17.9 (Aug. 2021). url: https:

//arxiv.org/pdf/2203.03547.pdf.

7 https://github.com/MichealAbaho/Label-document-Alignment
8 https://github.com/LivNLP/ODP-tagger
9 https://github.com/LivNLP/ODP-tagger/tree/master/EBM-COMET

10 https://github.com/MichealAbaho/Label-Context-Aware-Attention-Model
11 https://github.com/MichealAbaho/outcome_generation

http://ceur-ws.org/Vol-2429/paper1.pdf
https://arxiv.org/pdf/2203.03547.pdf
https://arxiv.org/pdf/2203.03547.pdf
https://github.com/MichealAbaho/Label-document-Alignment
https://github.com/LivNLP/ODP-tagger
https://github.com/LivNLP/ODP-tagger/tree/master/EBM-COMET
https://github.com/MichealAbaho/Label-Context-Aware-Attention-Model
https://github.com/MichealAbaho/outcome_generation
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[3] Micheal Abaho, Danushka Bollegala, Paula Williamson, and
Susanna Dodd. “Detect and Classify – Joint Span Detection
and Classification for Health Outcomes.” In: Proceedings of the
2021 Conference on Empirical Methods in Natural Language Pro-
cessing. Online and Punta Cana, Dominican Republic: Asso-
ciation for Computational Linguistics, Nov. 2021, pp. 8709–
8721. doi: 10.18653/v1/2021.emnlp- main.686. url: https://

aclanthology.org/2021.emnlp-main.686.

[4] Micheal Abaho, Danushka Bollegala, Paula Williamson, and
Susanna Dodd. “Position-based Prompting for Health Out-
come Generation.” In: Proc. of The 21st BioNLP workshop associ-
ated with the ACL SIGBIOMED special interest group. 2022. url:
https://arxiv.org/abs/2204.03489.

1.6 thesis organisation and summary

Beyond this point, this thesis contains 6 other chapters which are
organised as follows,

chapter 2 - related work: Presents a variety of works that
are similar to this thesis’ contents in mainly two ways, either con-
ceptually in terms of application of NLP methods in mining clini-
cally salient information from biomedical literature or in terms of
biomedical evidence extraction with an inclination towards health
outcomes.

chapter 3 - refinement an annotation of outcome data:
Presents and describes the different methods and propositions im-
plemented to overcome the scarcity of reliable resources to sup-
port biomedical evidence extraction, and in particular OD. Besides
proposing two scalable and flexible denoising methods (outcome
span denoiser and outcome label denoiser), the chapter presents an
expertly labelled dataset to support the OD task.

chapter 4 - assessment of contextualised representa-
tions in detecting outcomes: Presents two TL adaptation mech-
anisms that leverage several existing biomedical CLMs in building
models that produce SOTA performance in the OD task.

chapter 5 - joint span detection and classification for

health outcomes: Presents and describes a joint learning strat-
egy that maximizes the word- and sentence-level information (in
RCTs) to simultaneously achieve outcome span detection and out-
come type classification.

chapter 6 - position-based prompting for health out-
come generation: Proposes a novel prompting mechanism to
probe LMs for factual health outcome related information.

https://doi.org/10.18653/v1/2021.emnlp-main.686
https://aclanthology.org/2021.emnlp-main.686
https://aclanthology.org/2021.emnlp-main.686
https://arxiv.org/abs/2204.03489
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chapter 7 - conclusion: Summarises the work covered in the
thesis with a summary of the highlights, a discussion of the chal-
lenges and limitations encountered, a discussion of the applicability
of the different methods proposed and finally, possible future work
beyond this thesis.





2
R E L AT E D W O R K

2.1 introduction

The unprecedented volume of biomedical research articles published
every day necessitates continually overhauling biomedical literature
searching methods. Courtesy of the acceleration and advancement
of computational linguistics research initiatives such as NLP as well
as the increase in computational power, a multitude of methods, tech-
niques and datasets are increasingly published to enhance biomedical
information searching and retrieval. Many of these resources served
as a building block to motivate the work that was undertaken and pre-
sented in this thesis. Because of the profound role PLMs play in the
methods proposed by this thesis, this chapter begins by providing
a brief background of TL and its recent successes in BioNLP in Sec-
tion 2.2. Following a preamble with a brief introduction to EBM NLP,
the chapter discusses and reviews the main problem of identifying in-
dividual outcome spans and classifying outcomes into outcome types
that this thesis largely tackles as mentioned in the preceding Chap-
ter 1. To motivate the work on denoising crowdsourced annotations in
Section 3.2, this chapter investigates published datasets that are con-
structed to support OD (Section 2.3.2), and as well review prior work
on noise reduction in weakly labelled BioNLP datasets in Section 2.4.
Subsequently, the chapter extensively details prior approaches un-
dertaken to achieve OD which can be categorised into two branches,
sentence- and token- level classification of outcomes. Towards its end,
the chapter reviews attempts that have been made in joint modelling
strategies to enhance information extraction in the clinical domain
within Section 2.5. Furthermore, the chapter discusses efforts made
in treating LMs as KBs in Section 2.6. Last but not least, the chapter
provides brief descriptions and backgrounds of various other BioNLP

tasks in Section 2.7, that may in one or more ways relate to OD. TL is an ML approach
that enables usage of a
model to achieve a
task that it was not
initially built and
trained for.

2.2 transfer learning (tl)

TL is a Machine Learning (ML) approach that enables usage of a
model to achieve a task that it was not initially built and trained
for [199]. Usually, the assumption is that, train and test data for a spe-
cific task exists, however, this is never the case. TL therefore allows
learning across different tasks. The term pre-trained often used in TL

approaches and tasks implies that a model was previously trained on
a task different from the target task it is currently being used for.

13
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The most popular PLMs adopted for TL include the Uni-directional
or auto-regressive LMs; which given a sequence s = {wt}

|s|
t=1, model

P(wt|w<t : θ), the probability of a target word wt given the previ-
ously seen words or context w<t such as [GPT-3; 27], [Text-to-Text
Transfer Transformer T5; 174] and [XLNet; 235]. Some popular vari-
ants of auto-regressive LMs are Left-to-Right (L2R) LMs such as Encoder-
Decoder models [40], which use two separate neural architectures to
model P(y<Ndec

|x<Nenc
), with the first architecture encoding an in-

put sequence x1, . . . , xNenc
and the second architecture decoding an

output sequence y1, . . . ,yNdec
conditioned on the input sequence rep-

resentation. Nenc and Ndec are the encoder input and decoder out-
put sequence lengths respectively.

The other popular PLMs are the Bidirectional LMs; which given s

defined in above paragraph, model P(wt|w1⩽t−1,t+1⩾n : θ), the prob-
ability of a word given the surrounding context such as [Bidirectional
Encoder Representations from Transformers (BERT); 54], [Robustly
optimised BERT approach (RoBERTa); 136] and [Embeddings from Lan-
guage Models (ELMo); 167]. Many Bidirectional LMs use Masked Lan-
guage Modelling (MLM), a paradigm which masks pieces of an input
(words and or sub-words depending on the tokenization algorithm
[228]) and then trains the model to predict the masked tokens given
the surrounding context. Generally Both Uni- and Bi- directional LMsUni-directional and

Bidirectional
Language Modelling
are two common and
pre-training methods

responsible for the
success in TL

are hinged upon the Transformer architecture (proposed by google
research team [213]) characterised by three important aspects that
make them distinct from earlier Neural Network (NN) architectures
like the Recurrent Neural Networks (RNN), Long Short Term Mem-
ory (LSTM) and Convolutional Neural Network (CNN). These aspects
include non-sequential processing, i.e sentences are processed as a
whole rather than word by word, self-attention mechanism, which al-
lows them compute similarity scores between the words in a sentence,
hence, they are able to consider the impact every other word in a sen-
tence has when predicting a particular word and, finally positional
embeddings which encode information related to a specific position
of a word in a sentence [213].

CLMs such as the above mentioned Uni- and Bi- directional LMs
have significantly outperformed context-independent embeddings such
as word2vec [149] and Global Vectors (GloVe) [166] in various TL down-
stream NLP tasks such as Question Answering (QA), a task to auto-
mate the answering of questions [175], Textual entailment, a task of
determining whether a given “hypothesis” is true given a “premise”
[24], Named Entity Recognition (NER), a task to extract different types
(such as names, location etc) of entities mentioned in text [207] etc.

The success of general-domain TL propelled the emergence of domain-
specific TL and in particular, domains such as biomedicine through
BioNLP have remarkably advanced of late. The notion of general-domain
is used to denote a distribution over a language characterising a
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diverse set of topics, whereas domain-specific is used to denote a
distribution over a language characterising a single topic. BERT vari-
ants such as SciBERT [18], ClinicalBERT [10] and PubMedBERT [70]
yielded performance improvements in the Biomedical NER tasks on
the BC5DR dataset [56, 127], text-classification tasks like Relation
Extraction (RE) on the ChemProt dataset [115] and on extraction of
PICO elements. Despite being pre-trained on English biomedical text,
BioBERT [121] outperformed the generic BERT model (pre-trained on
Spanish biomedical text) in Pharma-CoNER, a multi-classification task
for detecting mentions of chemical names and drugs from Spanish
biomedical text [199]. Recently, Jin et al. [97] discovered that, in com-
parison to BioBERT, BioELMo (Biomedical ELMo) better clustered en-
tities of the same type such as, an acronym having multiple mean-
ings or a homonym. For example, unlike BioBERT, BioELMo clearly
differentiated between ER referring to “Estrogen Receptor” and ER
referring to “Emergency Room” in their work.

Most notably, TL is the fundamental aspect that links up various
works covered in the majority of this thesis’ chapters. Adoption of
PLMs for domain-specific tasks in a TL setup has not just eliminated
the need to train models from scratch, but it has also led to perfor-
mance improvements in tasks that are defined and reviewed in the
subsequent sections of this chapter.

2.3 evidence based medicine natural language process-
ing (ebmnlp)

EBM NLP is term used to refer to the adoption and application of NLP

techniques to extract evidence of effective interventions from biomed-
ical literature. Clinically, evidence is often arrived at through manu-
ally searching for answers (within clinical text documents) to PICO

formatted questions. From a BioNLP standpoint, researchers have in- EBM NLP involves
the adoption of NLP
techniques to extract
evidence of effective
interventions from
biomedical literature

vented different approaches of automatically adducing this type of
evidence, i.e. evidence that entails or stipulates all or some of the PICO

elements. EBM NLP work has largely concentrated on the task of auto-
matic recognition of PICO elements making use of neural architectures
like the M-LPs, RNNs, LSTMs [26, 96, 101] and CLMs [18, 70] in the recent
past. Of late, EBM NLP has diversified in terms of approaches, with
some authors designing Natural Language Inference (NLI) tasks to de-
duce evidence from biomedical literature. Lehman et al. [122] build
a model to predict whether a clinical article (treated as a premise)
suggests that an Intervention specified in a prompt (treated as a hy-
pothesis) led to a significant increase, decrease or no difference to a
health outcome. While most works often detect PICO elements all to-
gether, this work pays keen and specific attention to detection and
extraction of health outcomes as earlier motivated in Chapter 1.



16 related work

2.3.1 Outcome Detection (OD)

OD is systematic in nature, with some authors describing it as two-
fold in nature, where first, a minimal amount of text sufficient enough
to understand implications of health outcomes is determined, and sec-
ondly, the text units that describe health outcomes are identified [52].
Automatic execution of both or any of these tasks is rapidly becom-
ing a norm given the recent surge in text-mining tools as highlighted
in Chapter 1. The next section seeks to uncover the developments in
terms of datasets facilitating automatic OD as well as categorically
discuss the two classification approaches used in automatic OD.

2.3.2 Datasets

Prior work on OD and EBM NLP has been limited by the scarcity of
publicly available corpora for training and evaluation [161, 197]. Ac-
cording to Dodd et al. [55], this gap mainly emanates from the lack
of standard classification systems for not just outcomes, but PICO el-
ements as earlier mentioned in the challenges described under Sec-
tion 1.2.1. Additionally, I observe that researchers struggle to recruit
expert annotators and they heavily rely on the structured nature of
RCTs to prepare datasets for this task. Subsequently, the annotation
guidelines for EBM datasets summarised in Table 2, have varied from
one study to another as noticed in previous construction efforts.Prior work on OD

and EBM NLP has
been limited by

scarcity of publicly
available corpora for

training and
evaluation.

Focused on 3 conditions (Rheumatoid arthritis, migraines and breast
cancer), Demner-Fushman et al. [52] employed a team of 2 experi-
enced clinical nurses, a medical student and a PhD to identify sen-
tences containing health outcomes within 633 Medline articles [155].
Their annotation scheme consisted of Medical subject Headings (MeSH)1

definitions of 7 elements that were to be used in tagging sentences.
These were “Background”, “Population”, “Intervention”, “Statistics”,
“Outcome”, “Supposition” and “Other”. Their understanding and
hence guiding definition of an outcome was “a sentence that best
summarizes the consequence of an intervention”.

Kim et al. [107] slightly edited Demner-Fushman et al. [52]’s an-
notation scheme by excluding “Statistics” and “Supposition” cate-
gories and instead introduced “Study Design” category to annotate
a bigger number of Medline articles (1000). Kim et al. [107] further
advanced the selection of RCTs to include in the dataset, by using
queries provided by two institutions, the Global Evidence Mapping
Initiative (GEM)2 and the Agency for Healthcare Research and Qual-
ity (AHRQ)3 to retrieve RCTs linked to traumatic brain and spinal cord
injury.

1 https://www.nlm.nih.gov/mesh/meshhome.html
2 http://www.evidencemap.org/
3 http://www.ahrq.gov/

https://www.nlm.nih.gov/mesh/meshhome.html
http://www.evidencemap.org/
http://www.ahrq.gov/
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Demner-Fushman et al. [52] and Kim et al. [107] annotation pro-
cess assumed that the outcomes and or other PICO elements can be
mentioned anywhere in the text. Several works later gave precedence
to the structured nature of the RCTs in identifying and thereby anno-
tating PICO elements. Boudin et al. [22], Boudin, Nie, and Dawes [23],
Huang et al. [84, 85], and Jin and Szolovits [96] all follow the dis-
tinct section headings in the abstracts to annotate sentences such that,
all sentences under a section heading PARTICIPANTS were labelled
“P”, sentences under a section heading INTERVENTIONS were la-
belled “I”, sentences under a section heading COMPARATORS were
labelled “C” and finally sentences under the section heading OUT-
COMES were labelled “O”. Some key word section headings might
not appear verbatim to the headings of interest, and therefore synony-
mous phrases were considered such as PATIENTS/POPULATION/-
SUBJECTS if PARTICIPANTS is not found, MEASUREMENTS/MEA-
SURED OUTCOME/CLINICAL OUTCOME if OUTCOMES is not
found.

To annotate even larger corpora, Wallace et al. [214] adopt an ap-
proach that distantly supervises annotation of 12,808 structured and
semi-structured RCTs from the Cochrane Database of Systematic Re-
views (CDSR) [195]. The lay annotators weakly labelled article sen-
tences as negative or positive by finding at least 4 overlapping tokens
across the article sentences and free-text summaries descriptive of
PICO elements in CDSR.

Most recently, researchers are adopting annotation tools to enhance
preparation of datasets to facilitate EBM. Kang, Zou, and Weng [101]
employed a medical professional and an informatics researcher to
annotate 170 Medline RCTs using BRAT, a web based collaborative an-
notation tool [196]. Each abstract is initially classified into 5 common
clinical question types, Treatment, Prevention, Diagnosis, Prognosis
and Etiology. Thereafter, two attributes including a Qualifier (qualita-
tive description e.g. “different”, “similar”, “higher”) and a Measure
(quantitative description e.g. “138+/- 13mg daily”) were used in iden-
tifying PICO elements. The challenge with

earlier datasets
supporting OD and
EBM NLP, is that,
only sentence-level
annotation was
conducted and entity
level annotation of
outcomes or other
PICO elements was
neglected

The challenge with all of the above datasets is that, only sentence-
level annotation was conducted and entity level annotation of out-
comes or other PICO elements was neglected. It therefore, becomes
difficult to use them for tasks that require extraction of individual
PICO elements [26, 101] such as OSD. To address this issue, Nye et
al. [161] published EBM-NLP, a dataset in which ca. 5,000 clinical
trial abstracts were annotated with PICO elements by a mixture of lay
and expert annotators. The corpus has two versions, (1) the “starting
spans” in which text spans are annotated with the literal “PIO” labels
(I and C merged into I) and (2) the “hierarchical labels” in which the
annotated outcome “PIO” spans were annotated with more specific
labels aligned to MeSH terms, for instance the Outcome (O) spans are
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annotated with more granular (specific) labels which include Physi-
cal, Pain, Mental, Mortality and Adverse effects.

The EBM-NLP dataset has however been discovered to have flawed
outcome annotations [1] such as (1) statistical metrics and measure-
ment tools annotated as part of clinical outcomes e.g.“mean arterial
blood pressure” instead of “arterial blood-pressure”,“Quality of life Ques-
tionnaire” instead of “Quality of life” and (2) Multiple outcomes an-
notated as a single outcome “Systolic and Diastolic blood-pressure” in-
stead of “Systolic blood-pressure” and “Diastolic blood-pressure”. Further
more, similar to the earlier discussed datasets and summarised in Ta-
ble 2, construction efforts of this granular detailed PICO dataset lacked
a standard classification system to accurately inform the annotation
process and instead opted for arbitrary labels such as those terms
aligned to MeSH. To address these concerns, this work proposes a
couple of denoising methods and leverages a recently released stan-
dardised outcome taxonomy [55] to expertly construct a dataset of
health outcomes in Section 3.3.

2.3.3 Sentence level classification (SLC)

Biomedical Semantic
analysis, Clinical

semantic text
similarity, Medical

NLI and OD are a few
of the SLC oriented

domain-specific
(Clinical) tasks.

NLP tasks setup to predict one or more predefined classes given a se-
quence of words in a sentence are often referred to as SLC tasks [24,
46, 109, 172]. Some authors interchangeably use the terms document
and sentence, however both will almost always imply a sequence of
tokens such as (w1, . . . ,wn) that can belong to a larger body of text
such as an article, a newspaper, a review, a journal paper etc. The
vast amount of general-domain or domain-specific applications un-
derpinned by SLC as applied in NLP is arguably unfathomable. Spam
detection [144], customer review comprehension [172], theme/topic
detection [177], sentiment analysis [164] are a few of the general-
domain applications modelled as SLC tasks, whereas, Biomedical sen-
timent analysis [208], Clinical semantic text similarity [217] and Med-
ical Natural Language Inference [179] are a few of the SLC-oriented
domain-specific applications.

In the same vein, OD has previously been cast as a SLC task, in
which a given abstract sentence is classified as an outcome statement
(sentence summarising the consequences of an intervention) or not
[23, 53]. Several other authors have classified abstract sentences into
one of four labels, Participants (P), Interventions (I), Comparators (C)
and Outcomes (O) [22, 96, 107]. Section 2.3.2 earlier introduced a list
of datasets (and also summarised them in Table 2) that have sup-
ported SLC for OD. Below, I extensively discuss various methods and
approaches implemented to achieve SLC for OD.
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Dataset
Source of Abstracts &

search strategy
Abstract type Annotators

Inter-Annotator

agreement
Task

Demner-Fushman [52]

Total abstracts -

592

Medline

Searched for topics

(arthritis, rheumatoid,

migraine, breast cancer,

diabetes, Immunistation)

RCT

Both Structured

and Unstructured

Nurse

Medical Student

PhD

P - 0.75

I - 0.75

O - 0.75

Sentence

classification

Kim et al [107]

Total abstracts -

1000

Medline

Queries from GEM

and AHRQ

RCT

Both Structured

and Unstructured

Medical Student

under supervision

P - 0.63

I - 0.61

O - 0.71

Sentence

classification

Jin et al [96]

Total abstracts -

489026

Medline

English RCTs published

RCT

Structured

Expertise not

mentioned
N/A

Sentence

classification

Boudin et al [23]

Total abstracts -

50

Medline

RCT publication type

RCT

Structured

Expertise not

mentioned
N/A

Sentence

classification

Boudin et al [22]

Total abstracts -

26000

Medline

RCT publication type

RCT

Structured

Medical

professionals
N/A

Sentence

classification

Huang et al [85]

Total abstracts -

23472

Medline

PubMed abstracts

RCT

Structured
Non-expert N/A

sentence

classification

Huang et al [84]

Total abstracts -

489026

Medline

RCT publication type

RCT

Structured
Non-expert N/A

sentence

classification

Wallace et al [214]

Total abstracts -

12808

CDSR

Clinical trials

Structured &

Semi-structured
Non-expert 0.81

sentence

classification

kang et al [101]

Total abstracts -

170

Medline

RCT publication type

RCT

Unstructured

Medical professional

Informatics Researcher
0.83

Token-level

classification

Nye et al [161]

Total abstracts -

5000

Medline

RCTs with an emphasis

on cardiovascular diseases,

cancer and autism

RCT

Unstructured

Non-expert

Expert

Medical students

and doctors

P - 0.50

I - 0.59

O - 0.51

Token-level

classification

Table 2: Summary of datasets supporting PICO detection at sentence- and
token-level. Information about the source of the abstracts, and the
search strategy used in selecting the abstracts retrieved for annota-
tion, the Abstract type, the level of expertise of the annotators, the
Cohen Kappa Inter-annotator agreement and the task the dataset
was prepared for.

2.3.3.1 Conventional Machine Learning based Approaches

To classify sentences in RCTs into one of four PICO elements, ear-
lier works modelled representations of hand-crafted features using
conventional ML methods such as NB and SVM implemented in ML

toolkits such as Machine Learning for Language Toolkit (Mallet)4 and
Natural Language Processing Toolkit (NLTK).5

Demner-Fushman et al. [52] select the top 3 ranked sentences of
a list of sentences output as outcome-statements by an ensemble of
classification algorithms. The stacked algorithms trained using Mallet

included (1) a Rule based classifier, which relied on cue-phrases like
“significantly greater”, “adverse events” etc to estimate the likelihood
of an outcome statement, (2) a NB classifier, which generated the

4 https://mimno.github.io/Mallet/
5 https://www.nltk.org/

https://mimno.github.io/Mallet/
https://www.nltk.org/
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probability of a sentence (treated a bag of words) being an outcome
statement, (3) an n-gram-based classifier, which used uni-gram and
bi-gram (a single or pairs of words appearing consecutively in a sen-
tence) features selected on an information gain measure basis [234]
to estimate the probability of an outcome statement, (4) a position
classifier, which relied on the discourse structure of an abstract, i.e.
which position within the abstracts is an outcome statement likely to
be found, (5) a document length classifier, which returned a smoothed
probability that a document of given length contains an outcome
statement and finally (6) a semantic classifier, which generates the
likelihood of a given sentence being an outcome statement on the ba-
sis that it contains UMLS concepts highly associated with outcomes.

Instead of cue-phrases, Kim et al. [107] use a set of four features
including (1) bi-grams and Part of Speech (POS) tags, (2) Concept
Unique Identifiers (CUIs) and their synonyms extracted from UMLS,
(3) structural information such as headings of various sections in the
abstract and (4) sequential information which included direct and in-
direct dependencies between sentences. These features are trained us-
ing a CRF to classify sentences into categories that did not just include
P, I and O but also “Background” and “Study design”. “Background”
implied a sentence belonged to a section in the abstract that informs
or preceded current study and “Study design” implied the type of
study described in the abstract. Besides the semantic features (CUIs),
all of the other features improved the performance of the classifier
and they attributed this to the sparseness and ambiguity of the terms
found during querying UMLS.Earlier works heavily

relied on hand-crafted
features and the

structural ordering of
information in RCTs.

Huang et al. [84] also use structural information however differ-
ently from Demner-Fushman et al. [52] and Kim et al. [107]. They
build two sets of NB classifiers, the first set including CFP,CFI and
CFO separately built by training on the first sentence following the
sections in the abstracts that are respectively labelled Participants
(P), Interventions (I) and Outcomes (O). The second set including
CAP,CAI and CAO is similar, however built by training on all sen-
tences following the respective similarly predefined section headings
as the first set. Overall, their study revealed that, the very first sen-
tence under abstract sections headings particularly Participants, Inter-
ventions and Outcomes does not always contain information relevant
to P, I and O elements, which many prior authors had assumed.

Boudin, Nie, and Dawes [23] reduce the reliance on many hand-
crafted features in prior work by adopting a language modelling ap-
proach that models the probability of individual words for the PICO

sentence retrieval task. After exploiting the positional distribution of
PICO elements by dividing each abstract into 10 parts of equal length
and marking them [P1, . . . ,P10], they build two LMs, Mq representing
a query q that is searching for one of P,I and O components and Md

representing a document d being classified. To score how relevant d
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is to q, a Kullback-Leibler divergence (KL) score is computed using
(1),

score(q,d) =
∑
w∈q

P(w|Mq) · logP(w|Md) (1)

∝ −KL(Mq ∥ Md)

P(w|Ms) =
count(w, s)

|s|

where s ∈ {q,d} and count(w, s) is the number of times the word w

occurs in s and |s| is the length of document s. The LM P(w|Md) is
extended to (2) such that it integrates the structure of the 10 parts
i.e. a weighted linear interpolation factor γp is assigned to each p ∈
[TITLE,P1, . . . ,P10],

P1(w|d) ∝ P(w|Md) +
∑
p∈d

γp · P(w ∈ p|Md) (2)

and the LM P(w|Mq) is extended to (3) to factor in presence of a PICO

element in a query i.e. a weight δe is given to a query word belonging
to the elements e ∈ [P, I,C,O], f(w, e) = 1 if w ∈ e, 0 otherwise.

P2(w|Mq) ∝ P(w|Mq) +
∑

e∈[P,I,C,O]

δe · f(w, e) · P(w|Mq) (3)

Recent research
achieving SLC of
sentences for PICO
detection reduced
reliance on
hand-crafted features
and instead adopted
language models that
model the probability
of each word and
additionally
incorporated attention
mechanism to capture
contextual
information.

Similar to Boudin, Nie, and Dawes [23], Jin and Szolovits [96] also
remove the need for hand-crafted features by introducing a BiLSTM to
encode word2vec vectors [149] corresponding to words in an input
sentence s = w1,w2, . . . ,wN and generate hidden representations hi

as shown in (4). They then use an attention mechanism originally pro-
posed by Bahdanau, Cho, and Bengio [14] to measure the relevance
of each word to the whole sentence (5), in order to form a final sen-
tence representation s in (6) which is later used by a CRF layer for
classification.

hi = BiLSTM(wi) (4)

ui = tanh(Wshi + bs)

αi =
exp(u

⊤
i us)∑

i exp(u
⊤
i us)

(5)

s =
∑
i

αihi (6)
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Jin and Szolovits [95] replace the BiLSTM Boudin, Nie, and Dawes
[23] use with CLMs, BERT and BioBERT for encoding word vectors
with small perturbations. Perturbing word vectors sent to a NN is an
idea proposed by [202] to make NNs more robust to wrong or fake
input and also improve their performance, a method commonly re-
ferred to as “Adversarial training” [68]. Besides the benefits of the
contextualization using BERT and BioBERT, they reported improve-
ments that adversarial training had in predicting P,I,O labels.

SLC to identify sentences in which outcomes are mentioned as achieved
by all the above works is important. However, it is imperative that
clinicians are able to effectively search and identify individual out-
comes themselves especially considering that standardised terminol-
ogy to describe them is gradually being introduced such as the tax-
onomy proposed by Dodd et al. [55]. This work therefore builds on
work by Nye et al. [161] that recast the OD problem to additionally
identify spans of text that correspond to outcomes through Token-
Level Classification (TLC) as described in next section.

2.3.4 Token-level Classification (TLC)

While SLC achieves class or label prediction for a given sentence, TLC

achieves class or label prediction for a single token [117, 207]. TLC

spans across a huge range of NLP downstream tasks that are aimed
at information extraction such as NER which identifies different types
(such as names, location etc) of entities mentioned in text [67, 207] and
Slot Filling (SF) which extracts certain attributes (or slots) of entities,
which may be either persons or organizations [201].

TLC for OD is a sequence labelling task where LMs extract spans
describing outcomes in RCTs. Nye et al. [161] performs two tasks in-
cluding the extraction of spans that describe P, I or O elements and
classification of each of these spans into a MeSH descriptor that they
had respectively hierarchically classified into one of P, I and O la-
bels. They use both a CRF and a BiLSTM-CRF to achieve automatic
span tagging using train, dev and test splits of their EBM-NLP cor-
pus that was described at the end of Section 2.3.2. The BiLSTM-CRFBiLSTM-CRF model

proved to be superior
to other models such

as CRFs and Logistic
regression models in
PIO span extraction
and more specifically

outcome span
extraction or OSD in

earlier TLC works.

model outperformed the CRF in the PIO span extraction task despite
the latter consuming more features including adjacent words to cur-
rent word, POS features and character information such as upper or
lower case information on tokens. However the CRF outperformed
a logistic-regression model using n-grams in the span classification
task.

The effectiveness of the LSTM-CRF models was further documented
by Kang, Zou, and Weng [101] when they used it for PIO span tag-
ging task on their gold standard set of 170 abstracts. Brockmeier et al.
[26] slightly modify the BiLSTM-CRF by introducing an initial embed-
ding layer which represents a token by concatenating a word vector
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and a max-pooled vector over a set of character vectors processed by a
BiLSTM. Additionally, they introduce BioBERT to encode the token em-
beddings. This modified model obtained the new SOTA performance
in the PIO span extraction task using the EBM-NLP corpus before
later being outperformed by Beltagy, Lo, and Cohan [18] and subse-
quently by Abaho et al. [2] particularly for outcome span extraction
or OSD.

Similar to Brockmeier et al. [26], I take full advantage of pre-trained
CLMs such as BioELMO [97] and BERT variants when tackling the
OSD. The main motivation of this being that, the recent upsurge in
performance in several NLP downstream tasks such as NER and RE

has been attributed to the context-aware nature of these LMs enforced
by their self-attention mechanism [54, 167].

2.4 noise reduction in bionlp datasets

Curating qualitative datasets to facilitate the training of ML systems is
a perpetual requirement considered by most researchers and industry
data scientists. The difficulty with fulfilling this requirement is that,
expert human annotators are not only scarce (especially for specialist
and low-resource domains), but they are also expensive to hire.

For many NLP tasks, researchers are increasingly adopting crowd-
sourcing as a data collection strategy. Suhr et al. [198] scanned through
proceedings of three top NLP conferences, ACL, EMNLP and NAACL
and discovered that 6776 papers mention direct employment of crowd-
sourced workers. The advantage with crowdsourcing is, it is applica-
ble to a diverse set of tasks ranging from QA [41], textual entailment
[224], commonsense reasoning [184] and many more. The protocol in
the crowdsourcing strategy is to 1) provide training (if necessary) and
a set of heuristics (usually mandatory) that will serve as instructions
to crowd workers and 2) provide a platform or tool on which the an-
notation or data collection task can be completed, such as Amazon
Mechanical Turk6, CrowdFlower7 and BRAT8.

For some tasks such as NER and RE, DS or weak supervision is a
more popular approach to generating large amounts of labeled data.
The goal is to automatically assign dataset samples labels based on
some externally observed relatable facts or knowledge in an existing
database, dictionaries, gazetteers or KBs which are often incomplete
[178, 214]. For instance, in tasks such as RE, the intuition behind DS is Crowdsourcing

annotation using lay
annotators and
automatic annotation
using Distant
Supervision are
unreliable and often
produce noisy
annotations or weakly
labelled data.

that, if a KB specifies a relation existing between a pair of entities that
have been identified in a sentence, then that is evidence of a relation
between the entities and therefore, the sentence is labelled with the
corresponding relation (in the KB) or as a positive mention [90]. Both
resolutions, crowdsourcing and DS, are however unreliable and more
often produce noisy annotations or otherwise weakly labelled data
[90, 118, 204].

6 https://www.mturk.com/
7 https://visit.figure-eight.com/People-Powered-Data-Enrichment_T
8 https://brat.nlplab.org/

https://www.mturk.com/
https://visit.figure-eight.com/People-Powered-Data-Enrichment_T
https://brat.nlplab.org/
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To diminish the negative effects of this noise, recent DS approaches
are incorporating noise filtering functions such as classifiers to re-
move noisy instance from the training data e.g. through a probability
threshold [92] or a reinforcement agent [158]. Similar to how various
works address the challenge of imbalanced classification labels, Le
and Titov [119] re-weight dataset instances according to their prob-
ability of being correct and or noisy, and or an attention score [81,
119].

In the above scenarios, the noisy instances are detected and dis-
carded. However, sometimes, rather than learn directly from noisy
data, a noise model is introduced to gravitate the predicted noisy
distribution towards the clean distribution during testing [141, 237].
Learning from partial annotations has been considered in order to
detect false negatives, thus addressing the issue of incompleteness in
DS datasets [233]. Chen et al. [35] adopts a group of reinforcement
agents to relabel noisy instances.

Denoising weakly labelled data in BioNLP has garnered very limited
attention, but nonetheless, a few works in the past have addressed
this obstacle as narrated below.

To restore the intended structure of anonymised ophthalmology
documents, Siklósi and Novák [191] use a semi-automatic approach
that involves string matching to identify patterns of hand crafted fea-
tures such as POS, date stamps, white spacing and character cases
with the ideal patterns. A high cosine similarity is obtained between
sentences corrected by this approach and those corrected by a human,
with sentences being represented using Term frequency–Inverse doc-
ument frequency (Tf-Idf), a statistical measure that evaluates how rel-
evant a word is to a document in a collection of documents [6].

To address noise in a DS RE dataset, Li, Wu, and Vijay-Shanker
[126] propose three heuristics, Closest Pairs (CP): which retained the
closest pair of entities (with shortest path length in the dependency
path) amongst multiple similar entity-pair mentions within a sen-
tence, Trigger word (TW): which discarded positive instances when-
ever the stem of a trigger word was not found on the shortest de-
pendency path and High confidence patterns (HP): which identifies
and removes negatively labelled instances with trigger words on their
shortest dependency path.

Similar to Li, Wu, and Vijay-Shanker [126], Intxaurrondo et al. [90]
curb noisy relation labels using three heuristics that include (1) dis-
carding high frequency positive and negative relation mentions (>
90), (2) discarding relation mentions with a very low Pointwise Mu-
tual Information (PMI) (< 2.3) between its corresponding pair of en-
tities, PMI between a pair of words PMI(x,y) = log2

P(x,y)
P(x)P(y) is a

measure of the strength of association or co-occurrence of x and y

against their independent occurrence or chance, and (3) retains rela-
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tion mentions with a high cosine similarity (⩽ 90%) with the relation
label centroid.

Takamatsu, Sato, and Nakagawa [204] incorporate a generative model
in the DS labelling process to maximise p(relation|pattern), the prob-
ability that a certain pattern expresses a particular relation. They
model a probability brs = P(xrsi|Zr,ar,dr, λ) with which DS assigns
a relation r to an entity pair i appearing in pattern s given a binary
variable zr which is 1 if s expresses relation r and ar,dr and λ are all
learnable parameters.

Xu et al. [232] use SVMs [171] to assign a probability of relevance of
each negatively labelled relation and thereafter selects the top ranked
relation mentions to add to the training set.

2.5 joint token- and sentence-level classification in

bionlp

Multi-task learning (MTL) has scaled the heights of NLP by proving
that, several different tasks can simultaneously get done with accu-
racy and precision, something which would be enormously difficult
for humans, if not impossible, to achieve [62, 180]. Using the same Using the same set of

model parameters to
generalise across
multiple tasks can be
very rewarding
especially because, the
MTL model would
benefit from learning
the correlations across
multiple tasks.

set of model parameters for a Multi-task learned system to general-
ize across different but related tasks can be rewarding, especially be-
cause the model would have benefited from learning the correlations
across these tasks [46, 174]. Under the guise of MTL, joint learning of
a dichotomy of tasks has been steadily progressing within the NLP

community. Utilizing token-level and sentence-level information, Ma
et al. [143] target joint slot filling, a NER TLC task and intent classifi-
cation, a sentiment SLC task. Xu and Sarikaya [231] target joint intent
recognition, a topic SLC task and entity classification, a NER TLC task.
Xu et al. [230] and Karimi, Rossi, and Prati [103] achieve joint Aspect
extraction, a NER TLC task and Aspect classification a sentiment SLC

of customer reviews. Several authors attempt joint NER and RE using
various datasets [17, 36, 87, 247]. Below is a discussion of previous
efforts in joint learning strategies, particularly works pertaining to
biomedical information extraction.

A few NLP authors have exploited the mutual relationships (which
can be probabilistically modelled) that exist between related but dif-
ferent biomedical information extraction sub-tasks such as Disease
Named Entity Recognition (DNER) and Disease Named Entity Nor-
malisation (DNEN): where the former aims to extract granular disease
names and the latter aims to map disease entities to standardised
vocabulary concepts, Medical Named Entity Recognition (MNER) and
Medical Named Entity Normalisation (MNEN): where the former aims
to extract medical named entities and the latter aims to map medical
entities to a standardised vocabulary concepts.
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Zhao et al. [247] overcomes the huge dependency on the hand
crafted lexical and linguistic features used in transition-based mod-
els based on markov property [61] to jointly score MNER and MNEN

[120, 137] by proposing a neural MTL framework stacked with an em-
bedding layer, a CNN and a BiLSTM. Their neural MTL framework used
a BiLSTM to encode character level CNN word embeddings concate-
nated with pre-trained word2vec word embeddings [149].Earlier works were

reliant on hand
crafted lexical and
linguistic features

when jointly learning
tasks such as DNER

and DNEN.

Ji et al. [91] combined Zhao et al. [247]’s MTL framework with
transition-based models such as [120, 137] to achieve joint DNER and
DNEN. Transition-based models construct structured output by incre-
mentally transitioning from one state to another such as in markov
models [61], for instance, in a sequence labelling task like DNER that
takes an input sequence of tokens, they formalize a tuple (S,A, cs,Ct),
where S is a set of states for all tokens, A is a set of possible actions to
calculate probability of decoding the right output in a give state, cs
is an initial state or initial token position, and Ct is a set of terminal
states. Ji et al. [91] initializes tokens as a concatenation of GloVe and
ELMo embeddings. They use BiLSTMs and StackedLSTMs to generate
sequence representations that capture transitioning from one state to
another, in which case each token can assume either one of three
states, stored (σ), processed (β) and output (O). They train a model
to maximize the probability of predicting the correct action given a
particular task based state representation (DNER (8) or DNEN(9)) as
shown in (10). Five possible actions were catered for which involve
transitioning across all three states.

bt = BiLSTM([β0,β1, . . .])

st = StackLSTM([. . . ,σ1,σ0]

at = StackLSTM([at−1,at−1,...])

(7)

rNER
t = RELU(W[s1t ; s0t ;b0

t ;a−1
t ] + d) (8)

rNORM
t = RELU(W[l′m; r′m;m′; c′; c;a−1

t ] (9)

argmax
A,S

∏
t

p(at|rt) (10)

Joint NER and RE is another joint learning task that has previously
been attempted in BioNLP as well as other NLP specializations. Both
Miwa and Sasaki [153] and Li et al. [125] encode entity features us-
ing a BiLSTM, however they differently encode relation features with
the former using Tree-LSTMs [203] and the latter using a BiLSTM. A
Tree-LSTM is a variation of an LSTM which generates a hidden state



2.5 joint token- and sentence-level classification in bionlp 27

from an input vector at a current time step and the hidden states
of all its children nodes from a tree structure of the entire input se-
quence. Tai, Socher, and Manning [203] prove that the Tree-LSTM is
able to propagate both the order sensitive sequential information an
LSTM provides and structural information from a tree structural rep-
resentation (such as a dependency tree) of a sentence. The limitation
with this approach is the reliance on hand crafted features such as
the dependency tree information. To alleviate this problem, Katiyar
and Cardie [104] and Bekoulis et al. [17] propose stacked neural mod-
els that encode entire sequences, word-by-word including non-entity
and non-relation spans.

Katiyar and Cardie [104] add an attention layer over a BiLSTM pro-
cessing token embeddings, and use a softmax to decode both NER

and RE labels. Instead of a softmax, Bekoulis et al. [17] uses a CRF for
decoding NER labels and sigmoid function for multi-relation predic-
tion, i.e. it computes multiple joint probabilities of a head entity and
relation label pairs for each token. Essentially, the RE labels are not
treated as mutually exclusive and therefore, multiple head-relation
pairs can be predicted for a single token.

Chen et al. [36] replace the BiLSTM in [104] and [17] with pre-trained
transformer models BERT and BioBERT. They use both the label distri-
bution from the NER classification head as well as the encoded token
representation from previous layer (BERT/BioBERT) in two different
ways, (1) add up the two and use the resultant representation for
predicting a single head-relation pair using a softmax layer and (2)
use a biaffine attention mechanism [58] that allows the two vectors
to interact and produce a vector used to predict a relation for each
token. Without access to dependency trees and POS tags, their model
shows an improvement over standalone models (achieving NER and
RE independently) in the RE experiments.

Aside from BioNLP, some NLP works have demonstrated the effec-
tiveness in joint learning strategies that combined separate but re-
lated tasks. Karimi, Rossi, and Prati [103] and Xu et al. [230] un- Besides joint learning

tasks in BioNLP, joint
learning in NLP has
been used for tasks
such as ABSA, i.e.
joint aspect extraction
and aspect
classification.

dertake a machine reading comprehension (MRC) task called Aspect
Based Sentiment Analysis (ABSA) which extracts aspects from cus-
tomer reviews and classifies them into corresponding opinions or
sentiments. They perform ABSA by feeding BERT with a sentence s =

([CLS], x1:j, [SEP], xj+1:n, [SEP]), where x1:j is a sentence containing
an aspect of a product, xj+1:n is a customer review sentence directed
to the aspect and [CLS] is a token not only indicating the beginning
of a sequence, but also a sentiment polarity in the customer review
about the aspect. They fine-tune a BERT model to conduct both aspect
extraction and aspect sentiment classification.

The above mentioned works tend to generate attention-based sentence-
level representations that encapsulate the contribution each word would
make in predicting sentence categories. I however propose a joint
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learning strategy that generates attention-based representations at
both word- and sentence-level to be respectively used in predicting
word- and sentence-level categories/labels.

2.6 prompt based learning for text generation in bionlp

Prompt based learning (PBL) emanates from the idea of reformulating
downstream tasks to look more like those solved during original LM

training with the help of a textual prompt [135]. While traditional
supervised learning models the probability P(y|x; θ), where y is a
target label provided in a labelled dataset, PBL models the probability
P(x; θ) of text x itself and thereafter uses this probability to predict
y which is often text. PBL’s set up in which LMs encode and answer
question-like formatted sentences such as “Eifel tower is located in
the town of ”, has precipitated the notion that suggests a LM can
be treated as an alternative to, or at least a proxy for a KB. This said, by
virtue of the question-like formats, prompting can inherently achieve
information extraction such as, given a prompt like “No reason to
watch, it was movie”, recent works train a LM to predict a word
such as horrible (a negative sentiment) to suitably fill in the blank [66,
140, 151].

On multiple occasions now, probing factual knowledge in PLMs
using prompts has been a success in the general-domain i.e. using
datasets that are not necessarily representative of any particular do-
main [93, 94, 170, 186]. Five prompt training strategies commonlyProbing factual

knowledge in PLMs
using prompts has

been a success in the
general-domain i.e.

using datasets that are
not necessarily

representative of any
particular domain.

adopted include (1) Promptless fine-tuning, in which the PLM is not
fine-tuned with prompts but rather gets parameters updated via gra-
dients induced from downstream training examples [80], (2) Tuning-
free prompting, in which the PLM is used off-the-shelf to generate
answers to a prompt without updating its parameters [27, 170], (3)
Fixed-LM Prompt Tuning, where the introduced prompt parameters
are the only ones that get updated and those of the PLM do not [128],
(4) Fixed-prompt LM Tuning, where the PLM parameters get updated
but the prompt-relevant parameters do not [186, 187] and finally (5)
Prompt+LM Tuning, in which both the PLM and the prompt-relevant
parameters are updated all together [49, 93].

To this end, there has been little attention to leveraging the power
of domain-specific PLMs to act as domain-specific KBs that can be
queried for facts. However, Sung et al. [200] recently released Bi-
oLAMA, a benchmark dataset comprising 49K biomedical factual
knowledge triples (curated from digital archives including CTD9, UMLS10

and Wikidata11) that can be used for probing biomedical PLMs. Bi-
oLAMA contains relational triples reconstructed as fill-in-the-blank

9 http://ctdbase.org/
10 https://www.nlm.nih.gov/research/umls/
11 https://wikidata.org

http://ctdbase.org/
https://www.nlm.nih.gov/research/umls/
https://wikidata.org
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cloze statements (or prompts). Despite the prompt reconstruction, re-
sults of fine-tuning using BERT [54], BioBERT [121] and BioLM [124]
generally suggested the need for stronger biomedical LMs and prob-
ing methods.

Similar to traditional supervised learning, PBL suffers the limited
training data bottleneck. To address this issue, methods that perform
prompting in the embedding space of a model have emerged [128,
173, 190]. Shin et al. [190] use a gradient based strategy to automati-
cally create continuous/soft prompts to cause a MLM to produce de-
sired knowledge. A set of 5 trigger tokens “[T ][T ][T ][T ][T ]” are each
initialised as a [MASK] token and added to sentences used in down-
stream tasks such as Sentiment Analysis, then iteratively these trigger
tokens are swapped with a vocabulary token while trying to max-
imise the label likelihood in the downstream task. As shown in Equa-
tion 11, the top k tokens (for each trigger position) estimated to cause
greatest increase are used to replace the trigger tokens,

Vcand = top− k
w∈V

[wT
in▽ logp(y|xprompt)] (11)

Qin and Eisner [173] slightly changes the approach proposed by
Shin et al. [190], by replacing trigger tokens with arbitrary vectors
{vi}

i=5
i=1, and introducing a small perturbation vector △ that is ini-

tialised to 0 and then iteratively added to the arbitrary vectors when
fine-tuning the model and prompt parameters. A mixture modelling
framework is used to generate the soft prompts as shown in Equa-
tion 12 later used in the downstream evaluation.

p(y|x, r) =
∑
t∈Tr

p(t|r) · PLM(y|t, x) (12)

Upon evaluation of the soft prompts in downstream tasks, Qin and
Eisner [173] soft prompt model consistently improves performance of
Shin et al. [190] on the relations dataset T-REX [63], LAMA on Google
RE dataset12. Several works on PBL

still heavily rely on
handcrafting a
linguistic pattern or
shape that prompts
should take on.

In-spite of all the efforts to outgrow the reliance on training data
for PBL, several works including the gradient based approaches above
[173, 190] still heavily rely on handcrafting a linguistic pattern or
shape that prompts should take on. This constraint is enforced in or-
der to place a lot of emphasis on subject-relation-object triples when
fine-tuning LMs on prompts. The challenge with the constraint is,
the search space of possible linguistic patterns prompts can take on
is enormous and it is therefore practically infeasible to reformulate
prompts into all possible patterns. My efforts are motivated by the
fact that, there should be minimal or no need at all to worry about

12 https://github.com/google-research-datasets/
relation-extraction-corpus.

https://github.com/google-research-datasets/relation-extraction-corpus.
https://github.com/google-research-datasets/relation-extraction-corpus.
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the pattern of the prompt, but rather, we can leverage information
local to the prompt such as word positions. I attempt to enhance a
words contextualised representation with position based representa-
tions to capture the words position relative to the mask to be filled.
Previously some works have used similar position-aware attention
over LSTMs for relation extraction, sequence labelling and slot filling
tasks in different datasets [220, 245]. To the best of my knowledge,
I pioneered the use of an extra position-attention layer above trans-
former models such as BERT to solve the fill-in-the-blank prompting
task.

It is important to note that, the PBL task I conduct is more closely
aligned to prompting for information extraction purposes. Nonethe-
less, I explore a few-shot learning setup in which I only assume a few
annotated examples and therefore explore the capacity of the PLM to
generate outcomes.

2.7 bionlp

Similar to the widely acknowledged collection of benchmark tasks
and datasets facilitating language understanding tasks in general-
domain NLP research known as “General Language Understanding
Evaluation” (GLUE) benchmark [215], there has been a number of re-
curring tasks demanding attention in BioNLP research. Recently, Gu
et al. [70] established BLURB (Biomedical Language Understanding
& Reasoning Benchmark), a comprehensive set of BioNLP tasks from
publicly available datasets to help accelerate progress in clinical NLP

research. This section provides descriptions of the most commonly
tackled BioNLP tasks, their benchmark datasets and the progress they
have made.

2.7.1 Named Entity Recognition (NER)

2.7.1.1 Chemical (drug) and Disease detection

Through BioCreative V (a community challenge event for Biomedical
text mining) [83], Wei et al. [219] designed two tasks, DNER, to extract
diseases and Chemical-Induced disease relation extraction (CID) to
extract chemicals-disease relations from 1500 PubMed articles man-
ually annotated for diseases and chemicals (drugs). Li et al. [127]
propose BioCreative V Chemical-Disease Relation corpus (BC5CDR)
to support DNER and CID tasks. BC5CDR consists of 1500 PubMed
articles (with train, development and test splits) expertly annotated
for chemicals, diseases and chemical-disease interactions. Courtesy of
the recently released CLMs premised on the transformer architecture
[213], SOTA performances have been achieved on this dataset and sim-
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ilar datasets (NCBI disease corpus [56]) for DNER, CID and chemical
recognition [18, 54, 70, 242].

2.7.1.2 Gene and Protein Mention

Automatic identification of strings that correspond to gene and or pro-
tein name mentions in clinical articles dates back to the early 2000s
[205, 238]. The BioCreative II Gene Mention corpus [193] is the pop-
ularly used benchmark dataset for the Gene Mention task. The cor-
pus was annotated using expert guidelines, and originally contained
20000 sentences split into 15000 and 5000 for training and testing re-
spectively. However, newer versions that portioned off 2500 sentences
for development from the training set have been introduced [48]. The
Genia corpus [162] comprising 2000 Medline13 abstracts [155], on the
other hand is commonly used in evaluation of tasks detecting men-
tions of molecular biology entities including protein, DNA, RNA, cell
line and cell types [106]. Similar to the performance trend on DNER
and CID tasks above in Section 2.7.1.1, performance on both the gene
and protein mention tasks has been dramatically improved by both
CLMs and knowledge enhanced LMs [70, 242].

2.7.1.3 De-Identification tasks (de-ID)

Focused at preserving patients confidentiality and privacy whilst shar-
ing health information, de-ID task automatically finds and removes
Personal Identifying Information (PII) from clinical records [57, 157].
PII categories may include but not limited to; Names (of patients or
doctors or health-facilities), IDs (alphanumeric codes uniquely identi-
fying patients or doctors or health-facilities), Dates, Locations, Phone
Numbers and Ages. Earlier de-ID work used rule-based approaches
like regular expression pattern matching to locate PII information
referenced from look-up dictionaries, and then replace it with tags
indicating the corresponding PII category [71, 157]. Uzuner, Luo, and
Szolovits [211] built a corpus for de-identification in which they sub-
tly replaced PII with realistic surrogates (randomly selected meaning-
ful character combinations). They then compared several rule-based
and ML systems ability to differentiate PII from non-PII information
at token- and instance- level. Unsurprisingly, because of their unique
ability to detect complex patterns, ML systems significantly outper-
formed rule based systems in both these tasks. More so, hybrid strate-
gies that employed regular expression features in the ML setups per-
formed even better. Of late, CLMs pre-trained on clinical notes have
proven to be superior to all prior methods in the de-ID task [10].

In terms of task formulation, the above mentioned BioNLP NER (se-
quence labelling) problems are most closely related to the tasks un-
dertaken in this work, in particular, the OSD task. While the above

13 https://www.nlm.nih.gov/medline/medline_overview.html

https://www.nlm.nih.gov/medline/medline_overview.html
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tasks extract text spans that describe drugs, diseases, genes or pro-
teins and PII, OSD extracts spans that describe health outcomes men-
tioned in RCTs. The datasets built to support the above tasks provide
labels at the word level for each entity. Word-level labels are used in
supervised learning for detection of text spans describing the afore-
mentioned biomedical entities. In terms of differences, OSD has at-
tracted less attention than the discussed NER tasks mainly because of
the scarcity of publicly available annotated corpora to facilitate OSD

[161]. This serves as a main motivation for the annotation of a new
dataset as well as denoising outcome annotations in a publicly avail-
able dataset as discussed in Chapter 3. This dataset is subsequently
used to train models to infer outcome span detections.

2.7.2 Relation extraction (RE)

2.7.2.1 Drug-Drug Interactions (DDIs)

Drug-Drug Interaction (DDI) occurs when one drug influences the
activity or level of another drug [188], and for the matter, DDIs in
BioNLP refers to the detection and classification of interactions or oth-
erwise relations between drugs in biomedical text. The first published
dataset to support the DDI task is the DrugDDI corpus [188] contain-
ing 579 documents with approximately 10 sentences per document.
A pharmacist was used to manually annotate DDIs within the docu-
ments in which drugs had been automatically recognised using the
MetaMap Transfer tool (MMTx).14 Because DrugDDI was annotated
by single annotator and the automatically recognised drugs were
never validated by an expert, Herrero-Zazo et al. [76] undertook sev-
eral steps to improve its standards and introduce the DDI corpus.
Improvements in DDI included, a further 446 documents from Drug-
Bank [227] and Medline [155], pharmacodynamic (PD) and pharma-
cokinetc (PK) DDIs, a review of the automatically annotated drugs by
two expert pharmacist annotators, a list of annotation guidelines and
finally an inter-annotator agreement to validate the consistency and
quality of annotation.

2.7.2.2 Chemical-Protein Interactions (CPIs)

CPI task aims to detect and classify interactions or relations between
chemical and protein (or gene entities) from biomedical literature.
Similar to DDI above, CPI plays an important role of understand-
ing molecular mechanism of adverse drug reactions. Built during the
BioCreative VI challenge [146], ChemProt corpus has been used to
facilitate biomedical text mining for CPIs. It is exhaustively manually
annotated for chemicals (drugs), proteins and their relations which

14 https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html

https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html


2.7 bionlp 33

are of 22 different kinds. Lim and Kang [129] achieved relative success
in detecting CPIs using a tree-LSTM model [203] and PubMed-and-
PMC-word2vec embeddings15 augmented with positional and sub-
tree containment features. The positional feature represented the rel-
ative distance from each word to the target entities, whereas the sub-
tree feature was calculated in the parsing state and it indicated that a
certain sub-tree contained a target entity. Several SOTA performances
have been achieved when researchers have addressed the problem
with CLMs pre-trained on biomedical text [70, 242].

2.7.2.3 Gene-disease Interactions

Because of the role genetics plays in the development of diseases, it
is imperative that clinical researchers understand the links between
genes and human diseases [163]. For that matter, automating ways of
extracting associations between genes and diseases from biomedical
literature is crucial. Early efforts in resolving the problem, involved
counting the co-occurrence frequencies of genes and diseases in ar-
ticles, and if the frequency of a co-occurrence of a particular gene-
disease association was significantly higher than a certain expected
threshold, then that association was considered valid [5]. The surging
interest of the BioNLP community in this task has seen an introduc-
tion of new datasets and methods to address the problem. Several
authors have used SVM to classify sentences into positive (contain
gene-disease association) or negative (do not). For example, Özgür
et al. [163] used both a dependency parser (to cut out paths between
gene entities in sentences) and an SVM to capture 95% of the top 20

genes related to prostate cancer. Van Mulligen et al. [212] used five ex-
pert annotators and a NER based system to annotate drugs, diseases,
genes, gene variants and the relationships between these entities, in
300 carefully selected PubMed and Medline abstracts [155], there after
provided inter-annotator agreement details to support a corpus titled
EU-ADR. Bravo et al. [25] build an even larger corpus with gene-
disease associations from the Genetics Association Database (GAD)
[156] and used kernel-based approaches to extract multiple genes
linked to depression.

BioNLP relation extractions tasks, and in particular the ones dis-
cussed above were traditionally performed by directly classifying
each candidate instance (e.g. a pair of drugs) into one or more prede-
fined classifications. For instance, Björne, Kaewphan, and Salakoski
[20] uses a SVM to classify drug-to-srug interactions. Progressively,
DDI has been decoupled into two separate sub-tasks i.e. recognition
of DDIs and classification of DDIs. Some authors have performed the
two in tandem i.e. identify DDIs and subsequently classify the in-
teractions [43, 108]. Similarly, I cast the OD task as two sub-tasks in

15 https://bio.nlplab.org/

https://bio.nlplab.org/
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Chapter 5 i.e. OSD and OC which respectively detects outcomes spans
and then classifies the spans. Motivated by joint learning approaches
such as joint extraction and classification of aspects in customer re-
views [103], I proceed to build a neural model that jointly performs
the two sub-tasks as later discussed in Chapter 5.

2.7.3 Reading and Comprehension

2.7.3.1 Biomedical Question Answering (BQA)

BQA stems from the need to synthesize and filter information from
multiple sources of biomedical information. For instance, in order to
obtain an answer to a question input into a digital clinical archive or
search engine, clinicians have to (1) narrow down a list of results to
retain relevant articles or structured text and then (2) combine the rel-
evant text, study it and filter out answers they may seek [208]. BQA
is therefore aimed at directly producing answers to biomedical ques-
tions posed by clinicians, for instance, “What is the most common condi-
tion related to sleeplessness and fatigue?”, whilst a BQA system may not
return the golden answer “Insomnia”, it can return an ideal answer
such as “Typically waking too early, failing to fall back asleep and spend-
ing a lot of the night lying awake are commonly experienced by Insomnia
patients”. The BioASQ [208] challenge prepared a biomedical Seman-
tic QA task in which participants built systems to annotate questions
with concepts from relevant ontologies and depending on the type
of the question, the ideal answer would either be exact or paragraph-
sized. [98] is the other commonly used benchmark dataset for the
BQA task. It contains questions annotated with “yes, maybe and no”
answers. Results of the evaluation on these two datasets show that
human answer baselines outperformed a Support Vector Regression
model (on the BioASQ dataset) and fine-tuned BioBERT (on the Pub-
MedQA dataset).

2.7.3.2 Medical Natural Language Inference (MedNLI)

MedNLI is a variant of the NLI task specific to the clinical domain.
NLI is aimed at determining whether a given hypothesis can be in-
ferred from a given premise. Romanov and Shivade [179] employed
four clinicians to annotate a total of 14049 sentences with anony-
mous patient records extracted from MIMIC-III v1.3 database [99].
Using prompt instructions, clinicians wrote three different alternate
sentences for each original sentence in the dataset, where one was
definitely a true description of the original, another was a probably
true depiction of the original and the third was definitely a false de-
scription of the original. After mapping each sentence with at least
one of the 3 alternatives to obtain sentence pairs, the goal was to
build a model that would classify each pair of sentences into 3 dif-
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ferent classes i.e. entailment, contradiction and neutral. InferSent [47]
that uses a pair of BiLSTM encoders (each word represented by a fast-
Text embedding [21]) and a self attention layer to generate universal
sentence representations outperformed a Bag-of-words (BOW) model
and ESIM [37], a model with a chain of LSTMs, that encodes and max-
pools over the LSTMs output before classification. Later on, the CLM

ClinicalBERT [10] has obtained SOTA results on the MedNLI dataset.
Despite being distantly related to OD, the above tasks and in par-

ticular BQA have been achieved using sequence-to-sequence models
[223, 239] in which an input question is encoded by one model (en-
coder such as BiLSTM) and the output produced by another model
(decoder such as BiLSTM). Similarly, I adopt a sequence-to-sequence
architecture for the joint learning method proposed to simultaneously
achieve OSD and OC in Chapter 5.

2.8 discussion and summary

The comprehensive review of the prior research efforts representative
of EBM NLP, and in particular OD has revealed both the significant
progress achieved to this day as well as the ton of work that still has
to be done. In summary, the chapter aimed to survey the following:
how prior work defined OD and what resources (datasets) currently exist
to support OD, prevailing challenges encountered when conducting OD, con-
ventional and modern methods that have been used to achieve OD and finally,
common BioNLP tasks related to OD.

To answer these questions, the chapter systematically reviewed OD

as a SLC as well as a TLC task. For the latter, prior research devel-
oped models to extract text spans that describe outcomes from larger
bodies of text such as RCTs, and for the former, the goal was to de-
velop models that would classify an abstract sentence as an outcome
statement or not. Generally, earlier works heavily relied on using
hand-crafted features and conventional ML methods such as NB and
SVM implemented in ML toolkits, however in the recent past, research
works including this thesis have advanced to neural LMs that model
the probability of individual words in order to tackle the OD problem.
In addition to an elaborated discussion on the use of pre-trained LMs
in TL setups for EBM NLP tasks, the chapter reviews MTL approaches
to jointly achieve tasks such as NER and RE. Furthermore, the chapter
reviews prompting methods used to probe for KB facts or information
(such as in information extraction) from LMs. The chapter concludes
with a summary of BioNLP tasks related to OD.

The chapter has essentially motivated all the technical chapters of
this thesis. To address the gaps and challenges in prior efforts such
as flawed or noisy outcome annotations, the next chapter proposes
a couple of denoising techniques to improve the evaluation perfor-
mance in the OD task.





3
R E F I N E M E N T A N D A N N O TAT I O N O F O U T C O M E
D ATA

3.1 introduction

The performance of NLP systems is massively influenced by the qual-
ity of annotations in training datasets [222]. To put it another way,
weakly annotated data is more capable of degrading the performance
of NLP systems than strongly or expertly annotated data [16, 126,
222]. Performance degradation attributable to weak annotations is not
just empirically encountered, but it further misinforms and misleads
the consumers of these systems. Highly specialised domains such as
BioNLP are prone to this problem because, dataset curators (annota-
tors) with biomedical knowledge are few and expensive to hire. To
avoid the expense, researchers resort to crowdsourcing annotations
which involves employing lay curators to annotate data. On other
occasions, DS offers a viable approach to produce labeled data [152,
178, 214]. DS involves automatically assigning dataset samples labels
based on some externally observed relatable facts or knowledge in
an existing KB [152, 178, 214]. Both resolutions are however unreli-
able and will often lead to noisy annotations. Lay annotators are not
quite competent to deal with the complex nature and domain specific
terminologies in biomedical literature [1], whereas, with DS, the KBs
used do not cover all existing knowledge about a subject i.e. they are
often incomplete [126, 204] and additionally, rule-induced systems
(such as DS) can be erroneous [12]. To address noise in

annotations, I propose
a framework that
automatically corrects
flawed outcome
annotations, an
unsupervised label
denoiser and
introduce a new
expertly labelled
dataset of outcomes.

To address the challenge of noisy annotations described in the pre-
vious paragraph and reviewed in Section 2.4 of Chapter 2, this chap-
ter (1) Proposes a framework that automatically corrects incorrectly
captured annotations of outcomes, using EBM-NLP corpus [161] as
a case study in Section 3.2, (2) Introduces a novel outcome dataset,
EBM-COMET, in which outcomes within RCTs are expertly annotated
with outcome classifications drawn from a standardised outcome clas-
sification system [55] in Section 3.3 and finally, (3) Introduces a label
denoising approach that uses unsupervised text alignment of labels in
comparable datasets in Section 3.4. This alignment approach is later
used for data augmentation in a low-resource setting in the work cov-
ered in Chapter 5. It is important to note that, whilst the EBM-NLP
corpus has Participants (P), Interventions (I) and Outcomes (O) an-
notations, the propositions made in this chapter are focused on the
Outcome (O) element.

37
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3.2 denoising crowdsourced annotations of outcomes

This chapter investigates a recently published corpus, EBM-NLP [161],
comprising ca. 5000 abstracts annotated with P, I, O elements by a
mixture of lay and expert annotators. The corpus has two versions,
(1) the “starting spans” in which text spans are annotated with the
literal “P, I or O” labels and (2) the “hierarchical labels” in which the
annotated “P, I or O” spans were further annotated with more spe-
cific labels aligned to the concepts codified by the MeSH1, for instance
the “O” spans are annotated with more granular (specific) outcome
type labels which include Physical, Pain, Mental, Mortality, Adverse
effects and Other. An outcome type is a classification or category that
collectively embodies a group of outcomes measured during clinical
Trials [55].

Focused on the outcome element, this investigation begins with an
assessment of whether the annotations retain the true identity of a
widely acknowledged definition of an outcome i.e. a measurement or
an observation used to capture and assess the effect of a treatment
such as assessment of side effects (risk) or effectiveness (benefits) [55,
225]. For this assessment, I rely on two domain experts in order to
eliminate traps such as annotation bias that prior construction efforts
encountered [84, 85, 214]. Annotation bias occurs when annotations
of the same data vary from one annotator to another as a result of
ineliminable factors such as background, preconceptions about the
data and knowledge level of the annotation task [11]. After obtain-
ing a very low inter annotator agreement in an annotation exercise,
Boudin, Nie, and Dawes [23] resorted to weakly labelling sentences
with the explicit headings under which they were mentioned in the
PubMed articles.

In this assessment exercise, the experts review a small sample of
annotated abstracts checking whether the annotated outcomes retain
the identity of an outcome as defined above, and if not, they deter-
mine the flaws that recur across the annotations in the sample. By the
end of this review, multiple flaws within the annotations had been
carefully identified, and these are outlined and discussed in the fol-
lowing Section 3.2.1.A flaw is an error or

mistake in an
annotation usually

resulting from human
faults during manual

annotation of data.

3.2.1 Flaws discovered in annotations of health outcomes

A flaw can be defined as an error or mistake in an annotation, usually
resulting from human faults during manual annotation of data.

Below is a breakdown of the different flaws observed in outcome
annotations in the review conducted as previous paragraph discusses.

1 https://www.nlm.nih.gov/mesh/meshhome.html

https://www.nlm.nih.gov/mesh/meshhome.html
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Flaw 1: Inclusion of unnecessary text that is either supportive of the
actual outcome or an elaborated context of an outcome. Two
kinds of unnecessary text identified and presented in Table 3

are,

1. Statistical metrics.
Statistical terms such as mean, median, standard deviation are
relevant in reporting results but are not considered as out-
comes themselves.

2. Modifying or descriptive Part-Of-Speech (POS).
Comparative POS such as adjectives, conjunctions and ad-
verbs were captured as part of the sequence of words in
outcome spans. E.g. “Lower” in the phrase “Lower maternal
attachment” can also be “higher” which are both compara-
tive adjectives describing the change as applied to an out-
come “maternal attachment”.

Incorrectly captured Outcome Correct Outcome

1. mean arterial blood pressure

2. median Survival

arterial blood pressure

Survival

1. Improved ADHD symptoms

2. Lower maternal attachment

ADHD symptoms

maternal attachment

Table 3: Examples of unnecessary text such as statistical and POS tags.

Incorrectly captured Outcome Correct Outcome

1. cardiovascular events-

(myocardial infarction, stroke and-

cardiovascular death)

1. myocardial infarction

2. stroke

3. cardiovascular death

2. Systolic and Diastolic blood-

pressure

1. Systolic blood pressure

2. Diastolic blood pressure

Table 4: Examples of multiple distinct outcomes compressed into one out-
come.

Contiguous outcome
spans incorrectly
captured as a single
outcome e.g. systolic
and diastolic BP
should be systolic BP
and diastolic BP.

Flaw 2: Failure to identify independent or granular outcomes. This
was observed across the following,

1. Multiple outcomes annotated as a single outcome.
Some outcome spans were captured as a sequence of dis-
tinct outcomes syntactically separated by either logical con-
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junctions (and/or) or punctuation characters such as com-
mas, full and semi-colons (example 1 in Table 4).

2. Contiguous outcome spans annotated as a single outcome.
These included outcome spans that depicted two or more
distinct but related outcomes. e.g. Systolic and Diastolic blood
pressure represents two different but related outcomes as
shown in example 2 in Table 4.

Flaw 3: Capturing measurement tools, metrics and results as out-
comes.
The phrase “Work-related stress scores” is a metric result reported
during RCTs, but the outcome itself is “Work-related stress”. Other
examples may include tools such as questionnaires and tests
used in RCTs. Examples are shown in Table 5.

Incorrectly captured Outcome Correct Outcome

1. Quality of life Questionnaire

2. Work-related stress scores

3. Weight-test

Quality of life

Work-related stress

Weight

Table 5: Examples of measurement tools and metrics captured as outcomes.
Quality of life

questionnaire is not
an outcome but rather

a tool measuring the
outcome Quality of

life. Similarly,
Work-related stress

scores is not an
outcome but rather a

score associated the
outcome Work-related

stress.

Flaw 4: Imprecise outcome annotations resulting from inadequate
domain knowledge of annotators. Examples indicated in Ta-
ble 6.

1. Non-outcomes incorrectly captured as outcomes e.g. “Sever-
ity”, “Effect sizes”, “significant improvement”.

2. Misrepresented outcome types, especially in the Mortality
outcome type.

outcome span Incorrect Type Correct Type

Nauseas and Vomiting Mortality Physical

suicidal ideations Mortality Mental

Table 6: Examples of outcomes labeled with incorrect types.

Flaw 5: Combining annotations of outcomes in non-human studies
together with those in human studies. Despite the validity of
outcomes in non-human species, they ought to be separately
annotated. For example, time needed to treat commercial beef cat-
tle is an outcome extracted from non-human medical abstracts
included in outcome annotations for human medical abstracts.
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3.2.2 A hybrid approach to correcting outcome annotations

I propose a novel noise filtering framework that combines POS heuris-
tics and rule-based chunking to automatically correct flawed granular
outcome annotations. The framework incorporates constraints that
examine the syntactic and semantic structure of the annotations in
order to reduce the noise identified as flaws in the above section. POS

heuristics are concerned with assigning each word in the abstracts
a POS tag which can be used to identify irrelevant words and char-
acters that are captured as part of outcomes. Rule-based chunking
is concerned with identifying and removing unwanted text from the
outcome span using POS trigger tags accompanying actual relevant
text (in outcome span). The components of this framework are de-
scribed in the following sections and later summarized in Algorithm
1.

3.2.2.1 Custom Part-of-speech tagging
The proposed noise
filtering framework
uses a trained tagger
customised using
spaCY to annotate
sentences and a
chunker relies on the
POS tags to identify
flaws.

BioNLP is supported by a number of POS taggers such as MedPost/SKR
Tagger [192] and Genia Tagger [209] which were all trained on biomed-
ical text in Medline sentences [192]. Whereas these taggers would suit-
ably perform POS tagging for the OD tasks, I opt to use a more uni-
versally recognised SOTA NLP industry-scale library, spaCY2 for POS

tagging. spaCY already has models pre-trained on web text (blogs,
news, comments) to perform a variety of text pre-processing tasks
including Tokenization, POS tagging, Dependency parsing, sentence
segmentation and more. Additionally, spaCY provisions for customiz-
ing or updating3 these trained components by fine-tuning them on
domain-specific data.

To leverage the entire suite of inbuilt text-prepossessing compo-
nents of this library, particularly Tokenization and sentence segmen-
tation, I train a spaCY POS tagger on Medpost, the same corpus Med-
POST tagger was trained containing 6,700 Medline sentences anno-
tated with 60 POS tags [192]. This not only allows spaCY tagger to
adapt and ably generalise well across biomedical text for the OD tasks,
but it is additionally a less computationally expensive approach in
comparison to loading two different models i.e. spaCY for tasks like
tokenization and MedPOST for POS tagging.

The trained tagger is then subsequently used to assign POS tags to
every individual word in the investigated dataset (EBM-NLP). The
trained tagger conforms to Penn Treebank POS tagging guidelines
[183], with a few adjustments that include,

• All words that ended with ‘+’ such as CIN2+ were assigned
noun tags, ‘NN’. This catered for some medical compounds and

2 https://spacy.io/
3 https://spacy.io/usage/training

https://spacy.io/
https://spacy.io/usage/training
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substances with similar syntax that could have not appeared in
the training set.An illustration of the

entire pipeline of the
noise filtering and

evaluation framework
• Punctuation symbols such as period (.), single quotation (’) and

semi-colon (;) were eliminated because the EBM-NLP dataset
had several of these as redundant punctuation tokens.

• Square brackets retained their syntax as the corresponding POS

tag i.e. ‘[’ and ‘]’ were tagged as ‘[’ and ‘]’ respectively.

3.2.2.2 Rule-based chunking

The chunking algorithm (chunker) relies on a set of heuristics to deter-
mine where the chunk of interest (correct outcome span) begins and
ends. These heuristics are handcrafted linguistic constraints created
to influence the capturing of sequences of words relevant to an out-
come within the incorrect crowdsourced outcome spans. Exposed to
the POS tagged outcome spans from the previous step, this chunker
uses underlying syntactical patterns known as regular expressions
to programmatically extract one or more sub text-spans that consti-
tute the actual outcome span of interest. For example, given a POS

tagged outcome span such as “lower_JJR maternal_JJ attachment_NN”
produced from Section 3.2.2.1, based on one of the predefined heuris-
tics below that suggests removal of comparative POS such as compar-
ative adjectives tagged ’JJR’, the chunker uses the positional informa-
tion of word tagged with the unwanted POS i.e. “lower_JJR” to strip
it off and retain “maternal attachment” as the outcome. Below is a list
of chunking heuristics (H) used,

H1. Removal of statistical terms: Statistical terms within outcomes
were eliminated irrespective of their position in the outcome
spans. The removed statistical terms were referenced from a
couple of sources including the international institute of statis-
tics glossary4 and the book for medical device clinical trials [4].

H2. Removal of non-informative POS tags: These included all stop
words with POS tags; TO (infinitive marker), IN (Preposition),
CC (coordinating conjunction) and DD (determiner). Despite
frequently occurring in text, stop words are considered to be
non-informative and therefore deemed irrelevant in analysis
[160]. Stop words were therefore removed whenever they were
located at,

– Start or end of outcome spans. e.g the_DD memory_NN
loss_NN, and_CC fatigue_NN.

– Every position in an outcome span, i.e. all words tagged
with a mixture of only the above defined non-informative
POS tags.
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A set of heuristics
that guide the noise
filtration process.H3. Eliminating contextually comparative or quantification phrases:

Comparative phrases contain comparative adjectives and ad-
verbs with POS tags JJR and RRR respectively such as longer and
better respectively. Other phrases contain superlative adjectives
and adverbs with POS tags JJT and RRT respectively such as
highest and most. I additionally considered a set of terms depict-
ing quantity and their synonyms extracted from WordNet [150].
These included total, average, increase and decrease. These were
removed whenever they were at the start or end positions of an
outcome span.

H3. Removing unnecessary word sequences at the start of out-
come spans: Unwanted starting POS sequence included (NNS
II), (NNS DD) and (NNS TO) e.g. predictors of is unnecessary
in predictors_NNS of_II sex_NN risk_NN behavior_NN, and so is
changes in in changes_NNS in_II Brain_NN Natriuretic_NN Pep-
tide_NN.

H5. Splitting long outcomes via logical conjunctions and punctu-
ation characters: These include coordinating conjunctions with
a POS tag CC and punctuation such as commas with a POS tag
‘,’ e.g. Serum_NN folate_NN and_CC vitamin_NN B12_NN is split
at and_CC to have two seperate outcomes Serum_NN folate_NN
and vitamin_NN B12_NN.

H6. Stripping off square, curved or curly brackets wrapped around
outcome spans: For example the parenthesis in the span (_(
Autism_NN Behavior_NN )_) is removed. The retained span would
then be subjected to the heuristics outlined above.

H7. Removal of measurement tools and metrics: Referencing tools
from the book for medical device clinical trials [4], I match mea-
surement tools and metrics that were annotated as outcome
spans and eliminate the last word in each span. For example, the
last word of each of these tools i.e. Autism Behavior checklist,
Quality of life questionnaire and Baseline tumour marker are
respectively removed.

H8. Changing of an annotation label: The outcome type (class la-
bels) for the outcome spans that had incorrect labels were changed
to the suitable class labels that the experts had provided during
their assessment.

H9. Outcome spans with a sequence of words all tagged as nouns
were preserved: For examples platelet_NN thromboxane_NN for-
mation_NN. is preserved.

An algorithm used for
the noise filtration
process.

4 http://isi.cbs.nl/glossary/bloken00.htm

http://isi.cbs.nl/glossary/bloken00.htm
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Figure 3: Outputs of the two main components (POS tagging and Rule
based chunking) of the hybrid noise filtering framework and
the architectures used in the outcome classification task in Sec-
tion 3.2.3.

Algorithm 1 Noise filtering Algorithm

1: Input: Noisy outcome annotations NO, Heuristics {H1. . .H9} in
Section 3.2.2.2,
Output: Corrected outcome annotations CO

2: for annotation x in NO do
3: where x = w1, . . . ,wn

4: for each w in x do
5: ASSIGN POS tag to w

6: end for
7: ASSERT that x is POS tagged i.e. x(p)

8: for heuristic h in {H1. . .H9} do
9: APPLY h to x(p)

10: UPDATE x(p) such as re-assign NONE (O) label to identi-
fied non-outcome words denoting it is irrelevant to actual
outcome

11: end for
12: ASSERT that all h ∈ H9

i=1 are applied to x(p) in order to obtain
x(c)

13: Feed x(c) into CO

14: end for
15: return CO

3.2.3 Evaluation

To evaluate the methods proposed in the preceding section, I under-
take an outcome classification (OC) task whose goal is to classify each
outcome span into one of six outcome types (classifications) namely
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Adverse-effects, Mental, Mortality, Pain, Physical and Other. These
outcome types were originally prescribed as the outcome classifica-
tions in the hierarchical labels version of the EBM-NLP dataset intro-
duced in Section 3.2.

task definition : Given a training-set, O = {(xt,yt)}
T
t=1, where

T is the number of training examples, xt is an instance of an outcome
span such that xt = (w1,w2, . . . ,wN) where N is the length of the out-
come span sequence to be classified and each wn is a 50-dimensional
embedding for a word at index n. Word embeddings are obtained
from pre-trained 840B 300d GloVe word vectors [166]. yt is a one-hot
vector corresponding to a label in the label space Y. The goal is to
learn a classifier that models the probability of each label for the in-
coming outcome span. The parameters of the classifier are trained
to minimise the cross-entropy loss between the true and predicted
distributions in (13),

L(y,p) = −

T∑
t=1

yt log(pt) (13)

where yt and pt respectively indicate the ground truth label and the
predicted probability for training instance xt. To evaluate the noise

filtering framework, I
monitor the
performance of
multiple classifiers in
an outcome
classification task on
both the flawed
outcome annotations
and the corrected
outcome annotations.

Figure 3 illustrates the components of the proposed noise filtration
framework combined with a classifier architecture used in evaluating
the noise filtration process. The figure shows POS tags assigned to an
input sentence in the second layer. Subsequently, a chunker that uses
syntactic patterns in form of regular expressions identifies and elim-
inates unnecessary text following heuristics in Section 3.2.2.2 in the
third layer. The corrected outcome span is then represented by a mean
pool across GloVe initialised embeddings of its constituent words. I
adopt 5 different architectures as classifiers to learn mapping each
of the resulting outcome embeddings to the true outcome type label.
These architectures include an LSTM [77], a CNN [109], a BiLSTM [244]
as well as two bag-of-word models: SVM [171] and Multinomial Naive
Bayes (MNB) [65]. Our evaluation protocol first performs supervised
classification on both the initial extract of ca. 70,000 outcome spans
from the original EBM-NLP and the corrected outcome spans that are
ca. 32,000. I refer to the dataset with corrected outcome spans as EBM-
NLPrev. Using train/test splits that are respectively 80% and 20% for
the noisy and corrected collections, I measure F1 performance (on
test set) across the models in order to establish whether there is an
increase/decrease/no change in performance after the noise filtration
and whether it is consistent across all models.
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Model
Adverse-effects

[4489/1593]

Mental

[8596/3875]

Mortality

[1715/1176]

Pain

[1649/839]

Physical

[34997/18287]

Other

[17996/5499]

Baseline (SVM) 0.55/0.65 0.63/0.72 0.62/0.89 0.70/0.77 0.67/0.85 0.68/0.77

CNN 0.31/0.44 0.58/0.69 0.49/0.61 0.52/0.70 0.55/0.71 0.57/0.59

LSTM 0.39/0.45 0.54/0.68 0.63/0.85 0.61/0.75 0.72/0.86 0.42/0.64

MNB 0.26/0.35 0.49/0.57 0.20/0.79 0.36/0.50 0.74/0.81 0.46/0.49

Bi-LSTM (BM) 0.59/0.66 0.71/0.80 0.77/0.90 0.74/0.81 0.90/0.90 0.62/0.75

BM - Flaw 1

BM - Flaw 2

BM - Flaw 3

BM - Flaw 4

0.37

0.65

0.56

0.51

0.69

0.70

0.70

0.63

0.83

0.90

0.72

0.50

0.65

0.76

0.66

0.70

0.78

0.85

0.88

0.88

0.58

0.60

0.59

0.57

Table 7: Average F1-score for each class before/after (before and after cor-
recting outcome-spans). Best and second-best scores in bold and un-
derlined respectively. Additional scores reported for the Best Model
(BM) when subjected to data with flaws independently corrected.
Enclosed in the brackets at the top is the instance count per class
before/after, (Results rounded off to two decimal places).

3.2.3.1 Experiments and results
BiLSTM model

outperforms all the
other models in the

outcome classification
task. Additionally,

there is a consistent
increase in F1 in the

evaluation
performance on

corrected outcome
spans

I perform experiments (each using a different architecture defined
above) aimed at evaluating how much the noise filtering framework
(summarized in Algorithm 1 and illustrated in Figure 3) improves
the F1 performance of the text classification task defined above. In all
experiments, five-fold cross validation is used, with a batch-size of
500, trained for 100 epochs and a drop-out of 0.2 for each single fold.

Note: The bag-of-words models take as input, a Tf-Idf vector [243]
representation of the words. The source code of our implementation
of Algorithm Algorithm 1 and the classifiers built using tensorflow5

is publicly availed.6

Results presented in Table 7 indicate that the accuracies of the clas-
sifiers (models) increased after correcting the errors in the outcome
spans. Moreover, the increase was not only consistent across the five
different models used, but even across prediction of the six classes/la-
bels in the dataset. Notably, the BiLSTM outperforms all the other
models, however, the bag-of-words SVM model is competitive i.e. it
achieves the second highest F1 scores outperforming the other neu-
ral models. This suggests that despite the success of neural networks
in language modelling tasks, some conventional learning algorithms
like SVMs are highly effective in text classification tasks such as the
classification of outcome spans in this evaluation.

5 https://www.tensorflow.org/
6 https://github.com/MichealAbaho/pico-outcome-prediction

https://www.tensorflow.org/
https://github.com/MichealAbaho/pico-outcome-prediction
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Flaw H1 H2 H3 H4 H5 H6 H7 H8 H9

Flaw 1 ✓ ✓ ✓

Flaw 2 ✓ ✓ ✓ ✓ ✓

Flaw 3 ✓ ✓

Flaw 4 ✓ ✓

Table 8: Each of the Flaws presented with the specific Heuristics used in cor-
recting them. For example H1, H2 and H9 heuristics as mentioned
in Section 3.2.2.2 are used to correct Flaw 1.

3.2.3.2 Flaw Analysis

In order to examine the impact the flaws individually had on the
classification performance, the correction process was broken down
to independently cater for the different flaws one by one. The best
performing model, BiLSTM, would then be tested on input data where
only annotations with flaw 1 were corrected (as shown in Table 8)
and the rest ignored. This was repeatedly done for flaws 2, 3 and 4

as reported in the bottom half of Table 7. Flaw 5 was not considered
in this additional analysis because of the extremely few cases it was
responsible for.

Despite the largely analogous results, I observed that corrections
targeted to fix flaw 2 alone, had a significantly higher impact on the
performance, achieving higher F1-scores for the six classes with the
exception of the Physical class. This implied that, granularity and dis-
tinctness is vitally important when automatically classifying not just
outcomes but any relevant clinical entities in biomedical literature.
Nonetheless, none of the F1-scores in this extended analysis would
match up to the originally obtained F1-scores with all flaws corrected
(line 5 - Table 7).

3.3 ebm-comet : a novel dataset for outcome detection

EBM-COMET, a
dataset that curates
PubMed abstracts for
OSD is introduced.

EBM has generally attracted less attention from the BioNLP commu-
nity. This has mainly been attributed to the limited number of pub-
licly available datasets with which to train and evaluate deep learning
models [161]. More so, prior dataset construction efforts directed to
EBM, have lacked a standard classification system to accurately in-
form their annotation process. Instead, they opted to use headings
in structured abstracts (such as Participants, Interventions, Outcomes
etc) as class labels [23, 84, 107]. Furthermore, I observed that major-
ity of these efforts curated datasets for Sentence Level Classification
(SLC) neglecting Token Level Classification (TLC) which would require
granular (span of words) annotations. Nevertheless, Nye et al. [161]
published EBM-NLP which contains granular annotations suited for
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TLC, however, they also did not adopt any standard classification sys-
tems for the PICO elements [1, 2], but instead used arbitrary labels
aligned to MeSH to annotate spans with information relevant to PICO.
Moreover, EBM-NLP was discovered with flawed annotations which
I addressed in the previous Section 3.2 on denoising crowdsourced
annotations of outcome.

To further address the gaps mentioned in the preceding section,
this chapter introduces EBM-COMET, a new dataset that curates PubMed
[29] abstracts for EBM, particularly for Outcome span detection (OSD),
a sequence labelling task to detect mentions of outcomes in clinical
text. Similar to the previous Section 3.2, I adopt the widely acknowl-
edged definition of an outcome as defined in Chapter 1 for the annota-
tion process discussed in following sections. Different from all prior
dataset construction efforts, EBM-COMET annotators use outcome
domain classifications drawn from a recognised system i.e. an out-
come taxonomy recently developed to standardise outcome reporting
in electronic databases [52, 55] to annotate spans with outcomes. The
taxonomy authors iteratively reviewed how core outcome sets (COS)
studies within COMET database [89] categorised their outcomes. This
review culminated into a taxonomy of 38 outcome domains hierarchi-
cally classified into 5 outcome types/core areas.

EBM-COMET was tested on all the other sub-tasks undertaken and
discussed in the next three thesis chapters. Experiment results show
that all evaluated models perform better on EBM-COMET, reaching
an accuracy of 81.5% in the OSD task, compared to 53.1% on the EBM-
NLP dataset. I however concentrate on the dataset construction pro-
cess in this section and reserve the details on the evaluation on the
dataset for the subsequent chapters.

A. Data collection

Using the Entrez API [185], I automatically fetch 300 abstracts from
open access PubMed [29]. Our search criteria only retrieves articles of
type “Randomised Controlled Trial”. I relied on two domain-experts
to review these abstracts and eliminate those reporting outcomes in
animals (or non-humans). Each eliminated abstract was replaced by
another reporting human outcomes from PubMed.

B. Annotation

The two experts I work with have sufficient experience in reviewing
human health outcomes in clinical trials. Some of their work pertain-
ing to outcomes in clinical trials includes [60, 111, 225, 226]. These
experts jointly annotate granular outcomes within the gathered ab-
stracts resulting into EBM-COMET using guidelines below. We are
aware of annotation tools such as BRAT [196], however because of the
nature of the annotations i.e. some with contiguous outcome spans,



3.3 ebm-comet : a novel dataset for outcome detection 49

the experts prefer to directly annotate them in Microsoft text docu-
ments.

Core area Outcome domain Domain symbol Explanation

Physiological Physiological/Clinical P 0

Includes measures of physiological function, signs and

symptoms, laboratory (and other scientific) measures

relating to physiology.

Death Mortality/survival P 1

Includes overall (all-cause) survival/mortality and

cause-specific survival/mortality, as well as composite

survival outcomes that include death (e.g. disease-free

survival, progression-free survival, amputation-free survival).

Life impact Physical functioning P 25

Impact of disease/condition on physical activities of

daily living (for example, ability to walk, independence,

self-care, performance status, disability index, motor skills,

sexual dysfunction. health behaviour and management).

Social functioning P 26

Impact of disease/condition on social functioning (e.g.

ability to socialise, behaviour within society, communication,

companionship, psychosocial development, aggression,

recidivism, participation).

Role functioning P 27

Impact of disease/condition on role (e.g. ability to care for

children, work status).

Emotional functioning/wellbeing P 28

Impact of disease/condition on emotions or overall wellbeing

(e.g. ability to cope, worry, frustration, confidence, perceptions

regarding body image and appearance, psychological status,

stigma, life satisfaction, meaning and purpose, positive affect,

self-esteem, self-perception and self-efficacy).

Cognitive functioning P 29

Impact of disease/condition on cognitive function (e.g. memory

lapse, lack of concentration, attention); outcomes relating to

knowledge, attitudes and beliefs (e.g. learning and applying

knowledge, spiritual beliefs, health beliefs/knowledge).

Global quality of life P 30

Includes only implicit composite outcomes measuring global

quality of life.

Perceived health status P 31

Subjective ratings by the affected individual of their relative

level of health.

Includes outcomes relating to the delivery of care, including

- adherence/compliance, withdrawal from intervention

e.g. time to treatment failure).

- tolerability/acceptability of intervention.

- appropriateness, accessibility, quality and adequacy of

intervention.

- patient preference, patient/carer satisfaction (emotional

rather than financial burden).

- process, implementation and service outcomes (e.g.

overall health system performance and the impact of service

provision on the users of services).

Personal circumstances P 33

Includes outcomes relating to patient’s finances, home

and environment.

Resource use Economic P 34

Includes general outcomes (e.g. cost, resource use) not

captured within other specific resource use domains.

Hospital P 35

Includes outcomes relating to inpatient or day care hospital

care (e.g. duration of hospital stays, admission to ICU).

Need for further intervention P 36

Includes outcomes relating to,

- medication (e.g. concomitant medications, pain relief)

- surgery (e.g. caesarean delivery, time to transplantation)

- other procedures (e.g. dialysis-free survival, mode of delivery)

Societal/carer burden P 37

Includes outcomes relating to financial or time implications

on carer or society as a whole e.g. need for home help, entry

to institutional care, effect on family income

Adverse events Adverse events/effects P 38

Includes outcomes broadly labelled as some form of unintended

consequence of the intervention e.g. adverse events/effects,

adverse reactions, safety, harm, negative effects, toxicity,

complications, sequelae. Specifically named adverse events

should be classified within the appropriate taxonomy domain

above

Table 9: A taxonomy of outcome classifications developed and used by
Dodd et al. [55] to classify clinical outcomes extracted from biomed-
ical articles published in repositories that include Core Outcome
Measures in Effectiveness Trials (COMET), Cochrane reviews and
clinical trial registry
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Figure 4: Sample annotations of outcomes depicting the annotation style
with each example showing the outcome span and its assigned
outcome domain label.

B.1 Annotation guidelines

The annotators are tasked to identify and verify outcome spans and
then assign each an outcome domain referenced from the taxonomy
presented in Table 9. The annotators are instructed to assign each
span all relevant outcome domains.

B.2 Annotation heuristics
Annotation heuristics

used to guide the
annotation process.

Demarcating spans of
outcomes using

opening and clsong
tags with the outcome

domain positioned
besides the opening

tag.

For annotation purposes, I firstly assign a unique symbol to each out-
come domain (drawn from domain symbol column in Table 9). The
annotators are then instructed to use these symbols to label the out-
come spans they identify. Annotation using these symbols rather than
the long domain names is less tedious. Furthermore, I instruct anno-
tators to use xml tags to demarcate the spans, such that an identified
span is enclosed within an opening tag with the assigned domain
symbol and a closing tag. I refer to easily identifiable outcome spans
as simple annotations, and the more difficult ones requiring more
demarcation indicators as complex annotations. Figure 4 shows ex-
amples of the annotations described below,

1. Simple annotations

1.1. <P XX>. . .</>: Indicates an outcome belongs to domain
XX (where XX can be located in the taxonomy 9).

1.2. <P XX, YY>. . .</>: Indicates an outcome belongs to both
domains XX and YY.

2. Complex annotations
Some spans are contiguous in such a way that, they share a
word or words with other spans. For example, two outcomes
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can easily be annotated as a single outcome because they are
conjoined by a dependency word or punctuation such as “and”,
“or” and commas. I am however fully aware, that this conti-
guity previously resulted in multiple outcomes annotated as a
single outcome in previous datasets [1]. Therefore, annotators
are asked to distinctively annotate them as below, Simple annotations

are those with the
template <P
domains>[outcome
span</>] whereas
complex annotations
have a few more
identifiers to indicate
contiguity e.g. <P do-
mains>[S#][outcome
span</>, where S#
implies shares #
tokens at start of span.

2.1. Contiguous spans sharing bordering term/s appearing at
the start of an outcome span should be annotated as fol-
lows,
<P XX>(S#). . .<P XX>. . .</>: which indicates that, two
outcomes are belonging to domain XX that share # of words
at the start of the annotated outcome span.

2.2. Contiguous spans sharing bordering term/s appearing at
the end of an outcome span, should be annotated as fol-
lows,
<P XX>(E#). . .<P XX>. . .</>: The opposite of the nota-
tion above indicating that, two outcomes are belonging to
domain XX that share # of words at the end of the anno-
tated outcome span.

B.3 Annotation consistency and quality

In the last phase of the annotation process, the annotations are ex-
tracted into a structured format (excel sheet) for the annotators to
review them, make necessary alterations based on their expertise
judgement as well as handle minor errors (such as wrong opening
or closing braces) that result from the manual annotation processes. I
do not report inter-annotator agreement because the two annotators
did not conduct the process independently, but rather jointly. Having
previously worked together on similar annotation tasks, they hardly
disagreed but whenever either was uncertain or disagreed, they dis-
cussed between themselves and concluded.

3.4 label denoising using comparable datasets

As a final step in achieving this thesis’s first objective which aims to
evaluate and improve the reliability of current outcome annotations
in weakly labelled datasets, This section attempts to denoise the arbi-
trary outcome classifications (labels) in EBM-NLP by aligning them
to standard outcome classifications proposed by Dodd et al. [55] and
used to annotate EBM-COMET. These standard classifications were
found (after extensive analysis and testing) to provide sufficient gran-
ularity and scope of trial outcomes.

I introduce a flexible, re-usable unsupervised text alignment ap-
proach that extracts parallel annotations from comparable datasets. I
use this alignment for data augmentation in a low-resource setting
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in a proposal made to jointly detect outcomes (i.e OSD) and classify
outcomes (OC) in Chapter 5.

3.4.1 Label alignment (LA) task definition

Given two datasets S and T with comparable content, with S con-
taining x labels such that Ls = {l1s , . . . , lxs } and T containing y labels
Lt = {l1t , . . . , lyt }, I design LA to measure the similarity between each
pair of labels (ls, lt). For this purpose, I first create an embedding forI introduce a an

unsupervised text
alignment approach
that aligns arbitrary

labels to standardised
labels. An arbitrary

label is changed to the
standardised label its

most similar or
aligned to.

each label ls in a sentence s(∈ S) by applying mean pooling over the
span of embeddings (extracted using pre-trained BioBERT [121]) for
the tokens corresponding to an outcome annotated with ls as shown
in (14). Next, I average the embeddings of all outcome spans that are
annotated with ls in all sentences in S to generate an outcome type
label embedding ls as shown in (15). Likewise, I create an outcome
type label embedding, lt for each outcome type in the target dataset
T. After generating label embeddings for all outcome types in both S

and T, I compute the cosine similarity between each pair of ls and lt
as the alignment score between each pair of labels ls and lt respec-
tively.

Ols =
1

d

i+(d−1)∑
i

Biobert(wi) (14)

where Ols , is an outcome span annotated with outcome type label ls,
i and i+ (d− 1) are the locations of the first and last words of the
outcome span.

ls =
1

|ls|

|ls|∑
1

Ols (15)

where |ls| is the number of outcome spans annotated with label ls
and ls is label ls embedding.

3.4.2 Evaluation experiments and results

Table 10 shows the similarity scores for label pairs (ls, lt) across S

(EBM-COMET) and T (EBM-NLP) respectively. For each label (which
is an outcome domain) in EBM-COMET, I identify the EBM-NLP label
which is most similar to it by searching for the least cosine distance
across the entire column. After identifying those pairs that are most
similar, I automatically replace outcome type labels in EBM-NLP with
EBM-COMET outcome type labels as informed by the similarity mea-
sure.

Results show that Physiological outcomes (containing domain P
0) are similar to Physical outcomes and therefore the latter outcomes
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Physiological Mortality Life-Impact Resource-use Adverse-effects

P 0 P 1 P 25 P 26 P 27 P 28 P 29 P 30 P 31 P 32 P 33 P 34 P 35 P 36 P 38

Adverse-effects 0.0615 0.1532 0.1226 0.1893 0.2001 0.1348 0.1169 0.2555 0.2320 0.0897 0.1936 0.2561 0.1768 0.1043 0.0562

Mental 0.0387 0.1829 0.0444 0.0928 0.1529 0.0623 0.0419 0.2214 0.1624 0.0624 0.1063 0.2537 0.1955 0.1041 0.1904

Mortality 01330 0.0187 0.1722 0.2562 0.2563 0.2171 0.1821 0.2594 0.2956 0.1559 0.2349 0.2855 0.1976 0.1905 0.2082

Pain 0.0947 0.2310 0.1266 0.2181 0.1906 0.1316 0.1634 0.2662 0.2089 0.1290 0.2209 0.2770 0.2269 0.1422 0.2096

Physical 0.0114 0.1582 0.0698 0.1494 0.1878 0.1126 0.0788 0.2363 0.2059 0.0639 0.1461 0.2539 0.1758 0.0761 0.1803

Table 10: Cosine distance between representations of EBM-NLP labels (first
column) and EBM-COMET labels (top and second row). EBM-
COMET outcome type labels were drawn from the outcome do-
mains defined in [55] taxonomy. Due to space limitations, I denote
these domains as P X such as P 0, P 1 etc. The taxonomy hierar-
chically categorised them into 5 outcome types which are accord-
ingly included in the top row. Outcome domains definitions are,
P 0-Physiological/clinical, P 1-Mortality/survival, P 25-Physical
functioning, P 26-Social functioning, P 27-Role functioning, P
28-Emotional functioning/wellbeing, P 29-Cognitive functioning,
P 30-Global quality of life, P 31-Perceived health status, P 32-
Delivery of care, P 33-Personal circumstances, P 34-Economic, P 35-
Hospital, P 36-Need for further intervention, P 37-Societal/carer
burden, P 38-Adverse events/effects.

are labelled Physiological, Life-Impact outcomes are similar to Mental
outcomes and therefore the latter outcomes are labelled Life-Impact.
Mortality and Adverse-effects outcomes both remain unchanged be-
cause both categories exists in source and target datasets, and their
respective outcomes are discovered to be similar. I evaluate the joint
learning architecture I propose in Chapter 5 on the resulting merged
dataset, and additionally, evaluate the alignment approach by com-
paring the performances before and after merging. Overall, an aver-
age improvement of 2.5% and 5.5% in F1 for the OSD and OC tasks
across both the EBM-COMET and EBM-NLP datasets test sets was
observed. Full details on this evaluation are deferred to Table 5.4.

3.5 discussion and summary

To tackle the challenges that motivated the first objective of this thesis
that aims to improve the reliability of outcome annotations, three dif-
ferent measures are undertaken and exhaustively discussed in this
chapter. The chapter begun by proposing a hybrid noise filtering
framework that combines POS tagging and rule-based chunking to
denoise flawed outcome annotation spans in a crowdsourced EBM

benchmark dataset (EBM-NLP). The framework uses a collection of
heuristics that use lexical and syntactic information to filter out noise
from annotated data. Each heuristic is strategically created to filter
out specific noise (flaw), however correction of each flaw is not nec-
essarily limited to a single heuristic. Experiments targeting a task to
classify an outcome span (OC) showed that the proposed framework
led to an improvement in the F1 classification scores for each outcome
type.
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The second measure introduced EBM-COMET, a dataset of PubMed
abstracts in which outcome spans are expertly annotated. This dataset
is distinct from earlier efforts because it uses standardised outcome
classification labels drawn from a recently proposed taxonomy of
standardised outcome classifications [55]. EBM-COMET is built to
support BioNLP tasks aimed at EBM, particularly for OSD and OC tasks.
In several experiments, I observe PLMs fine-tuned on EBM-COMET
consistently produce better F1 scores than those fine-tuned on EBM-
NLP in both OSD and OC. Discussions on the impact EBM-COMET
makes, are however reserved for chapters 4, 5 and 6 presenting other
methods that this thesis proposes.

Finally, the chapter proposes a label denoising approach that aims
to automatically correct weak labels in the EBM-NLP corpus by re-
placing them with more informative and standardised outcome classi-
fication labels drawn from the outcome taxonomy proposed by Dodd
et al. [55]. The denoiser is a flexible, re-usable unsupervised text align-
ment approach which extracts parallel annotations from comparable
datasets, where one of the datasets is considered to have the stan-
dardised target labels. The intuition behind this denoiser, is to de-
termine annotations in the dataset (with standardised labels) that a
weak annotation is most similar too, and subsequently automatically
re-annotate the weak one with the similar standardised label. I use
this alignment for data augmentation in a low-resource setting in a
proposal made to joint OSD and OC in Chapter 5.

Using the newly introduced EBM-COMET dataset and the revised
version of the EBM-NLP dataset, the next chapter assesses the per-
formance of various contextualised embeddings models such as BERT

and ELMo in the OSD task.



4
A S S E S S M E N T O F C O N T E X T U A L I S E D
R E P R E S E N TAT I O N S I N D E T E C T I N G O U T C O M E S

4.1 introduction

Encoding surrounding context of a pivot word to produce a contextu-
alised (or context-dependent) word representation (embedding), has
been largely responsible for the recent upheaval in NLP [54, 136, 167,
235]. While prior generic embedding models provide a single static
vector for a word regardless of the context around it [149, 166], Con-
textualised Language Models (CLMs) provide a different vector for
each word depending on the context in which it is mentioned. This
vector variation is intentional simply because, different contexts will
often trigger different meanings of a word, which can invariably be
relevant in disambiguation for language [138]. This context-encoding
ability has been the distinguishable trait behind the superior perfor-
mance that Contextualised Representations (CRS) (provided by CLMs)
have achieved in a broad range of NLP downstream tasks like NER

[207], QA [175], Machine Translation (MT) [228], NLI [47] etc. This context-encoding
ability has been the
distinguishable trait
behind the superior
performance that CRS
(provided by CLMs)
have achieved in a
broad range of NLP
downstream tasks like
NER, QA, MT etc

Following their success in generic-domain tasks, CRS have further
led to impressive gains in many domain-specific tasks [13, 32, 121].
The notion generic-domain, is used to denote a distribution over
a language characterising a diverse set of topics, whereas domain-
specific is used to denote a distribution over a language character-
ising a single topic [72]. Focused on the biomedical domain, CRS

have improved performance in automatic recognition of diseases and
chemicals [154], gene-disease interactions [121], drug-drug interac-
tions [154], chemical-protein interactions [72], clinical NLI tasks [148]
etc. Unlike these BioNLP tasks, CRS have been underutilised for OD

tasks earlier defined in Chapter 1 i.e. Outcome Span Detection (OSD)
and Outcome Classification (OC). In as such, there is still little knowl-
edge about the capability and limitations of CRS in encoding and de-
tecting health outcomes from clinical text.

This chapter carries out a comprehensive analysis to investigate
the performance of biomedical CRS in tasks such as OSD using the
denoised and newly introduced datasets in the preceding chapter
(Chapter 3). The goal in the OSD task is to detect and extract outcome
spans from clinical text. For example, in a sentence, “The patient’s
systolic blood pressure rose over the course of treatment.”, OSD ex-
tracts all outcome spans such as those underlined and in bold font.
This enables those searching the literature including patients and pol-
icymakers to identify research that addresses the health outcomes of

55
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most importance to them [19]. Following previous studies that investi-
gated which CRS or embeddings are best suited for clinical-NLP text
classification tasks [145], this work is focused on probing for some
consensus amongst various SOTA domain-specific CRS, determining
which CRS are best suited for OSD.Feature extraction

involves adapting
frozen model

parameters in a down
stream model whereas,
Fine-tuning involves

continually training a
models parameters

however using a
downstream task.

Specifically, the chapter scrutinizes two pre-trained model adap-
tion (TL) paradigms of fine-tuning and feature extraction [169]. With
feature extraction, model parameters are frozen and used in a down
stream model whereas, in fine-tuning, a model continues to train its
parameters however using a downstream task. In summary, the chap-
ter: (1) performs an in-depth comparison between fine-tuning CRS and
adapting frozen CRS in a feature extraction approach, (2) performs a
qualitative assessment of accurately detecting full mentions of out-
come spans i.e. full outcome span evaluation strictly rewards models
for correctly detecting both the entity-span words and the entity clas-
sification label, unlike some traditional sequence labelling evaluation
which credits models for detecting a correct entity classification label
regardless of a partial match or overlapping entity-span boundaries
or for the exact entity-span boundaries regardless of the classification
label [39, 69], (3) compares the performance of the CRS in our exper-
imental setup to the leader-board1 performance on extracting PICO

elements from the original EBM-NLP dataset [161].
The remainder of the chapter begins with a discussion of biomed-

ical CLMs used in Section 4.2. This is followed by Section 4.3 which
describes an architecture that I use in adapting the CLMs. Within
Section 4.3 is a discussion on fine-tuning and feature-based adaption
approaches, where the latter involves systematically building a neu-
ral model tailored for OSD tasks. A discussion on the evaluation of
the above mentioned models in the OSD task highlighting the contri-
butions in the preceding paragraph is provided in Section 4.4 before
summarizing the chapters main findings in Section 4.5.

4.2 biomedical contextual language models

CLMs built by pre-training on heterogeneous or general corpora are
called generic-domain CLMs, whereas those that are built by pre-
training on domain-specific corpora are called domain-specific CLMs.
Intuitively, pre-training CLMs on biomedical text produces biomedi-
cal CLMs. As earlier discussed in the preamble to this chapter, CRS

provided by these pre-trained models have elevated the performance
in several downstream general and domain-specific NLP tasks.

While there are a few works that pre-train models on domain-
specific corpora (i.e. domain adaptive pre-training [DAPT; 72]) from
scratch [86, 236], majority of pre-trained biomedical CLMs typically
follow a standard pre-training approach that involves initialising vanilla

1 https://ebm-nlp.herokuapp.com/

https://ebm-nlp.herokuapp.com/
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CLMs such as BERT [54] and then continue the pre-training process
using biomedical text such as PubMed articles [72]. Common pre-
training architectures typically include the Masked Language Model
(MLM) architecture [10, 18, 121], forward and backward LSTMs [97,
189], both of which are further discussed under the individual CLMs
presented below.

I compare a set of 5 biomedical CLMs derived by pre-training 3

main CLM architectures described below.

1 . bert [54] : a CLM built by learning deep bidirectional represen-
tations of input words by jointly incorporating left and right context
in all its layers. BERT is pre-trained on 2.5M words from Wikipedia
and 0.8M words from the BookCorpus [248] using two unsupervised
tasks. The first being the MLM task, which masks a portion of the in-
put words and trains models to predict the original value of masked
words in an input sentence. BERT maximizes the log likelihood of a
word encoded using a self-attention mechanism [213] which incorpo-
rates information about words around it within a given input sen-
tence (as shown in (16)). The second task is Next sentence prediction
(NSP), in which the model receives a pair of sentences with one fol-
lowing or subsequent to another. In the NSP task, BERT learns to pre-
dict if indeed the subsequent sentence comes after the first sentence.

N∑
k=1

pθ(xk|xk, . . . , xk−1, xk+1, . . . , xN) (16)

BERT, ELMo and
FLAIR produce
bidirectional
representations by
conditioning on the
left and right context.

2 . elmo [167] : a CLM that learns deep bidirectional representa-
tions of input words by jointly maximizing the probability of for-
ward and backward directions in a sentence as shown in (17). ELMo

computes a weighted sum of the hidden states from each layer of a
2-layered BiLSTM to obtain a word embedding. ELMo was originally
pre-trained on approximately 30M sentences from new stories in a
monolingual corpora [34].

N∑
k=1

(logpθ(xk|x1, . . . , xk−1) + logpθ(xk|xk+1, . . . , xN)) (17)

3 . flair [7], a character-level CLM which learns representations
of each character by incorporating character information around it
within a sequence of words. Similar to ELMo, FLAIR, uses both for-
ward and backward LSTMs, however, instead of computing a task spe-
cific weighting, FLAIR concatenates representations across all layers
for each character. FLAIR was originally pre-trained with 1B news
word corpus [34].
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CLM Biomedical Variant Pre-trained on

BERT BioBERT
4.5B words from PubMed abstracts + 13.5B words from

PubMed Central (PMC) articles.

SciBERT
1.14M Semantic scholar papers [43] (18% from

Computer science and 82% from biomedical domains).

ClinicalBERT
2 million notes in the MIMIC-III v1.4 database [44]

(hospital care data recorded by nurses). (Bio+Clinical

BERT is BioBERT pre-trained on the above notes)

DischargeSummaryBERT
Similar to ClinicalBERT but only discharge summaries are

used (Bio+DischargeSummary BERT is BioBERT pre-trained

on the summaries)

ELMo BioELMo 10M PubMed abstracts (ca. 2.64B tokens)

FLAIR BioFLAIR 1.8m PubMed abstracts.

Table 11: A catalogue of CLMs evaluated on EBM datasets to assess their
capability in Outcome Span Detection (OSD) and Outcome Classi-
fication (OC).

Table 11 shows corpora used in pre-training the biomedical CLMs
used in the assessment approach. It is important to note that, I chose
these CLMs because at the point of conducting the analysis covered
in this chapter, these particular CLMs had been extensively used in
various BioNLP tasks. A few other biomedical CLMs such as UmlsBERT
[148], Biomed_RoBERTA [72] have since been released and I use them
in work discussed in the next chapters.

4.3 adapting pre-trained biomedical language models

to osd

Inspired by Nye et al. [161] who propose a new corpus to support
building NLP applications to address more complex tasks in EBM, such
as granular outcome classification and extraction of codified types, I
define OSD as a sequence labelling task as follows,OSD aims to extract

outcome span or
spans within a

sentence drawn from
an RCT abstract.

Given a sentence s of n words, s = w1, . . . ,wn within a RCT ab-
stract, OSD aims to extract an outcome span o = wx, . . . ,wd within
s, where 1 ⩽ x ⩽ d ⩽ n. In order to extract outcome spans such as
o, each word is labelled using the “BIO” tagging scheme [182] where
“B” denotes the beginning word of the outcome span, “I” denotes in-
side the outcome span or words following the beginning word and
“O” denotes all non-outcome words. Some abstract sentences have
got multiple outcome spans as shown in the example in Figure 5,

In this adaptation approach, I design two setups.
Fine-tuning: In this setup, inputs and outputs of the OSD task (de-

fined above) are plugged into pre-trained biomedical CLMs listed
in Table 11. The CLMs are then further trained using the outcome
datasets EBM-COMET and revised version of the EBM-NLP (denoted
as EBM-NLPrev in the rest of this chapter), both of which were intro-
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Figure 5: An example RCT abstract sentence with outcome spans that OSD
aims to extract.

duced in Chapter 3. The goal of this process is to update or adjust
the pre-trained CLMs parameters to the objectives of the OSD task ex-
pounded on in Section 4.3.1.

Feature extraction: This setup uses the pre-trained biomedical CLMs
listed in Table 11 as feature extractors i.e. the CRS of the words are ex-
tracted from the last layers of the models. In this approach, I build a
custom neural language model to train these extracted contextualised
features (also known as frozen embeddings) on the OSD task using
the same datasets as those in the fine-tuning setup. Besides the contex-
tualised features, this setup is further used to assess non-contextual
(context-independent) feature embeddings such as word2vec [149]. The prevailing

variation in
fine-tuning
approaches makes it
difficult to fully
understand the impact
of PLMs.

4.3.1 Fine-tuning based adaptation

Various task-specific model objectives and fine-tuning methods are
adopted when performing task-specific fine-tuning in NLP. Whereas
this prevailing variation in fine-tuning approaches is not completely
surprising since different tasks seek different outputs, it makes it dif-
ficult to fully understand the impact different pre-trained CLMs have
on a specific task. To facilitate a head-to-head comparison between

Figure 6: OSD for for the two assessment setups, Fine-tuning and Feature
extraction using the ODP tagger. Contextual representations ex-
tracted from the the Biomedical CLMs is fed into the downstream
ODP-tagger model. In addition to these, I feed POS embeddings
corresponding to the POS tag for each tokenized word.
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the different CLMs in my primary investigation, I fix a task-specific
layer on top of the biomedical CLMs generating CRS to predict the
output of the OSD task.

Figure 6 shows the architecture used in fine-tuning the CLMs. An in-
put sentence extracted from an RCT abstract is pre-processed by split-
ting it into a sequence of tokens or characters (tokenization layer). I
use the tokenization algorithms that were originally used in the work
proposing the CLMs. For BERT, the WordPiece algorithm which effec-
tively splits rare words into sub-words and leaves the frequently used
words in the vocabulary unsplit [228] is used. The intuition is that,
this will help the model to learn that most rare words are formed by
joining the frequent words, e.g. “tokenization” can be split into “to-
ken” and “##ization”, where the “##” in the second sub-token is to
imply that “##ization” is a piece of a word rather than a word itself.
Inaddition to the sentence tokens, two extra tokens [CLS] and [SEP]
are appended to the beginning and the end of the token sequence.BERT uses the

WordPiece algorithm,
ELMo uses the Moses

Tokenizer, whereas
FLAIR uses character

tokenization.

The tokenized input is then embedded using BERT’s embedding
layer. This layer sums up the WordPiece-generated embeddings [228],
segment embeddings (which are used to distinguish between input
sentences especially if there is multiple sentences (in my case, it’s a
single sentence)) and position embeddings (which preserve the in-
formation about the position of the words in the input sentence).
These embeddings are encoded to generate a hidden state as a contex-
tual representation (Biomedical CLMs layer) using 12 Transformer
architectures stacked together which, each include a self-attention
layer and feed-forward neural networks [213]. I use the BERTbase

which contains 12 layers (Transformer architectures) to generate CRS

(contextual representation layer) for each token as shown in (18).
With ELMo, the input sentence is tokenized using the Moses to-

kenizer which separates punctuation from words however preserv-
ing special tokens such as URLs and dates [112]. Max-pooling over
character-level CNN encodings is used to generate embeddings that
ELMo treats as token embeddings. These embeddings are encoded by
a 2-layered BiLSTM, and a concatenation of the BiLSTM internal states
is used to generate contextual representations as the hidden states as
shown in (18).

Finally with FLAIR, the input sentence is split into individual char-
acters. FLAIR encodes input characters of each word using 1-layer
of forward and backward LSTMs (fLM and bLM respectively). To ex-
tract a hidden state for each word, the last and first character hidden
states extracted from the fLM and bLM respectively are concatenated
to generate contextual representations as shown in (18).

hi = CLM(wi) (18)

where wi is the token embedding corresponding to the word at posi-
tion i, CLM ∈ {BERT-variants, BioELMo, BioFLAIR}.
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A softmax function is then applied to return a probability of each
label for each position in the sentence s using (19),

y = softmax(W ·hi + b) (19)

where W ∈ R|L|×k i.e. W is a matrix with dimensions |L| (size of
label set) ×k (hidden-state size). L represents the set of outcome type
target labels. Given the probability distribution the softmax generates
at each position, argmax

θ

P(y|wi; θ) is used to return the predicted

outcome type label.

4.3.2 Feature-extraction (feature based) adaptation

To transfer the CRS derived from the biomedical CLMs, I introduce an
OSD custom module that called an Outcome Detection tagger (ODP-
tagger). ODP-tagger is built by augmenting a BiLSTM with in-domain
resources including clinically oriented POS and PubMed word2vec
embeddings [149]. The architecture of the tagger is composed of four
layers as shown in Figure 6: tokenization layer, embedding layer, BiLSTM
(encoder) layer and a CRF (classification) layer. Pertinent details of the
four layers are described below.

Tokenization layer: Splits an input sentence into tokens and ad-
ditionally outputs a corresponding POS term for each token. A POS

feature is added in order to enrich each tokens representation with
POS information in an approach similar to how prior neural classifiers
are enhanced with character and n-gram features [133].

Embedding layer: Takes as input, a sequence of token embeddings
which are CRS extracted from the biomedical CLMs (demonstrated by
the dotted line from Fine-tuning to Feature extraction). Prior works
on probing CLMs have shown that performance of pre-trained fea-
tures can vary depending on which layer the pre-trained features are
extracted from [74, 134]. Majority of these works demonstrate that Prior works on

probing CLMs
indicate that
Intermediate layers
are more transferable
than upper layers and
that the upper layers
are more
discriminative than
lower and
intermediate layers for
classification tasks.

intermediate layers are more transferable than upper layers and that
the upper layers are more discriminative than lower and intermediate
layers for classification tasks [74, 134]. I however do not further probe
layer-wise performance especially given that BioELMo and BioFLAIR
have an extremely small number of layers compared to BERT-variants,
but instead extract representations from the last layer for each of the
respective CLM encoders in the head-to-head comparison.

In addition to the token contextual embeddings, I randomly initial-
ize POS embeddings for POS terms that are obtained using a trained
Stanford POS tagger that is systematically selected as discussed in Sec-
tion 4.3.2.1. Each POS embedding corresponds to a POS term assigned
to a token. The token is therefore represented by concatenating a
contextual embedding w and a POS embedding p. Besides the con-
textual embeddings, I also test non-contextual embeddings (such as
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word2vec) for each token as discussed in Section 4.3. I train word2vec
(W2V) on 5.5B tokens of PubMed and PubMed Central (PMC) ab-
stracts to obtain non-contextual token embeddings.

BiLSTM (encoding) layer: The token embeddings are then encoded
by a 2-layered BiLSTM to obtain hidden-states for each sequence posi-
tion as shown in (20),

hi = α(W[wi;pi] + b) (20)

where wi ∈ Ew and pi ∈ Ep, {Ew, Ep} ∈ Rn×d denote Word and
POS matrices, each containing d-dimensional embeddings for n words
and n corresponding POS terms. wi and pi are the word and POS

embeddings representing the ith word and its POS term respectively,
; implies a concatenation operation and then α is a linear activation
function that generates hidden states for the input words.

CRF (classification) layer: A CRF layer is used for classification
given the hidden state hi. A CRF is an undirected graphical model
which defines a conditional probability distribution over possible la-
bels [116]. The layer outputs the predicted label or class for each to-
ken.

In order to select the final components used in the ODP-tagger,
I conduct investigative experiments to monitor the performance im-
provements brought about by each of the components as detailed
in the following sections. For these experiments, the EBM-NLPrev

dataset, (which has outcome spans annotated with outcome types)
and a BiLSTM network are used. Sections Section 4.3.2.1 to Section 4.3.2.3
includes further details on this investigation.

4.3.2.1 Probing for biomedical POS tagger

I compare the performance of 3 POS taggers, which include, taggers
of 2 popular, fully established NLP libraries in spaCy2 and Stanford
CoreNLP3, and a tagger specifically tuned for POS tagging tasks on
biomedical text known as the Genia-Tagger [209]. The Genia-Tagger
is pre-trained on a collection of articles extracted from the MEDLINE
database [162]. To avoid any biased analysis in the comparative study,
I customise spaCy and Stanford CoreNLP taggers for biomedical text
tagging by training them on a corpus of 6,700 Medline sentences
(MedPOST) annotated with 60 POS tags [192]. These 3 taggers are
each used to provide POS features to input samples (outcomes spans)
in an OC task which classifies the samples into outcome types pre-
defined in EBM-NLPrev dataset, these include Physical, Pain, Mental,
Mortality, Adverse effects and Other. A BiLSTM network and a softmax
classification layer are used to complete the OC task using the EBM-
NLPrev dataset that contains 40092 sentences split into train (80%)

2 https://spacy.io/
3 https://nlp.stanford.edu/software/tagger.html

https://spacy.io/
https://nlp.stanford.edu/software/tagger.html


4.3 adapting pre-trained biomedical language models to osd 63

and test (20%) sets. In the evaluation phase on the test set, I observe
the model using trained Stanford CoreNLP tagger outperforming the
other models (using the other two taggers) as shown in Table 12 re-
sults. I therefore use Stanford CoreNLP tagger for POS tagging in the
OSD task in ODP-tagger’s tokenization layer. Stanford CoreNLP

tagger emerges the
suitable atgger to use
in providing POS
feature in
ODP-tagger

EBM-NLPrev

BiLSTM-spaCY-MedPOST 80.5

BiLSTM-stanford-MedPOST 81.3

BiLSTM-Genia-Tagger 79.0

Table 12: Macro-average F1 percentage scores in the OC task on EBM-
NLPrev corpus. Biomedical POS taggers including spaCY-
MedPOST, stanford-MedPOST and Genia-Tagger are used to pro-
vide POS features which alongside the text are used in training the
BiLSTM model.

Adverse-effects Mental Mortality Pain Physical Other

# of samples 1593 3875 1176 839 18287 5499

Table 13: Frequency distribution of samples in across outcome types or la-
bels in EBM-NLPrev

4.3.2.2 Probing for a loss function

During an initial exploration of the EBM-NLPrev dataset, I observed
a huge imbalance in the label (outcome type) distribution across the
dataset. As shown in Table 13, the Physical outcome type is dominant
with a significant number of samples while the other outcome types
are represented by relatively fewer samples. To address the problems
that arise from imbalanced data, I test 3 cost-sensitive functions in
the ODP-tagger framework premised on a log-likelihood objective
logp(y|w), (log probability of label y given input word w) in order
to identify a suitable learning loss for the OSD task. In the OSD task,
all models are each trained to maximize the probability of the labels
given each word wi ∈ s as shown in (21).

argmax
θ

P(yn|wn; θ) (21)

The training loss is defined as a cross entropy loss given by (22).

ODPloss = −
∑

(S,L)∈T

n∑
i

p(y|wi) (22)

where T is the training set containing sentences, wi ∈ S and y ∈ L.
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imputed inverse loss (iil): Empirically sets each label’s (out-
come type’s) weights to be inversely proportional to the label fre-
quency [82] shown in Table 13 using a scaling factor β.

IIL = β · ODPloss (23)

Two variants of the scaling factor β in the IIL equation (23) are checked.
IIL1 where β = 1

Ny
and a smoothed version IIL2 where β = 1√

Ny
,

where Ny is the number of training samples labelled y or frequency
of ground truth label y.

class balanced loss (cb): CB introduces a weighting factor
that is inversely proportional to the effective number of samples in
order to capture the diminishing marginal benefits of incrementing
the samples of a class [50]. The key idea behind effectiveness is in-
crementing the data sample with unique instances rather than near-
duplicates. Due to the intrinsic similarities among real-world data,
increasing the sample size of a class/label might not necessarily im-
prove model-performance. Effective samples En is computed by (24).

En =
1−β

1−βny
,β =

N− 1

N
(24)

N is dataset size and ny is the sample size of label y, βny =
ny−1
ny

.
CB loss is therefore computed as shown in (25).

CB = En · ODPloss (25)
Cost sensitive
weighting loss

functions to mitigate
the imbalance

distribution of the
outcome types or

labels. All functions
apply a scaling factor

to re-weight each
sample during

learning.

focal loss (fl): FL assigns higher weights to harder examples
and lower ones to the easier examples [130]. It introduces a scaling
factor (1− p)λ. λ is a focusing parameter in the loss function which
decays to zero as the confidence in the correct class increases hence
automatically down weighting the contribution of easy examples in
the training and rapidly focusing on harder examples. FL is com-
puted by (26).

FL = −αy(1− Py)
λ · ODPloss (26)

where α is a weighting factor, α ∈ [0, 1], αy is set to 1
Ny

, Ny is
the number of training samples for label y, Py is the probability of
ground truth label y. I do not hypertune the focusing parameter λ,
and instead set it to λ = 2 based on having achieved good results in
examples presented in [50].

Using train and test splits whose statistics are provided in Table 14,
the BiLSTM is trained with the different loss functions presented above
on the OSD task and report the evaluation results on the test set in
Table 15. The results show that both IIL variants and CB are quite
competitive, however I chose IIL2 particularly because it slightly out-
performs all the other evaluated loss functions.
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EBM-COMET EBM-NLPrev

# of sentences 5193 40092

# of train/dev/test

sentences
3895 / 779 / 519 30069 / 6014 / 4009

# of outcome labels 5 6

# of sentences with

outcome spans in

train/dev/test

1569 / 451 / 221 12481 / 4116 / 3257

Avg # of tokens per

train/dev/test sentence
20.6 / 21.5 / 21.2 25.5 / 26.4 / 25.6

Avg # of outcome

spans per sentence

in train/dev/test

0.69 / 0.78 / 0.71 0.44 / 0.38 / 0.45

Table 14: Statistics summary of experimental datasets splits. Figures pertain-
ing to Train, Dev and Test sets are separated by a forward slash
accordingly.

4.3.2.3 Introducing an under-sampling hyper-parameter (US)
In addition to the
cost-sensitive
weighting, the
majority class is
undersampled by a
particular percentage
which is set a tunable
hyper-parameter.

In addition to probing the loss function, I randomly under-sample
the majority class of the dataset by a specified percentage that is
later tuned as a hyper-parameter. At this stage, the objective of the
ODP-tagger is to minimize the Imputed Inverse loss, particularly the
smoothed version (IIL2 (27)) because its outstanding results as dis-
cussed in the preceding section,

IIL2 = −
1√
Ny

∑
(S,L)∈T

n∑
i

p(yi|wi) (27)

To finalize the expedition of determining which components to use
in the ODP-tagger, I perform experiments in which I incrementally

EBM-NLPrev

BiLSTM∗
27.0

BiLSTM + IIL1 37.0

BiLSTM + IIL2 38.0

BiLSTM + CB 37.0

BiLSTM + FL 19.0

Table 15: F1 % scores in the OSD task for various cost-sensitive loss func-
tions on the EBM-NLPrev corpus. BiLSTM∗ implies the model was
training with default ODPloss objective as shown in (22)
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add the best performing components to ODP-tagger and monitor its
performance in the OSD task. Table 16 results are emblematic of the
positive impact each of the different components had in architecting
the ODP-tagger. I observe cumulative gains in performance of 5.4%,
3.2% and 2.1% upon adding POSSt, W2VPb and IIL2 respectively. On
the otherhand, adopting US50 and replacement of the softmax with a
CRF for classification lead to slight improvements of 0.4% each.

I am aware that the improvements narrated above can dramatically
change given new splits of the data, particularly the slight improve-
ments brought about by US50 and the CRF. Therefore, to account for
this, I check for the robustness of the improvements brought about
by US50 and the CRF by measuring performance across 5 different
randomly split train and test sets. The mean and (standard devia-
tion) across the 5 experiments of the random splits are reported in
Exps 7, 8 and 9. Results obtained in 8 and 9 show that both US50 and
the CRF respectively lead to substantial improvements in performance
when added to the ODP-tagger. Later on, multiple hyperparameters
are tuned to obtain the optimal parameter settings (Table 17) for fine-
tuning and feature extraction experiments.

4.3.3 Training

Components that
ODP-tagger is

augmented with i.e.
POS, W2V

embeddings, Imputed
Inverse loss and

Undersampling all
lead to substantial

gains in OSD
achieved using

ODP-tagger

Both sets of models (fine-tuned and feature-based) are evaluated on
the two datasets, EBM-COMET and the EBM-NLPrev. These datasets

Exps Model EBM-NLPrev

1 BiLSTM∗
32.5

2 BiLSTM∗ + POSSt 37.9

3 BiLSTM∗ + POSSt + W2VPb 41.1

4 BiLSTM + POSSt + W2VPb + IIL2 43.2

5 BiLSTM + POSSt + W2VPb + IIL2 + US50 43.6

6 BiLSTM + POSSt + W2VPb + IIL2 + US50 + CRF 44.0

7 BiLSTM + POSSt + W2VPb + IIL2 42.8 (1.5)

8 BiLSTM + POSSt + W2VPb + IIL2 + US50 43.2 (1.9)

9 BiLSTM + POSSt + W2VPb + IIL2 + US50 + CRF 44.3 (1.4)

Table 16: F1 % scores in the OSD task resulting from incrementally augment-
ing a BiLSTM with various components to build the ODP-tagger.
BiLSTM∗ implies the model was training with default ODPloss

objective as shown in (22), POSSt denotes POS tagging by Stan-
ford CoreNLP tagger, W2VPb denotes Word2Vec trained using
PubMed articles (Only non-contextual embeddings are tested in
this investigation because they have smaller dimensions), IIL2 de-
notes Imputed Inverse loss, US50 denotes Undersampling majority
class by 50%. Exps 1-5 use a softmax classifier which is replaced
by a CRF in 6. Exps 7-9 report the mean and (standard deviation)
over 5 random train/test splits.
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are each partitioned as follows, 75% for training (train), 15% for de-
velopment (dev) and 10% for testing (test) as shown in Table 14. I
exploit the large size of EBM-NLPrev and use its dev set to tune hy-
perparameters for the ODP-tagger and fine-tuned models (Parameter
settings in Table 17). Each model is trained on a train split of a particu-
lar dataset and evaluated on the corresponding test split culminating
into results shown in Table 18. I use a simple powerful NLP python
framework called FLAIR4 to extract word embeddings from all the
BERT and FLAIR variants, and AllenAI5 for BioELMO. Dimensions of
the extracted BioFLAIR and BioELMO embeddings are very large, i.e.
7672 and 3072 respectively, which would most likely overwhelm my
memory and power-constrained devices during training. Therefore,
I apply Principal component Analysis (PCA) dimensionality reduc-
tion technique to reduce their dimensions to half their original sizes
while preserving semantic information [176]. Alongside these embed-
dings, I evaluate non-contextual embeddings which are obtained by
training word2vec (W2V) embedding algorithm [149] on 5.5B tokens
of PubMed and PMC abstracts. Python and PyTorch6 deep learning
framework are used for implementation, which together with the
datasets are made publicly available.7

Fine-tuning

Tuned range Optimal

Learning rate [1e-5,1e-4, 1e-3, 1e-2] 1e-5

Train Batch size [16, 32] 32

Epochs [3, 5, 10] 10

Sampling % (US) [50, 75, 100] 100

Optimizer [Adam, SGD] Adam

ODP-tagger

Learning rate [1e-4, 1e-3, 1e-2, 1e-1] 1e-1

Train Batch size [50, 150, 250, 300] 300

Epochs [60, 80, 120, 150] 60

Sampling % (US) [10, 25, 50, 75] 50

Optimizer [Adam, SGD] SGD

Table 17: Hyper-parameter tuning details in the feature extraction approach
for the fine-tuned CLMs and the ODP-tagger (feature extraction).

4.4 evaluation experiments and results

Results shown in Table 18 firstly reveal the superiority of fine-tuning
based adaptation in comparison to the feature extraction adaptation

4 https://github.com/flairNLP/flair
5 https://github.com/allenai/bilm-tf
6 https://pytorch.org/
7 https://github.com/MichealAbaho/ODP-tagger

 https://github.com/flairNLP/flair
https://github.com/allenai/bilm-tf
https://pytorch.org/
https://github.com/MichealAbaho/ODP-tagger


68 assessment of contextualised representations in detecting outcomes

that uses the ODP-tagger. The best performance across both set-ups
is obtained when BioBERT is fine-tuned on the EBM-COMET dataset.
However, SciBERT is observed to outperform BioBERT in the ODP-
tagger set-up on the EBM-COMET dataset. Secondly, the non-contextual
W2V embeddings produce competitive performance on EBM-NLPrev,
however, they perform significantly lower than the CRS on EBM-COMET.
BioFLAIR and ClinicalBERT were the least performing models. For
BioFLAIR, I hypothesize that, (1) pre-training on a relatively smaller
corpus, (2) it being of much less depth (1-layered BiLSTM) compared to
multi-layered BERT and ELMo and (3) downsizing its embeddings us-
ing PCA dimensionality reduction are reasons that led to its low per-
formance. For ClinicalBERT, I attributed its struggles to the nature of
the corpora on which it is pre-trained. Unlike BioBERT, SciBERT and
BioELMo which are pre-trained on PubMed text which mostly con-
tains clinical trial abstracts that more often report health outcomes,
ClinicalBERT is pre-trained on clinical notes associated with patient
hospital admissions [99]. Overall, CRS provided by BioBERT were
the best performing embeddings, consistently outperforming all the
other CRS across both setups and both datasets. An additional insightNLP libraries FLAIR

and AllenNLP are
used to extract

features from BERT,
FLAIR variants and

BioELMo respectively.
These features are

then either fine-tuned
or trained using

ODP-tagger.

drawn was that, performance on the EBM-NLPrev dataset is lower
compared to that achieved on EBM-COMET. This was attributed to
the annotation inconsistencies in the original EBM-NLP, some of which
were resolved and documented in [1]. Another aspect I closely mon-
itored was the runtime. Using a TITAN RTX 24GB GPU, the average
runtime for the fine-tuning experiments on EBM-COMET and EBM-
NLPrev was 7 and 12 hrs respectively. On the other-hand, feature
extraction (ODP-tagger) experiments were much longer consuming
20 and 36 hours respectively on the same datasets. Overall, the re-
sults suggest and recommend fine-tuning as a preferred approach for
adapting CRS to the OSD task. Furthermore, given their dominant per-

Fine-tuning Feature extraction

Model EBM-NLPrev EBM-COMET Model EBM-NLPrev EBM-COMET

W2V _ _ ODP-tagger + W2V 44.0 59.3

BERT 51.8 75.5 +BERT 43.2 64.2

ELMO 49.6 71.4 +ELMO 43.0 61.2

BioBERT 53.1 81.5 +BioBERT 48.5 69.3

BioELMO 52.0 75.0 +BioELMO 46.5 62.9

BioFLAIR 51.4 76.7 +BioFLAIR 40.7 60.5

SciBERT 52.8 77.6 +SciBERT 48.1 70.4

ClinicalBERT 51.0 68.5 +ClinicalBERT 45.2 65.7

Bio+ClinicalBERT 51.0 68.3 +Bio+ClinicalBERT 45.8 66.3

Bio+Disc Summary

BERT
51.0 70.0

+Bio+Disc Summary

BERT
46.1 68.4

Table 18: Macro-average F1 scores obtained from generic CLMs and their re-
spective In-domain (biomedical) versions for both fine-tuning and
feature extraction (ODP-tagger) for token-level detection of out-
come spans from both datasets.
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formance detailed in the preceding paragraph, this work nominates
BioBERT and SciBERT as ideal CRS for the OSD task.

4.4.1 Full outcome span detection

Motivated by Aken et al. [8] who indicate that accurate fine-grained
information is beneficial in the medical domain, I examine the extent
to which the models detect precise mentions of full outcome spans. To
achieve this, I investigate how well the best performing models (Fine-
tuned+BioBERT+EBM-COMET and Fine-tuned+BioBERT +EBM-NLPrev

from Table 18) can detect full mentions of outcome spans or other-
wise exact matches of outcome spans in prediction results. I use a Full outcome span

detection is extended
analysis I perform to
evaluate how well the
models detect full
mentions of outcome
spans.

strict criteria to evaluate full mention of outcome spans, where a clas-
sification error FN (False Negative) accounts for the number of full
outcome spans the model fails to detect, which includes partially cor-
rectly detected spans i.e. some of their tokens were misclassified. In
addition to Precision, Recall (also known as Sensitivity) and F1 mea-
sure, I report Specificity (True Negative Rate (TNR)) for extended
analysis of the model performance. In Table 19, it is noticeable that
F1 of the best models drops from 53.1 to 52.4 for EBM-NLPrev and
81.5 to 69.6 for EBM-COMET. These results signal the difficulty the
models have in identifying full outcome spans, especially with the
EBM-NLPrev dataset. Specificity on the other hand is very high for
both datasets simply because it is calculated as a TNR, in which case
True Negatives (non-outcomes) are certainly so many because they
are precisely individual words and therefore are counted word by
word as opposed to True positives (actual outcome spans) that can
consist of multiple words.

4.4.2 Error Analysis

I further investigate the errors from the best performing models, Fine-
tuned+BioBERT+EBM-COMET and ODP-tagger+SciBERT+EBM-COMET

P R S F

EBM-NLPrev 55.1 51.2 99.6 53.1

EBM-NLPrev Full outcome spans 53.7 51.2 99.2 52.4

EBM-COMET 76.1 87.7 99.4 81.5

EBM-COMET Full outcome spans 60.8 81.3 98.0 69.6

Table 19: Results of Precision (P), Recall/Sensitivity (R), Specificity (S)
and F1 of evaluating best performing fine-tuned models (Fine-
tuned+BioBERT+EBM-NLPrev and Fine-tuned+BioBERT+EBM-
COMET) in OSD for precise mentions of full outcome spans. The
non bold-faced row are results originally obtained without full out-
come span evalution.
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in the fine-tuning and feature extraction setups respectively. Table 20

shows examples of outputs of both models for the OSD task given an
input sentence with known actual outcome spans underlined. Spans
are coloured blue to indicate correctly identified whereas red indi-
cates the opposite. As seen in the table, the fine-tuned model cor-
rectly detects all full outcome spans in the first example sentence i.e.
Precision (P), Recall/Sensitivity (R) are 100%, whereas tagger only
detects 3/4 outcomes, hence P is 100%, R is 75%. Neither of the mod-
els correctly capture full mention of the outcome spans in the second
example, they incorrectly predict “duration of” to not belong to the
outcome span. While traditionally, sequence labelling and NER results
would be a P of 100% and R of 50% for correct prediction of 2/4

tokens for both fine-tuned and ODP-tagger model, in the strict full
outcome evaluation, P and R are 0%, because some tokens in the full
outcome span are mis-classified in both models i.e. True positives =
0. Similarly, in the third example, the fine-tuned model achieves P of
100% and R of 60% for correct prediction of 3/5 tokens in the tradi-

Method Abstract sentence Full outcome span

Input

sentence

Among patients who received sorafenib, the most

frequently reported adverse events were grade 1 or 2

events of rash (73%), fatigue (67%), hypertension

(55%) and diarrhea (51%).

- adverse events

- rash

- fatigue

- hypertension

- diarrhea

BioBERT+

EBM-COMET
Output

Among patients who received sorafenib, the most

frequently reported adverse events were grade 1 or 2

events of rash (73%), fatigue (67%), hypertension

(55%) and diarrhea (51%).

- adverse events

- rash

- fatigue

- hypertension

- diarrhea

ODP-tagger+

SciBERT

+EMB-COMET

Output

Among patients who received sorafenib, the most

frequently reported adverse events were grade 1 or 2

events of rash (73%), fatigue (67%), hypertension

(55%) and diarrhea (51%)..

- fatigue

- diarrhea
- hypertension

Input

sentence

The average duration of operating procedure was

1 hour and 35 minutes.
- duration of operating procedure

BioBERT+

EBM-COMET
Output

The average duration of operating procedure was

1 hour and 35 minutes.

ODP-tagger+

SciBERT

+EMB-COMET

Output
The average duration of operating procedure was

1 hour and 35 minutes.

Input

sentence

The objective of this study was to evaluate

right heart size and function assessed by

echocardiography during long term treatment with

16.5cmriociguat.

- right heart size

- right heart function

BioBERT+

EBM-COMET
Output

The objective of this study was to evaluate

right heart size and function assessed by

echocardiography during long term treatment with

riociguat.

- right heart size

ODPtagger+

SciBERT+

EMB-COMET

Output

The objective of this study was to evaluate

right heart size and function assessed by

echocardiography during long term treatment with

riociguat.

Table 20: Example outcome detection outputs from best fine-tuned BioBERT
and ODP-tagger+SciBERT models.
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tional NER evaluation, whereas for the strict full outcome span evalu-
ation, R is 50% because only 1/2 full outcome spans are detected.

I attribute these errors to the length of some outcome spans with
some containing extremely common words such as prepositions (“of”).
Additionally, I note that the contiguous outcome span annotations
(containing several outcomes sharing terms e.g. “right heart size and
function” in the third example) are rare and therefore will be harder
instances for the model to correctly classify.

4.4.3 Evaluation on the original EBM-NLP

P I O

Logreg 45.0 25.0 38.0

Lstm-crf 40.0 50.0 48.0

Brockmeier et.al [26] 70.0 56.0 70.0

Fine-tuned BioBERT 71.6 69.0 73.1

Fine-tuned BioBERT – Full

outcome span mentions
61.6 64.0 53.1

Table 21: F1 scores of token level detection of PIO elements reported for
EBM-NLP hierarchical labels dataset by the EBM-NLP [161] leader
board.

I additionally fine-tune the best model (Fine-tuned+BioBERT+EBM-
NLPrev) for the task of detection of all PIO elements (Participants (P),
Interventions (I) and Outcomes (O)) in the original EBM-NLP (hierar-
chical version) dataset. To be consistent with the original EBM-NLP
paper [161], I consider the token-level detection of the PIO elements
task in their work, comparing their evaluation results for hierarchical
labels with those I obtain by fine-tuning the best model. Using their The fine-tuned

BioBERT outperforms
leader board results
on the original
EBM-NLP at the
point of performing
the experiments.

published training (4670) and test (190) sets of the starting spans, I
observed the model outperforms the published leader board results8

and the recent results published by Brockmeier et al [26] (Table 21).
This improvement is attributable to the fact, unlike the LSTM-CRF
and Logreg models in previous SOTA scores, BioBERT’s has an inter-
nal capability to encode information using self-attention mechanisms
and the MLM to generate context-sensitive representations of words.

4.4.4 Outcome span length

To further understand my results, I investigated how well the best
model Fine-tuned+BioBERT+EBM-COMET and ODP-tagger+SciBERT
+EBM-COMET (Feature-extraction) detected outcome spans of vary-

8 https://ebm-nlp.herokuapp.com/

https://ebm-nlp.herokuapp.com/
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ing lengths. This investigation is conducted because health outcome
spans range from a single word to multiple words. I calculate a pre-
diction accuracy as number of correctly predicted outcome spans of
length x/number of all outcome spans of length x, where x ranged
from 1-10. As observed in 7, the fine-tuned model slightly outper-
forms the ODP-tagger especially for outcome spans having 3-6 words
(i.e. 3-6 entity span length). However, it is also clear that both models
struggled to accurately detect outcome spans containing 7 or more
words.

Figure 7: Prediction accuracy per entity text-span length.

4.5 discussion and summary

In this chapter, extensive analysis has been performed on how CRS

provided by various pre-trained biomedical CLMs perform in detect-
ing outcomes (OSD) from biomedical text in two datasets annotated
with outcomes, EBM-NLPrev) and EBM-COMET. The main aim in this
chapter was to not only inspect which CRS are suitable for OSD, but
additionally inspect which paradigm between fine-tuning and feature
extraction (feature based) adaptations would lead to the best transfer-
ability of these CRS for the OSD task.

To this end, the chapter designed an adaptation framework in which
I fine-tuned pre-trained CRS (BioBERT, SciBERT, ClinicalBERT, BioELMo
and BioFLAIR) and additionally transferred and trained these CRS in
a customly built neural model (ODP-tagger) for the OSD task. In the
fine-tuning adaptation approach, I use a task-specific classification
layer on top of each of the different architectures providing the CRS.
On the other hand, for the feature extraction adaptation approach,
I systematically build a neural model by augmenting a BiLSTM with
clinically oriented POS features, a cost sensitive loss function, under-
sampling component and a CRF classification layer. The main conclu-
sion drawn was that, fine-tuning adaptation is the ideal setting for
transferring pre-trained biomedical features for the OSD task. Fine-
tuned models consistently outperform and converge faster than the
corresponding feature extraction models. Because of their stronger



4.5 discussion and summary 73

performance in comparison to the other CRS across both adaptation se-
tups and datasets, a consensus is arrived at that pre-trained BioBERT
and SciBERT CRS are best suited for detecting outcomes in biomedi-
cal text. In the future, further insights would be obtained by compar-
ing freezing the CLM weights in the fine tuning architecture against
standard fine tuning, as well as fine tuning CLM weights in the ODP-
Tagger architecture against standard feature extraction.

Moreover I extended the analysis to investigate how well the best
performing models detect precise mentions of full outcome spans i.e.
an inspection of how efficient the model is in detecting exact matches
of outcome spans in the text. In this analysis, I discover that the
performance of the model deteriorates by about 1.3% on the EBM-
NLPrev dataset and 11.9% on the EBM-COMET from the original
evaluation scores that did not target exact matches or full outcome
span mentions in the predicted outcomes. This performance decline
is attributed to the strict evaluation criteria which absolutely never
rewarded the models for any partial correct predictions. This insight
informed the evaluations I perform in the future chapters because
of accurate detection of full mention of granular outcome spans is
beneficial for clinicians searching for this information [8].

To validate the best performing model, I compared its performance
in PIO extraction (detecting all PIO elements) in the original EBM-
NLP to the leaderboard results on EBM-NLP9 (hierarchical labels)
and SOTA published by Brockmeier et al. [26]. I report gains of 1.6%
for P, 10.0% for I and 3.1% for O over recent SOTA F1 scores.

Further analysis including error analysis and an inspection of how
the length of outcome spans varies with the performance in the OSD

task. Several errors are observed in detecting long health outcome
spans which is further proven in an illustration that shows that ac-
curacy in detecting outcome spans is inversely proportional to the
length of the outcome span.

Chapter 3 embarked on refining outcome annotations and evalu-
ating them in an OC task. This chapter has illuminated the OSD task
proving that fine-tuning is a preferrable approach to transferring pre-
trained features. In the next chapter, I attempt to learn from both
token- and sentence-level information to jointly achieve the two tasks.

9 https://ebm-nlp.herokuapp.com/

https://ebm-nlp.herokuapp.com/




5
J O I N T S PA N D E T E C T I O N A N D C L A S S I F I C AT I O N
F O R H E A LT H O U T C O M E S

5.1 introduction and background

In earlier chapters and most especially the previous Chapter 4, I have
elaborated how prior work on health outcome detection (HOD) mod-
elled it as either an Outcome Span Detection (OSD) task or an Outcome
classification (OC) task. The goal in OSD is to detect a continuous span
of tokens that indicate a health outcome [26, 161], where as the goal
in OC is to classify a text span into a pre-defined set of outcome type-
s/classes depending on an outcome it mentions. The two tasks are, Decoupling of OSD

and OC would imply
that, the mutual
compatibility
constraints between
outcome spans and
their types will be lost

however, highly correlated i.e. local token-level information relevant
in OSD enables us to make accurate global sentence-level outcome
predictions relevant in OC, and vice versa.

Given the ideal result of the two tasks i.e. an outcome in form of
an entity text span for OSD and a pre-defined outcome type for OC,
the task can be formulated as a downstream sequence labelling NER

task, where entities are annotated with BIO labels of multiple entity
types [199]. Whereas this conventional sequence labelling approach
would work fine, it has limitations in a multi-label scenario where
an entity can be associated with multiple labels. The number of B, I
and or O labels for a single token within an entity span can easily ex-
ponentially increase with an increasing number of entity-type labels
for that entity span. More so, the risk of model forgetfulness for low
occurrence entity-type labels is increased [139]. To avoid these scenar-
ios, given the multi-labeled outcome span annotations in the datasets
investigated in this chapter, I cast the overall outcome detection task
as a joint learning task that optimizes for NER and Text classification.
Nevertheless, I later formulate the task in the conventional sequence
labelling approach for NER tasks in order to further realise any per-
formance gains or losses in the OSD task.

Besides, an outcome type predicted for a text span in a sentence
must be consistent with the other outcome spans detected from the
same sentence, while the outcome spans detected from a sentence
must also be compatible with their outcome types. From a modelling
perspective, decoupling of OSD and OC would imply that, the mutual
compatibility constraints between outcome spans and their types will
be lost, hence limiting the potential performance gains attributable
to this compatibility in both tasks. Furthermore, this decoupled ap-
proach exposes the outcome detection process to task error propaga-
tion i.e. the error/s made in the OSD task will be propagated to the OC

75
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task and vice versa if the two tasks are conducted in tandem within
a pipelined framework such as that adopted by [33].

Joint learning models have been proposed to alleviate the afore-
mentioned disadvantages for various related domain-specific tasks
such entity extraction and relation classification [17, 36, 104], slot fill-
ing and topic classification [143], aspect extraction (AE) and aspect
sentiment classification (ASC [103, 230] etc. Motivated by the recentI propose a method

that exploits the
global structural
correspondences

between word- and
sentence-level

information to
simultaneously

perform OSD and OC.

success in joint learning strategies mentioned in the previous sen-
tence as well as MTL models whose optimised parameters are shared
across multiple tasks [147, 174], this chapter proposes a method that
exploits the global structural correspondences between word- and
sentence-level information to simultaneously perform OSD and OC. In
addition to injecting contextual information to hidden vectors, I use
label attention to appropriately weight both word and sentence level
information.

The rest of this chapter begins by discussing the problem setup,
task formulation and a preamble of the proposed joint OSD and OC

method in Section 5.2. Following this section, I propose the LCAM

to simultaneously learn label-attention weighted representations at
word- and sentence-level in Section 5.3. These representations are
then evaluated in Section 5.4. Ablation experiments and investiga-
tions on these representations are additionally included in Section 5.4.
The chapter concludes with a summary of the highlights and achieve-
ments of the proposed method in Section 5.6.

5.2 joint osd and oc challenge

In this section, I frame HOD as a joint task that involves simulta-
neously performing OSD and OC. Ideally, a strong joint OSD and OC

system should be able to effectively achieve both tasks without com-
promising the performance in standalone settings in which the two
tasks are separately performed.

Health Outcome Detection (HOD) Task formulation

Given a sentence s = w1, . . . ,wM extracted from a clinical trial ab-
stract, the goal of HOD is to develop a joint learning model that iden-
tifies an outcome span od = bi, . . . ,bN (i.e OSD), and subsequently
predicts a plausible outcome type t(od) ∈ Y for od (i.e. OC), where
1 ⩽ i ⩽ N ⩽ M, and Y is a predefined set of outcome types.

To illustrate the distinction between the OSD, OC and Joint OSD & OC

tasks, I present two examples shown in Table 22. Specifically, in the
first sentence, OSD extracts all outcomes i.e. wheezing and shortness of
breath, OC classifies the text into an outcome type, Physiological, and
then Joint OSD & OC extracts an outcome span and classifies it concur-
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rently i.e. it extracts wheezing and also classifies it as a Physiological
outcome.

sentence
There were no significance between-group differences in the incidence of

wheezing or shortness of breath

OSD Outcomes: wheezing, shortness of Breath

OC Outcome type: Physiological

Joint OSD

& OC

Outcomes-Outcome type

wheezing- Physiological

Shortness of Breath- Physiological

sentence
Cumulative incidence and relative risks with 95% confidence intervals

for death from any cause, death from prostate cancer, and metastasis

were estimated in intention-to-treat and per-protocol analyses.

OSD Outcomes: death from any cause, death from prostate cancer

OC Outcome type: Mortality

Joint OSD

& OC

Outcomes-Outcome type

death from any cause- Mortality

death from prostate cancer- Mortality

Table 22: Comparing the output of the three separate HOD tasks given two
sample sentences. OSD retrieves the outcome spans, OC classifies
the text span into a set of outcome types, and Joint OSD & OC
retrieves outcomes and classifies them into outcome types.

5.2.1 Joint learning and evaluation approach.

LCAM is designed to
jointly learn
contextualised label
attention-based
distributions at word-
and sentence-level in
order to capture which
label/s a word or a
sentence is more
semantically related
to.

I propose LCAM, a sequence-to-sequence-to-set (seq2seq2set) model
extensively discussed in Section 5.3, which uses a single encoder to
represent an input sentence and two decoders, one for predicting the
label for each word in OSD and another for predicting the outcome
type in OC. LCAM is designed to jointly learn contextualised label
attention-based distributions at word- and sentence-levels in order
to capture which label/s a word or a sentence is more semantically
related to. I call them contextualised because they are enriched by
global CRS of the abstracts to which the sentences belongs. Label at-
tention incorporates label sparsity information and hence semantic
correlation between documents and labels.

A baseline BiLSTM and or clinically informed BERTbase [54] models
are used at the encoding stage of the model and sigmoid prediction
layers are used at the decoding stage. I also use a Multi-label Predic-
tion (MLP) layer for the two tasks (i.e. OSD and OC), with a relaxed
constraint at token-level that ensures only the top (most relevant) pre-
diction is retained, whereas all predicted (relevant) outcome types are
retained at the sentence-level during OC. I use a MLP layer because
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some annotated outcomes belong to multiple outcome types. For ex-
ample, depression belongs to both “Physiological” and “Life-Impact” out-
come types.

The models are evaluated on the tasks by reporting the macro-
averaged F1. Inaddition to the macro-F1, I visualise ranking metrics
pertaining to MLP, in order to compare my model to related work
for MLP. The metrics of focus include precision at top n P@n (frac-
tion of the top n predictions that is present in the ground truth) and
Normalized Discounted Cumulated Gain at top n (nDCG@n).

5.2.2 Data

Chapter 3 introduced EBM-NLPrev (a revised version of EBM-NLP
[161]) and EBM-COMET, whose annotation was premised on classi-
fications in the standard outcome classification taxonomy proposed
by Dodd et al. [55]. The chapter also proposed an unsupervised la-
bel alignment method to denoise outcome classification label annota-
tions in EBM-NLPrev by identifying and aligning parallel annotations
across the EBM-NLP and EBM-COMET. After the label denoising,
both datasets had a reconciled classification label set i.e. the set of
outcome type labels in EBM-NLPrev was exactly the same as that in
EBM-COMET.

In addition to these two datasets, I merge them to create a large
dataset, EBM-COMET+EBM-NLPrev to use in evaluating my joint
learning approach. The merger of the two datasets is also for the pur-
pose of evaluating the label alignment approach earlier introduced
in Section 3.4 because I hypothesise that the merged dataset would
improve performance obtained on the original independent datasets.
All three datasets are used during evaluation, with each one being
randomly split into two, where 80% is retained for training and 20%
for testing as shown in Table 23.

EBM-COMET EBM-NLP
EBM-COMET +

EBM-NLPrev

# of Abstracts 300 5000 5300

# of sentences 5193 40092 45285

# of outcome labels 5 6 5

avg sentence length 21.0 26.0 25.0

# of Training sentences 4155 32074 36229

# of Testing sentences 1038 8018 9056

Table 23: Datasets statistics rounded off to zero decimal
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Figure 8: Illustration of the LCAM Architecture. It encodes a sequence of
tokens of a sentence within an abstract, generates contextualised
representations by adding a global representation of the abstract
at word- and sentence-level. Two attention layers are used to aid
generation of label-aware representations used to decode labels at
word-level for OSD and sentence-level for OC.

5.3 label context-aware attention model (lcam)

LCAM is a sequence-
to-sequence-to-set
architecture. An
output sequence is
generated for a given
input sequence, and
then a set of
non-sequential items
is generated for the
output sequence.

Figure 8 illustrates an end-to-end seq2seq2set architecture of the
LCAM model. It depicts a two-phased process to achieve classifica-
tion at token and sentence level. In phase 1, input tokens are encoded
into representations which are sent to a decoder which is a sigmoid
layer to predict a label for each word, hence OSD. Subsequently, in
phase 2, the token-level representations are used to generate individ-
ual outcome span representations, which are sent to another decoder
(sigmoid layer) that is used to predict the label/s for each outcome
span, hence OC. I use MLP for the OC task because some outcomes are
annotated with multiple outcome types.

5.3.1 Outcome Span Detection (OSD)

Given a set of sentences S = {si}
|S|
i=1 within an abstract a, each si

having N words, si = w1, . . . ,wN, with each word tagged to a label
lw using the BIO tagging scheme [182]. OSD aims to extract one or
more outcome spans within si. For example, in Figure 8, OSD extracts
the outcome span “incisional hernia” given the input sentence.

encoder : In the OSD task setting, I initially implement a baseline
LCAM using a BiLSTM to encode input tokens (that are represented by
d-dimensional word embeddings obtained using GloVe [166]1) into
hidden representations for every word within an input sentence. I
then consider generating each input word’s hidden representation us-

1 https://github.com/stanfordnlp/GloVe

https://github.com/stanfordnlp/GloVe
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ing a pre-trained clinically informed BERTbase model called BioBERT
[121]. The LCAM model learns (28),Input token

embeddings are
encoded by a BiLSTM

used as as baseline
and later on BioBERT

in a seperate model.
An abstract

representation is then
added to each encoded

hidden state to make it
context-aware.

hn = BiLSTM(wn),

hn = BioBERT(wn)
(28)

where wn ∈ si, hn ∈ Rk×1 and k is the dimensionality of the hidden
state. The upper equation under 28 is used for a BiLSTM Text encoder
and the lower for a BioBERT Text encoder.

abstract hidden state context : To make the hidden state
representation context-aware, I add a compound representation of
the abstract in which the sentence containing wn belongs using (29).

hc
n = hn + f(AbsEncoder(a)) (29)

where f is a function computing the average pooled representation of
the encoded abstract, AbsEncoder ∈ {BiLSTM, BioBERT}, AbsEncoder(a) ∈
Rk×|a|, |a| is the length of the abstract (measured by the number of
tokens contained in it) and f(AbsEncoder(a)) ∈ Rk×1.

5.3.2 Label-word attention

Two different attention scores are computed, the first is to enable the
model pay appropriate attention to each word when generating the
overall outcome span representation. Then the second attention score,
is to allow the words interact with the labels in order to capture the
semantic relation between them, hence making the representations
more label-aware. To obtain the first attention vector A(1), I use a
self-attention mechanism [9, 131] that uses two weight parameters
and a hyper parameter b that can be set arbitrary,Two attention vectors

are computed, a self
attention vector to

capture word-to-word
interaction a label
attention vector to
capture label-word

interaction.

A
(1)
n = softmax(W tanh(Vhc

n)) (30)

where W ∈ R|lw|×b, V ∈ Rb×k and A(1) ∈ R|lw|×1. |lw| is the num-
ber of token-level labels. Furthermore, I obtain a label-word attention
vector A(2) using a trainable matrix U ∈ R|lw|×k. Similar to the inter-
action function Du et al. [59] use, this attention is computed in (31) as
the dot product between the hc

n and U,

A
(2)
n = Uhc

n (31)

where A
(2)
n ∈ R|lw|×1.

label-word representation : The overall representation used
by the decoder for classification of each token is obtained by merg-
ing the two attention distributions from the previous paragraphs as
shown by (32),

Etl
n = A

(1)
n hc⊤

n +A
(2)
n hc⊤

n (32)
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where Etl
n ∈ R|lw|×k, denotes the token-level (tl) representation.

The training objective is to maximise the probability of a singular
ground truth label and minimise a cross-entropy loss,

Losd = −

N∑
n=1

|lw|∑
i=1

yn,i log(ŷn,i). (33)

where N is number of tokens in a sentence, |lw| is the number of
labels.

5.3.3 Outcome Classification (OC)

OC predicts outcome types for the outcome spans extracted during
OSD. Similar to what is done at token-level, I add an abstract rep-
resentation (which is a mean pool of its token’s representations) to
add context to each tokens representation. An outcome span is repre-
sented by concatenating the vectors of its constituent words, An outcome span

representation is
computed as a
concatenation of all
token-level
representation for the
constituent tokens
added to an abstract
representation.

Os =

m⊕
i=1

(Etl
i + f(AbsEncoder(a))) (34)

where m is the number of tokens contained in outcome span Os.
I adopt the aforementioned self-attention and label-word attention
methods at sentence-level to aid extraction of an attention based sentence-
level representation of an outcome as follows:

Esl
s = A(1)Os +A(2)Os (35)

where [A(1),A(2)] ∈ R|ls|×m, Os ∈ Rm×k and s ⩾ 0.
Given an outcome span representation Esl , the training objective at

sentence-level (sl) is to maximize the probability of the set of terms,

argmax
θ

P(y = (l1s , l2s , ..., l6s) ∈ ls|E
sl ; θ) (36)

Loc = −

|ls|∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (37)

where yi ∈ {0, 1}, ŷi ∈ [0, 1] ls ∈ {Physiological, Mortality, Life-
Impact, Resource-use, Adverse-effects}. The overall joint model loss
is:

L = Losd + Loc (38)
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5.3.4 LCAM Algorithm

To demonstrate the flow of the joint learning training, I use the pseudo
code in algorithm 2 to show how I arrive at the joint model loss. For
each token’s hidden state (line 8), I compute a context aware hidden
state by adding to it an encoded abstract representation (line 9) and
then compute two attention scores (line 10 - 14) that both capture
the contribution the token makes to each token-level label. These are
then used together to generate a label-word representation (line 16)
and all label-word representations forming a sentence (line 17) are
used to compute an OSD loss using (33) (line 19). Once again I add
context to the newly generated toke-level representations (line 20).
For every outcome, I repeat steps in lines 10-14 to obtain label at-
tention scores i.e. depicting the contribution the particular outcome
phrase makes to each outcome-type label and these are used to obtain
a label-document representation for the outcome (line 30). This repre-
sentation is then used to compute the outcome classification loss (line
32). The loss I minimise in the joint learning is computed as shown
by line 33.

5.4 evaluation experiments and results

In this section, I present implementation details, experimental setups
and the main results of evaluating the joint learning LCAM framework
on the three datasets discussed in Section 5.2.2.

5.4.1 Implementation

For pre-processing the data, I first label each word in the sentences
contained in an abstract with either one of {B, I,O}. Subsequently, to
the end of each sentence, I include a list of outcome types correspond-
ing to the outcome spans in the sentence. However, it is important to
note that, not all sentences within an abstract had outcome spans. For
example, the annotated sentence below contains outcome span “Inci-
sional hernia” whose outcome type label (Physiological) is placed at
the end of the sentence.Each sample is

annotated both at
token level and at

sentence level. The
latter includes

assigning outcome
type labels for the

constituent outcome
spans.

“We/[O] observed/[O] a/[O] trend/[O] toward/[O] decreased/[O]
incisional/[B-outcome] hernia/[I-outcome] rates/[O] in/[O] patients/[O]
treated/[O] with/[O] NPWT/[O] ./[O]”. [[Physiological]]

I tuned hyper-parameters using 20% of the training data of the
merged dataset (EBM-NLP+EBM-COMET) as a development set. Ta-
ble 24 shows the range of values (including the lower and upper
bound) for which the LCAM-BioBERT (BioBERT used as the encoder)
and Standalone models are tuned to obtain optimal configurations.
The optimal settings are included under the optimal settings columns
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Algorithm 2 LCAM Algorithm

1: Input: train data, Output: model weights
2: for abstract a in train data do
3: Obtain Abs = AbsEncoder(a)
4: for sent s in a do
5: Obtain H = Encoder(s)

6: where H ∈ Rk×n

7: Initialise: an empty tensor S
8: for hn in H do
9: hc

n = hn + f(Abs)

10: Obtain A(1) = softmax(W tanh Vhc
n)

11: where V ∈ Rb×k, W ∈ R|lw|×b,
12: and A(1) ∈ R|lw|×1

13: Obtain A(2) = Uhc
n

14: where U ∈ R|lw|×k, A ∈ R|lw|×1

15: label-word representation:
16: Etl = A(1)hc⊤

n +A(2)hc⊤
n

17: S = S ⊕ Etl

18: end for
19: Compute Loss eqn 9 - Losd
20: ∀Etl ∈ S : Etl = Etl + f(Abs)

21: ∀Ox ∈ S, where x ⩾ 0 & Ox ∈ Rm×k

22: i.e. outcome Ox has m tokens
23: for outcome O in S do
24: Obtain A(1) = softmax(W tanh(VO⊤))

25: where V ∈ Rb×k, W ∈ R|ls|×b

26: and A ∈ R|ls|×m

27: Obtain A(2) = UO⊤

28: where U ∈ R|ls|×k, A ∈ R|ls|×m

29: label-document representation of an outcome:
30: Esl = A(1)O+A(2)O

31: end for
32: Compute Loss Loc eqn 13

33: minimise model loss L = Losd + Loc
34: end for
35: end for

in the table. Experiments were performed using a Titan RTX 24GB
GPU.

5.4.2 Setup

The Joint setup is concurrent sequence labelling (OSD) and sequence
classification (OC) whereas the standalone setup, is OSD and OC per-
formed separately. The former is achieved using (a) a Baseline model,
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Joint models Standalone models

parameter Tuned range Optimal Optimal

Train batch size [8,16,32,64] 64 32

Eval batch size [8,16,32,64] 16 8

Embedding dim

- baseline

- BERT models

_

_

300

768

_

768

b [150,200,250] 200 _

Optimizer [Adam, SGD] Adam Adam

Epochs [5,10,15] 10 10

Learning rate [5e-5, 1e-4, 5e-3, 1e-3, 1e-2] 1e-3 5e-5

Table 24: Parameter settings for the Joint and Standalone models. “_” im-
plies, parameter was not tuned or is not applicable for the respec-
tive model setup.

LCAM-BiLSTM (using a BiLSTM encoder) (b) LCAM-BioBERT (using
BioBERT encoder), whereas the latter is achieved by fine-tuning the
original (c) BioBERT and (d) SciBERT [18] models. The datasets are
novel in the sense that the outcome type labels of the outcomes are
drawn from Dodd et al. [55] taxonomy, which is not the basis of prior
outcome annotations such as the EBM-NLP dataset.LCAM-BioBERT

outperforms
standalone BioBERT
models for both OSD

and OC tasks.

Task OSD OC

Dataset Model setup P R F P R F

EBM-COMET Baseline Joint 63.0 55.0 59.0 78.0 73.0 74.0

BioBERT Standalone 74.0 74.3 74.2 76.7 78.4 77.5

SCIBERT Standalone 72.3 72.9 72.6 76.3 78.1 77.2

LCAM-BioBERT Joint 73.0 64.0 68.0 83.0 76.0 83.0

EBM-NLPrev Baseline Joint 49.0 40.0 44.0 65.0 59.0 61.0

BioBERT Standalone 48.2 51.5 49.8 65.7 74.6 69.9

SCIBERT Standalone 48.5 49.7 49.1 64.2 66.5 65.3

LCAM-BioBERT Joint 57.0 49.0 51.0 67.0 65.0 66.0

EBM-COMET+EBM-NLPrev Baseline Joint 62.0 54.0 58.0 68.0 64.0 65.0

BioBERT Standalone 58.6 61.4 60.0 81.4 83.0 82.2

SCIBERT Standalone 56.2 62.3 59.1 73.4 75.7 74.5

LCAM-BioBERT Joint 61.0 61.0 61.0 78.0 72.0 75.0

Table 25: Outcome span detection (OSD) and Outcome classification (OC)
results in terms of F1 on the three datasets. Baseline, is a LCAM
architecture with a BiLSTM sequence encoder.

5.4.3 Main Results

The first set of results reported in Table 25 are based on the inde-
pendent test sets (Table 23) for each of the datasets. The joint LCAM-
BioBERT and standalone BioBERT models are not only competitive
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but they consistently outperform the baseline model for both OSD

and OC tasks. I observe the LCAM-BioBERT model outperform the
other models in the OSD experiments for the last two datasets in Ta-
ble 25. On the other hand, the standalone BioBERT model achieves
higher F1 scores for the last two datasets in the OC task.

5.4.3.1 Impact of the abstract context injection and Label attention

LCAM OSD(F) OC(F)

EBM-COMET - Attention -10.0 -12.0

- Abstract -3.0 -5.0

EBM-NLPrev - Attention -9.0 -7.0

- Abstract -7.0 -2.0

EBM-COMET - Attention -11.0 -15.0

+EBM-NLPrev - Abstract -3.0 -1.0

Table 26: OSD and OC performance percentage decline when either the at-
tention mechanism or the abstract representation are eliminated
from the joint learning model (LCAM-BioBERT).

As shown in Table 26, the performance deteriorates (with respect
to the results reported in Table 25) without the attention layers (“- At-
tention”) by averagely 10% for OSD and 11.3% for OC. Similarly, exclu-
sion of the abstract representation (“- Abstract”) leads to an average
performance decline of 4.3% for OSD and 2.7% for OC. As observed
the decline resulting from “- Abstract” is less significant than that
resulting from “- Attention” for both OSD and OC tasks.

This decline explains the significant impact of both (1) the seman-
tic relational information between both tokens and labels as well as
outcome spans and labels gathered by the attention mechanism, (2)
information from the text surrounding a token or an outcome span
embedded into an abstract representation. This therefore justifies in-
clusion of both these components.

5.4.3.2 Impact of Aligning Comparable Datasets
Overall, this result
shows that the
proposed label
alignment method
enables us to improve
performance for both
OSD and OC tasks.

To evaluate the label alignment method proposed in Section 3.4, I
train a model using the aligned dataset (EBM-COMET+EBM-NLPrev)
and evaluate it on the test sets of the original datasets, reporting re-
sults in Table 27. I obtain significant improvements in F-scores for OSD

in both EBM-COMET and EBM-NLPrev. Additionally, for OC, signif-
icant improvement in F-score on EBM-NLP dataset and a slight im-
provement in F-score on the EBM-COMET dataset is observed. Over-
all, this result shows that the proposed label alignment method en-
ables us to improve performance for both OSD and OC tasks.
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OSD OC

LCAM-BioBERT P R F P R F

EBM-COMET 73.0/83.0 64.0/64.0 68.0/71.0 83.0/90.0 76.0/80.0 83.0/84.0

EBM-NLPrev 57.0/60.0 49.0/47.0 51.0/53.0 65.0/76.0 65.0/72.0 64.0/74.0

Table 27: Effect of dataset merging via label alignment. For each dataset, I
report the performance on its test split obtained by LCAM-BioBERT
trained on the corresponding train split (shown on the left side of
/) vs. on the merger of the train splits of EBM-COMET and EBM-
NLP (shown on the right side of /).

5.4.4 LCAMs multi-label set performance
LCAM-BioBERT

model outperforms
other multi-label

models such as label
specific attention
networks used as

baselines in
multi-label prediction

performance.

To further evaluate the LCAM-BioBERT model, I focus on the OC task
results alone where the classifier returns the outcome types given an
outcome span, and compare MLP performance to the baseline and
another related MLP model, label-specific attention network (LSAN)
[229], that learns BiLSTM representations for multi-label classification
of sentences. For comparison, I compute P@n and nDCG@n using for-
mulas similar to [229]. As illustrated in Figure 9, the LCAM model out-
performs its counterparts for all datasets, and most notably for P@1.
The joint BiLSTM baseline model performs comparably with LSAN,
and indeed outperforms it on the EBM-COMET dataset for P@1, nDCG@1

and nDCG@3.
I attribute LCAMs superior performance to (1) Using a domain-

specific (biomedical) language representation model (BioBERT) at its
encoding layer, (2) Applying label-specific attention prior to classify-
ing a token as well as before classifying the mean pooled represen-

Figure 9: P@n and nDCG@n for three datasets
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tation of an outcome span and finally (3) injecting global contextual
knowledge from the abstract into the token and document (outcome-
span) representations.

Example Input sentence Predicted labels Predicted labels

P@1 P@2

Ground truth

The primary outcomes were hospitalised death1, severe disability2 at

15 months of age, neonatal behavioural neurological3 assessment (nbna)

score at 28 days of age, and Bayley scales of infant development4

(BSID) score (including mental development5 index (mdi) score

and psychomotor development6 index (pdi) score) at 15 months of

age at follow-up.

1. Mortality

2. Life-Impact

3. Life-Impact

4. Life-Impact

5. Life-Impact

6. Life-Impact

LCAM

Output

The primary outcomes were hospitalised death1, severe2 disability3 at

15 months of age, neonatal behavioural neurological assessment (nbna)

score at 28 days of age, and Bayley scales of infant development

(BSID) score (including mental development4 index (mdi) score

and psychomotor development5 index (pdi) score) at 15 months of

age at follow-up.

1. Mortality

2. Physiological

3. Life-Impact

4. Life-Impact

5. Life-Impact

Ground truth
These results confirm retrospective studies and add that histopathology

subtype is a strong determinant of disease-free survival (DFS)1, in resected

MAGE-A3-positive MSCLC.

1. Physiological 1. Mortality

LCAM

Output

These results confirm retrospective studies and add that histopathology

subtype is a strong determinant of disease-free survival1 (DFS), in resected

MAGE-A3-positive MSCLC.

1. Physiological 1. Mortality

Ground truth

The duration of total hospital stay1, and postoperative hospital stay2 in

the ag (10.86 +/- 5.64, 5.69 +/- 4.55) d were significantly shorter than that

in the cg (.10.86 +/- 5.64,

5.09 +/- 4.55) d (p=0.01, p=0.01))

1. Resource-use

2. Resource-use

LCAM

Output

The duration of total hospital1 stay2, and postoperative3 hospital stay4 in

the ag (10.86 +/- 5.64, 5.69 +/- 4.55) d were significantly shorter than that

in the cg (.10.86 +/- 5.64,

5.09 +/- 4.55) d (p=0.01, p=0.01))

1. Resource-use

2. Physiological

3. Physiological

4. Resource-use

Table 28: Sample error predictions made by the joint learning model, with
coloured words representing the outcome phrase (both in ground
truth and output) and the colours representing different outcome
types which are output. For multi-label predictions, I include P@1

and P@2 to indicate the top most predictions for the outcome
phrase in question such as in example 2.

5.4.5 Error Analysis

I review a few sample instances that exhibit the mistakes the joint
LCAM model makes in the OSD and OC tasks in Table 28.

osd errors : The model is observed partially detecting outcome
phrases e.g. In Example 1, it detects death instead of hospitalised
death, development instead of mental development, and in Example
2, it does not detect “(DFS)” as apart of the outcome phrase. Addition-
ally, it completely misses some outcomes such as infant development
in Example 1.

oc errors : Incorrect token-level predictions will most likely re-
sult into incorrect outcome classification. In Example 1, Instead of se-
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vere disability, the model detects “severe” as an outcome and “disabil-
ity” as a separate outcome and classifies them as Physiological and
Life-Impact respectively. Similarly, in Example 3, both outcomes are
misclassified because at token level multiple outcomes are detected
rather than one, hospital and stay rather than hospital stay, postoper-
ative and hospital stay rather than postoperative hospital stay.

5.5 singular type (label) outcome span detection (st-
osd)

ST-OSD aims to
detect and classify an

entity span into one
entity-type

classification label.
OSD described in the

sections above
achieved multi-label

classification of
outcome spans

To further investigate any performance gains or losses in the tasks, I
re-formulate the OSD task into the conventional sequence labelling for
NER where every entity is associated with at most one label [199]. Dif-
ferent from the multi-label classification achieved in OSD as described
in earlier sections of this chapter, ST-OSD aims to detect and clas-
sify an outcome span into one outcome-type classification label. The
main motivation for this investigation is that, the proportion of multi-
labeled outcome span annotations is significantly smaller than that of
singular labeled outcome spans, i.e. ca. 5% and 95% respectively of
the total outcomes as shown in Table 29. For this conventional NER

ST-OSD task, I discard the multi-labeled spans from the train and test
sets and re-label the spans with BIO tags with their corresponding
outcome types (Adverse-effects, Physiological, Life-impact, Resource-
use, Mortality), i.e. the new label set L contains {B-Physiological,
I-Physiological, . . . , I-Mortality,O} where O represents non-outcome
tokens. Given an input sentence s = w1, . . . ,wM, the goal of ST-OSD
is to classify a token wi into one of the labels in L.

5.5.0.1 Model Architecture for ST-OSD

The seq2seq2set LCAM architecture illustrated by Figure 8 and de-
scribed under Section 5.3, is retained minus the “set” component
which performs OC by classifying a detected span into one of the out-
come types. In this section we refer to the proposed architecture as
LCAM− set since it excludes the text classification component, “set”.
Similar to LCAM, an input sentence is encoded by an encoder (a BiL-
STM baseline or BioBERT), then these encoded representations are
enriched with encoded representations of the abstract (from which

EBM-COMET EBM-NLPrev EBM-COMET+EBM-NLPrev

Train Test Train Test Train Test

Count Multi-labeled 520 44 479 112 999 156

Singular-labeled 2799 784 21197 5123 23996 5907

Total 3319 828 21676 5235 24995 6063

Table 29: Statistics of multi-labeled and singular-labeled outcome span an-
notations in the investigated datasets
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the sentence is extracted), a label attention mechanism is applied to
make the tokens label-aware, after which a softmax layer is used to
calculate the probability of a label given a tokens hidden state rep-
resentation P(ℓ|hi), where ℓ ∈ L. Similar to the setup in Table 24, I
additionally fine-tune BioBERT and SciBERT for this ST-OSD task. In
this architecture, only the token level loss i.e. Losd as shown in Equa-
tion 33 is minimised.

5.5.0.2 Experimental results - OSD Vs ST-OSD

The model architecture is evaluated using the training and test sets
used for the experiments whose results are reported in Table 25. Ta-
ble 30 shows results of the OSD and OC task (achieved with joint
learning as seen in Section 5.3.1) using multi-labeled outcome span
annotations, and those of ST-OSD task which not only disregards the
joint learning component but also discards the multi-labeled spans.
Only experiments under ST-OSD are performed and none of the ex-
periments under OSD and OC are repeated as they were already ob-
tained and presented in Table 25. For comparison, both OSD and OC

results from the earlier performed experiments are considered. For
the ST-OSD experiments, I use an evaluation criteria that rewards
models a prediction score of 1 for a prediction that matches both the

Task OSD OC ST-OSD

Dataset Model setup P R F P R F P R F

EBM-COMET Baseline Joint / LCAM* 63.0 55.0 59.0 78.0 73.0 74.0 / 57.0 55.2 56.1

BioBERT Standalone 74.0 74.3 74.2 76.7 78.4 77.5 69.4 74.7 71.9

SCIBERT Standalone 72.3 72.9 72.6 76.3 78.1 77.2 72.1 71.7 71.9

LCAM-BioBERT Joint / LCAM* 73.5 61.3 68.0 83.0 76.0 83.0 / 60.0 76.0 66.8

EBM-NLPrev Baseline Joint / LCAM* 49.0 40.0 44.0 65.0 59.0 61.0 / 33.8 41.0 37.1

BioBERT Standalone 48.2 51.5 49.8 65.7 74.6 69.9 44.9 48.5 46.6

SCIBERT Standalone 48.5 49.7 49.1 64.2 66.5 65.3 48.6 48.1 48.3

LCAM-BioBERT Joint / LCAM* 57.0 49.0 51.0 67.0 65.0 66.0 / 54.1 47.2 50.4

EBM-COMET+ Baseline Joint / LCAM* 62.0 54.0 58.0 68.0 64.0 65.0 / 58.9 51.6 55.0

EBM-NLPrev BioBERT Standalone 58.6 61.4 60.0 81.4 83.0 82.2 56.3 58.9 57.6

SCIBERT Standalone 56.2 62.3 59.0 73.4 75.7 74.5 51.7 60.5 55.8

LCAM-BioBERT Joint / LCAM* 61.0 61.0 61.0 78.0 72.0 75.0 / 57.3 58.9 58.1

Average 58.8 72.6 56.3

Table 30: Table comparing results of OSD and OC targeting multi-labelled out-
come span annotations obtained earlier (Table 25) with ST-OSD tar-
geting singular-labeled outcome span annotation introduced un-
der Section 5.5. Results of the Joint setup achieving both OSD and
OC are separated from LCAM* (which indicates LCAM-set i.e. elim-
inates the set component from LCAM) by a slash. A BiLSTM is
used as a baseline. Boldened and underlined results are the best
and second-best F1 scores respectively in a single row e.g. For the
EBM-COMET, 74.0 and 59.0 are the best and second best F1’s ob-
tained using the Baseline for OC and OSD respectively.
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exact boundary surface string and the outcome type or label given
the ground truth.Better performance

results for the OSD
task in contrast to the
ST-OSD investigated

in this section

In this investigation, the best performance results are observed
in the OC task in contrast to OSD and ST-OSD. Nonetheless, OSD

results are second best outperforming ST-OSD. It is important to
note the distinction across the output space (or label set size) for
each of these three different tasks i.e. OSD label space only contains
B−Outcome, I−Outcome,O whereas OC label space contains the
five outcome types (Adverse-effects, Physiological, Life-impact, Resource-
use, Mortality). Both these label spaces are much smaller than L used
in ST-OSD as elaborated in Section 5.5. Therefore, the performance
decline observed in ST-OSD is attributable to 1) the increased dimen-
sion of the label space which introduces prediction difficulty because
the cross entropy loss function is required to enumerate across all
possible outputs [31, 42] 2) Eliminating the joint learning which im-
plies that the token level classification model (achieving OSD) would
no longer benefit from learning the compatibility constraints or cor-
relations between token- and sentence-level (spans outcome types or
labels) which is relevant in jointly classifying token and outcome span
representations and 3) the skewed label distribution with some out-
come type labels having fewer training instances than others [31] as
seen in Table 31.

Additionally, I observe LCAM* (LCAM-set) outperform the the stan-
dalone setup, although BioBERT and SciBERT achieve better perfor-
mance on the EBM-COMET. The superiority of LCAM-set is attributed
to the abstract context injection and the label attention that are used
in the LCAM architecture to enrich the tokens with global contextual
information and label aware information. Overall, the multi-label OC

achieves the best performance as shown in the average results row,
which further suggests that NER tasks can benefit from joint mod-
elling such as what is achieved in the OSD task.

Adverse-effects Mortality Life-Impact Resource-use Physiological

EBM-COMET 745 54 117 139 3092

EBM-NLPrev 1480 875 3814 3635 17107

Table 31: Frequency distribution of samples across outcome types or labels
in EBM-COMET and EBM-NLPrev

5.6 discussion and summary

Given real-world scenarios where it is often impractical or computa-
tionally demanding to build a model for each and every single task,
it is imperative to build models that can multi-task or simultaneously
perform multiple different tasks. Multi-tasking in NLP has recently
achieved outstanding success with the release of models that can si-
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multaneously perform a diverse set of tasks such as MT, QA, Text Sum-
marisation etc [174]. Inspired by the recent success MTL has achieved
through unifying architectures specific to different tasks, this chapter
has proposed and presented a method that combines and simultane-
ously achieves two different but related OD tasks of OSD and OC. OSD

is concerned with detecting spans of tokens that correspond to or in-
dicate health outcomes, whereas OC is concerned with classification
of health outcomes into a set of predefined outcome types.

The chapter highlighted the correlation between OSD and OC as a
key motivating factor in designing the joint learning model (LCAM)
i.e. the token-level outcome span detected will influence the outcome
type (sentence-level) assigned to the text span in which the outcome
is mentioned and likewise, the outcome type classification must be
consistent with the outcome span detected. In order to model this re-
lationship, LCAM uses a label inclined attention to capture the relation-
ships between words and their token-level labels as well as outcome
spans and their outcome type labels. LCAM additionally augments
token-level representations with contextual representations generated
from the abstracts from which model input sentences are extracted.

I trained LCAM using BioBERT and SciBERT embeddings on both
OSD and OC jointly, and observed performance gains over standalone
(disjoint) setups in which the embedding models were each used to
independently achieve OSD and OC. In the experimental results us-
ing EBM-COMET, EBM-NLPrev datasets and the two merged (EBM-
COMET+EBM-NLPrev), I observe LCAM-BioBERT improve the stan-
dalone performance by an average of 2.0% F1 in OSD tasks in both
EBM-NLP and EBM-COMET+EBM-NLPrev. An even more significant
improvement of 5.7% F1 is achieved in OC task on the EBM-COMET.
An ablation analysis revealed that elimination of the abstract repre-
sentation and the attention mechanism would hurt the performance
of LCAM, thus justifying the inclusion of both components in the
model’s architecture. Using a common test set, I observed consistent
improvement of F1 scores using the merged dataset EBM-COMET+EBM-
NLPrev across all tasks and both datasets, which validated the impact
of the label alignment method proposed and used in merging the two
datasets in Section 3.2. Furthermore, LCAM architecture outperformed
counterpart MLP architectures in the OC tasks.

Various other entity recognition tasks that may not necessarily be
within the clinical domain can benefit from this joint learning ap-
proach, particularly if the number of entity type labels is very large.
However for the clinical domain, an example can be disease recog-
nition and classification based on a hierarchical classification such
as the human disease ontology, where a disease can be associated
with not just a single fine-grain classification, but also the parent or
super-class classifications in the ontology e.g. Down syndrome is a
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chromosomal duplication syndrome, but also a chromosomal disease
and a genetic disease.

This chapter and previous chapters have focused on enhancement
of the retrieval of health outcomes from clinical text using PLMs. In the
next chapter, the aim is to probe for the knowledge PLMs have about
outcomes, the emphasis is shifted to investigate whether these PLMs
can automatically answer questions querying for health outcomes.



6
P O S I T I O N - B A S E D P R O M P T I N G F O R H E A LT H
O U T C O M E G E N E R AT I O N

6.1 introduction

So far in this thesis, we have observed that LMs and particularly pre-
trained CLMs can lead to substantial performance improvement in
both OC tasks (as revealed in Chapter 3) and OSD (as shown in Chap-
ter 4) as well as joint OSD and OC in Chapter 5. Inspired by Petroni et
al. [170] who examined the factual knowledge memorization ability
of LMs by exploring whether they can serve as an alternative to KBs, I
investigate the extent to which LMs memorise health outcome related
knowledge in this chapter. LM-as-KB implies the

usage of LMs as an
alternative or atleast a
proxy for explicit KBs

Language models (LMs) as knowledge bases (KBs) (LM-as-KB) is a
rapidly growing phenomenon attracting a lot of attention in the NLP

community [27, 170, 187, 190]. LM-as-KB implies the usage of LMs as
an alternative or at least a proxy for explicit KBs. To achieve LM-as-KB,
researchers adopt prompt-based learning PBL in which LMs learn to
probabilistically predict missing information once given fill-in-the-
blank prompt inputs [135] such as “Eiffel tower is located in ”.
PBL has generally been a success, for example, in a systematic sur-
vey of prompting methods, Liu et al. [135] indicate that “pre-train,
prompt and predict” is a new paradigm replacing “pre-train and fine-
tune” paradigm in NLP. Because of this success, the rationale that LMs
contain factual retrievable knowledge is ostensibly justified and there-
fore continually explored.

The prompt sequences often used in PBL have a masked token or
span (denoted by [MASK] in the remainder of this chapter) that po-
sitionally appears either in the middle (Cloze-style) [49, 170, 187] or
at the very end of the sequence (Prefix style) [173, 190]. Moreover,
I learn that the majority of the PBL tasks probe relational knowledge
possessed by PLMs [51, 94, 170], which implies that the prompt inputs
used in querying the PLMs have to contain relational information such
as “subject-relation-object” triples. Furthermore, I observe that, a fair Prompt based

learning involves
probing for relational
knowledge containing
subject-relation-object
triples possessed by
PLMs

amount of time in several PBL tasks is spent reconstructing prompt
inputs through manually designing templates [51, 170] or corrupting
prompt inputs through deletion [123], replacement [174] or permuta-
tion [75].

As discussed above, it is noticeable that, the syntactic and seman-
tic structure of prompt inputs is a constraint encountered in PBL,
notwithstanding the multitude of constraints that could arise given
that PBL is inherently a text generation task [135]. This constraint

93
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Figure 10: Prompt query variants used for probing evidence (in form of
health outcomes) from PLMs, including common styles like Pre-
fix (1) and Cloze (2) style, as well as rare styles Postfix (3) and
Mixed (4) styles with [MASK] token/s at the beginning and in
multiple positions in the prompt.

will usually require researchers to laboriously prepare supervised
data with prompts whose linguistic patterns suit the objective of
the prompting task. For instance, Davison, Feldman, and Rush [51],
Heinzerling and Inui [75], and Jiang et al. [93] use templates that
reformulate prompts to contain relational information connecting a
particular text span to the to-be filled information. However, template-PBL often involves

reformulating
prompts to meet a

particular linguistic
pattern, however, it
risks corrupting the

grammar and the
search space of

possible patterns is
almost unfathomable.

based prompt reformulation has two main challenges. First, it presents
a risk of corrupting the grammar of the prompts unwittingly [51]. Sec-
ond, the search space of the candidate prompts is too large [66] and is
practically impossible to create templates that can enumerate all pos-
sible linguistic patterns that prompt queries can be tailored to. For
example, prompt template patterns with missing information at the
beginning and or with multiple missing information in a sequence
are yet to be explored in prior works.

To address the above-mentioned challenges, I propose a strategy I
denote Position-based Prompting (PBP), which is less concerned about
the linguistic pattern or shape the prompt takes on, but rather focuses
on the words (that the prompts are composed of) and their positions
relative to the [MASK]. PBP is focused on shifting the emphasis on
“subject-relation-object” triples to the masked positions as well as the in-
teraction of all the other words with the [MASK]s position. PBP is builtPBP shifts the

emphasis off
subject-relation-object

triples to the
[MASK]s positions as
well as the interaction
of all the other words

with the [MASK]’s
position

to automatically adjust from one prompt template to another, which
essentially eliminates the need to prepare hand crafted prompts in the
event that an LM is to be probed for rare knowledge. In its architec-
ture, PBP enhances contextualised word representations with position-
aware representations to solve fill-in-the-blank tasks. In this approach,
I fine-tune PLM parameters along with position-oriented parameters
to generate position-based contextualised word representations.
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In this chapter, I investigate how well biomedical PLMs store and
recall information relevant to health outcomes. In addition to the Pre-
fix and Cloze styles, I incorporate two rare prompt style patterns that
I denote Postfix and Mixed, where the former contains the [MASK]
token/s at the beginning of the prompt sequence and the latter has
multiple [MASK] token/s in various positions (Figure 10). My ap-
proach obtains mean scores (across several biomedical LMs) in Exact
Match (EM) and Partial Match (PM) metrics that are an improvement
(2.4% across both metrics) over those obtained using the vanilla PLM

representations, reporting a significant improvement of 6.49% in F1

on the EBM-NLP [161] dataset. As later defined in Table 6.4.1, EM mea-
sures the percentage of predictions of all [MASK] tokens (or spans)
that match the ground truth, whereas PM measures the percentage of
correctly predicted [MASK] tokens.

6.2 entity memorisation and recalling

Large-scale LMs with billions of parameters have already shown to
recall facts that were observed in the training data [75, 93]. However,
the ground truth for these LMs to achieve this is already laid with sys-
tematically handcrafted rules to follow in creating the prompt input
sequences they receive at the training stage. For instance, the major- LMs are capable of

recalling facts they
encountered during
training, e.g. the can
correctly recall an
object if prompted
with a subject and a
relation or a subject if
prompted with an
object and a relation.

ity of the prompts created in PBL tasks embed knowledge in form of
triples {subject,relation,object} such that LMs could correctly predict ob-
ject entities when prompted with a sequence containing a subject and
relation or otherwise predict subject entities when prompted with a
sequence containing an object and a relation [93, 173, 200]. Whichever
the case, models often predict answers as shown in (39).

ŷi = argmax
yi

p([MASK] = yi|xprompt) (39)

where i is the position of masked token within a prompt xprompt.
This work however does not assume any prior knowledge con-

tained in a prompt, but rather simply locates outcome entities in the
sentences extracted from RCTs and mask them, an approach I refer
to as custom masking. It is important to note that, this masking strat-
egy slightly differs from the custom entity masking strategy in the
Enhanced Language Representation with Informative Entities (ERNIE)
[246]. In ERNIE, they randomly mask some tokens (within an input
sentence) which would have been aligned to entities in a Knowledge
graph. This arbitrary masking differs from the absolute target entity
masking that is adopted in this chapter, where all entity mentions
(outcomes) are masked.
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6.3 position based prompting

In addition to formally defining the task I undertake, this section
discusses the data used as well as the different stages of my proposed
PBP strategy.

task formulation : Let us consider an input prompt sequence s

with one or more outcomes masked such that s = x1, . . . [M]i . . . [M]j . . . xn,
where [M] is a masked token sequence, [M] = {xi}

i+|M|
i⩾1 , i ∈ [1,n] and

|M| is the length of the masked sequence. I consider four different
prompt query variants shown in Figure 10: Prefix prompts contain
[M] at the end of the prompt, Cloze prompts contains [M] in the
middle of the prompt, Postfix prompts contain [M] at the start of
the prompt, and Mixed prompts where there are several masked se-
quences distributed across the prompt. The questions I then pose are:
(a) can I determine how knowledgeable biomedical PLMs are of stored facts
such as health outcomes?, and (b) If queried with any of the above variants,
would these PLMs correctly fill in [M]s with the correct outcomes?

datasets : Different from previous PBL works, I neither create cus-
tom templates nor do I reformulate prompts to follow an ideal linguis-
tic pattern. I use plain raw sentences (that mention health outcomes)
extracted from RCTs, which are contained in the revised version of
EBM-NLPrev [1] and EBM-COMET [2] datasets. Extensive details en-
tailed in constructing both datasets are included in Section 3.2 and
Section 3.3. I do not eliminate any of the abstract sentences that doI aim to familiarise the

PLM (at fine-tuning)
with text or context in

RCTs which generally
report about outcomes

during clinical trial
studies despite not

containing outcomes.

not mention outcomes, because I aim to familiarise the PLM (at fine-
tuning) with text or context in RCTs which generally report about out-
comes during clinical trial studies [225]. I refer to these sentences as
no_blank sequences and use them alongside the prompt query variants
introduced earlier. To my advantage, several sentence segments have
no outcome annotations in both the EBM-NLPrev and EBM-COMET
datasets.

6.3.1 Masked Language model and Prompt engineering

A hidden state hi for each token in an input prompt s is extracted
using a domain-specific PLM,

hi = PLMθ(xi) (40)

where hi is a hidden state for the word x at position i. The matrix of
hidden states for the entire input prompt is represented as H ∈ Rn×k,
where n is number of words in s and k is the hidden state size.

I define a function fprompt that concatenates the hi in (40) to a ran-
domly initialised d dimensional vector, which I denote as zt corre-
sponding to one of the four prompt query variants or the additional
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no_blank sequences (introduced in Section 6.3), where t ∈ [prefix, cloze,
postfix, mixed, no_blank]. The function ensures that if an input s is a
Prefix prompt, the corresponding vector zprefix is concatenated to
each hi generated from s as shown in (41). This is done to enable
knowledge transfer from one prompt query to another. For example,
Mixed prompts are by construction a combination of Prefix, Postfix,
and Cloze, hence they should benefit from information sharing via a
common vector space.

fprompt(hi) = [zt;hi] (41)

zt ∈ Rdt , where zt is a query type embedding of size dt.

6.3.2 Position based conditioning (PBC)

To enrich the token representations, I propose a position-based atten-
tion mechanism to steer the model’s focus on relevant information in
the input prompt. PBC uses an attention

mechanism to
incorporate position
based information of
the masked tokens
relative to the
non-masked tokens.

Positional ids in transformer-based architectures like BERT [54] are
necessary for capturing the word order or the sequential nature of
their input tokens. Without them, these LMs would not conveniently
distinguish between two similar tokens in different positions (e.g. ‘I‘
in “I like what I did”), which would limit their context-encoding abil-
ity. Unlike BERT’s absolute position embeddings (APE) [216] which
encode the position ids ordered from 0 to n-1, which are respectively
indices of the first and last tokens in a sentence, the proposed relative
position embeddings (PBC) encode the positions of each token rela-
tive to the distances to the masked tokens. In this approach, I use both
positive and negative scalar values to distinguish between tokens that
occur before and after the mask.

In this work, I define a sequence of position ids for each input
prompt, where all masked positions take on an id of 0 and all the
other tokens take id’s relative to the masked position id. For exam-
ple given a Cloze prompt with m tokens, I assign a mask at posi-
tion i an id 0, and resulting sequence of position ids is p = [1 −

i, 2− i, . . . ,−1, 0, 1, . . . , (m− 1) − i,m− i]. This differs from the APE
in BERT which would have been p = [0, 1, 2, 3, . . . ,m], where m+ 1 is
usually 512 for the maximum sequence length in BERT. PBC uses an attention

mechanism to
incorporate position
based information of
the masked tokens
relative to the
non-masked tokens.

I compute an attention vector A(s), given by (42), for an input
prompt s that allows each token to interact with every other token
and retain knowledge of the relative position of the masked tokens in
the input sequence.

A(s) = softmax(V
⊤

tanh(WH
⊤
+ UP

⊤
s )) (42)

Here, A(s) ∈ Rn×1, V ∈ Rka×1, ka is size of attention layer, W ∈
Rka×k, Ps ∈ Rn×kp and U ∈ Rka×kp . Ps is a matrix of position
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embeddings of size kp extracted for each position pn in the input
prompt s. These embeddings are extracted from a trainable matrix
P ∈ R2n×kp of randomly initialised vectors of size kp for all possible
positions 2n where n is the maximum sequence length, |{pn}

n−1
−n | =

2n. The position based representation of each token is then computed
with respect to the type of prompt. For the Prefix, Postfix and Cloze
prompts, I obtain a prompt representation Ms given by (43).

M(s) = A(s)H (43)

Here, M(s) ∈ Rn×k. For the Mixed prompts in which there are mul-
tiple masked positions within the input sequence, I avoid biasing the
attention mechanism towards masks at a specific position and thereby
considering as many position id sequences as there are masked po-
sitions in the input prompt. For example, given a sequence with 3

masked positions, s = [M], x2, x3, [M], x5, x6, [M], I obtain 3 position
id sequences, i.e. the combined position id sequences is,

P(s) =
⋃
i

Pi,

where each Pi is obtained with respect to the current mask position
i. For the example above, P(s) = {[0,1,2,3,4,5,6], [-3,-2,-1,0,1,2,3,], [-6,-
5,-4,-3,-2,-1,0]}, where the first position id sequence is obtained by
treating the [M] at position 1, as mask at i, the second is obtained
by treating the [M] at position 4 as mask at i and finally the third by
treating [M] at the last position as mask at i. Attention vectors are
computed for each position id sequence (Pi) and subsequently used
to obtain the prompt representation Ms

Pi
. I compute the final repre-

sentation of a Mixed prompt as the mean pool across these different
representations,

M(s) =

|P(s)|∑
i

Ms
Pi

(44)

6.3.3 Prompt fine-tuning

The predicted probability of each vocabulary token is estimated via
(45).

y = softmax(f(WvM(s)
⊤
) (45)

Therein, Wv ∈ Rv∗×k, v∗ is the vocabulary size and f is a non-linear
activation function. I use a BERT-based loss in predicting the masked
tokens in each input given by (46).

LPLM = −
∑
s∈T

n∑
i

logP(yi|s) (46)
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where T is the set of training example prompts. Some of the prompt
query variants (Postfix and Prefix) are rare in the datasets, and some
other prompt sequences are quite lengthy. This poses a challenge par-
ticularly when using small PLMs (with few parameters) to recall fac-
tual information. In order to mitigate model forgetfulness in such
examples, I introduce an auxiliary task that computes a text classifi-
cation loss as a cross entropy loss given by (47).

LTC = −
∑
s∈T

∑
i∈n

logP(yi|y<i, s) (47)

The overall training loss is defined as the weighted combination of
the two losses as given in (48).

L = LPLM + λLTC (48)

Similar to [44] and [186], I introduce a weighting parameter λ(> 0) to
adapt the auxiliary losses to the main mask prediction task.

6.3.3 Prediction

Similar to BERT [54], I consider generating outputs in parallel, initially
treating the default representations provided by the model in (40) as
a baseline and therefore use them to predict tokens in masked posi-
tions. I then use position-aware representation obtained using the at-
tention mechanism in Section 6.3.2 to predict the mask tokens, calling
these results Position-based conditioning (PBC). Lastly, I endeavour
to retain the contextual knowledge presented by the PLMs as much
as I possibly can by computing an average of the Baseline and PBC
representations and term these Contextual PBC.

6.4 evaluation experiments and results

In these experiments, I use several PLMs that are pre-trained on clini-
cal texts such as PubMed abstracts, which often report outcomes such
as BioBERT [121], SciBERT [18] and Biomed_RoBERTA [72]. Addi-
tionally, I include UmlsBERT because it augments BERT’s pre-training
input with semantic type embeddings aligned to clinical knowledge
(semantic types) in the UMLS Metathesaurus [148]. I also use BERT [54]
as a vanilla PLM that has not been pre-trained specifically on clinical
texts.

6.4.1 Training and Evaluation

Unlike previous works where a particular relation within a prompt
e.g. born-in, lives-in etc might appear multiple times within the train
set, in this case, prompts are not semantically related in any way (i.e.
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their is no relation knowledge that can be transferred over from one
prompt to another). Because of the nature of the prompts, I believeBecause the prompts

are not semantically
related in anyway, I

believe it might be
harder for the model
to memorise them, I

therefore opt to train
the models until the

perplexity on the
training data is low.

it might be harder for the model to memorise them, I therefore opt
to train the models until the perplexity on the training data reaches
1 or until the accuracy on the validation data saturates. I examine
the model’s generalisation ability to transfer knowledge to unseen
prompts in few-shot and zero-shot settings. For the few-shot setting,
I design experiments where I measure a model’s accuracy in generat-
ing outcomes (as answers), which it encountered in a small number
of prompts during training. The contexts in these evaluation prompts
are not encountered during training. For example, consider an evalu-
ation prompt – “The patient’s overall [MASK] improved according to the
HRQOL questionnaire”, the model would not have encountered the
context surrounding the “[MASK]”. For the zero-shot evaluation, the
model would have neither encountered the prompt nor the target
outcomes during training. To simulate both the zero- and few-shot
settings, I randomly split the datasets into train (80%) and test (20%)
splits, and use the latter for the generalisation evaluation task shown
in Table 35. I tune all hyperparameters using the validation data (20%
of the EBM-COMET), and obtain optimal values as follows presented
in Table 32.

metrics : I define two different metrics for evaluating the pro-
posed PBP strategy: Exact Match (EM) and Partial Match (PM). EM

counts a prediction as 1 only if it matches completely with the cor-
rect answer, whereas PM uses the fraction of the overlapping tokens
between the predicted and correct answers. Both EM and PM are aver-
aged over all test instances to compute aggregated evaluation metrics,
and therefore report their percentages in this work.

6.4.2 Results

In this section, I evaluate how well the model generates health out-
comes when queried to answer a given prompt. For example, “After
patients were given sorafenib, they reported [MASK]”, the model should
correctly generate the outcome Fatigue for the [MASK].

Parameter Tuned-range Optimal

Train Batch size [8,16,32] 16,32

Eval Batch size [8,16,32] 8

Query type embedding size [50,100,150] 50

Position embedding size [100,200,300] 300

Attention layer size [100,200,300] 200

Optimizer [Adam, SGD] Adam

Learning rate [5e-5, 1e-4, 5e-3, 1e-3] 5e-5

Table 32: Parameter settings for the Position-based conditioning model.
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Dataset- EBM-COMET EBM-NLP

Method- Baseline PBC Contextual PBC Baseline PBC Contextual PBC

Metric- EM PM EM PM EM PM EM PM EM PM EM PM

BERT 43.12 47.55 43.04 49.84 44.32 55.94 37.40 45.55 41.10 47.00 47.31 51.06

BioBERT 50.71 58.01 50.55 58.61 53.34 59.65 51.15 55.62 51.19 53.80 52.15 54.50

SciBERT 61.17 67.48 62.34 69.85 63.00 70.95 57.12 62.25 57.18 63.75 59.44 63.91

Biomed_RoBERTA 44.01 59.67 44.32 59.73 44.32 62.86 40.45 51.72 47.21 49.81 49.17 55.00

UmlsBERT 31.05 34.61 30.47 35.77 31.88 36.46 28.66 33.15 30.02 38.51 39.16 40.15

Mean score 46.01 53.46 46.14 54.76 47.37 57.17 42.96 49.66 45.34 50.57 49.45 52.92

Table 33: Table reports EM and PM accuracies of the various biomedical Pre-
trained Language Models for the outcome recalling experiments.
Mean score in a particular column is the average across all results
in that column.

6.4.2.1 Outcome memorisation and retrieval

Table 33 shows the performance of the proposed PBC method in the
outcome generation task. As observed, PBC consistently outperforms
the baseline across most of the clinically informed BERT LMs (for both
datasets), particularly for the PM results. More interestingly, I notice
that Contextual PBC further improves the performance (both in EM

and PM), indicating the importance of preserving the contexts in the
position-based representations. The proposed PBC

method outperforms
the baseline in the
outcome generation
task.

Comparing the different LMs, I found that, SciBERT performs best
followed by Biomed_RoBERTA and BioBERT. Since all tested models
follow the original BERT’s architecture, I hypothesize that, the nature
of corpora used in pre-training the best performing models was re-
sponsible for the performance, i.e. unlike UMLsBert and BERT, all
the other models are pre-trained on text that includes PubMed ab-
stracts, which often report outcomes. Additionally, I observe that PM

results were generally better than EM results, which is attributable to
the fact that PM is less strict compared to EM because it rewards the
model for correctly generating a few of the tokens in the masked posi-
tions. Overall, the results suggest that PBC can be used to effectively
retrieve facts such as health outcomes (biomedical entities) by sim-
ply augmenting contextual word representations with position-aware
representations.

6.4.2.2 Prompt query variants

In Table 34, it is noticeable that the accuracy with which a model
correctly answers Prefix prompts is significantly higher than that of
the other prompts. I attribute this performance to the short length of The accuracy with

which model correctly
answers prefix
prompts is higher
than that of other
prompts.

these spans such as the one shown in Table 37 and the average num-
ber of tokens to decode per prompt. I also notice that the model strug-
gles to correctly answer Mixed prompts compared to other types of
prompts. I attribute this to the fact that, Mixed prompts are generally
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#
Average

prompt length
EM PM

Postfix 65 18.5 48.43 58.51

Prefix 53 9.1 69.23 77.24

Cloze 630 24.2 50.08 60.49

Mixed 2594 38.8 43.68 45.46

Table 34: Exact Match (EM) and Partial Match (PM) accuracies for Outcome
memorisation/recalling for the different prompt types using the
EBM-COMET dataset.

Cloze Mix Postfix Prefix

# 174 613 13 12

Table 35: Number of prompts per prompt type used in evaluation of the few-
and zero-shot settings.

very long sequences (38.8 tokens on average) and contain multiple
masked positions to be predicted.

(a) Partial Match (b) Exact Match

Figure 11: Visualizing the Partial Match and Exact match accuracies when
the best model (SciBERT+Contextual PBC+EBM-COMET) is
trained with only a certain number of target outcomes.

To evaluate the
model’s

generalisability, I
fine-tune the model

towards a small
amount of target

outcomes, and then
measure the

transferability of this
knowledge by

requiring the model to
accurately generate

these outcomes in
prompts with

completely different
contexts.

6.4.3 Few- and Zero-shot Evaluations

To evaluate the model’s generalisability, I fine-tune the model towards
a small amount of target outcomes, and then measure the transferabil-
ity of this knowledge by requiring the model to accurately generate
these outcomes in prompts with completely different contexts. Test
set prompts in Table 35 are carefully chosen using regular expression
matching such that the contexts surrounding the missing outcomes
are different from that of similar outcomes observed during train-
ing. For example, the model could have been trained on the outcome
“adverse events” in five different prompts, and then at evaluation,
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the model is required to generate the same outcome, however using
prompts that are different from those encountered during training. By
different here, I mean that the context (e.g. {ctxt} surrounding masks
[M] in Table 37) in the prompt changes during this evaluation. Fig-
ure 11 plots shows results of model evaluation on prompts (Table 35).
As observed in the plots, the model struggles to generate outcomes
it hardly encountered during training (i.e. outcomes appearing in 0-6
prompts or 6-12 prompts). This is mostly evident in generating out-
comes for Prefix and Postfix prompts, which is because there were
not just few evaluated prompts of this types, but there were also few
(53 and 65 respectively as shown in Table 34) in the train set. However,
I see a trend of performance improvement when the frequency of tar-
get outcomes encountered during training increases, particularly for
the Mixed and Cloze prompt.

6.5 analysis

Figure 12: Analysis of the accuracy (PM) with which best model (SciB-
ERT+Contextual PBC+EBM-COMET) recalls different types of
factual information (outcome types) with varying span lengths
and occurrence frequency (in the dataset).

There are more short
span outcomes than
they are medium span
and long span
outcomes. Within the
short spans, I observe
that the accuracy of
recalling spans
increases along with
the frequency.

6.5.1 Impact of Length and Frequency of Outcomes

I partition the entire set of outcomes in EBM-COMET into 3 different
groups based on lengths. Dividing the length of the longest outcome
(22) by 3 returns approximately 7, which I use to create 3 groups
i.e. 1) “short span length” to represent outcomes that are ⩽ 7 tokens
long, 2) “medium span length” to represent outcomes of 7 > and
⩽ 14 tokens, and finally 3) “long spans” to represent outcomes of
> 14 tokens long. Figure 12 shows how well the best model (SciB-
ERT+Contextual PBC+EBM-COMET) performs when recalling out-
comes of varying lengths and frequencies. Following prior work on
EBM NLP, I endeavour to show the model’s outcome recall rate by out-
come type, which can be informative in terms of the complexity of
modelling these outcomes. I firstly notice the skewed distribution of



104 position-based prompting for health outcome generation

outcome lengths with short spans dominant in the training sample.
Unsurprisingly, I observe a trend of a performance increase as the
frequency increases across the left hand plot with short outcomes, im-
plying that the model struggles to recall infrequent outcomes despite
their size but easily recalls the more frequent ones.

Figure 13: Achieving a target perplexity of 1.0 on the train dataset takes no
fewer than 20 epochs with generic random masking of 15% of the
input prompt tokens [54] compared to masking target factual in-
formation i.e. outcome spans themselves. Hitting target perplex-
ity is shown using a diamond.

.

6.5.2 Random masking Vs custom masking

Figure 13 shows results of an ablation test in which I replace the cus-
tom masking approach with random masking. The key difference be-
tween the two is, while custom masking involves masking (or hiding)
the outcomes in the prompts, random masking arbitrary masks 15%
of the prompts tokens. As shown in the figure, the number of epochs
required to reach a perplexity of 1.0 on the train data for the two
masking approaches is almost incomparable, with custom masking
quickly achieving this in approximately 7 epochs and random mask-
ing failing to achieve this, even after 20 epochs. The earliest random
masking achieves 1.0 perplexity is 80 epochs for SciBERT, however
I only visualise 20 epochs because of space. Besides this, the insight
suggests that, custom masking would significantly reduce GPU run-
time or otherwise minimise overwhelming computational resources
with massive datasets.
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Dataset EBM-COMET EBM-NLP

Method
Contextual PBC

(last layer)

Contextual PBC

(Mean pool)

Contextual PBC

(last layer)

Contextual PBC

(Mean pool)

Metric EM PM EM PM EM PM EM PM

BERT 44.32 55.94 45.80 57.19 47.31 51.06 47.45 53.41

BioBERT 53.34 59.65 53.58 61.22 52.15 54.50 54.80 55.15

SciBERT 63.00 70.95 63.15 72.67 59,44 63.91 60.08 66.93

Biomed_Roberta 44.32 62.86 45.00 63.17 49.17 55.00 49.19 56.33

UmlsBERT 31.88 36.46 33.10 39.21 39.16 40.15 41.12 42.41

Mean score 47.37 57.17 48.13 58.70 49.45 52.92 50.53 54.85

Table 36: Table reports EM and PM accuracies of the various biomedical Pre-
trained Language Models for the outcome recalling experiments
using the EBM-COMET and Contextual PBC. Mean score in a par-
ticular column is the average across all results in that column.

6.5.3 Layer probing

I however explore an
option of extracting a
weighted average of
representation across
all layers

Initially, the hidden state used in (40) extracted from the last layer for
each of the Biomedical PLMs for all experiments. I however explore
an option of extracting a weighted average of representation across
all layers (49) as a hidden state and study the performance of the
models once this hidden state is introduced in the Position based
conditioning framework to obtain position-aware representations.

hl
i = PLMθ(xi) (49)

hi = MeanPool(h1
i , ..,hl

i, ..,hlN
i ) (50)

where hl
i is a hidden state extracted from the lth layer for word x at

position i.
I only repeat training experiments using the Contextual PBC setup

(Equation 6.3.3) however this time round using a mean pooled em-
bedding across all layers as the hidden state. I notice in Table 36 that,
aggregating a tokens representation by mean pooling across all lay-
ers of the transformer-based models does improve the performance
in the outcome recalling experiments for both datasets.

6.5.4 Error Analysis

I analyse the outcomes generated by the best model (SciBERT+Cont
extual PBC+EBM-COMET) during the few shot evaluation and notice
that whilst the model generates correct outcomes for some prompts,
it makes various kinds of mistakes. Table 37 includes a fair sample of
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Query Variant Prompt Correct Generated outcomes

Cloze

{ctxt} [M] {ctxt}

Self-reported life-time medical diagnosis of [M] or use

of antidepressants was considered as outcome.
- Depression - Depression

Postfix

[M] {ctxt}

[M] was assessed by questionnaires EORTC QLQ-C30,

and EORTC QLQ-BR23 at baseline, and at three, six,

and nine months.

- Quality of life - Life

Prefix

{ctxt} [M]

Two CMZ patients and one morphine patient showed

complete [M].
- pain - unwanted pain

Mixed

{ctxt} [M] {ctxt}

[M] {ctxt}

Further additional benefits are better [M] and shorter

[M] compared with standard GVHD prophlaxis

without ATLG.

- quality of life (QOL)

- immunosuppressive

treatment

- immunosuppressive

treatment

The incidence of postoperative [M], [M], [M] and [M]

was similar between the groups

- nausea, - vomiting,

- drowsiness, -headache
- anxiety, - depression

Table 37: Example prompts from the test set and their predicted or gener-
ated outcomes for the outcome generation task. The Query variant
column indicates the type of prompt as well as the prompt struc-
ture where {ctxt} implies context which might appear before, after
or either ends of a masked sequence span.

the most commonly discovered mistakes. Incomplete outcomes, such
in the Postfix where instead of “Quality of life”, the model generates
“Life”. Outcomes with irrelevant information, such as Prefix case
where the models generates more than what’s expected, “unwanted
pain” instead of “pain”. Finally, wrong outcomes, where the model
generates completely unexpected outcomes such as the case in the
Mixed prompts.

It is however important to note that, the analysis of the wrong and
correct answers is pegged on the answer or label space of the dataset,
which is the list of all tokens within the dataset. Moreover, the objec-
tive maximizes the accuracy on the gold annotations in the test set af-
ter fine-tuning the LMs. In as such, the possibility of the false positives
(incorrect) answers (such as is the case in wrong outcomes shown in
the last row in Table 37) being correct given the prompt premise can-
not be ruled out, because the available gold standard is not complete
or exhaustive. Although, the evaluation performed is restricted to the
gold annotations in test set, it is possible to search through all possi-
ble assignments given our unconstrained answer search space using
a beam search [79] or top k sampling strategy [64]. However, this
would require either a manually created test set of optimal answers
or at least domain expert evaluation before establishing that the LM is
achieving ideal performance. Such a model as PBP is applicable for in-
formation extraction and or abstractive question answering systems
which requires models to produce answers that are often not mere
sub-strings of the context in the question [105].

6.6 discussion and summary

This chapter assesses the possibility of ignoring the constraint of
aligning prompts to specific linguistic patterns in prompting tasks
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that aim to store knowledge in LMs that could later be retrieved or
transferred for fact generation tasks. In experiments using clinical
domain datasets (supporting EBM tasks), I show that the position-
based attention implemented over contextualised LMs can improve
the ability of PLMs to recall facts such as outcomes (biomedical en-
tities) encountered during training. I further observed that, the pro-
posed model is able to generalise across unseen prompts, performing
considerably well for Cloze and Mixed (extremely rare in PBL tasks)
prompts. With the obtained experimental results, despite not align-
ing the prompts to commonly followed linguistic patterns, I can posi-
tively answer the question posed in Section 6.3 by claiming that PLMs
are knowledgeable of stored facts.





7
C O N C L U S I O N

7.1 introduction

With an overarching aim to guide the search for biomedical evidence
of effective interventions, this thesis has empirically used NLP meth-
ods to enhance the explicit automatic identification of health out-
comes from clinical text. Preliminary studies on the subject of out-
come detection (OD) or identification were primarily focused on clas-
sification of sentences (in PubMed articles (RCTs)) that constitute in-
formation relevant to outcomes. Results of these studies were encour-
aging especially because they would reduce multiline RCTs to lists
of sentences mentioning outcomes, however, detection of the explicit
individual/granular outcomes remained to be seen or achieved. Pro-
gressively, a handful of recent works attempted to annotate corpora
for individual outcomes such as EBM-NLP [161] corpus, in order to
facilitate detection of individual outcomes. The challenge with anno-
tations such as EBM-NLP, is that they did not adopt any standard
classification system for outcomes or other PICO elements, but rather
used arbitrary classifications aligned to MeSH1, which can then easily
lead to noisy annotations.

Thus far, the scarcity of publicly available corpora has been re-
ported as a chief deterrent responsible for the limited attention from
NLP research community for the subject of OD. The inconsistencies in
outcome reporting across Clinical Trial studies simply further stifles
the involvement of the NLP community in this subject. To this end, this thesis

has reviewed, studied
and explored OD as
applied to EBM, with
a strong emphasis on
adoption of NLP
methods and
algorithms to aid
pertinent OD
sub-tasks of OSD and
OC

To this end, this thesis has reviewed, studied and explored OD as
applied to EBM, with a strong emphasis on adoption of NLP meth-
ods and algorithms to aid pertinent OD sub-tasks of OSD and OC. The
thesis developed and proposed various methods to enhance extrac-
tion of explicit mentions of outcomes (OSD) in clinical text as well as
classification of outcomes into core outcome types (OC). The thesis
inherits and builds upon recent developments pertaining to OD in-
cluding EBM-NLP, a corpus annotated for PICO elements [161] and a
standardised taxonomy of outcome classifications [55].

This chapter provides a summary of the work covered in the differ-
ent chapters that fulfilled the objectives established in the introduc-
tion Section 1.4. It discusses the limitations encountered in the course
of conducting the work the thesis covers in Section 7.3. Furthermore,
the chapter supplements the thesis contributions with a variety of
real-word application scenarios in which these contributions can be

1 https://www.nlm.nih.gov/mesh/meshhome.html
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adapted (Section 7.4). Finally, the thesis discusses potential areas the
work can be improved upon in Section 7.5.

7.2 thesis summary

The thesis commenced with a preamble in Chapter 1 that motivated
the main work it covers on the detection of outcomes from clinical
text. Key to the detailed motivation is the critical intervention of com-
putational methods such as NLP to optimise the search and retrieval
of clinical facts from unstructured clinical text published in huge vol-
umes at an unprecedented rate. Importantly, this preamble asserts
that, automating OD would inevitably speed up access to the best
available evidence necessary in delivery of optimal patient care. From
an NLP perspective, OD initially involved classifying sentences in RCTs

as outcomes-statements to imply that the sentence summarised con-
sequences of an intervention. Later on, OD was cast a sequence la-
belling task to detect mentions of individual outcomes (OSD) and
subsequently a classification task in which outcome spans are hier-
archically mapped to standardised core outcome types (OC).

The preamble further highlighted the main challenges in OD which
are largely responsible for the limited attention OD has received from
the NLP community and computer science fraternity at large. These
challenges include, the variability with which outcomes are reported
across various RCTs, absence of standardised outcome classifications
and the scarcity of publicly available corpora to support building OD

algorithms. In its conclusion, the preamble outlined the objectives and
contributions the thesis made to the research paradigm that embodies
OD, EBM.Chapter 2 delves into

the history of EBM
NLP, which

encapsulates all
applications of NLP

techniques to extract
PICO elements, which

collectively forms the
basis of clinical

questions used when
searching for evidence

of an intervention’s
effectiveness in

biomedical literature.

Chapter 2 delves into the history of EBM NLP, which encapsulates
all applications of NLP techniques to extract PICO elements, which col-
lectively for the basis of clinical questions used when searching for
evidence of an intervention’s effectiveness in biomedical literature. To
begin with, the chapter provides a background on Transfer Learning
(TL) and its recent success in BioNLP. This background mainly serves
to motivate the adoption of PLMs in the methods that the thesis goes
on to propose in the subsequent chapters. The chapter progresses on
to review prior dataset construction efforts which most notably relied
on the structured nature of RCTs to prepare labelled datasets, i.e. sen-
tences under a section heading “PARTICIPANTS” were labelled “Par-
ticipants” or “p”, those under section heading "OUTCOMES" were
labelled “Outcomes” or “O” etc. Most recently, datasets with more
granular annotations of outcome spans have been built to facilitate
OSD.

Subsequently, the chapter extensively discusses two broad task se-
tups in NLP, Sentence level classification (SLC) which aims to predict
the likely label for a given sentence and Token level classification
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(TLC) which aims to predict the likely label for a given single token.
Additionally, the chapter explores prior attempts that have combined
these two setups to simultaneously achieve multiple tasks such as
joint DNER and DNEN. The chapter reviews prior work on two ar-
eas that drive some of the proposals the thesis makes. These areas
include, noise reduction in distantly supervised as well as crowd
sourced datasets and prompt based learning for text generation in
BioNLP.

Chapter 3 addresses the first objective of the thesis which aims to
evaluate and improve the reliability of current outcome annotations.
The chapter implements a hybrid noise filtering framework that com-
bines POS tagging and rule-based chunking to denoise flawed out-
come annotation spans in a crowdsourced corpus, EBM-NLP. The
framework uses a collection of heuristics that rely on lexical and syn-
tactic features to filter out noise from annotated data. Each heuristic
is strategically created to filter out specific noise (flaw), however cor-
rection of each flaw is not necessarily limited to a single heuristic.
Experiments targeting OC showed that the proposed framework led
to an improvement in the F1 classification scores for each outcome
type. Chapter 3 addresses

the first objective of
the thesis which aims
to evaluate and
improve the reliability
of current outcome
annotations.

The chapter also introduced and presented EBM-COMET, a dataset
of PubMed abstracts expertly curated for the task of OSD. This dataset
is distinct from earlier efforts in such a way that, outcomes are anno-
tated at a granular level (spans of tokens in an outcome phrase) rather
than at coarse level (sentences mentioning outcomes). More so, it uses
standardised outcome classification labels drawn from a recently pro-
posed taxonomy of standardised outcome classifications [55]. I used
the dataset in fine-tuning a variety of PLMs and empirically showed
that its annotations lead to an improvement in performance as well
as faster convergence on the OSD task.

The chapter additionally proposed a label denoising approach that
aims to automatically correct weak labels in the EBM-NLP corpus by
replacing them with standardised outcome classification labels drawn
from the outcome taxonomy proposed by Dodd et al. [55]. The de-
noiser is a flexible, re-usable unsupervised text alignment approach
which extracts parallel annotations from comparable datasets, where
one of the datasets is considered to have the standardised target la-
bels. Experiments showed that, denoising EBM-NLP labels using this
alignment approach led to significant gains in the F1 score of both
OSD and OC.

The aim in Chapter 4 is to assess and advance OD tasks to new
SOTA performance on benchmark datasets as established by the sec-
ond objective. Using a comprehensive comparative assessment of fine-
tuning and feature based TL adaptation methods, the chapter reached
a consensus on which CLMs are suitable for OSD and OC, thereby nom-
inating BioBERT and SciBERT. The fine-tuned BioBERT model outper-
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formed prior SOTA results published by Brockmeier et al. [26] in PIO
extraction (detecting spans of P, I and O elements). An additional con-
tribution of this chapter is, it reveals the struggles that the fine-tuned
models have in detecting full mention of outcome spans i.e. the accu-
racy with which the models detect full mention of granular outcome
spans is lower than the accuracy with which they detect tokens that
form outcome spans. The chapter also empirically showed that, the
longer an outcome span, the more difficulty in detecting the outcome
span i.e. the accuracy decreases with an increase in the lengths of
outcome spans.Chapter 5 fulfills

objective 3 of the
thesis by proposing

LCAM, a joint
learning framework

that adopts
pre-trained CLMs to

simultaneously
perform OSD and OC.

Chapter 5 fulfills objective 3 of the thesis by proposing LCAM, a
joint learning framework that adopts pre-trained CLMs to simultane-
ously extract outcome spans (OSD) and classify outcome spans (OC).
Unlike prior strategies that heavily rely on hand-crafted feature engi-
neering, the proposed LCAM model leverages the compatibility con-
straints between the outcome spans and outcome types to achieve
joint learning of a pair of tasks. An outcome type predicted for a text
span in a sentence must be consistent with the other outcome spans
detected from the same sentence, while the outcome spans detected
from a sentence must be compatible with their outcome types. LCAM

augments token-level representations with contextual representations
generated from the abstracts from which model input sentences are
extracted. Additionally, LCAM uses an attention mechanism that al-
lows words at token-level to interact with the outcome type labels in
order to generate a label context attention based representation. In
my experiments, I observe that LCAM-BioBERT (LCAM consuming
BioBERT embeddings) improves standalone performance (in disjoint
setups) of BioBERT in both OSD and OC.

To verify and justify the evaluation performances obtained in the
preceding chapters as required by objective 4 of the thesis, Chapter 6

investigates how knowledgeable biomedical LMs are of health out-
comes. Having successfully used these biomedical LMs to extract and
classify outcomes expressed in clinical text in Chapter 3 to Chapter 5,
I sought to explore whether I can leverage the knowledge in these LMs
for outcome generation. This chapter’s work is motivated by prior ef-
forts that explores the utility of LMs as KBs. Specifically, I propose
a position-based prompting (PBP) framework that uses prompts to
query LMs for health outcomes. Unlike previous works that heavily
relied on constructing prompt templates that embed relational knowl-
edge and are aligned to a specific linguistic pattern, my approach
simply translates a given sentence mentioning an outcome/s into a
fill-in-the-blank prompt with the outcome masked, and relies on a
PLM to generate the outcome.Chapter 6 investigates

how knowledgeable
biomedical LMs are of

health outcomes.

The PBP framework uses an attention mechanism that captures
information of each words position relative to the positions of the
masked outcomes (outcomes to be generated) within the prompt. Be-
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cause the approach ignores the constraint of aligning prompts to spe-
cific linguistic patterns, I introduce a new set of prompt templates
(which to my knowledge have been understudied in prior work),
these are, Postfix style templates and Mixed style templates which
respectively have masked word at the front and in multiple random
places including the front, middle and end of the prompt. In the ex-
periments using EBM-NLP and EBM-COMET, I show that the the pro-
posed framework improves the ability of PLMs to generate outcomes
encountered during training. I further observe this framework gener-
alise across unseen prompts, performing relatively well for Cloze and
Mixed (extremely rare in PBL tasks) prompts. With the obtained exper-
imental results, I can emphatically claim that, LMs memorise health
outcomes they encounter during training, hence explaining their suc-
cess in OSD as witnessed in preceding chapters.

7.3 limitations

Entailed under this section are two main limitations encountered as I
undertook the different tasks.

limited publicly available annotated corpora : The chal-
lenges of obtaining high-quality training data are well documented
by multiple authors across the NLP research community [24, 70, 161].
Most notably, the cost and the difficulty of the annotation exercise
are two bottlenecks that recur as obstacles to curating quality super-
vised datasets for many researchers. In certain specialised domains
such as medicine, both cost and difficulty can exponentially increase
because of the nature of task and expertise required to complete the
task [76]. The dearth of publicly available annotated corpora to facil-
itate OSD and OC was a main limitation in the survey and analysis
performed in this thesis. All dataset construction efforts that predate
the release of EBM-NLP corpus [161] and the EBM-COMET were not
simply annotated at sentence level, but they were never annotated
with core outcome types i.e. RCTs sentences are labelled with a tag
such as “O” or “Outcomes” to indicate the sentence mentions an out-
come. Intuitively, having a collection of datasets expertly annotated
for outcomes at token-level would enhance my comprehensive anal-
ysis and provide multiple benchmark performances for future OSD

and EBM related tasks. The dearth of publicly
available annotated
corpora to facilitate
OSD and OC was a
main limitation in the
survey and analysis
performed in this
thesis.

outcomes are low-resourced biomedical entities : De-
spite the extensive analysis I perform, all the analysis is performed
using supervised datasets whose primary purpose was to facilitate
training of neural based architectures. While biological entities such
as diseases, genes, DNA, proteins, chemicals etc enjoy a wealth of re-
sources external to biomedical literature such as taxonomies, ontolo-
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gies and databases2 which can substantially support their analysis,
health outcomes have none available. Performance of several existing
NLP tasks has been improved by incorporating external knowledge
accessible in relatable knowledge bases KBs.

computational cost : The series of Large LMs that have recently
been released [27, 102, 174, 194] have demonstrated impressive per-
formance on not just many downstream NLP tasks, but even in hard-
pressed evaluation settings such as few-shot and zero-shot fine-tuning.
The challenge though is, increasing the models size (number of model
parameters) necessitates increasing the compute and energy cost [78].
Kaplan et al. [102] suggests that, a 5.5× increase in model size com-
mands a 10× increase in computational budget. Fine-tuning these
Large LMs would have potentially led to even better performance
gains for the tasks the thesis undertakes, however Fine-tuning 110M
parameters of BERTbase was already a heavy GPU intensive job for a
24G TITAN RTX GPU used for work in this thesis. Training BioBERT
768-dimensional word embeddings and randomly initialized Part Of
Speech POS embeddings in a feature based TL approach using a BiL-
STM required a combined total of 4-days ca. 96 GPU hours for all
the datasets. Replacing BioBERT [121] with BioELMO (3072 dimen-
sional embedding) [97] consumed even more GPU runtime of up to
13 days ca. 312 GPU hours. To address this, I used PCA dimensional-
ity reduction to retain a smaller number of dimensions to fine-tune as
discussed in Table 4.3.2.3. Overall, lack of more compute power was
a limitation in adopting larger LMs for the OD tasks, and hence poten-
tially missed achieving further performance gains as recent research
using large LMs has proven [78].

7.4 research applicability

This section covers a summary of how the methods and approaches
proposed in this thesis can be used within the healthcare systems.

clinical research question answering systems : The rapid
increase in biomedical literature available for clinical analysis has di-
rectly increased the need for efficient and effective tools to access and
analyse biomedical literature [114]. In reviewing medical research ev-
idence, clinicians are faced with a lot of clinical questions whose an-
swers they need to access with less effort, cost and time [53]. Various
digital archives for biomedical data such as PubMed and Clinical tri-
als registry3 have inbuilt search engines and information retrieval sys-
tems that can ably provide an array of results to clinicians, however,
these results are often at coarse level i.e. it is a set of source articles

2 https://www.nlm.nih.gov/research/umls/index.html
3 https://www.clinicaltrials.gov/

https://www.nlm.nih.gov/research/umls/index.html
https://www.clinicaltrials.gov/
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or article sentences relevant to a search query [28, 53]. The challenge
with this is that, clinicians then have to read through these multiple
retrieved sources to locate more refined and granular information be-
fore they can satisfactorily answer the clinical question. Even though,
these systems have more sophisticated features that can rank sources
based on their relevance to a particular query, the required level of
precision when answering clinical questions still remains unachieved
[53, 165]. Incorporating NLP

techniques such as the
ones proposde in this
thesis into clinical QA
systems tailored for
EBM would
likelyimprove the
results retrievable
during clinical
analysis

Incorporating NLP techniques such as the ones proposed in this
thesis into clinical QA systems tailored for EBM would likely improve
results retrievable during clinical analysis. Given a PICO formatted
question that aims to discover the Outcome (O) component, a feature
implementing the LCAM model (this thesis proposes) that achieves
joint OSD and OC would not only retrieve the actual granular out-
come from the text but also provide details of the type or domain
the outcome belongs. For systems that already provide candidate ar-
ticle sources or sentences as answers to a PICO question, LCAM can
enhance this result by performing further analysis on the candidate
answers to provide a more refined answer hence reducing the effort
required by the clinician to manually traverse the results.

systematic review analysis : In EBM, systematic reviews iden-
tify, assess, synthesize and interpret published and unpublished evi-
dence for purposes of decision-making for clinicians, patients, policy
makers and other stakeholders [88, 181]. Jonnalagadda, Goyal, and
Huffman [100] use a survey to prove that automation of the data ex-
traction step in a systematic review can substantially reduce the time
necessary to complete and update a systematic review. The same au-
thor indicates in their survey that, data extraction can consume 2.5
to 6.5 years during system review analysis. BioNLP community has
made positive strides to this effect, introducing techniques that auto-
mate the retrieval of text passages in form of sentences that contain
evidence necessary of optimal patient care [22, 23, 95, 107].

Prior efforts have managed to achieve classification of sentences
into one of the four PICO elements, and of late, some authors have
built ML systems that extract spans of text corresponding to the PICO

elements. These works have been a building block for the work de-
scribed in this thesis, and even further enhancing the analysis and
improving the performance of span extraction with specific focus on
health outcomes. Differently from prior datasets that were annotated
using arbitrary labels aligned to MeSH, this work publishes a dataset
that uses standard outcome classifications drawn from a recent taxon-
omy of outcomes built from a rigorous study of trial registry entries,4

4 https://www.clinicaltrials.gov/

https://www.clinicaltrials.gov/
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Cochrane Reviews5 and Core outcome sets in COMET.6 Some of my
findings such as nominating effective biomedical PLMs for analysis
of health outcomes can guide systematic review analysis that applies
NLP methods. Moreover, I propose LCAM, a framework that is dy-
namic enough to perform multiple tasks including OSD and OC, both
of which can enable clinicians have multi-faceted views of evidence
when making decisions.

clinical diagnosis : Automatic clinical diagnosis has received
more attention in the recent past due to the recent advances in deep
reinforcement learning [221]. Recent studies have proposed dialog
systems which converse with patients to collect symptoms from them
for automatic diagnosis [142, 221]. Training on datasets with anno-
tated symptoms and diseases enables these systems to perform con-
siderably well during evaluation.

In this work, I proposed a new task: health outcome generation
that I tackle using prompt based learning PBL, in which LMs learn
to predict missing information once given fill-in-the-blank prompt in-
puts such as “Bill, middle-aged relatively tall skinny male adult suffered a
fall and therefore likely outcomes are . The proposed Position based
prompting framework demonstrates an ability to automatically gen-
erate outcomes even when they were never encountered when fine-
tuning it on a small set of prompts in a few-shot setting.

Motivated by the growing research on automated diagnosis tools
briefly described in above paragraph, I envisage adoption of my prompt
based system in tasks to auto-generate or auto completing diagnostics
information such as signs and symptoms if provided some informa-
tion in a statement such as those written in clinic letters by clinicians,
most especially if all relevant details are specified in the statement. A
potential use-case of such an application is “Automatic outcome span
generation in a clinician-patient dialogue system” described below,

The input into the dialog system is a statement of free natural lan-
guage text in which a clinician such as a General Practitioner (G.P)
has specified a patient’s age, problem and events during or follow-
ing an illness, accident or health setback. Based on this statement,
the prompt based system would then generate one or more outcomes
that are potential symptoms the patient might be suffering.

clinical information extraction applications : The nu-
merous potential applications of information extraction (IE) have at-
tracted various technology and healthcare stakeholders. As applied
to NLP, IE in the clinical domain involves automatically searching
and retrieving concepts, entities, and events, as well as their relations
and associated attributes from free text [218]. Developed by various

5 https://www.cochranelibrary.com/
6 https://www.comet-initiative.org/

https://www.cochranelibrary.com/
https://www.comet-initiative.org/
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stakeholders (most notably University College London Hospitals),
CogStack7 is an application framework that is enhancing automatic
searching and extraction of specific clinical terms and data relevant
to answering clinical queries such as "Has the patient received any high
cost treatments that have not been captured in their discharge summaries?".
Similar to CogStack, Amazon Comprehend Medical8 (developed by
Amazon) is an API that enables quick and accurate extraction of in-
formation such as medical conditions, medications, dosages, tests,
treatments, Protected Health Information (PHI) etc from unstructured
clinical text. Additionally, the API can identify relationships between
extracted entities.

The clinical IE tasks that this thesis primarily focuses on (i.e. OSD

and OC) are directly related to the usecases of both CogStack and
Amazon Comprehend Medical applications. The correlation between
the two suggests that, the various assessments and methods we pro-
pose are relevant in the processing pipeline of not just these two ap-
plication, but various other applications. The denoising framework
Section 3.2.2 and the text alignment approach Section 3.4 are poten-
tially useful in pre-processing the unstructured text consumed clini-
cal IE systems such as the aforementioned applications. Furthermore,
the custom NER models the thesis proposes in Chapter 4 to achieve
automatic detection of entities (health outcomes) from clinical trial
abstracts can potentially complement features provided by CogStack
and Amazon Comprehend Medical.

7.5 future work

Various methods, approaches and analysis were conducted and doc-
umented in this thesis, all in an effort to tackle and advance the task
of extracting outcomes in clinical text from an NLP standpoint. From
a research point of view, there are several open problems that future
research can focus on to discover more effective and reliable ways of
addressing OSD and OC for EBM. In this section, I provide a perspec-
tive of two potential future directions in this regard which mainly
focus on probing for effective knowledge representation and how it
can enhance existing LMs which were heavily used in the work in this
thesis.

7.5.1 Task-adaptive pre-training for Outcome Span Detection

Further pre-training of a PLM on a task-relevant corpus of unlabelled
text (also known as (TAPT)) has shown to be effective [72, 80]. Gu-
rurangan et al. [72] empirically showed that both domain-adaptive
pre-training (DAPT) (further pre-training a PLM on unlabelled text of

7 https://cogstack.org/
8 https://aws.amazon.com/comprehend/medical/

https://cogstack.org/
https://aws.amazon.com/comprehend/medical/
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a domain) and TAPT improve performance of the PLM on tasks spe-
cific to domains that included Biomedical, Computer Science, News
and Reviews. Moreover, the same author showed in an extended anal-
ysis that increasing the task-specific data to further pre-train a PLM on
leads to significant benefits in performance on the different tasks.

Motivated by Gururangan et al. [72], I envisage TAPT for OSD and
OC would most probably improve the current performance obtained
in this work. Most of the PLMs adopted in this work are pre-trained
on corpora that is a mixture of general domain (such as news and
wikipedia) and biomedical (such as PubMed) unlabelled text. In the
future, it would be ideal to tune parameters of these PLMs on data
specific to PICO elements or health outcomes using pre-training objec-
tives such as MLM defined in Section 2.2.

7.5.2 Knowledge-enhanced Outcome Detection

There is an upsurge in interest in incorporating external knowledge
into LM to solve both down stream and domain-specific tasks within
the NLP community [168, 241, 246]. Yu et al. [240] surveys a variety
of methods that have successfully been used to integrate knowledge
into LMs, including model architectures like attention mechanism and
graph neural networks, internal sources like topics and keywords and
external sources like knowledge bases (KBs) and knowledge graphs
(KG). Yuan et al. [241] perform text-entity fusion encoding in which
they augment an entity’s Transformer [213] encoded representation
by adding to it a linked UMLS entity representation extracted from a
KG. Their entity linking process involved searching for k nearest enti-
ties in a UMLS KG and computing a weighted sum of embeddings of
these near embeddings to represent the linked entity representation.

Motivated by recent success in knowledge-enhanced language mod-
elling, I envisage that more effort can be spent learning how to com-
bine knowledge from different and diverse sources to improve rep-
resentations for outcomes. Whereas popular knowledge bases with
millions of entities and relation triples like UMLS do not have explicit
knowledge about health outcomes, a list of resources (limited) such
as COMET have knowledge relatable to outcomes either directly or in-
directly. A potential ideal source would be one with descriptions of
outcome domains and classification, which descriptions can be used
in augmenting representations for outcomes.
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