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Transportation Object Counting with Graph-Based
Adaptive Auxiliary Learning

Yanda Meng, Joshua Bridge, Yitian Zhao, Martha Joddrell, Yihong Qiao, Xiaoyun Yang, Xiaowei Huang, and
Yalin Zheng*

Abstract—This paper proposes an adaptive auxiliary task
learning-based approach for transport object counting problems
such as humans and vehicles. These problems are essential
in many real-world tasks such as video surveillance, traffic
monitoring, public security, and urban planning, to aid intelligent
transportation systems. Unlike existing auxiliary task learning-
based methods, we develop an attention-enhanced adaptively
shared backbone network to enable both task-shared and task-
tailored features that are learned in an end-to-end manner. The
network seamlessly combines a standard Convolution Neural
Network (CNN) and a Graph Convolution Network (GCN) for
feature extraction and feature reasoning among different domains
of tasks. Our approach gains enriched contextual information by
iteratively and hierarchically fusing features across different task
branches of the adaptive CNN backbone. The whole framework
pays special attention to objects’ spatial locations and varied
density levels, informed by object (or crowd) segmentation and
density level segmentation auxiliary tasks. In particular, thanks
to the proposed dilated contrastive density loss function, our
network benefits from individual and regional context supervi-
sion, along with strengthened robustness. Experiments on six
challenging multi-domain datasets demonstrate that our method
achieves superior performance compared with state-of-the-art
auxiliary task learning-based counting methods. Our code is
publicly available 1.

Index Terms—Object Counting, GCN, Dilated Contrastive
Density Loss, Adaptive Auxiliary Task

I. INTRODUCTION

OBJECT counting by inferring the number of objects in
images or video contents is a crucial yet challenging
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Fig. 1. Overview of the proposed network structure in the scene of crowd
counting. An attention-enhanced adaptively shared backbone network is
proposed to enable both task-shared and task-tailored features learning. A
novel Graph Convolution Network (GCN) reasoning module is introduced
to tackle issues of cross-granularity feature reasoning among three different
tasks. A novel loss function LDCD is proposed to take into account
more adjacent pixels for regional density difference, which strengthens the
network’s generalizability.

computer vision task. This paper is primarily motivated to
address human crowd counting problems whilst being appli-
cable to other domains such as vehicle counting. Due to the
occurrence of crowd gatherings in many scenarios such as
parades, concerts, and stadiums, a robust and accurate crowd
counting model plays an essential role in multimedia appli-
cations for security alerts, public space design, transportation
management etc. [1].

As a result of Convolutional Neural Network’s (CNN)’s ex-
ceptional feature learning capability, the performance of crowd
counting methods has been steadily enhanced. Recent state-
of-the-art methods, such as [2], [3], have demonstrated that a
density map regression paradigm yields satisfactory results. In
these methods, given an input image, a CNN-based network is
used to regress the corresponding density map; the sum of the
pixel values in the density map represents the total number
of counts in the image. There are a number of challenging
issues [1] such as significant scale changes, wide variations
in density levels, and complex scene backgrounds, however,
there is still considerable room for counting performance
improvement. Some previous methods [4], [5], [6], [7] rely on
various types of information granularity in terms of ’auxiliary
task learning’ to address these issues. Using a single shared
backbone network structure, these methods extract generalised
features for all tasks. Unfortunately, this strategy may result in
under-fitting, as the generalizable representation is frequently
incapable of describing the comprehensive cross-granularity
features across multiple tasks simultaneously [1]. Contrasting,
our adaptive shared backbone network focuses on maximising
the principal density map regression task and multi-granularity
information augmentation from auxiliary tasks. Our backbone

https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary
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Fig. 2. Comparison of our predictions and the ground truth. Our predictions are robust enough even when there are mislabeled or incorrectly labeled point
annotations in the ground truth of crowd counting and vehicle counting datasets. Our model can indicate more accurate object locations or counting numbers
compared with the ground truth. The red bounding boxes are used for better visualisation and comparison.

network has a multi-level information aggregation mechanism
to repeatedly and hierarchically combine features from distinct
stages and auxiliary branches. Note that, the term ‘auxiliary
task learning’ is referred to as the feature learning of dif-
ferent density information granularity levels. Specifically, the
crowd segmentation task and the density level segmentation
task in Fig. 1 are the auxiliary tasks, and the density map
regression task is the main task. We generated the ground
truth of crowd segmentation and density level segmentation
from the density map regression ground truth. Intuitively, no
increase in information from the ground truth of auxiliary
tasks is generated; however, the information is enhanced and
specified through auxiliary tasks in terms of different density
information granularity.

Given the auxiliary-task learning paradigm, we researched
how to reason and fuse features from different tasks for
density map regression. Crowd segmentation and density level
segmentation feature domains have different granularity of
representations. Direct fusion (element-wise multiplication or
channel-wise concatenation) of three task branches’ outputs
might cause domain conflicts [8]. To improve counting accu-
racy, we exploited the nature of Graph Convolutional Networks
(GCN) for information reasoning. GCN has showed promising
reasoning ability on several computer vision problems, includ-
ing scene interpretation [9], [3] and image segmentation [10],
[11], [12], [13], [14], [15], but has been rarely investigated
in crowd counting. Our model projects a collection of pixels
from a spatial-aware density feature map with similar density
levels to each graph vertex and exploits a GCN to reason
about the relations among graph vertices. This is different
from a recent work [8], which directly treated cross-granularity
feature maps as graph vertices and utilized a cascaded Graph
Neural Network (GNN) to reason the cross-scale relationships.

In this work we present a novel loss function for density
map regression. The commonly adopted Least Absolute Error
(L1) or Least Square Error (L2) loss [16], [4], [17] assumes
pixel-wise independence. However, two major flaws exist: (1)
The estimated density map is over-smoothed [5], underesti-

mating high-density regions and overestimating low-density
parts. The model may focus on reducing count mistakes rather
than regressing high-quality density maps, therefore it cannot
reflect the true density levels. (2) Without a large receptive
field, pixel-wise loss functions may ignore regional density
level information during training [18]. Unbalanced low- and
high-level density distributions might cause bias in training,
reducing network resiliency. To overcome these concerns,
we present a new loss function for density map regression
called Dilated Contrastive Density Loss (LDCD), where the
density difference between dilated adjacent pixels provides
extra regional supervision. Ablation studies conducted show
that our proposed regional loss function outperforms pixel-
wise losses in all datasets used in this work.
We conducted extensive experiments on seven well-known
challenging counting benchmarks. Quantitative and qualitative
results demonstrate that our model achieves state-of-the-art
performance. To the best of our knowledge, we achieved the
best counting performance among other auxiliary task-based
counting methods on the NWPU-Crowd [19] benchmark 2,
which is currently the largest crowd counting benchmark.
Our model is robust and generalizable, indicating incorrectly
labeled or mislabeled object ground truths in the test datasets.
Please refer to Fig 2 for more details.

In summary, this work makes the following contributions:
• We address the feature learning issues of the back-

bone network for auxiliary task-based methods in crowd
counting challenges, by enabling task-shareable and task-
specified feature learning simultaneously with a primary
focus on the main task.

• We propose crowd segmentation and density level seg-
mentation as auxiliary tasks in crowd counting with addi-
tional spatial crowd location and density level information
enhancement. Moreover, a GCN model was proposed
to reason about the cross-granularity feature relations
between density map regression and other auxiliary tasks.

2https://www.crowdbenchmark.com/nwpucrowd.html
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• We propose a novel loss function tailored for density map
regression, strengthening the network’s generalizability
and improving the counting accuracy.

II. RELATED WORK

In recent years, density map regression-based counting
methods [20], [21], [22], [23], [24], [25], [26], [27], [17], [28],
[29], [30], [31], [32], [33], [34] using CNNs have achieved
good performance. As mentioned previously, they employ
different learning strategies to address difficult issues such as
variations in scale, alternate density levels, and complicated
background scenes. Specifically, attention-based methods [35],
[18], [36], [37], [38], [39], [33], [40], [41], [42], auxiliary task-
based methods [43], [44], [45], [46], [47], [48], [49], [50],
[6], [51], [52], and different supervision-based methods [53],
[54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64]
align closely with our proposed method presented in this work.
We have elaborated the related works of the aforementioned
learning strategies in the following contents.

A. Attention-Based Counting

Visual attention mechanisms were applied among several
works [35], [18], [36], [37], [38], [39], [33], [40], [41], [42]
in crowd counting applications, which helps the network focus
on valuable information and addresses several challenges. For
example, Miao et al. [35] utilized a shallow feature-based
attention module to highlight the regions of crowd interest and
filter out the noise from background clutter. To tackle various
density levels issues, Jiang et al. [18] employed an attention
mask to refine the density map for adapting to different density
levels. Furthermore, Zhang et al. [36] proposed the Attention
Neural Field that incorporates non-local attention modules
with conditional random fields to maintain multi-scale features
and long-range dependencies, enabling control over the large-
scale variation challenge of input crowd images. Wan et al.
[65], [33] exploited the self-attention mechanism to adaptively
generate density maps with different Gaussian kernel sizes,
which is then used as the ground truth to supervise the model.
The aforementioned methods adopt the attention mechanism
as a feature enhancement module to implicitly address the
crowd counting task challenges emphasised throughout this
paper, including notable scale changes, large-scale density
level variability, and complex scene backgrounds. Our model
explicitly addresses these challenges through auxiliary tasks.
On the other hand, our model adopts the attention mechanism
to construct an adaptively shared backbone network, enabling
task-shared and task-specific feature learning simultaneously.

B. Auxiliary Task-Based Counting

Recently, auxiliary task learning-based counting methods
[43], [44], [45], [46], [47], [48], [49], [50], [6], [51], [52],
[66], [67], [68] have attracted research attention because
of their ability to capture extra granularity information and
contextual dependencies for density map regression. Most
methods utilize the potential of a model itself with auxiliary
tasks, such as object detection, crowd segmentation, density

level classification, etc., to enhance the feature tuning for
density map regression. For example, the task of patch-based
density level classification [4], [69], [70], [6], [71], [72], [73]
can enhance patch-wise density-level information, which helps
to address the underestimation and overestimation problems
of density map regression. However, it may be difficult to
guide the pixel-wise density map regression via patch-wise
density-level classification because of the gap between pixel-
wise and patch-wise feature learning. In contrast, our model
proposes a density level segmentation auxiliary task, which can
be regarded as the pixel-wise density-level classification task.
In this way, our model can enhance the pixel-wise density-
level information to the pixel-wise density map regression task,
aiming to address the challenges of wide variations of density
levels.

Moreover, because the background regions in complex
scenes contain confusing objects or similar appearances, the
crowd segmentation task, adopted by previous methods [74],
[4], [8], [7], [75], can provide spatial location information
for the crowd, which highlights the foreground over the
background and guides the network focus onto the region
of interest. Our model also adopts the crowd segmentation
task because of its superiority in spatial location information
enhancement. In particular, Luo et al. [8] adopted crowd
segmentation as the auxiliary task, then proposed a cascaded
graph-based model to tackle the fusion of features between the
crowd segmentation and density map regression tasks. This
is similar to our learning paradigm, however, there are two
significant difference: (1) They did not consider the density
level information and only treated the features of the density
map and crowd segmentation as the vertices in their proposed
model. Alternatively, we incorporate the spatial information
of crowd location, the semantic information of density level,
and the main task of density map features, into the proposed
vertices in our model. (2) They treated the vertices equally.
Specifically, they regarded the crowd segmentation and density
map features as independent vertices, fusing and aggregating
the information among them. However, the main task to esti-
mate the counting number should be density map regression,
hence they may introduce inevitable noise into the training
process if the auxiliary task takes over. Differently, we project
a collection of pixels from a spatial-aware density feature
map with similar density levels to each graph vertex, thereby
enhancing the main task vertices’ spatial location awareness.
Also, we project the long-range density level dependency
among every pixel into the adjacency matrix, boosting the
main task vertices’ semantic density level awareness. Please
see Section III-E and Fig. 5 for details.

C. Learn to Count with Different Supervisions

Instead of tackling the counting task through different
learning frameworks or strategies, recent methods [53], [54],
[55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [76],
[77], [78] have paid attention to the way of supervisions. For
example, Sravya et al. proposed a bin loss [55] to enable the
data distribution-aware optimization, which helped to address
the domain variation challenges from different crowd data
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sources. Song et al. [56] studied the counting problem in a dif-
ferent way, where a combination of Euclidean loss and Cross
Entropy loss was used for point location learning, instead of
density map regression. Along the same line, Bayesian loss
was proposed by [58] to provide more reliable supervisions
at each annotated point. Alternatively, Wan et al. [57] studied
the combination of pixel-wise loss and point-wise loss, which
investigated the density map representation through an unbal-
anced optimal transport problem. [59] proposed a novel loss
function to address the spatial annotation noise during training,
where a weighted MSE term and a pixel-wise correlation term
were involved. Recently, [60] proposed a distribution match-
ing loss to tackle the weakened generalizability of Gaussian
smoothed density maps. Moreover, Wang et al. [61] treated
the counting with density maps as a classification problem,
where a Cross-Entropy loss was used to classify each patch
into certain intervals.

The aforementioned methods introduced different loss func-
tions to supervise a model, such as point locations, bounding
boxes, matching, ranking, classification, etc.. However, the
mainstream counting methods still rely on pixel-wise super-
vision with the density map ground truth [1], such as the
L1 or L2 loss functions. In this work, we propose a Dilated
Contrastive Density Loss (LDCD) to improve the pixel-wise
loss’ receptive field and to increase the regional supervision.

III. METHODOLOGY

A. Ground Truth Generation
Following [79], given a set of N images {Ii}Ni=1 with

corresponding point annotations {Pi}Ni=1, the ground truth of
the density map {Di}Ni=1 is generated by filtering the points
with a normalized Gaussian kernel. The total object count
number Ti of image Ii can be attained by summing all pixel
values of the density map Di.

The ground truth mask of the crowd segmentation task is
generated from the density map ground truth. Given a set of
N density maps {Di}Ni=1, the value for the pixel in the mask
{Bi}Ni=1 is set to 1 if its pixel value in the density map is
larger than zero, otherwise it is set to 0 .

The ground truth mask used by the density level segmenta-
tion task is also generated from the density map. For pixel p
in input image i, its density level class Sp,i is given as:

Sp,i = min
i=1,..,N

(
b Di(p)−min(Di)

max(Di)−min(Di)
× Lc, L

)
, (1)

where L represents the overall levels of density. Following
previous patch-based density level classification methods [4],
[6], we set L equal to 4 in our work. Di is the pixel value in the
ith density map ground truth. Specifically, given a density map
and Eq. 1, we can generate the density level map with L levels
of object density. In other words, we set all the pixels of the
density map into L categories or classes according to their own
pixel value. In this way, each pixel is assigned to a semantic
label to represent the high-level sparseness or denseness.

B. Task Adaptive Backbone Network
Intuitively, our motivation is that the backbone network

should be able to produce both universal (or generic) and

specialised features that are applicable to all tasks and can
also be tailored to specific tasks. To this end, instead of using
a shared backbone network to extract generalizable features
for different tasks, we propose an auxiliary-task based adaptive
backbone network to allow the model to extract discriminative
features for the auxiliary tasks, thus helping to improve the
performance of the main task. Fig. 3 shows the detailed
structure of the proposed network, which consists of a shared
backbone and three attention-based task-adaptive branches. To
make a fair comparison with previous auxiliary task-based
methods, such as [69], [8], [80], [6], etc., the truncated VGG-
16 [81] is used as the backbone network. However, it can be
replaced by any other robust network structure; we have re-
ported the counting performance with other powerful network
backbones in TABLE. V. The shared backbone adopts the first
13 layers of VGG-16 to extract multi-level features. To exploit
the global contextual dependencies, we propose a Feature Fuse
Block (FFB), which aggregates and fuses the outputs from
posterior layers back to the preceding layers hierarchically and
iteratively, with up-sampling, concatenation and convolution
operations. This provides improvements in extracting the full
spectrum of semantic and spatial information across different
stages and resolutions. The up-sampling is performed by using
a bilinear interpolation algorithm. The convolution operation
aims to reduce and match the corresponding feature map
channel size between different stages.

With the aggregating process from high-level features to
low-level features, the task-adaptive attention module is ap-
plied in three different task branches; details of the attention
module are shown in the bottom left of Fig. 3. Each attention
module consists of a global average pooling (GAP) layer to
capture global context through different feature map chan-
nels, generating an attention tensor to lead the emphasis of
feature learning. Then, two blocks with a convolutional layer
followed by a Batch Normalization (BN) [82] layer with ReLu
and sigmoid as the activation functions are added. For the
convolutional layer filter, the kernel size is 1 × 1. Element-
wise multiplication is then performed between the outputs of
a particular layer of the shared backbone and the task-specific
attention module, which filters out the unrelated and redundant
features from the backbone with respect to different auxiliary
tasks and the main task. Therefore, the shared backbone can
learn a generalizable representation, while the attention-based
branches can extract task-specific features simultaneously in
an end-to-end manner. The ablation study experiments proved
that the attention-based adaptive backbone could boost the
counting performance.

Apart from the aforementioned network structure com-
ponent in three attention-based task-adaptive branches, we
also introduce a cross-granularity feature fusing operator in
a particular order to focus on optimizing the density map
regression task. Specifically, the crowd segmentation branch
is applied to the shared backbone first to select the corre-
sponding discriminative spatial features. Then, we applied the
density level segmentation branch on the shared backbone and
crowd segmentation branch, which can enhance the additional
contextual density level information into the main task. At last,
the main task of the density map regression branch is applied.
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Fig. 3. Illustration of our proposed network. The adaptively shared backbone network has three outputs of fCS , fDS , fDM , representing crowd segmentation,
density level segmentation, and density map regression branches’ output feature map, respectively. The order of their involvements indicates that the density
map regression branch can benefit from the extra density level and crowd spatial supervision from the other two branches gradually.

C. Auxiliary Tasks

With three outputs from the task adaptive backbone net-
work, we built two auxiliary tasks and a main task: crowd
segmentation, density level segmentation, and density map
regression. We detail each of them subsequently.
Crowd Segmentation. We introduce crowd segmentation as
one of the auxiliary tasks for two reasons. Firstly, the pixel
value of the density map should be zero in areas devoid of
people. However, the predicted density map can be inaccurate
and noisy when the background is cluttered and complex. The
task of crowd segmentation provides a spatial focus to the
density map regression procedure by setting the pixel values
of non-crowd regions to zero. Secondly, given the standard
setup of single density map regression, pixels within a specific
range of the point annotations should contribute more to the
final counting results; however, most irrelevant pixels dominate
the loss [1]. In order to circumvent this constraint, crowd
segmentation can provide additional information enhancement
in terms of the spatial indicator via a standalone loss function.

Given an input image Ii ∈ R3×H×W , we can get the
output of the crowd segmentation branch in the backbone
network, fCS ∈ RC×H×W , where H and W represent the
height and width of the feature map; C is the channel size.
Then, we apply a convolution layer with filter parameters
θCS ∈ R1×1×1, followed by a sigmoid activation function.
Through this operation, we can generate a probability map to

calculate the crowd and background probability. The single
channel crowd segmentation probability map MCS is de-
fined as: MCS = Sigmoid(θCS , fCS) ∈ R1×H×W . Fig. 4
demonstrates an example of the location map, which is the
MCS after using 0.5 as the thresholding, resulting in a binary
map. The colors represent different classes, where there is a
foreground class and background class. Crowd segmentation
focuses on the spatial information, and indicates the geometry-
aware supplementary as the auxiliary task.

Density Level Segmentation. Density map regression is a
pixel-wise task that focuses on the learning of low-level
features but may disregard high-level semantic information,
such as the density level information [28]. However, such
semantic information is critical in the counting system because
the density map’s pixel values should rely not solely on their
own pixel-wise characteristics but also on regions with varying
densities [17]. To address the issues, we perform density level
segmentation as another auxiliary task. Compared with previ-
ous patch-based density level classification methods [4], [69],
[70], [6], our proposed pixel-based density level segmentation
can provide pixel level density information and high-level
semantic features at the same time. Fig. 4 demonstrates an
example of the density level map, where colors represent
different classes. From class 3 down to class 0, the density
level decreases. Density level segmentation focuses on the
semantic information, and indicates the density level-aware
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RC×H×W is the feature map of the density map regression branch, C = 32
is the channel size; MCS ∈ R1×H×W is the prediction of the crowd
segmentation branch; MDS ∈ RL×H×W is the prediction of density level
segmentation branch, L = 4 is the number of density levels; DD ∈
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constructed vertex features and VD′ ∈ RK×HW is the output vertex features
after GCN, K = 16 is the number of vertices. fDM′ ∈ RC×H×W is the
output feature map after GCN reasoning.

supplementary as the auxiliary task. Upon the output of the
density level segmentation branch of the backbone network
fDS ∈ RC×H×W , a convolution layer with filter parameters
θDS ∈ RL×1×1 and a softmax activation function are applied.
The prediction of the density level segmentation branch MDS

is defined as: MDS = softmax(θDS , fDS) ∈ RL×H×W ,
where L is the number of density levels.

D. Density Map Regression

Intuitively, the different granularity features of density levels
and spatial crowd locations need to be further analysed for
fusion into a combined reasoned feature to feed to density
map regression branch. To this end, with the predicted crowd
segmentation output MCS and density level segmentation
output MDS as the auxiliary information granularity, we input
them along with the feature map derived from the density
map branches fDM ∈ RC×H×W into the GCN reasoning
module to understand the relationship among themselves.
Subsequently, the output feature map fDM ′ ∈ RC×H×W

of the GCN reasoning module is reduced into one-channel
through a 1 × 1 convolution layer with a ReLU activation
function.

E. GCN Reasoning Module

Deep feature extraction and fusion have been explored in
previous studies, such as discriminant correlation analysis [83],
[84], and multi-canonical correlation analysis [85], [86], [87],
where they adaptively selected and fused CNN features from
different layers, such that resulting representations have a high
linear correlation. Following the same line, we propose a GCN
model to fuse the correlated and supplementary features from
auxiliary tasks that contribute to the counting task.

Different granularity representations are utilised for the
crowd segmentation and density level segmentation feature do-
mains. Direct fusion (element-wise multiplication or channel-
wise concatenation) of the outputs of three task branches may
lead to domain conflicts [8]. Our GCN reason model projects
a collection of pixels from a spatial-aware density feature map
with similar density levels to each graph vertex and exploits
a GCN to reason about the relations among graph vertices.
In other words, our graph is formed with fused-information
of spatial locations and density levels from auxiliary tasks
via initialising the adjacency matrix and vertices (DD and
VD shown in Fig. 5). The proposed GCN reasoning module
structure is shown in Fig. 5. In detail, there are three primary
modules: Spatial Location Aware module, Density Level Aware
Projection module, Graph Convolution on Vertices module.
Spatial Location Aware Module. Before projecting the den-
sity map feature map fDM into the graph vertices, we directly
applied the broadcasting Hadamard Product operation between
the crowd segmentation output MCS and the density map re-
gression branch’s feature map fDM . There are two underlying
reasons for this: (1) MCS is a one-channel crowd segmentation
map, with encoded probabilities of the non-crowd regions’
pixel values approaching zero and crowd regions’ pixel values
approaching one; the value of one serves as a filter to zero
out the non-crowd region’s pixel value of the density map. (2)
the broadcasting Hadamard Product can achieve crowd spatial
awareness for every channel of fDM through zeroing out the
non-crowd region’s pixel value. This addresses the challenge
of complex scene backgrounds in crowd images.
Density Level Aware Projection Module. As mentioned
above, the pixel-wise density level information can help to
address the challenges of large variations of density levels in
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crowd images. However, direct broadcasting Hadamard prod-
uct between the density map branch’s feature map fDM and
the density level output MDS may result in domain conflicts
[8]. We exploited the nature of GCN and projected the density
level information into the graph vertices for further reasoning,
which benefited the long-range relationship reasoning ability
of GCN and the multi-granularity information enhancement
from density level. Inspired by the non-local module [88], we
encoded the long-range density level dependency among every
pixel. Give the feature map MDS , the density level dependency
matrix DD ∈ RHW×HW is defined as:

DD = softmax
(
ε(MDS)⊗ βT(MDS)

)
, (2)

where Conv β and Conv ε are two convolution layers with
1 × 1 kernel size, respectively. The dependency matrix DD

can be regarded as a pixel-wise attention map, where pixels
with similar density levels are assigned larger weights. The de-
pendence matrix might itself reflect the pixel-by-pixel density
level dependency. In addition, with Eq. 2, we projected the
density level map as a precondition to the graph domain via
matrix multiplication, which simultaneously improves high-
level semantic dependence.
Graph Convolution on Vertices. In this module, we learnt
how to reason the region-based relationship in the density
map through GCN in graph domain. Formally, the constructed
vertices VD is defined as:

VD = DD ⊗ µ(fDM �MCS), (3)

where ⊗ is matrix multiplication; � is the broadcasting
Hadamard product. Specifically in Eq. 3, we projected the
spatial aware feature map of fDM into graph domain with
K vertices, and each vertex is represented by an embedding
of shape H×W . This is achieved by Conv (µ), which is a 1×1
convolution layer. Furthermore, we projected the dependency
matrix DD to the graph domain through matrix multiplication,
resulting in the vertex features VD ∈ RK×HW . The projection
aggregated pixels have similar density levels to graph vertices,
where each vertex represents a region in the crowd image.
With the constructed vertices (VD), the long-range region-wise
relationship is further reasoned in the graph domain through
GCN. Formally, the output vertices of our proposed GCN
(VD′ ) are calculated as:

VD′ = ReLU
(
(I −A)⊗ VD ⊗WD

)
, (4)

where I is the identity matrix; A ∈ RHW×HW denotes the
adjacent matrix that encodes the graph connectivity to learn;
WD ∈ RK×K is the weights of the GCN. The adjacent matrix
A is randomly initialized but can learn and update the edge
weights from vertex features along the training process. The
identity matrix I serves as a residual connection that alleviates
the optimization difficulties. Specifically, in Eq. 4, we reasoned
over the region-wise relations by propagating information
across vertices with a single layer GCN. Specifically, we
fed the constructed vertex features VD into a first-order
approximation of spectral graph convolution [89], resulting
the output vertex features VD′ ∈ RK×HW . Based on the
learned graph, the information propagated across all vertices

Regressed Density Map

Ground Truth Density Map

(MD)

(DG)

[        ] 2

Dilated Convolution Kernel　(KDCD)

(LDCD)
Dilated Contrastive Density Loss 

Fig. 6. Dilated Contrastive Density Loss (LDCD). There are eight dilated
contrastive kernels with green, white, yellow blocks representing 1, 0, -1,
respectively. The least-square error of two outputs from the regression and
ground truth is treated as the final LDCD .

leads to the finally reasoned relations between regions. After
graph reasoning, a collection of pixels embedded within one
vertex share the same context of features modeled by a graph
convolution. Then, we re-projected the vertex features in the
graph domain to the original pixel grids. Given the reasoned
vertices VD′ , we applied Conv (σ), which is a 1×1 convolution
layer. Finally, we summed up the re-projected and the original
density feature maps to form the final feature map. The final
pixel-wise density feature map fDM ′ is thus computed as:
fDM ′ = fDM + σ(VD′). This can be regarded as the residual
connection.

F. Loss Function

The whole network is end-to-end trainable, which includes
four loss functions. The total loss function is defined in Eq. 5
as follows:

Ltotal = LCS + LDS + γ · (LDp + LDCD), (5)

where γ is empirically set as 2, which is a hyper-parameter
to trade-off between the auxiliary losses and main loss. Please
note that extensive experiments have been conducted to de-
termine the weights of the losses for the two auxiliary tasks.
We found that there is no significant difference of counting
performance with respect to different weight values; thus, we
set them both equal to 1 in the loss function. Binary cross-
entropy (LCS) is used for the crowd segmentation auxiliary
task; categorical cross-entropy (LDS) is used for the density
level segmentation auxiliary task; L2 loss is used for pixel-
wise density map regression supervision (LDp). However, the
pixel-wise L2 loss assumes pixel-wise independence, which
results in an over-smooth density map prediction [5] and the
underlying bias from unbalanced low- and high-level density
distributions of crowd images. To address this issue, we
propose a Dilated Contrastive Density Loss (LDCD), where
we take into account more adjacent pixels for regional density
difference. In detail, we applied a single layer convolution on
the regressed density map MD and the ground truth density
map DG. The single layer convolution has eight filters; each
filter contains a dilated kernel with a fixed value (e.g. 1, 0, and
-1). The least-square error of the calculated regional dilated
contrastive values from the regressed and ground truth density
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map is the output of LDCD. To this end, we define LDCD in
Eq. 6 as below:

LDCD =
∑
i

||KDCD
i ⊗MD −KDCD

i ⊗DG||22, (6)

where KDCD
i is the ith dilated contrastive convolution kernel,

i ∈ [1, 8]. Details of the kernel are shown in Fig. 6, where a
3 × 3 convolution layer with the dilated rate of 2 is applied;
this gives a larger receptive field as 5 × 5. The kernel value
is empirically set as 0 ,-1, and 1 because we do not find
any significant difference regrading different kernel values.
On the other hand, the kernel value is designed to achieve a
contrastive learning purpose to include regional relationships
among pixels instead of single pixel-wise L2 or L1 loss. We
performed extensive experiments to evaluate the effectiveness
of the proposed LDCD loss; quantitative results in the Ablation
Study (Section V-D) demonstrates that the proposed LDCD

loss can improve the counting accuracy not only for our model
but also for previous single L2 loss-based methods.

IV. EXPERIMENTS

A. Datasets

ShanghaiTech [16] consists of 1,198 images, containing
a total amount of 330,165 people with head centre point
annotations. This dataset has been divided into two parts: SHA
includes 482 images, in which crowds are mostly dense (33
to 3139 people); SHB includes 716 images, where crowds are
sparser (9 to 578 people). Each part is divided into training
and testing subsets as specified in [16]. UCF-QNRF [90] is a
large crowd dataset, consisting of 1,535 images with around
1.25 million annotations in total. The number of people in
these images varies largely with a wide range spanning from
49 to 12,865. As indicated by [90], for training, 1,201 images
are used, the remaining 334 images form the test set. JHU-
Crowd++ [91] is a recent challenging large-scale dataset that
contains 4,372 images with 1.51 million annotations. The
dataset includes several challenging scenes such as weather-
based degradation and illumination variations etc.. This dataset
is divided into 2,272 images for training, 500 images for
validation, and 1,600 images for testing. NWPU-Crowd [19] is
currently the largest public crowd counting dataset, containing
5,109 images with over 2.13 million annotations. The dataset
includes 3,109 training images, 500 validation images and
1,500 test images. Moreover, inspired by the potential of
crowd counting, we conducted experiments on commonly used
vehicle counting dataset: Trancos [92] with 403 images for
training, 420 images for validation and 421 images for testing.
These experiments further demonstrate our model’s robustness
and applicability for different real-world applications.

Note that, for ShanghaiTech (SHA, SHB), UCF-QNRF, and
DCC dataset, we use 10% of the given training images as the
validation dataset.

B. Implementation Details

To augment the dataset, we randomly cropped the input
images, density maps, crowd segmentation masks, and density
level segmentation masks with fixed size 128×128 at a random

location, then randomly flipped the image patches horizontally
with a probability of 0.3. We trained our model with 400
epochs for all experiments, with a starting learning rate of
1e−4 and a cosine decay schedule [93]. The batch size is set
to 96. Five-fold cross-validation is used for fair comparison
and hyper-parameter tuning is applied in all settings. We im-
plemented the proposed method with PyTorch 1.7, CUDA 10.2
using Python 3.6. All the training processes are performed on
a server with four TESLA V100, and all the test experiments
are conducted on a local workstation with Intel(R) Xeon(R)
W-2104 CPU and Geforce RTX 2080Ti GPU. Our model
takes average 19.5 hours to train on JHU-Crowd++ [91] and
NWPU-Crowd [19] datasets and average 8.5 hours to train on
ShanghaiTech [16], UCF-QNRF [90] and Trancos [92]. Our
implementation code is publicly available at: https://github.
com/smallmax00/Counting With Adaptive Auxiliary.

C. Evaluation Metrics

To evaluate the counting performance, we adopted Mean
Absolute Error (MAE) and Root Mean Squared Error
(RMSE). Since Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) cannot measure the counted ob-
jects’ locations, Grid Average Mean absolute Error (GAME)
is used to indicate counting accuracy over local regions.
GAME is defined in Eq. 7 as below:

GAME(L) =
1

N

N∑
n=1

(

4L∑
l=1

|yln − ŷln|), (7)

where N is the total number of images, yln and ŷln are the
ground truth and estimated counts in the local region l of
nth image. 4L denotes the number of non-overlapping regions
which cover the full image. When L equals to 0, GAME is
equivalent to MAE.

V. RESULTS

A. Counting Results

In this section, we present our experimental results on the
crowd and vehicle counting tasks in comparison to other
auxiliary-task based state-of-the-art crowd counting methods.
These experiments further demonstrate our model’s robustness
and applicability in multiple domain datasets. In the Discus-
sion (Section V-E), we show that our model could indicate
some mislabeled or incorrectly labeled point annotations from
the ground truth of the test dataset. This highlights our
approach’s generalizability and the potential issue of imperfect
ground truth in object counting datasets.
Crowd Counting Results. We performed experiments to
validate our model’s performance in five challenging crowd
counting datasets. Fig. 7 shows qualitative results; specifically,
we presented the predictions from auxiliary task branches
(crowd segmentation and density level segmentation masks)
to demonstrate our model’s cohesion, along with the spatial
location and density level variation’s contribution of auxiliary
branches. To make a fair comparison, we only compared our
model with previous auxiliary task learning-based counting
methods. TABLE. I shows that our method outperforms other

https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary
https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary
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Density Level Map
Ours                  GT

Density Map
Ours                  GT

Fig. 7. Qualitative results of the density, crowd location and density level map in SHA test dataset. Our model can produce accurate density maps compared
with the ground truth (GT), along with accurate auxiliary crowd segmentation and density level segmentation results.

TABLE I
RESULTS ON FIVE CHALLENGING DATASETS FOR CROWD COUNTING, COMPARED WITH OTHER AUXILIARY TASK LEARNING BASED METHODS. OUR

MODEL ACHIEVES A NEW STATE-OF-THE-ART WITHIN AUXILIARY LEARNING-BASED COUNTING METHODS IN TERMS OF MAE.

Methods SHA SHB QNRF JHU-Crowd++ NWPU-Crowd
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CP-CNN [69] 73.6 106.4 20.1 30.1 - - - - - -
DecideNet [5] - - 21.53 31.98 - - - - - -

CFF [4] 65.2 109.4 7.2 12.2 93.8 146.5 83.6 400.7 80.8 364.1
AT-CSRNet [74] - - 8.11 13.53 - - - - - -
SHRGBD [67] 70.3 111.0 8.8 15.3 113.3 177.6 107.9 446.7 103.0 478.1
HA-CCN [70] 62.9 94.9 8.1 12.7 118.1 180.4 - - - -
RAZ-Net [66] 65.1 106.7 8.4 14.1 116 195 - - 151.5 634.6
HYGNN [8] 60.2 94.5 7.5 12.7 100.8 185.3 - - - -

LSC-CNN [80] 66.4 117.0 8.1 12.7 120.5 218.2 112.7 454.4 90.4 388.8
ASCC [18] 57.8 90.1 7.5 13.1 91.6 159.7 84.6 355.1 95.7 398.0

UMRNet [7] 62.6 103.3 7.2 11.5 86.3 153.1 - - - -
DAMNet [6] 63.1 106.3 9.1 16.3 101.5 186.9 - - - -
MATT [49] 59.5 97.3 6.9 10.3 - - - - - -

SGANet [63] 57.6 101.1 6.3 10.6 87.6 152.5 - - - -
Ours 57.0 98.6 7.1 12.3 85.3 129.4 66.6 254.9 76.4 327.1

methods in terms of MAE on all five datasets. In particular, our
model outperforms the patch-based density level classification
based method HA-CCN [70] by 14.7% via average MAE.
Notably, the JHU-Crowd++ dataset [91] and NWPU-Crowd
dataset [19] are recent publicly available datasets, which are
more challenging due to large variations in scale, occlusion,
and complex weather scenes. Specifically, NWPU-Crowd is
the current largest crowd counting benchmark 3. To the best of
our knowledge, we achieved the greatest performance among
other auxiliary task-based methods. Except the auxiliary-based
methods shown in TABLE. I, our method gains a superior
reduction than single-task learning-based methods as well, for
example, scale variation was able to enhance CACC (100.1
MAE) [17] by 18.3% and the dilated kernel-based method
CSR-Net (85.9 MAE) [30] by 4.8% via MAE.
Vehicle Counting Results. We conducted experiments on
vehicle (Trancos [92]) counting datasets to show our model’s

3https://www.crowdbenchmark.com/nwpucrowd.html

TABLE II
RESULTS ON VEHICLE (Trancos) COUNTING DATASET. OUR MODEL

ACHIEVES SUPERIOR PERFORMANCE TO THE PREVIOUS
STATE-OF-THE-ART METHODS.

Methods Trancos
MAE RMSE

PPPD [94] 9.7 -
CSRNet [30] 3.5 5.1

BL-Crowd [58] 2.9 6.7
MD-Crowd [60] 3.1 6.6
Auto-Scale [40] 2.9 6.1

SUANet-Fully [3] 4.9 6.9
SASNet [46] 2.9 4.7

Gau-SANet [76] 2.5 2.8
STNet [64] 3.8 5.0
ASCC [18] 3.8 4.9

DM-Count [60] 3.9 5.2
P2PNet [56] 3.8 4.9
WSNet [41] 4.3 5.8

Ours 2.3 4.8

https://www.crowdbenchmark.com/nwpucrowd.html
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Fig. 8. Qualitative results on the Trancos dataset. The density map ground truth and our predictions are shown, with counting number presented in the figure.
Our model adapts well with scale variations, where the scale of the vehicles varies from the distance between the camera and vehicle locations. Specifically,
the vehicles that are far from the camera only contain a few pixels in the image, while the near-camera vehicles have more pixels. The scale of such pixel
occupation changes can be well handled by our methods and the predicted density maps can clearly show the location correspondence.
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Fig. 9. Comparison of GAME performance on the Trancos dataset among
the proposed approach and the state-of-the-arts, such as Onoro-Rubio et al.
[2], Li et al. [30], Chen et al. [29]. Note that, a small range of increase
among different GAME values indicates that our method counts and localizes
overlapping vehicles more accurately.

broad applicability and robustness. Fig. 8 shows the qualitative
results, and TABLE. II shows the quantitative results compared
with the previous state-of-the-art methods. Due to the different
scenes in the vehicle counting dataset, such as less occlusion,
no scale variation, no complex background etc., the contri-
bution of some components of our model will be lessened
because we designed our model especially for crowd counting
tasks; still, our model achieves superior performance when
compared with previous methods. Specifically, our model
outperformed the distribution matching supervised methods
BL-Crowd [58], MD-Crowd [60], P2PNet [56] and DM-Count
[60] by 20.7, 25.8, 39.5 and 41.0 % of MAE; outperformed the
auxiliary task assisted methods Auto-Scale [40], SASNet [46],
STNet [64] and ASCC [18] by 20.7, 20.7, 39.5, and 39.5 %
of MAE. Notably, WSNet [41] is specially designed for traffic

density estimation and vehicle counting, where an attention-
based Transformer [95] is used to extract the local-global
consistent features. This is because the traffic scenario can be
easily affected by weather and scale changes, which results
in weakened semantic and spatial content of the captured im-
ages. Our proposed graph-based multi-granularity information
fusion paradigm had a similar intuition, to enhance the relevant
semantic and spatial information. Our model outperformed
WSNet [41] by 46.5 % by MAE in Trancos test dataset. Fur-
thermore, we present local comparison performance through
the GAME metric to indicate the model’s ability to recognize
the objects’ locations. Fig. 9 shows the comparison results in
terms of the GAME on the Trancos dataset. As illustrated,
our method localizes and counts overlapping vehicles more
accurately.

Results on Weather Changes Among the seven datasets
used in this work, JHU-Crowd++ [91] provided the weather
condition-based labels. For example, the test dataset (a total
of 1600 images) contained 168 images weather labels; for
example, 49 images are labeled as ‘rain’; 78 images are labeled
as ‘snow’; 64 images are labeled as ‘fog’. In this section,
we provide the quantitative and qualitative counting results on
different weather conditions. Following JHU-Crowd++ [91]
benchmark’s setting, we report the counting performance on
the test images with weather labels. Specifically in TABLE.
III, our method achieved 110.2 MAE and 598.2 RMSE,
which outperformed previous state-of-the-art methods LSC-
CNN [80], and MBTTBF [42] by 38.1 and 20.5 % MAE.
Benefiting from the proposed auxiliary task and the graph-
based multi-granularity feature fusion mechanism, our model
can extract the spatial and semantic features from the input
image, especially when weather degradation causes a weak-
ened image quality. Fig. 10 shows the qualitative results of
our model under different weather conditions. Our model can
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Fig. 10. Qualitative results on different weather conditions of the JHU-Crowd++ dataset. The density map ground truth and our predictions are shown, with
the counting number presented in the figure. In total, three conditions, fog, rain, and snow, are demonstrated in the respective rows of the figure. Our model
can handle severe weather degradation well and indicates precise crowd locations.

handle the severe weather degradation well, which is critical
in the intelligent transportation system because weather can
easily affect traffic scenarios.

TABLE III
RESULTS ON JHU-Crowd++ [91] COUNTING DATASET UNDER WEATHER
SETTING. WE FOLLOW THE JHU-Crowd++ [91] BENCHMARK’S SETTING

AND REPORT THE COUNTING PERFORMANCE. OUR MODEL ACHIEVES
SUPERIOR PERFORMANCE TO THE PREVIOUS STATE-OF-THE-ART

METHODS.

Methods JHU-Weather
MAE RMSE

CSRNet [30] 141.4 640.1
SA-Net [77] 154.2 685.7
CACC [17] 155.4 617.0

DSSI-Net [25] 229.1 760.3
MBTTBF [42] 138.7 631.6
LSC-CNN [80] 178.0 744.3

JHU-Crowd++ [91] 138.6 654.0
SFCN [78] 122.8 606.3

BL-Crowd [58] 140.1 675.7
Ours 110.2 598.2

B. Auxiliary Task Results

In this section, we report the performance of the two
auxiliary tasks. The commonly used segmentation metric In-

TABLE IV
COMPUTATIONAL EFFICIENCY. THE NUMBER OF PARAMETERS IN

MILLIONS (M), FLOATING-POINT OPERATIONS (FLOPs) AND INFERENCE
TIME IN MILLISECOND (ms) OF DIFFERENT COUNTING METHODS ON A

FIXED SIZE OF 128 × 128 INPUT IMAGE.

Methods Params (M) FLOPs (G) Inference Time (ms)
DM-Count [60] 21.5 6.7 1.9

SUANet-Fully [3] 15.9 6.5 5.3
LSC-CNN [80] 35.1 25.4 4.6
BL-Crowd [58] 21.5 6.7 1.9

ASCC [18] 30.4 10.2 3.2
SASNet [46] 38.9 14.6 7.8

Ours 18.8 8.5 8.8

tersection over Union (IoU) is used to evaluate the auxiliary
tasks’ performance. In detail, we achieved average 88.7 %
IoU for the crowd segmentation task and 81.0 % IoU for the
density level segmentation task on the five crowd counting
datasets. Fig. 7 shows examples of those tasks’ predictions
from our model.

C. Computational Efficiency

Table.IV presents the number of parameters in millions
(M), floating-point operations (FLOPs) and inference time in
millisecond (ms) of the compared models. Our model adopts
VGG-16 [81] as the backbone, which leads to a relatively
smaller model size of 18.8 M parameters, compared to other
models, such as LSC-CNN [80] (35.1 M), ASCC [18] (30.4
M), and SASNet [46] (38.9 M). On the other hand, our model
is computationally effective, only requiring 8.5 FLOPs. This
is comparable to other light-weight models such as DM-
Count [60], SUANet-Fully [3], and BL-Crowd [58]. Due to
the auxiliary task-based nature, our model required a relatively
longer inference time, such as 8.8 ms per image. However, our
method can still be used for a real-time counting application
(inference speed > 24 frame per second).

D. Ablation Study

We investigated the effect of each component in our pro-
posed model. All ablation experiments were performed with
the same settings detailed in the Implementation Details (Sec-
tion IV-B).
Ablation on Different Network Backbones We evaluated the
effectiveness of different backbone networks on the five crowd
counting datasets. The counting performance is shown in TA-
BLE. V with several different backbone networks. In general,
VGG-based backbone networks achieved comparable count-
ing performance, compared with ResNet-based backbone net-
works in relatively large-scale datasets, such as QNRF, JHU-
Crowd++ and NWPU-Crowd. While, ResNet-based backbones
work better on small-scale counting datasets, such as SHA
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TABLE V
RESULTS OF USING DIFFERENT BACKBONE NETWORKS ON FIVE CROWD COUNTING DATASETS.

Methods SHA SHB QNRF JHU-Crowd++ NWPU-Crowd
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VGG-16 [81] 57.0 98.6 7.1 12.3 85.3 129.4 66.6 254.9 76.4 327.4
VGG-19 [81] 59.7 99.8 8.4 13.2 87.8 144.0 73.7 320.1 79.9 360.0

ResNet-50 [96] 57.8 96.6 7.0 11.7 85.5 128.7 77.9 318.1 79.3 344.4
ResNet-101 [96] 61.1 100.8 9.1 14.5 93.3 147.9 69.7 253.3 81.4 361.5

and SHB. We report our model’s performance with VGG-16
backbone network in TABLE. I for a fair comparison with
previous methods.

Ablation on Auxiliary Tasks and Model Components. In
this section, we evaluate the effectiveness of the auxiliary
tasks, adaptively shared backbone network, and GCN-enabled
reasoning module. Please note that, in order to eliminate the
performance improvement from a bigger model, we add feed-
forward CNN blocks containing (3×3 convolution with Batch
Normalization) into other ablation study models in TABLE.
VI to maintain a similar model size as ours (18.8 million
parameters). Firstly, we compared the single task density map
regression network, in which we removed the GCN reasoning
module, the auxiliary learning branches, and the adaptively
shared backbone branches, to form a single column network
structure (Single Column). Then we added two auxiliary
branches separately and simultaneously after the single shared
backbone’s output to form an auxiliary learning mechanism
(w/ Crowd Seg, w/ Density Seg, w/ Both Auxiliary). To further
improve the performance, we designed and added an adaptive
backbone network to enable the task-shared and task-specific
features to be learned simultaneously (w/ Adaptive Crowd
Seg, w/ Adaptive Density Seg, w/ Both Adaptive Auxiliary).
Furthermore, we evaluated the proposed GCN reasoning mod-
ule’s effectiveness, which can propagate region-based density
level information across the image (Ours). The effect of each
structural component is presented in Fig. VI. As illustrated,
the proposed auxiliary task learning mechanism (w/ Both
Auxiliary) is reduced by 14.3% over the single-task learning
method (Single Column) via average MAE on two datasets, the
task adaptive backbone (w/ Both Adaptive Auxiliary) reduces
6.8% over the single shared backbone (w/ Both Auxiliary), and
the GCN reasoning module further reduces 6.7%. Qualitative
comparison results of different modules’ effectiveness in terms
of predicted density maps are shown in the Fig. 11, where
the crowd segmentation auxiliary (w/ Adaptive Crowd Seg)
can help the model to focus on the features in the region of
interest and filter out the background (first and second rows).
On the other hand, the density level segmentation auxiliary
(w/ Adaptive Density Seg) can help to estimate more accurate
density levels across the whole density map (second and third
rows). We highlighted the different areas among those ablated
models’ density map predictions with red bounding boxes for
better visualization and comparison.

Moreover, in TABLE. VII, we further indirectly evaluate
the auxiliary tasks’ effectiveness in this work. Specifically,
for other ablation study models except for Ours, we main-

TABLE VI
ABLATION STUDY RESULTS ON NETWORK STRUCTURE COMPONENTS.
EACH COMPONENT OF OUR NETWORK CONTRIBUTES TO THE FINAL

PREDICTION.

Methds SHA JHU-Crowd++
MAE RMSE MAE RMSE

Single Column 71.3 122.3 99.3 391.0
w/ Crowd Seg 67.4 117.0 81.6 343.6
w/ Density Seg 68.1 119.9 86.1 360.0

w/ Both Auxiliary 65.2 115.2 77.3 311.7
w/ Adaptive Crowd Seg 61.3 104.6 75.7 300.9
w/ Adaptive Density Seg 63.8 108.1 76.9 307.8

w/ Both Adaptive Auxiliary 60.8 100.3 71.9 278.9
Ours 57.0 98.6 66.6 254.9

TABLE VII
ABLATION STUDY RESULTS ON AUXILIARY TASKS. MAINTAINING THE

SAME MODEL STRUCTURE (MODEL SIZE) AND TURNING OFF AUXILIARY
TASKS’ LOSS FUNCTIONS CAN IMPLICITLY PROVE THAT THE AUXILIARY

TASKS CONTRIBUTE TO THE FINAL COUNTING.

Methds SHA JHU-Crowd++
MAE RMSE MAE RMSE

w/o LCS 64.4 107.7 78.7 310.5
w/o LDS 62.0 104.8 74.9 302.2

w/o LCS and LDS 67.1 115.2 93.0 377.5
Ours 57.0 98.6 66.6 254.9

tained the same network structure as Ours to keep the same
model size (18.8 million parameters) but switched off the
two auxiliary tasks’ loss functions. In TABLE. VII, it proves
that the supervision from multi-granularity information of
auxiliary tasks contributes to the final counting performance
in this work. Without LCS and LDS losses, the counting error
increases by an average of 21.75 % on the SHA and the JHU-
Crowd++ datasets via MAE.
Ablation on Graph Reasoning Module. In this section, we
evaluate the effectiveness of the proposed graph reasoning
module. We specially designed our graph reasoning module

TABLE VIII
ABLATION STUDY RESULTS ON GRAPH REASONING MODULES. ONLY OUR

PROPOSED GRAPH REASONING MODULE CAN EFFICIENTLY UTILIZE THE
AUXILIARY INFORMATION FROM OTHER TASKS TO COMPLEMENT THE

DENSITY MAP REGRESSION TASK.

Methds SHA JHU-Crowd++
MAE RMSE MAE RMSE

classic GCN 67.1 109.0 79.2 308.7
SGR [97] 60.3 101.0 73.1 301.0

DualGCN [98] 63.8 105.7 80.8 307.3
GloRe [99] 61.0 105.4 71.3 317.7

Ours 57.0 98.6 66.6 254.9
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Fig. 11. The qualitative results of the predicted density maps of ablation studies about auxiliary tasks. The red bounding boxes are used for better visualization
and comparison. Ours and w/ Adaptive Crowd Seg can know the crowd’s spatial regions (first and third rows), and filter out the background noise (second
row). On the other hand, Ours and w/ Adaptive Density Seg can estimate more accurate density levels across the whole density maps (second and third rows).

TABLE IX
ABLATION STUDY RESULTS ON THE DILATED RATE OF THE PROPOSED

LOSS FUNCTION LDCD . WHEN THE DILATED RATE IS 2 AND THE
CORRESPONDING RECEPTIVE FIELD IS 5, OUR MODEL CAN ACHIEVE THE

BEST COUNTING PERFORMANCE ON THE SHA AND JHU-Crowd++
DATASETS.

Dilated Rate SHA JHU-Crowd++
MAE RMSE MAE RMSE

1 60.1 103.5 70.1 299.0
3 58.7 101.7 68.7 288.4
4 59.2 101.3 68.0 287.6

2 (Ours) 57.0 98.6 66.6 254.9

TABLE X
ABLATION STUDY RESULTS (MAE) ON OUR COMBINED LOSS

(CONTRASTIVE AND L2 LOSS), COMPARED WITH SINGLE L2 LOSS (base).
MOREOVER, WE APPLIED THE COMBINED LOSS FUNCTION TO OPTIMIZE

PREVIOUS SINGLE L2 LOSS BASED METHODS TO DEMONSTRATE THAT THE
COUNTING PERFORMANCE CAN BE IMPROVED WITH THE HELP OF

REGIONAL DENSITY DIFFERENCE-BASED LOSS FUNCTION LDCD ).

Methods SHA JHU-Crowd++
Base w/ contrastive Base w/ contrastive

MCNN [16] 110.2 108.1 188.9 168.3
CSRNet [30] 68.2 65.9 85.9 84.1
CACC [17] 62.3 60.8 100.1 97.9

Ours 59.5 57.0 70.8 66.6

to incorporate the auxiliary tasks and for fusing information
into the adjacency matrix to form the information-fused graph.
So for the ablation study, we had to only apply other GCN
on the density map. Firstly, we employed the classic graph
convolution [89] to reason the correlations between regions
in density feature maps (fDM ). Additionally, we adopted
potent graph convolution operations to show the superiority
of our proposed Graph Reasoning Module. In detail, we
applied the SGR [97], DualGCN [98], and GloRe module [99]

respectively, where the SGR module exploited a knowledge
graph mechanism; DualGCN explored the coordinate space
and feature space graph convolution; and GloRe utilized a
projection and re-projection mechanism to reason the seman-
tics between different regions. These methods achieved state-
of-the-art performance on different computer vision tasks,
however, they can only process single task rather than using
auxiliary information. Tab. VIII shows that our model achieves
more accurate and reliable results than [89] and outperforms
the SGR, DualGCN, and GloRe by 7.2 %, 20.0 % and 6.6 %
in terms of mean MAE on the two test datasets.

Ablation on Loss Function. We performed experiments to
evaluate the receptive field through different dilated rates in
the proposed dilated contrastive density loss function LDCD.
In detail, we changed the dilated rate of the 3×3 convolution
layer into 1, 2, 3, 4, which resulted in the receptive field of the
LDCD being like 3, 5, 7, 9. TABLE. IX shows the comparison
results; when the dilated rate is 2, our model achieves the best
performance on SHA and JHU-Crowd++ datasets.

Furthermore in TABLE. X, we conducted experiments to
evaluate the effectiveness of the proposed dilated contrastive
loss function, in which we removed the LDCD and kept the
rest of the network constant with the same trade-off hyper-
parameters (Base). Furthermore, we applied the proposed
combined loss function (w/ contrastive) into previous single
L2-based methods [16], [30], [17]. We re-implemented their
network with their open-source code and used the same
experimental setting as our method. TABLE. X shows the
comparison results of our proposed combined loss function;
as illustrated, with regional density difference supervision of
LDCD, our model attains a 3.5% reduction compared with
single L2 loss function via average MAE on two datasets. Our
proposed LDCD also helps to reduce the original MCNN [16]
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by 6.4%, the CSRNet [30] by 2.7%, and the CACC [17] by
2.3% over average MAE on two datasets. Please note that we
did not compare with other loss functions that were proposed
in the recent crowd counting models [56], [58], [57], [60], [61],
[59]. Those methods are not pure density map regression-based
methods, thus it is unfair to compare.

E. Discussion: Comparison with Ground Truth
Underlying labeling errors (noisy ground truth) exist in

most datasets due to human annotator error. However, a
robust model can omit noisy ground truths during training
and produce a more accurate prediction. This section showed
that our model could indicate some mislabeled or incorrectly
labeled point annotations of the ground truth in the test dataset.
This highlights the generalizability of our approach and the
potential issue of the imperfect ground truth in object counting
applications. Fig. 2 shows a wrongly labeled point annotation
(top left) case of the crowd counting test dataset, and the other
cases are mislabeled point annotation of vehicle counting test
dataset. We highlighted the incorrectly labeled or mislabeled
area with red bounding boxes for better visualization and
comparison.

F. Limitation and Future Work
In this work, we presented an object counting framework

assisted by auxiliary multi-granularity information,
achieving cutting-edge counting performance in seven
large-scale counting datasets. This significantly contributes
to transportation systems, including many applications such
as security alerts, public space design, etc.. However, one
limitation of our method is that the complexity of inference is
increased due to the enlarged number of optimized tasks. This
is a typical issue of auxiliary-task based counting methods
[43], [44], [45], [46], [47], [48], [49], [50], [6], [51], [52],
which has been discussed before. However, our method only
required 8.8 milliseconds per image, which is comparable
to other single-task-based methods (please refer to TABLE.
IV). In other words, our method can also be used for a
real-time counting application (inference speed > 24 frame
per second). The trade-off between accuracy and complexity
can be determined when applied to a real-world task.

A future extension of our work could be multiple objects
tracking (MOT), such as vehicles or crowd tracking. Most of
the MOT approaches [100], [101], [102] follow the classic
paradigm of tracking-by-detection, where object trajectories
are obtained by associating per-frame outputs of object
detectors. Recently, a new prediction scheme [103], [68] is
gaining attention that uses a tracking-by-counting mechanism.
Specifically, using the crowd density maps, the detection,
counting, and tracking of multiple targets as a network flow
program is achieved. In the future, our model could be
integrated into such learning pipelines to tackle MOT with
dense crowds or vehicles.

VI. CONCLUSION

We proposed an auxiliary-task-based object counting
methodology via a graph-based multi-granularity information

fusion paradigm. The proposed task-adaptive backbone en-
abled the task-shared and task-specific features to be learned
simultaneously. We have demonstrated its potential in main-
taining state-of-the-art performance upon seven challenging
benchmarks. Our approach is anticipated to be widely appli-
cable in the real world.
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S. Maldonado-Bascón, and D. Onoro-Rubio, “Extremely overlapping
vehicle counting,” in Iberian Conference on Pattern Recognition and
Image Analysis. Springer, 2015, pp. 423–431.

[93] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with
warm restarts,” International Conference on Learning Representations,
2017.

[94] M. Marsden, K. McGuinness, S. Little, C. E. Keogh, and N. E.
O’Connor, “People, penguins and petri dishes: adapting object counting
models to new visual domains and object types without forgetting,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8070–8079.

[95] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[96] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[97] X. Liang, Z. Hu, H. Zhang, L. Lin, and E. P. Xing, “Symbolic
graph reasoning meets convolutions,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems,
2018, pp. 1858–1868.

[98] L. Zhang, X. Li, A. Arnab, K. Yang, Y. Tong, and P. H. Torr,
“Dual graph convolutional network for semantic segmentation,” in
BMVC2019, 2019.

[99] Y. Chen, M. Rohrbach, Z. Yan, Y. Shuicheng, J. Feng, and Y. Kalan-
tidis, “Graph-based global reasoning networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 433–442.
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