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Abstract

For vector Itô semimartingale dynamics, we derive the asymptotic distributions of likelihood-
ratio-type test statistics for the purpose of identifying the eigenvalue structure of both integrated
and spot covariance matrices estimated using high-frequency data. Unlike the existing approaches
where the cross-section dimension grows to infinity, our tests do not necessarily require large cross-
section and thus allow for a wide range of applications. The tests, however, are based on non-
standard asymptotic distributions with many nuisance parameters. Another contribution of this
paper consists in proposing a bootstrap method to approximate these asymptotic distributions.
While standard bootstrap methods focus on sampling point-wise returns, the proposed method
replicates features of the asymptotic approximation of the statistics of interest that guarantee its
validity. A Monte Carlo simulation study shows that the bootstrap-based test controls size and has
power for even moderate size samples.
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1 Introduction

Decomposing a q-dimensional covariance matrix into a set of eigenvalues and eigenvectors, referred to

as eigen- or spectral- decomposition, is an important part of a number of statistical methods, notably

Principal Component Analysis (PCA) and Factor Analysis (FA). PCA and FA summarize the variation

of a high dimensional data set through a smaller number of factors. These factors are designed to

capture the maximal feasible fraction of the cross sectional variation of the data set. Depending on

the structural assumptions, the factors may be correlated or uncorrelated, and in the latter setting

the factors are often referred to as principal components.

Empirical work often raises the question of deciding about the number, say Q, of factors or principal

components to retain for data modelling. Such a decision is based on testing the clustering eigenvalues
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of the covariance matrix of interest. Specifically, if 1 − π is a targeted proportion of data dispersion

supported by the principal components (typically π = 0.10 or 0.05), Q can be found by testing whether

the ratio of sum of the smallest q −Q eigenvalues by the sum of all eigenvalues is at most as large as

π. Moreover, particular structures of the eigenvalues can be used to infer properties of the underlying

data generating processes. For instance, the equality of the q −m smallest eigenvalues is a testable

implication of a factor representation of the primitive vector process with m factors and uncorrelated

idiosyncratic shocks of the same magnitude.

While the covariance matrix is a well-accepted measure of multivariate dispersion of data observed

at low frequency, the so-called spot variance matrix at date t (denoted by ct) and integrated covariance

matrix (hereafter IV) play a similar role for financial data observed at high frequency and have

established themselves as important components of financial portfolios’ risk measures. The eigenvalue

structure of ct or IV is of similar importance for PCA and FA of the continuous part of high-frequency

vectors of stock prices as does that of covariance for low frequency data. Specifically, the eigenvectors

of ct associated to its largest eigenvalues determine the principal components of the vector price

process at that specific date t, and similarly, when volatility is locally constant, the eigenvectors of

IV determine the principal components over the estimation interval. Our aim is to provide statistical

inference for the eigenvalue structure of ct and IV estimated using high frequency data.

In this paper, we consider a vector process of stock prices belonging to a class of continuous-

time multivariate stochastic processes, namely the class of Itô semimartingale processes and propose a

collection of tests for the eigenvalue structure of the associated spot and integrated covariance matrices

– ct and IV, respectively. Three tests are proposed herein. The first test provides statistical inference

on the equality of adjacent eigenvalues without specifying their common value whereas the second

applies to the case where a common value is set under the null hypothesis. The third test investigates

whether a given number Q of the principal components of the continuous part of the price vector

process captures at least a given proportion of the total dispersion as measured by ct or IV.

We construct these tests by first considering the subclass of continuous Lévy processes. This class

offers a parametric setting whereby the likelihood ratio can fully be derived for the first two tests

while a test statistic for the third one is based on the behaviour under the null hypothesis of the

maximum likelihood estimator of the eigenvalues. Under the null hypothesis, the likelihood ratio test

statistics are asymptotically distributed as a standard chi-squared distribution with 1
2qk(qk + 1) and

1
2(qk−1)(qk+2) degrees of freedom, respectively; where qk is the number of equal eigenvalues of IV (or

ct) in the k-th cluster being tested. The third test has a test statistic that is asymptotically normally

distributed. In this configuration of continuous Lévy process, the same tests can be applied to the

spot covariance matrix, ct, with the same asymptotic distribution.

Our results for these three tests are reminiscent to those of Anderson (1963) who proposes a

likelihood ratio test statistic for the equality of adjacent eigenvalues of a population covariance matrix

when the data is independent and identically distributed (i.i.d.) as Gaussian.1 Our framework,

however, differs from his as our inference results are based on so-called infill asymptotics where the

1Further extension of the work of Anderson (1963) to non Gaussian and to dependent data can be found in Waternaux
(1976), Davis (1977), Tyler (1981), Muirhead (1982), Eaton and Tyler (1991), Cook and Setodji (2003), and Onatski
(2010) to name a few.

2



process is supposed to be observed over a fixed time interval but more and more frequently. In this

case, although observed log-returns from continuous Lévy processes are i.i.d. Gaussian, their common

variance changes with sample size.

For the more general class of Itô semimartingales, we use the same test statistics and derive

their asymptotic distributions (under the null) which are all now noticeably non-standard with many

nuisance parameters, both for ct and IV. Using consistent estimators of these nuisance parameters, we

indicate how approximations of these distributions can be simulated. Nevertheless, the set of nuisance

parameters can become quite large as it includes eigenvectors of ct or IV, spot covariances as well

as integrated multivariate quarticities. Clearly, the estimation of so many parameters is costly and

these estimates may also distort the finite sample properties of the test by affecting the simulated

distribution in a perverse manner. This observation motivates our exploration of the bootstrap as an

alternative approach to estimate the asymptotic distributions of our tests.

A further contribution of this paper therefore consists in proposing asymptotically valid bootstrap

methods that approximate these asymptotic distributions. The bootstrap procedures that we introduce

are simple to implement and do not require the estimation of many nuisance parameters. The main

difficulty associated to a bootstrap proposal in this context is that the eigenvalue structure of ct or

IV is notoriously different from that of their respective estimates. Since existing bootstrap methods

aim at bootstrapping the sample estimates, it results that the eigenvalue structure that they point to

would not reflect that of the population quantities and then leading to invalid tests. To circumvent

this problem, we propose valid bootstrap methods that, instead of the test statistics themselves,

replicate features of their asymptotic approximations that guarantee first-order asymptotic validity.

This approach to bootstrapping is similar to that of Chen and Fang (2019). Even though the inference

on the eigenvalue structure of IV and that of ct are of our primary interest, we also derive results for

the eigenvalue structure of the correlation matrix R, with Ri,j = vi,j/
√
vi,ivj,j and v = IV or ct. R

being a smooth function of IV or ct, the validity of our bootstrap methods extend easily to R.

The literature on the use of PCA and FA with high-frequency data is relatively recent. Aı̈t-Sahalia

and Xiu (2019) develop a methodology to conduct PCA with high-frequency data with emphasis on

inference in a setup of fixed cross-section dimension. However, their results take as given the clustering

structure of the so-called integrated eigenvalues which are then supposed known to the researcher. Our

work complement theirs as the proposed tests aim at depicting such structures for ct and IV.

Aı̈t-Sahalia and Xiu (2017) and Pelger (2019) propose estimators of the number of factors in

continuous-time factor models. In the spirit of Bai and Ng (2002), the estimator of Aı̈t-Sahalia and

Xiu (2017) minimizes a criterion that involves estimated eigenvalues of IV and a penalty term, whereas

Pelger (2019) follows Onatski (2010) and Ahn and Horenstein (2013) by proposing an estimator that

maximizes the ratio of perturbed adjacent estimated eigenvalues of IV. In line with the approximate

factors theory of Chamberlain and Rothschild (1983), these estimators are all shown to be consistent

when the cross-section dimension increases to infinity. Such estimators typically exploit the high

dimension to extract the factor structure. Our work makes a direct contribution to this literature,

and our proposed tests can be applied to large dimensions of high frequency return data to detect the

number of factors needed to pick up a target proportion of the dispersion of the data as measured by
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ct or IV. In addition, factor structures reflected by the equality of the smallest eigenvalues of ct or IV

can be investigated through our testing framework. It is worthwhile to stress that our tests apply to

settings with fixed cross-section dimension and are valid even if this is not large. Therefore, we allow

for empirical applications with a small number of assets as opposed to the aforementioned methods,

for example in extracting factors from the term structure of bond and futures prices.

Other papers in this literature include Chen et al. (2019) who document a number of issues when

conducting PCA on high frequency data in the presence of time varying multivariate stochastic volatil-

ity and provide a battery of approaches to overcoming the identified difficulties. Todorov and Bollerslev

(2010) formulate a two-factor model for financial asset prices that allows them to disentangle and es-

timate assets’ exposure to the diffusive and the jump components of the market systematic risk. And

more recently, with an application to market completeness, Jacod and Podolskij (2013) have outlined

a test for maximal rank of the spot volatility matrix.

The literature on bootstrap methods for multivariate high-frequency volatility measures includes

Dovonon, Gonçalves, and Meddahi (2013) who propose a non-parametric i.i.d. bootstrap to approx-

imate the distribution of the so-called realized beta and realized correlation between assets. Gener-

alizing the work of Hounyo, Gonçalves, and Meddahi (2017) to multivariate settings, Hounyo (2017)

proposes a wild blocks of blocks bootstrap for estimating the distribution of various estimators of the

integrated covariance matrix. Note that, as already mentioned, a naive application of the bootstrap

method of Hounyo (2017) does not lead to a valid test of the eigenvalue structure of IV because of the

mismatch with the eigenvalue structure of the estimated IV. Nevertheless, we show that the first-order

asymptotic approximation of our test statistics can be validly bootstrapped. Variants of the blocks of

blocks bootstrap method have been proposed that consistently estimate the asymptotic distribution

of our test statistics related to IV. This result is further extended to the spot variance matrix. This

extension, however, is not straightforward as it requires additional laws of large numbers for functions

of successive local returns that we provide and that may be of additional independent interest.

The finite sample properties of the results obtained have been investigated by a Monte Carlo sim-

ulation study in which several data generating processes have been considered as well as different

sampling frequencies and small and large cross-section dimensions. The results reveal that the boot-

strap test has a very good size and power performance. We also report the rejection rates based on

the standard asymptotic chi-squared test, which is valid only if the underlying process is continuous

Lévy. It turns out that the latter systematically over rejects the null except, as expected, in the case

of non-Lévy dynamics. We outline a case study using high frequency data for the cross section of

the one hundred most actively traded constituents of the S&P 500 to build candidate factors and test

them against the cross section of all available listed US equities in the CRSP stock universe.

The structure of this paper is as follows. Section 2 presents the theoretical framework and outlines

the relevant existing results. In Section 3, the likelihood ratio test statistics are derived for the test of

equality of eigenvalues in the case of continuous Lévy process and their asymptotic distributions pro-

vided under general dynamics. This section also features the test of proportion of volatility supported

by the main principal components. We conclude the section with an analysis of eigenvalue structure

of the correlation matrix. Section 4 presents our bootstrap methodologies and establishes their va-
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lidity. Section 5 extends the results to the spot variance matrix. It develops both the asymptotic

and bootstrap-based inference for the eigenvalue structure of spot variance matrix estimated using

high-frequency data. The Monte Carlo experiments are reported in Section 6. In Section 7 we present

an illustration of the analysis on five minute data for the 100 most actively traded stocks from the

S&P 500. Concluding remarks on the scope of the tests are provided in Section 8.

2 Set-up and existing results

Let X be a q-dimensional Itô semimartingale defined on (Ω,F , (Ft)t≥0,P), a filtered probability space,

with Grigelionis decomposition:

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + (δ1{‖δ‖≤1}) ? (µ− ν)t + (δ1{‖δ‖>1}) ? µt, (1)

where W is a q-dimensional Wiener process, µ is a Poisson measure with compensator ν(dt, dz) =

dt ⊗ λ(dz), with λ the Lebesgue measure on Rq; δ is a real function on Ω × R+ × Rq, and σs is the

volatility process. We let cs = σsσ
>
s denote the spot variance matrix. We assume that X satisfies the

following assumption for some r ∈ [0, 2]:

Assumption (H-r). bt is locally bounded and σt is càdlàg, and ‖δ(ω, t, z)‖∧1 ≤ γn(z) for all (ω, t, z)

with t ≤ τn(ω), where (τn) is a localizing sequence of stopping times and each function γn satisfies∫
γn(z)rλ(dz) <∞.

The process X represents the vector of log-prices of q assets that we assume are observed at regular

time interval ∆n over a time period [0, T ]. The main objects of interest in this paper are the spot

variance matrix at date t, ct and the integrated covariance matrix of X over the time interval [0, T ]

IVT =

∫ T

0
csds,

which corresponds to the quadratic variation (QV) of the continuous part Xc of the process X at time

T , that is IVT = [Xc, Xc]T , where Xc
t = X0 +

∫ t
0 bsds +

∫ t
0 σsdWs. Let ∆i

nX = Xi∆n −X(i−1)∆n
be

the log-return process over ((i−1)∆n, i∆n] for i = 1, . . . , n ' bT/∆nc, where bxc is the largest integer

smaller or equal to x. The integrated covariance matrix IVT is estimated by

ÎV
n

=

bT/∆nc∑
i=1

(∆i
nX)(∆i

nX)′1{‖∆i
nX‖≤α∆$

n }, (2)

for some α > 0 and $ ∈ (0, 1
2). Under mild conditions, it is shown that ÎV

n
is a consistent estimator

of IVT where the setting of asymptotic analysis is the so-called infill asymptotics in which prices are

supposed to be sampled more and more often over the same time interval [0, T ], i.e. ∆n → 0. The spot

variance matrix at t is estimated by a local version of ÎV
n
. Let i ∈ N be such that t ∈ ((i−1)∆n, i∆n]
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and kn a sequence of integers such that kn →∞ and kn∆n → 0 as n→∞. Define:

ĉ(t, kn) =
1

kn∆n

kn−1∑
m=0

(∆n
i+1+mX)(∆n

i+1+mX)′1{‖∆n
i+1+mX‖≤α∆$

n }. (3)

Jacod and Protter (2012, Th. 9.3.2) establish that ĉ(t, kn) is consistent for ct as n→∞.

Our interest resides in the asymptotic distribution of the characteristic roots and vectors of ĉ(t, kn)

and ÎV
n

and tests for equality of all or some roots of their respective limits. These tests are useful to

carry out inference on the importance of principal components of ct as determined by its eigenvectors.

They are also useful to test for some specific factor decomposition of ct. Even though the principal

component interpretation of the eigenvectors of IVT is not meaningful when ct is not constant over

t ∈ [0, T ], we make these tests available for IVT as they may be incidentally of interest for some

statistical analysis. We next introduce some existing results that provide the groundwork for our main

contributions that appear in the next section.

The asymptotic behaviour of ÎV
n

is well-known [(see e.g. Aı̈t-Sahalia and Jacod, 2014, Th. A.16)].

If Assumption (H-r) holds for some r ∈ [0, 1) and the truncation level $ ∈
[

1
2(2−r) ,

1
2

)
, then

1√
∆n

(
ÎV

n − IVT
)
L−s−→WT , (4)

whereWT is a random vector defined on an extension of the original probability space and conditionally

on F , is Gaussian with conditional mean 0 and conditional variance covariance given by

E
(
Wuv
T Wkl

T

∣∣∣F) =

∫ T

0

(
cuks c

vl
s + culs c

vk
s

)
ds, (5)

with u, v, k, l = 1, . . . , q. ‘L-s’ stands for convergence stable in distribution. We refer to Aı̈t-Sahalia

and Jacod (2014, Section 3.2) for further details on this mode of convergence.

The asymptotic normality of ĉ(t, kn) is established by Jacod and Protter (2012, Th. 13.3.3). Under

A.1 in Appendix, we have:

√
kn(ĉ(t, kn)− ct) L−s−→ Zt, (6)

where Zt is a random vector defined on an extension of the original probability space and conditionally

on F , is Gaussian with conditional mean 0 and conditional variance covariance given by

E
(
Zuvt Zklt

∣∣∣F) = cukt c
vl
t + cult c

vk
t ,

with u, v, k, l = 1, . . . , q.

Let Mq denote the Euclidean space of all q × q real-valued symmetric matrices, and M+
q (M++

q )

the subset of all positive semidefinite (definite) elements of Mq. Most of the quantities of interest

in this paper are continuously differentiable functions of the integrated variance matrix or the spot

variance matrix. Thus, using the delta method, the large sample behaviour of their estimators can be

based on (4) or (6). For this, let ϕ be a generic function defined on M+
q with value in Rr. Assuming
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that ϕ is continuously differentiable on the support of θ0 = IVT (or ct), we have:

1√
∆n

(
ϕ
(
θ̂
)
− ϕ (θ0)

)
L−s−→Wϕ, (7)

with θ̂ = ÎV
n

(or ĉ(t, kn)) and where, similarly to WT (or Zt), Wϕ is defined on an extension of the

original probability space and, conditionally on F is centered Gaussian with conditional covariance

matrix given by:

E
(
WϕWϕ′ |F

)
=

q∑
u,v,k,l=1

(
∂ϕ(M)

∂Muv

∣∣∣∣
M=θ0

)
V (u, v, k, l)

(
∂ϕ(M)

∂Mkl

∣∣∣∣
M=θ0

)′
, (8)

where V (u, v, k, l) =
∫ T

0

(
cuks c

vl
s + culs c

vk
s

)
ds for θ0 = IVT and V (u, v, k, l) = cukt c

vl
t + cult c

vk
t for θ0 = ct.

Let λ denote the eigenvalue function defined on M+
q , with nonincreasing elements and value in a

suitable subset of Rq. Let A ∈ M+
q with r clusters Lk (for k = 1, . . . , r) of qk-repeated eigenvalues

with common values λk, where Lk is the collection of the ranks of eigenvalues (sorted from largest to

smallest) of A equal to λk. The components of λ(A) ≡ (δi)1≤i≤q have the structure:

δ1 = δ2 = · · · = δq1 = λ1,

δq1+1 = δq1+2 = · · · = δq1+q2 = λ2,
...

δq−qr+1 = δq−qr+2 = · · · = δq = λr,

(9)

with λ1 > λ2 > · · · > λr. The eigenvalue function λ(·) is locally Lipschitz continuous on M+
q and

differentiable only at points A of M+
q with no repeated eigenvalues, i.e. r = q [see Tao, 2012]. Nev-

ertheless, some relevant functions of λ(·) are differentiable. Consider again A ∈ M+
q with eigenvalue

structure given by (9). It is known - see e.g. Chu (1990) and Corollary 3.11 of Hiriart-Urruty and Ye

(1995) - that there exists a neighborhood of A on which, for k = 1, . . . , r, the functions:

ϕk : M ∈M+
q 7→ ϕk(M) =

qk∑
i=1

λιk−1+i(M),

with ι0 = 0 and ιk =
∑k

i=1 qi, are continuously differentiable. Note that ϕk is the sum of eigenvalues

with ranks in the same cluster Lk. Assuming that θ0 = IVT or ct has an eigenvalue structure given

by (9), Aı̈t-Sahalia and Xiu (2019) consider the function:

ϕλ(M) =

(
1

q1
ϕ1(M),

1

q2
ϕ2(M), . . . ,

1

qr
ϕr(M)

)′
(10)

and establish that:
1√
∆n

(
ϕλ
(
θ̂
)
− ϕλ(θ0)

)
L−s−→Wϕλ , (11)
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where Wϕλ is defined similarly to Wϕ with

∂ϕλk(M)

∂M

∣∣∣∣
M=θ0

=
1

qk
UT,qk−1+1:qkU

′
T,qk−1+1:qk

, k = 1, . . . , r,

with UT being any orthogonal matrix such that U ′T θ0UT = diag(λ1(θ0), . . . , λq(θ0)), where, for u ∈ Rq,
diag(u) is the diagonal matrix of size q with u as main diagonal.

If for some i ∈ {1, . . . , q}, λi(θ0) is a simple eigenvalue, the function γi(A) returning the i-th

normalized eigenvector of A defines, up to the sign2, a differentiable function in a neighborhood of θ0

(see Magnus, 1985, Th. 1). Aı̈t-Sahalia and Xiu (2019) show that:

1√
∆n

(
γi

(
θ̂
)
− γi(θ0)

)
L−s−→Wγi , (12)

where Wγi is defined similarly to Wϕ with

∂γi(M)

∂(vec[M ])′

∣∣∣∣
M=θ0

= γi(θ0)′ ⊗ [λi(θ0)Iq − θ0]+ ,

where A+ is the Moore-Penrose inverse of A and vec[M ] is the standard vectorizing operator that

transforms the matrix M into a vector by stacking its columns.

3 Testing the eigenvalue structure of Integrated Covariance

The results in the previous section take the structure of the eigenvalues of θ0 = IVT or, ct - such as

the one in (9) - as known to the researcher. In particular, the rank and multiplicity of the eigenvalues.

In this case, confidence intervals can be built for eigenvalues or their average along the framework of

Aı̈t-Sahalia and Xiu (2019) as recalled. These results can also be used to test some restriction on the

true eigenvalues, and such a test would be asymptotically valid if the maintained eigenvalue structure

is correct. However, this structure is not known in general. Our aim in this section is to introduce a

test for this purpose. Our focus throughout is on IVT while tests related to spot variance matrix ct are

shown in Section 5. It is a well-known fact that - unlike for the spot variance matrix - the eigenvectors

of the integrated volatility (barring the case of constant volatility) have no clear connection to the

principal components of the price process. Nevertheless, we first analyze IVT since this allows us to

set up the useful statistics that we subsequently apply to ct. We further propose a test to investigate

whether a given set of factors “explains” at least a certain proportion of integrated variance in the

continuous part of the process X (vectors of log-prices). An extension to tests for eigenvalue structure

of correlation matrices is also provided.

To build a test for eigenvalue structure, we first consider a simpler version of the stochastic process

X in (1). Namely, we assume that X is a continuous Lévy process, that is δ ≡ 0 and bs ≡ b and σs ≡ σ
are constant. This gives rise to a parametric model in which ∆i

nX (for i = 1, . . . , n) are independent

and identically distributed N(∆nb,∆nc), with c = σσ′ and IVT = Tc = Tσσ′.

2If the first nonzero element of γi(θ0) is its hth entry, then restricting the hth entry of γi(·) to be nonnegative makes
this a well-defined function in a neighborhood of θ0.
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By definition, the eigenvalues of IVT are then T times those of c whereas the corresponding

eigenvectors are the same. Even though the variance of ∆i
nX tends to zero with the sample size,

the fact that they are independent and normally distributed allows us to draw from the work of

Anderson (1963) to build the aforementioned tests. In the case of more complex dynamics for X

than continuous Lévy, the same test statistics will be used and their asymptotic distributions will be

derived. These asymptotic distributions are typically untractable as we shall see, which motivates the

bootstrap approximations that will be proposed in the next section.

Under the assumption of continuous Lévy dynamics, the likelihood function of the model in terms

of b and c is given by

L(b, c) = (2π∆n)−
qn
2 |c|−n2 exp

(
− 1

2∆n
tr

(
c−1

n∑
i=1

(∆i
nX −∆nb)(∆

i
nX −∆nb)

′

))
,

where |c| is the determinant of c and tr is the usual trace operator. It is not hard to see that the

maximum likelihood estimators of b, c and IVT are:

b̃ =
1

n∆n

n∑
i=1

∆i
nX, c̃ =

1

n∆n

n∑
i=1

(
∆i
nX −∆nb̃

)(
∆i
nX −∆nb̃

)′
and ĨV

n
= T c̃, (13)

with n = bT/∆nc. We will make throughout the standard simplifying assumption that T/∆n is an

integer. Note that b̃ is an unbiased estimator of b while c̃ is a consistent estimator of c. The log-

likelihood of this model can also be expressed in terms of the eigenvalues of Tc, i.e. IVT with the

restriction that the latter has the eigenvalue structure in (9). The log-likelihood maximized in the

direction of b is

−qn
2

log(2π∆n)− n

2
log |c| − 1

2∆n
tr(n∆nc

−1c̃).

Hence, up to a constant independent of the model parameters, the log-likelihood is equal to

−n
2

log |IVT | −
n

2
tr
(

(IVT )−1ĨV
n
)
.

This is a similar expression to that of Equation (3.2) of Anderson (1963) and by the same arguments

as his leading to his Equation (3.5), we can claim that, up to a constant (in model parameters) term,

the log-likelihood of the model in terms of eigenvalues of IVT is given by

logL(λ1, . . . , λr) = cst− n

2

r∑
k=1

qk log λk −
n

2

r∑
k=1

∑
i∈Lk

d̃i
λk
, (14)

where d̃ = λ
(
ĨV

n
)

is the vector of eigenvalues of ĨV
n
. We have the following result:

Proposition 3.1. Let X be a continuous Lévy process.

(a) If the characteristic roots of IVT are λ1 > · · · > λr > 0 with multiplicities q1, . . . , qr, respectively,

the maximum likelihood estimate of λk is: λ̂k = 1
qk

∑
i∈Lk

d̃i; (k = 1, . . . , r), where Lk =

{q1 + · · ·+ qk−1 + 1, . . . , q1 + · · ·+ qk}.
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(b) The likelihood ratio criterion for testing the roots of IVT with rank indexes in Lk:

H0 : δq1+···+qk−1+1 = · · · = δq1+···+qk = λk,

where λk is unknown, i.e. the kth row in the eigenvalue structure (9), is given by

˜̀
k =

∏
i∈Lk

d̃i

/q−1
k

∑
j∈Lk

d̃j

qk


n
2

. (15)

(c) The likelihood ratio test statistic for H0 is L̃Rk = −2 log ˜̀
k and is asymptotically distributed as

a χ2
1
2

(qk−1)(qk+2)
. If δq1+···+qk−1+1 6= δq1+···+qk , then L̃Rk →∞, in probability.

(d) The likelihood ratio criterion for testing: H0(λ) : δq1+···+qk−1+1 = · · · = δq1+···+qk = λ, with λ

specified is given by

˜̀
k,λ =


∏
i∈Lk

d̃i

λqk


n
2

exp

−n
2

∑
i∈Lk

d̃i
λ
− qk

 (16)

and, under the null, the likelihood ratio test statistic L̃Rk,λ = −2 log ˜̀
k,λ is asymptotically dis-

tributed as a χ2
1
2
qk(qk+1)

. Under the alternative, L̃Rk,λ →∞, in probability.

The proof of Proposition 3.1 is relegated to the appendix and is an adaptation of the result of

Anderson (1963) to the infill asymptotics framework that we consider with ∆n → 0. Interestingly, the

chi-squared asymptotic distributions obtained for the likelihood ratio test statistics in Parts (c) and

(d) under the null hypothesis are the same as those derived by Anderson (1963) for the case where

the sample is assumed to be independent and identically normally distributed with fixed variance. To

give an intuition of the obtained result, let Γ be the matrix of normalized eigenvectors of IVT :

Γ′IVTΓ = ∆ and Γ′Γ = Iq, (17)

where ∆ is the diagonal matrix containing δ1 ≥ · · · ≥ δq > 0, the eigenvalues of IVT satisfying the

structure in (9). The asymptotic distribution of L̃Rk and L̃Rk,λ in Parts (c) and (d) of Proposition

3.1 are deduced from the asymptotic distribution, say U, of

Ũ =
1√
∆n

(
Γ′ĨV

n
Γ−∆

)
as we show that

L̃Rk =
T

2λ2
k

2
∑

i<j;i,j∈Lk

ũ2
ij +

∑
i∈Lk

ũ2
ii −

1

qk

∑
i∈Lk

ũii

2+ oP (1),

and

L̃Rk,λ =
T

2λ2

 ∑
i,j∈Lk

ũ2
ij

2

+ oP (1),

10



where ũij are entries of Ũ . We also show that the limit distribution U of Ũ has its entries uij

that are such that uij = uji, and {uij , j ≤ i} are pairwise independent with uii ∼ N(0, λ2
k/T ) and

uij ∼ N(0, 2λ2
k/T ), for i < j which yields the claimed distributions. Hence, likelihood ratio test

statistics obtained using eigenvalues of any estimator of IVT that is asymptotically equivalent to ĨV
n

would be asymptotically equivalent to L̃Rk and L̃Rk,λ, respectively. In particular, as established in

an appendix, we have:

1√
∆n

(
ĨV

n − IV n
)

= oP (1) and
1√
∆n

(
ĨV

n − ÎV n
)

= oP (1), (18)

where IV
n

=
∑n

i=1(∆i
nX)(∆i

nX)′ and ÎV
n

is given by (2). This ensures that 1√
∆n

(
Γ′IV

n
Γ−∆

)
and

1√
∆n

(
Γ′ĨV

n
Γ−∆

)
are asymptotically equivalent to Ũ implying that likelihood ratio test statistics

using related eigenvalues have the same asymptotic distribution as in (c) and (d). The last statements

in (c) and (d) emphasize the consistency of the respective tests.

It is worth mentioning that several lines (eigenvalues clusters) of (9) can jointly be tested. The

corresponding likelihood ratio criterion for such a joint hypothesis is simply the product of likelihood

ratio criterions ˜̀
k’s over relevant values of k and the asymptotic distribution of the resulting likelihood

ratio test statistic is chi-squared with degrees of freedom equal to the sum over the relevant k’s of
1
2(qk − 1)(qk + 2). Several lines can also be tested likewise if λk’s are specified for each of them.

Remark 1. Note that the researcher may be interested in testing whether two adjacent eigenvalues

(say the third and fourth largest) are equal. Proposition 3.1 provides asymptotically exact tests in this

context only if, under the null, the second and fifth (if available) largest eigenvalues are different from

the third and fourth. One does not expect the researcher to be aware of this specific structure which

may not even hold.

In general, if one is testing the equality of p < qk eigenvalues with rank indices in L p
k ( Lk, letting

L̃Rk(p) be the test statistic for this null hypothesis, the test would be asymptotically correct only if

lim
n
P
(
L̃Rk(p) > χ2

1
2

(p−1)(p+2),1−α

)
≤ α, (19)

for any relevant nominal level α; where χ2
1
2

(p−1)(p+2),1−α is the critical value of the test. Our Simulation

results in Section 5 indicate that these tests are conservative, thereby pointing towards the validity of

(19). We save a formal proof of this result for future research3 since this may be involved.

Remark 2. One may want to investigate whether a certain cluster of eigenvalue is a singleton. That

is qk = 1 for a given k = 1, . . . , r. This can be done by testing H0 : qk 6= 1 against H1 : qk = 1. If

1 < k < r, H0 ≡ H01 ∨H02 with H01 : δq1+···+qk−1 = δq1+···+qk and H02 : δq1+···+qk = δq1+···+qk+1. Note

that H0 ≡ H01 if k = r and H0 ≡ H02 if k = 1. In case 1 < k < r, to test H0 at a level α, it suffices

to test both H01 and H02 at the level α/2. Rejection of H01 and H02 amounts to rejection of H0.

We now turn our attention to more general dynamics of the process X. We assume that X has

3In fact, we can establish that L̃Rk(p) < L̃Rk except for (d̃q1+···+qk−1+1, . . . , d̃q1+···+qk ) lying in a Rqk -subset of

Lebesgue measure 0. To claim (19), it would be sufficient to show that the gap L̃Rk − L̃Rk(p) is at least as large as
χ2

1
2
(qk−1)(qk+2),1−α − χ2

1
2
(p−1)(p+2),1−α with large probability.

11



the Itô semimartingale representation in (1), and we aim to use the likelihood ratio test settings

in Proposition 3.1 to carry out inference about the eigenvalue structure of the quadratic variation

over the time interval [0, T ] of the continuous part of X, that is IVT . As already mentioned, IVT is

consistently estimated by ÎV
n

in (2), which is the sum of outer product of returns after removing

jumps by truncation.

Let d = λ
(
ÎV

n
)

be the estimator of δ = λ (IVT ), the eigenvalues of IVT . Let `k and `k,λ be the

same as ˜̀
k and ˜̀

k,λ in (15) and (16), respectively, with d̃ replaced by d, and let LRk = −2 log `k and

LRk,λ = −2 log `k,λ.

We next derive the asymptotic distributions of LRk and LRk,λ. Note that, the representation of

X being only partially parametric implies that `k and `k,λ cannot in general enjoy the interpretation

of likelihood ratio criteria. Nevertheless, these test statistics can be relied upon once we are able to

characterize their asymptotic distributions under the null hypothesis.

To obtain the asymptotic distribution of LRk and LRk,λ, let Γ be the orthogonal matrix of nor-

malized eigenvectors of IVT and ∆ be the diagonal matrix of eigenvalues of IVT , respectively [see

Equation (17)]. From (4) and using the delta method, we have:

1√
∆n

(
Γ′ÎV

n
Γ−∆

)
L−s−→ UT , (20)

where UT = Γ′WTΓ and WT is given by (4). We have the following result.

Theorem 3.1. Let X be an Itô semimartingale represented by (1). If Assumption (H-r) holds for

some r ∈ [0, 1) and the truncation level $ ∈
[

1
2(2−r) ,

1
2

)
, then:

(a) Under H0 as in Proposition 3.1(b), LRk
L−s−→ T

2λ2k

(
tr(U2

kk)− 1
qk

(tr(Ukk))2
)
, where Ukk is the

(qk, qk)-submatrix of UT at the intersection of the (q1+· · ·+qk−1+1)-th through the (q1+· · ·+qk)-
th rows and columns.

(b) Under the alternative (i.e. if H0 does not hold), LRk →∞, in probability.

(c) Under H0(λ) as in Proposition 3.1(d), LRk,λ
L−s−→ T

2λ2
tr(U2

kk) and under the alternative,

LRk,λ →∞, in probability.

Theorem 3.1 generalizes the results in Proposition 3.1(c,d) to the class of Itô semimartingales.

The asymptotic distributions of LRk and LRk,λ are no longer guaranteed to be pivotal as previously.

Indeed, they depend on nuisance parameters such as the common value λk of the relevant cluster of

eigenvalues of IVT , the conditional variance-covariance matrix of WT which is equal to
∫ T

0 (cils c
jm
s +

cims cjls )ds, for i, j, l,m = 1, . . . , q and the matrix Γ of normalized eigenvectors of IVT .

As already mentioned, λk is consistently estimated by 1
qk

∑
i∈Lk

di. Estimators of the conditional

variance of WT have been proposed by Barndorff-Nielsen and Shephard (2004); see also Jacod and

Protter (2012) for jump robust estimators. If Γ can be consistently estimated, then this asymptotic

12



distribution can be simulated to generate critical values for inference. However, the presence of

multiple roots makes it impossible to consistently estimate Γ even if the identifying restriction that

the elements of its main diagonal are positive is maintained. Nevertheless, the fact that only the trace

of Uhkk, for h = 1, 2, is useful for these asymptotic distributions offers some possibility of simulating

these distributions as we describe below.

Write Γ = (Γ1 · · · Γr), where Γk, for k = 1, ..., r, corresponds to the eigenvectors associated

to the sorted eigenvalues with rank indexes in the cluster Lk so that Ukk = Γ′kWTΓk. Consider

An = Γ′ÎV
n
Γ and Ê the matrix of its normalized eigenvectors with main diagonal elements restricted

to be nonnegative. An and ÎV
n

have the same set of eigenvalues and Γ̂ = ΓÊ is a matrix of normalized

eigenvectors of ÎV
n
.

Write Ê = (Êkl)1≤k,l≤r, where, for k, l = 1, . . . , r, Êkl is a block (qk, ql)-submatrix of Ê at the

intersection of its rows and columns in Lk and Ll, respectively. Proposition A.1 in Appendix A.3

shows that Êkl = oP (1) for k 6= l and ÊkkÊ
′
kk = Iqk + oP (1). Thus, writing Γ̂ =

(
Γ̂1 · · · Γ̂r

)
with Γ̂k

defined similarly to Γk (k = 1, . . . , r), we have

Γ̂ = ΓÊ, and Γ̂k = ΓkÊkk + oP (1). (21)

Even though Γ̂ is not a consistent estimator of Γ (unless qk = 1), this estimator is useful to consistently

simulate the asymptotic distribution of LRk and LRk,λ. Indeed, (21) implies that(
Γ̂′kWT Γ̂k

)h
= Ê′kk

(
Γ′kWTΓk

)h
Êkk + oP (1), for h = 1, 2,

which, in turn, implies that

tr

[(
Γ̂′kWT Γ̂k

)h]
= tr

(
Uhkk
)

+ oP (1).

It follows that, if one can simulate from the distribution of WT (or its approximate distribution if

the variance WT is estimated), Γ̂k can be used to obtain consistent simulations from the distribution

of tr(Uhkk), which in turn can be used to generate asymptotically valid critical values for the tests of

interest.

Despite it’s usefulness, this direct simulation approach is anticipated to be quite computationally

tedious to implement and possibly inaccurate due to the presence of many nuisance parameters re-

quiring estimation. This motivates the bootstrap approach that we introduce in the next section as

an alternative. Next, we discuss an application of the tests presented in Theorem 3.1 beyond their

usefulness for the characterization of the eigenvalue structure in (9).

Test for the ratio of ‘unexplained’ volatility. By analogy with the principal component analysis

of variance matrices, it is of interest to quantify the proportion of volatility (or quadratic variation)

captured by the principal components of Xc - the continuous part of X - associated to the largest

eigenvalues of IVT . Formally, given a ratio π ∈ (0, 1), we would like to test whether the total amount

of volatility not captured by the first Q-principal components does not exceed π. This can be stated

13



as:

H0π :

q∑
i=Q+1

δi ≤ π
q∑
i=1

δi, (22)

where δ = λ(IVT ) is the vector of eigenvalues of IVT . Let us consider the test statistic Zn defined as

follows:

Zn =
1√
∆n

 q∑
i=Q+1

di − π
q∑
i=1

di

 , (23)

where d = λ
(
ÎV

n
)

. We have the following result.

Theorem 3.2. Let X be an Itô semimartingale represented by (1). Assume that Assumption (H-r)

holds for some r ∈ [0, 1) and the truncation level $ ∈
[

1
2(2−r) ,

1
2

)
. Assume that δQ > δQ+1 and let

π ∈ (0, 1).

(a) If H0π holds with equality, then Zn
L−s−→ Z ≡ tr (UQ+1:q,Q+1:q;T ) − π · tr (UT ) , where UT is

defined in Equation (20) and UQ+1:q,Q+1:q;T is the bottom right (q − Q, q − Q)-submatrix of UT
determined by its last q −Q rows and columns.

(b) If H0π holds with strict inequality, then

lim
n
P (Zn > c1−α) = 0,

with α ∈ (0, 1) and c1−α is the (1− α)-quantile of Z.

(c) If H0π does not holds, then Zn →∞, in probability.

Theorem 3.2 derives the asymptotic distribution of Zn when the exact ratio of unexplained volatility

is π. If X is a continuous Lévy process, this asymptotic distribution is a centered Gaussian with

variance derived from the result in Equation (A.14) in Appendix A.3:

2

T
(1− π)2

k1−1∑
k=1

qkλ
2
k +

2

T
π2

r∑
k=k1

qkλ
2
k,

where k1 is such that Q+1 ∈ Lk1 . Even in the simple case of Lévy process, this asymptotic distribution

is not pivotal in general and its simulation presents a similar challenge as that discussed at Theorem

3.1. Direct simulation can be performed from some approximation of the distribution of tr(UT ) and

tr(UQ+1:q,Q+1:q;T ) using the matrix Γ̂ of normalized eigenvectors of ÎV
n
. If approximate copies of WT

can be generated, then the equalities

tr(Γ̂′WT Γ̂) = tr(UT ) + oP (1) and tr(Γ̂′Q+1:q,Q+1:qWT Γ̂Q+1:q,Q+1:q) = tr(UQ+1:q,Q+1:q;T ) + oP (1)

provide useful copies of tr(UT ) and tr(UQ+1:q,Q+1:q;T ). However, as already mentioned, simulating from

the distribution of WT can be tedious and one shall rely on the bootstrap method that we propose
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in the next section. The divergence to infinity of Zn under the alternative guarantees that the test is

consistent.

We close this section by noting that the principal component factors are estimated by linear com-

binations of the jump-filtered returns process using, as usual, eigenvectors associated to the largest

eigenvalues.

Eigenvalue structure in correlation. Correlation matrices are insensitive to linear transformations

of data and this makes them more appealing than variance matrices for principal component analysis

in many applications. We derive similar results to those in Theorem 3.1 for testing the eigenvalue

structure of correlation matrices. Let X be an Itô semimartingale described by (1) with integrated

variance IVT over [0, T ]. We define the correlation matrix RT of X over [0, T ] by

RT = G(IVT ), (24)

where G : M++
q → M++

q and ∀A ∈ M++
q , G(A) = S(A)AS(A), with S(A) is the diagonal matrix

with diagonal elements 1/
√
Aii, for i = 1, . . . , q.

Since G is differentiable, R̂n ≡ G(ÎV
n
) is a consistent estimator of RT , and thanks to (7), we have

1√
∆n

(
R̂n −RT

)
L−s−→WG

T , (25)

with WG
T defined as in Equation (7) for ϕ = G. We propose a test of eigenvalue structure of the

correlation matrix RT using the same statistics as those used for IVT . Assume that RT has an

eigenvalue structure as in (9), and let LRρk and LRρk,λ be defined as LRk and LRk,λ, respectively, but

using d = λ
(
R̂n
)

as estimator of the vector of eigenvalues δ of RT .

Let Γρ be the (q, q)-orthogonal matrix such that Γρ
′
RTΓρ = ∆ρ, where ∆ρ is the diagonal matrix

with diagonal elements equal to the eigenvalues δi’s of RT . By the delta method and using (25), we

can claim that
1√
∆n

(
Γρ
′
R̂nΓρ −∆ρ

)
L−s−→ UρT , (26)

where UρT = Γρ
′WG

T Γρ. We can state the following result.

Theorem 3.3. Assume that the conditions of Theorem 3.1 hold. Then the results (a), (b) and (c) of

Theorem 3.1 also hold when LRk, LRk,λ and Ukk are replaced by LRρk, LRρk,λ and Uρkk, respectively,

with H0 and H0(λ) involving restrictions on the eigenvalues of RT .

A similar application to the test for the ratio of unexplained volatility also extend to the correlation

matrix RT with the same testing procedures as those described for IVT . As in Theorem 3.1, the

asymptotic distributions provided in Theorem 3.3 are non standard and difficult to simulate directly.

The bootstrap methods that we introduce next provide a useful alternative.

15



4 The bootstrap

This section introduces bootstrap methods for testing eigenvalue structure of the integrated variance

matrix IVT and correlation matrix RT . These methods are of a particular interest when the price vector

process follows a general form of Itô semimartingale dynamics. As already pointed out, the asymptotic

distribution of the test statistics presented by Theorems 3.1, 3.2 and 3.3 have nuisance parameters that

are costly to estimate. Although we focus on IVT and RT in this section, the techniques developed

are also useful to spot variance matrix ct as we will see in the next section.

We observe that all the statistics of interest for IVT and RT are functions of the integrated co-

variance matrix estimator ÎV
n
. Therefore, an important step towards bootstrapping these statistics

consists in bootstrapping ÎV
n

itself. The asymptotic distribution of estimators of IVT and some of its

functions have been object of approximation by bootstrap in recent literature. Dovonon, Gonçalves,

and Meddahi (2013) have applied the non-parametric i.i.d. bootstrap to approximate the distribution

of the so-called realized beta and realized correlation between assets. However, as they point out,

the non-parametric i.i.d. bootstrap is not capable, in general, of reproducing the exact asymptotic

distribution of estimators of IVT . Hounyo (2017) has generalized to the multivariate setting the idea

of wild blocks of blocks bootstrap of Hounyo, Gonçalves, and Meddahi (2017), which is of interest

to us. While standard bootstrap methods focus on sampling point-wise returns, the wild blocks of

blocks bootstrap of Hounyo (2017) samples the summands of ÎV
n

and, thereby, reproduces its exact

asymptotic distribution. Note that the bootstrap method of Hounyo (2017) is designed to approximate

the asymptotic distribution of estimators of IVT that are robust to market microstructure noise with

asynchronous data. The complexity of his data structure and model justifies the fact that he resorts

to block bootstrap schemes.

We utilize the method in Hounyo (2017) to bootstrap ÎV
n
. Since we are concerned with syn-

chronous price observations that depart from noisy environments, we rely on a version of the wild

bootstrap that does not involve blocks. Even though - for simplicity of exposition - we do not account

for noise and non-synchronicity in this paper, the test statistics that we introduce in the previous

section can be based on noise robust estimators of IVT . In this case, we shall rely on the full wild

blocks of blocks bootstrap method of Hounyo (2017) to obtain an accurate estimation of the asymp-

totic distributions. To introduce the wild bootstrap for ÎV
n
, we first introduce some notation. For

i = 1, . . . , n, let

yi = ∆n
i X1{‖∆n

i X‖≤α∆$
n }, Zi = yiy

′
i

and ηi, for i = 1, . . . , n be a sequence of independent and identically distributed random variables that

are all independent of yi’s and such that E(ηi) = 1 and V ar(ηi) = 1/2. Consider the wild bootstrap

sample Z∗i (i = 1, . . . , n) of Zi (i = 1, . . . , n) which is given by

Z∗i = Zi+1 + (Zi −Zi+1)ηi if i = 1, . . . , n− 1, and Z∗n = Zn. (27)

Let ÎV
∗n

=
∑n

i=1Z∗i be the bootstrap analogue of ÎV
n

and let

S∗n =
1√
∆n

(
ÎV
∗n − ÎV n

)
be the bootstrap analogue of Sn =

1√
∆n

(
ÎV

n − IVT
)
.
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Under some regularity conditions, we can show that S∗n has the same asymptotic distribution as

Sn under the bootstrap measure making the wild bootstrap first-order asymptotically valid. Before

stating this result formally in Proposition 4.1 below, we first recall the following standard notation

related to the bootstrap theory. We let P ∗, E∗ and V ar∗ denote the probability measure, the expected

value and the variance, respectively, induced by the bootstrap resampling conditional on the original

sample. Let Y ∗n be a sequence of bootstrap statistics indexed by n. We say that Y ∗n
P ∗→ 0 in prob-P

(also denoted by Y ∗n = oP ∗ (1) in prob-P ) if, for any ε > 0, P ∗ (|Y ∗n | > ε)→ 0 in probability as n→∞.

Similarly, we say that Y ∗n = OP ∗ (1) in prob-P if supn P
∗ (|Y ∗n | > M) → 0 in probability as M → ∞.

Finally, we write Y ∗n
d∗→ Y in prob-P if, conditionally on the sample, Y ∗n converges weakly to Y under

the measure P ∗ and this for all sample contained in a set with probability P converging to one. ‘vech’

denotes the half-vectorization operator that stacks the lower-triangle part of a matrix into a vector.

We can claim the following result.

Proposition 4.1. Let X be an Itô semimartingale represented by (1). If Assumption (H-r) holds for

some r ∈ (0, 1), $ ∈ [ 1
2(2−r) ,

1
2), and E|ηi|2+ε <∞ for some ε > 0. Then

supx∈Rq(q+1)/2 | P ∗ (vech(S∗n) ≤ x)− P (vech(Sn) ≤ x) | P
∗
−→ 0, in probability.

Let ϕ :M+
q → Rk be a smooth function and let

Tn =
1√
∆n

(
ϕ
(
ÎV

n
)
− ϕ(IVT )

)
and T ∗n =

1√
∆n

(
ϕ
(
ÎV
∗n)− ϕ(ÎV n

))
.

Tn converges stably in law to Wϕ
T [see Equation (7)] with

Wϕ
T =

q∑
u,v=1

∂ϕ(M)

∂Muv

∣∣∣∣
M=IVT

WT,uv,

with WT defined in (4) and (5). The next result derives from Proposition 4.1 by the application of

the delta method. In particular, it states that Tn and T ∗n have the same asymptotic distribution.

Corollary 4.1. Under the same conditions as Proposition 4.1, if Wϕ
T has a continuous distribution

on Rk, then supx∈Rk |P ∗(T ∗n ≤ x)− P (Tn ≤ x)| P
∗
−→ 0, in probability.

Corollary 4.1 establishes the validity of the proposed bootstrap to approximate the asymptotic

distribution of any smooth function of ÎV
n
. The most practical benefit of this result is that there

is no need to estimate any of the multiple nuisance parameters, including ∂ϕ(IVT )/∂Muv, that the

asymptotic distribution of Tn depends on to estimate its quantiles. Bootstrap quantiles obtained from

bootstrap replications of T ∗n can serve as asymptotically valid quantiles for Tn.

Corollary 4.1 has some immediate application for the inference on eigenvalues and eigenvectors of

IVT . If the eigenvalue structure of IVT is known to be that displayed in (9) and ϕλ is the eigenvalue

function defined in (10), then, by smoothness of ϕλ, we can claim using (11) that:

T λ
∗

n ≡
1√
∆n

(
ϕλ
(
ÎV

n∗
)
− ϕλ

(
ÎV

n
))

d∗−→Wϕλ

T ,

17



in probability. This means that T λ
∗

n provides asymptotically valid approximation to the distribution

of Wϕλ

T that can be used to carry out inference about any component of ϕλ(IVT ).

Similarly, if the ith largest eigenvalue of IVT is simple, then up to some identifying sign restriction,

the function γi(A) equal to the eigenvector associated to the ith largest eigenvalue of A is smooth in

a neighborhood of IVT and once again, from (12), we can claim that:

1√
∆n

(
γi

(
ÎV

n∗
)
− γi

(
ÎV

n
))

d∗−→Wγi
T ,

in probability and, from (12), inference on γi(IVT ) or on any of its components can be carried out

using the bootstrap.

We now turn to the main contribution of this section which is bootstrapping the test statistics in

Theorems 3.1 and 3.2 and their related applications. A natural way to bootstrap these test statis-

tics would consist in using bootstrap analogue of (15), (16) and (23), with the vector of bootstrap

eigenvalues d∗ = λ(ÎV
n∗

) as input. However, such bootstrap procedures would fail since they would

intrinsically test for the eigenvalue structure in ÎV
n

which is different than that of IVT . Indeed, con-

sidering the asymptotic distribution of ÎV
n

in (4), conditionally on F , ÎV
n

is a random matrix with

any pair of eigenvalues different with probability approaching one. To circumvent this issue, we focus

on the leading term in the expansion of the test statistics of interest - instead of the test statistics

themselves - that we bootstrap by using the bootstrap of ÎV
n

as a key input. We then establish the

first-order asymptotic validity of the proposed method.

As previously defined, let the matrix Γ of normalized eigenvectors of IVT be Γ = (Γ1Γ2 · · ·Γr) where

Γk is associated to the qk-multiple eigenvalue λk (k = 1, . . . , r). Let Γ0 be equal to Γk or (Γk1 · · ·Γr),
or even Γ, and let Q be the integer defined such that

⋃r
j=k1

Lj = {Q + 1, . . . , q}. We observe

that the asymptotic distributions of interest in the previous theorems are functions of tr(UhT,Γ0Γ0
) ≡

tr
[
(Γ′0WTΓ0)h

]
, h = 1, 2, where WT is the asymptotic distribution of ÎV

n
, which is defined in

Equation (4).

If Γ were known, using Corollary 4.1, the distribution of Γ′WTΓ can be estimated by that of Γ′S∗nΓ.

However, as already mentioned, Γ is unknown and cannot be consistently estimated in general. We

have also seen in Section 3 that the fact that the asymptotic distribution of UT appears through the

trace operator makes some estimator of Γ useful for direct simulation. We have namely used Γ̂, the

matrix of normalized eigenvectors of ÎV
n

[see Equation (21)]. Let Γ̂0 be defined from Γ̂ as Γ0 is defined

from Γ. Using Equation (21), we have

Γ̂0 = ΓÊ0 = Γ0Ě0 + oP (1),

where Ê0 is a matrix equal to the collection of columns of Ê indexed by Lk or
⋃r
k=1 Lk, or is equal to

Ê depending of Γ0. Ě0 = Êkk or a block-diagonal matrix with Êkk (k = k1, . . . , r) on the main diagonal

or Ě0 = Ê also depending on Γ0. The order of magnitude above is obtained from the properties of Ê

outlined in Equation (21); see Proposition A.1 in Appendix A.3. This proposition also ensures that
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Ě0Ě
′
0 = I + oP (1). Thus,

tr

[(
Γ̂′0S

∗
nΓ̂0

)h]
= tr

[
Ê′0
(
Γ′0S

∗
nΓ0

)h
Ê0

]
+ oP ∗(1) = tr

[(
Γ′0S

∗
nΓ0

)h]
+ oP ∗(1), h = 1, 2.

Therefore, Corollary 4.1 ensures that

tr

[(
Γ̂′0S

∗
nΓ̂0

)h] d∗→ tr
[(

Γ′0WTΓ0

)h]
(28)

in probability; showing that tr

[(
Γ̂′0S

∗
nΓ̂0

)h]
is an asymptotically valid estimator of the distribution

tr(UhT,Γ0Γ0
). With this insight, we can now introduce the bootstrap statistics for the tests of interest.

Let

U∗ =
1√
∆n

(
Γ̂′ÎV

n∗

Γ̂−D
)

= Γ̂′S∗nΓ̂,

where D is the diagonal matrix with diagonal equals to d = λ(ÎV
n
), the vector of sorted eigenvalues

of ÎV
n
. Let λ̂k = 1

qk

∑
i∈Lk

di, and U∗kk and U∗Q+1:q,Q+1:q be, respectively, the (qk, qk)-submatrix of U∗

at the intersection of the (q1 + · · ·+ qk−1 + 1)-th through the (q1 + · · ·+ qk)-th rows and columns and

the lower-right (q −Q, q −Q)-submatrix of U∗. We consider the following bootstrap test statistics:

LR∗k =
T

2λ̂2
k

(
tr(U∗

2

kk)− 1

qk
(tr(U∗kk))

2

)
LR∗k,λ =

T

2λ2
tr(U∗

2

kk) (29)

Z∗n = tr
(
U∗Q+1:q,Q+1:q

)
− π · tr (S∗n) , for some π ∈ (0, 1).

Note that tr (S∗n) = tr (U∗). These bootstrap test statistics can be seen as the bootstrap analogues of

the first-order asymptotic approximation of the original test statistics. We have the following result.

Theorem 4.1. Under the same conditions as in Proposition 4.1 and letting LRk, LRk,λ be defined as

in Theorem 3.1 and Zn as in Theorem 3.2, we have:

(a) Under H0, as in Proposition 3.1(b), supx∈R |P ∗ (LR∗k ≤ x)− P (LRk ≤ x)| P
∗
→ 0, in probability.

(b) Under H0(λ), as in Proposition 3.1(d), supx∈R

∣∣∣P ∗ (LR∗k,λ ≤ x)− P (LRk,λ ≤ x)
∣∣∣ P ∗→ 0, in

probability.

(c) Under H0π, as in (22) and if δQ > δQ+1, supx∈R |P ∗ (Z∗n ≤ x)− P (Zn ≤ x)| P
∗
→ 0, in probability.

This theorem establishes the asymptotic validity of the bootstrap when the specified bootstrap

statistics are used. Also, these bootstrap statistics are all bounded in probability even under the

alternative so that the bootstrap tests are consistent.

Remark 3. It is worth reiterating that by construction, the proposed bootstrap method targets the

replication of the first-order asymptotic approximation of the test statistics of interest as opposed to

mimicking the original test statistics - which, we know, leads to invalid bootstrap approximations. In

that respect, we may not be able to obtain the standard higher-order refinement properties for these
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bootstrap tests as this essentially amounts to a match of the higher-order cumulants of original and

bootstrap test statistics. Nevertheless, as illustrated by the simulation results in the next section, the

bootstrap approximation displays a satisfactory level of accuracy even for sample sizes as small as 160,

which corresponds roughly to 5-minute observations within 2 trading days.

Remark 4. The above results carry over to our asymptotic analysis of the correlation matrix. The

useful bootstrap test statistics are defined similarly to LR∗k, LR∗k,λ and Z∗n in (29) but using

Uρ
∗

=
1√
∆n

(
Γ̂ρ
′
G
(
ÎV

n∗
)

Γ̂ρ −Dρ
)

(instead of U∗), where G is defined as in (24), Dρ is the diagonal matrix of the sorted eigenvalues of

R̂n ≡ G(ÎV
n
), and Γ̂ρ is the orthogonal matrix of eigenvectors of R̂n. These bootstrap test statistics

also use λ̂k obtained from R̂n instead of ÎV
n

.

Before ending this section, we provide detailed algorithms of the implementation of the bootstrap

tests for the equality of eigenvalues and for the proportion of unexplained volatility as introduced in

Section 3.

ALG 1. Bootstrap algorithm for testing H0(k): ‘Equality of eigenvalues of IVT in the cluster

Lk’. That is: δq1+···+qk−1+1 = · · · = δq1+···+qk = λk (unknown); see (9).

1. Compute ÎV
n

as given by (2).

2. Compute d = λ(ÎV
n
) and Γ̂ the vector of sorted eigenvalues and the associated orthogonal

matrix of eigenvectors and let D be the diagonal matrix such that Γ̂′ÎV
n
Γ̂ = D.

3. Compute the test statistic: LRk = −2 log `k, where `k is given as in (15) but using di

(i ∈ Lk = {q1 + · · ·+ qk−1 + 1, . . . , q1 + · · ·+ qk}).
4. Bootstrap approximation of the asymptotic distribution of LRk:

(a) Draw n independent copies of ηi such that E(ηi) = 1 and V ar(ηi) = 1/2. One pos-

sibility is to take ηi = (v1i + v2i)/4 with vi ∼ i.i.d.χ2(2); and another one is to take:

ηi ∼ NID(1, 1/2).

(b) Get the bootstrap sample by computing Z∗i (i = 1, . . . , n) using (27)

(c) Get ÎV
n∗

=
∑n

i=1Z∗i and U∗ = 1√
∆n

(
Γ̂′ÎV

n∗

Γ̂−D
)
.

(d) U∗kk is the Lk ×Lk block of U∗.

(e) Get a bootstrap copy of LRk as: LR∗k = T
2λ̂2k

[
tr[(U∗kk)

2]− 1
qk

[tr(U∗kk)]
2
]
, with λ̂k =

1
qk

∑
i∈Lk

di is the average of the qk eigenvalues of ÎV
n

in the range Lk.

5. Repeat Step 4 B times (e.g. B = 399) to get as many bootstrap copies of LRk: LR
∗
k,b,

b = 1, . . . , B.

6. Use this bootstrap sample to obtain the (1− α)-quantile, say l∗k,1−α, of LRk.
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7. Reject H0(k) at the level α if LRk > l∗k,1−α.

ALG 2. Bootstrap algorithm for testing for ratio of ‘unexplained’ quadratic variation; i.e.,

H0π: ‘The first Q principal components support a proportion at least 1− π of varia-

tions.’

1. ChooseQ and π ∈ (0, 1): the number of factors to be tested for carrying at least a proportion

1− π of variation in IVT .

2. Perform Steps 1 and 2 of the previous algorithm.

3. Compute Zn, the test statistic for H0π as given in (23).

4. Bootstrap approximation of the distribution of Z:

(a), (b), (c): Same as 4.(a), (b), (c) in the previous algorithm.

(d) Obtain U∗22, the lower-right (q −Q, q −Q)-submatrix of U∗.

(e) Get a bootstrap copy of Zn: Z∗n = tr(U∗22)− π · tr(U∗).
5. Repeat Step 4 B times (e.g. B = 399) to get as many bootstrap copies of Zn: Z∗n,b,

b = 1, . . . , B.

6. Use this bootstrap sample to obtain the (1− α)-quantile, say c∗1−α, of Zn.

7. Reject H0π at the level α if Zn > c∗1−α.

5 Testing the eigenvalue structure of spot covariance

In this section, we extend the previously proposed tests for eigenvalue structure to spot variance matrix

ct at date t. As presented in Sections 3 and 4, these tests have a natural application to PCA of the

vector of stock price process. The main interest of basing PCA on the spot variance is that, regardless

of its dynamics, PCA on ct yields the instantaneous factor structure of the vector of stock prices. In

particular, the eigenvector associated to the largest eigenvalue of ct gives the direction of the largest

spot variance of Xc.

Let’s assume that ct has the eigenvalue structure in (9). As previously, our goal is to test for a

given row Lk(k = 1, . . . , r) of this structure in both cases of λk unknown (H0) or set to a known value

λ (H0(λ)). Our approach is to rely on the likelihood ratio test statistic defined by:

LRck = −2 log `ck, and LRck,λ = −2 log `ck,λ,

where `ck and `ck,λ are obtained using (15) and (16), respectively but with d = λ(ĉ(t, kn)) and ĉ(t, kn)

the consistent estimator of ct given by (3). Unless X is a continuous Lévy process, the resulting test

statistics are not likelihood ratios. Nevertheless, the following proposition, analogue to Theorem 3.1,

shows that these statistics are useful to test for the eigenvalue structure of ct.

Let Γc be the orthogonal matrix of normalized eigenvectors of ct and ∆c the diagonal matrix of

eigenvalues of ct. An application of the delta method to (6) yields:√
kn
(
Γ′cĉ(t, kn)Γc −∆c

) L−s−→ Uc, (30)

21



with Uc = Γ′cZtΓc with Zt given by (6). We have the following result.

Proposition 5.1. Let X be an Itô semimartingale represented by (1). If Assumption A.1 in Appendix

holds then the conclusions (a), (b) and (c) of Theorem 3.1 hold with LRk, Ukk, LRk,λ and T replaced

by LRck, Uc,kk, LRck,λ and 1, respectively.

The proof of this theorem follows the same lines as that of Theorem 3.1 and therefore is omitted.

Several clusters of eigenvalues can be jointly tested. As mentioned elsewhere, the test statistic to

consider then is the sum of cluster specific statistics over the concerned clusters. The limit distribution

corresponds to the sum of limits since convergence is joint across clusters.

The test for the ratio of ‘unexplained’ spot volatility can also be deployed for ct. Given π ∈ (0, 1),

the statement “that the total amount of volatility not captured by the first Q-principal components

does not exceed π” amounts to the null hypothesis H0π in (22) with δ = λ(ct). The useful test statistic

for H0π for ct is:

Zcn =
√
kn

 q∑
i=Q+1

di − π
q∑
i=1

di

 , with d = λ(ĉ(t, kn)).

We have the following result.

Proposition 5.2. Let X be an Itô semimartingale represented by (1). If Assumption A.1 in Appendix

holds and δQ > δQ+1 then the conclusions (a) and (b) of Theorem 3.2 hold with Zn and UT replaced

by Zcn and Uc, respectively.

The proof is also similar to that of Theorem 3.2 and is omitted. The asymptotic distributions

presented in Propositions 5.1 and 5.2 for the test statistics are not standard and have many nuisance

parameters. We shall rely once again on the bootstrap for their approximation. Interestingly, thanks

to the similarity between ĉ(t, kn) and ÎV
n

the bootstrap approximation of the asymptotic distribution

in (6) is obtained the same way as in (27). Only returns local to t used in the expression of ĉ(t, kn)

are bootstrapped. The bootstrap sample is given by:

Z∗m = Zm+1 + (Zm −Zm+1)ηm; m = 0, . . . , kn − 1, and Z∗kn−1 = Zkn−1;

we refer to (27) for more details. Let the bootstrap spot volatility estimate be given by ĉ(t, kn)∗ =
1

kn∆n

∑kn−1
m=0 Z∗m. Let

Snt =
√
kn(ĉ(t, kn)− ct), and its bootstrap analogue S∗nt =

√
kn(ĉ∗(t, kn)− ĉ(t, kn)).

Theorem 5.1. Assume that Assumption A.1 holds for some r ∈ [0, 2) and τ ∈ (0, 1/2); $ ∈ ( τ
2(2−r) ∨

1
4−r ,

1
2); and E|ηm|2+ε < ∞ for some ε > 0. Let t be fixed and assume that ct nonsingular almost

surely. Then

sup
x∈Rq(q+1)/2

|P ∗ (vech(S∗nt) ≤ x)− P (vech(Snt) ≤ x)| P
∗
−→ 0, in probability.

This result establishes the validity of the bootstrap for the estimation of the asymptotic distri-

bution of Snt. The proof of Theorem 5.1 requires a law of large numbers for functions of successive
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local returns and with polynomial growth. This law of large numbers is presented in Appendix by

Lemmas A.1 and A.2. The condition on $ is to ensure that the law of large numbers (see Lemma

A.2) applies to local sample mean of function of log-returns that have polynomial growth of order

4 + ε for some ε > 0. This is useful to verify the Lyapunov condition establishing bootstrap validity.

The nonsingularity assumption for ct ensure that stripping out the functionally related quantities, the

asymptotic distribution of ĉ(t, kn) has a nonsingular variance matrix. This mild assumption is only

made to simplify the proof.

Theorem 5.1 ensures that the proposed bootstrap method is valid for the approximation of the

distributions of quantities analogues to those discussed for ÎV
n

in the previous section. Namely,

ϕλ(ĉ(t, kn)) and γj(ĉ(t, kn)), where γj is the eigenvector function associated to the jth eigenvalue of

ct assuming it is simple. For both functions, the original and the bootstrap statistics are:√
kn (ϕ(ĉ(t, kn))− ϕ(ct)) , and

√
kn (ϕ(ĉ(t, kn)∗)− ϕ(ĉ(t, kn))) ,

respectively, with ϕ = ϕλ, γj or G for the spot correlation (see Equation (24)). Likewise, with Γ̂c

denoting the orthogonal matrix of normalized eigenvectors of ĉ(t, kn) and defining

U∗c = Γ̂′cS
∗
ntΓ̂c,

the statistics: LRck, LR
c
k,λ and Zcn have their bootstrap analogue, LRc

∗
k , LRc

∗
k,λ and Zc

∗
n , defined as

in (29) but with T and U∗ replaced by 1 and U∗c , respectively. We can verify along the same lines

as in the proof of Theorem 4.1 that the bootstrap of these statistics is asymptotically valid. As a

result, the algorithms ALG 1 and ALG 2 are also useful for inference on the eigenvalue structure of

ct. The main changes are: ÎV
n
, `k, ÎV

n∗

, LRk, LR
∗
k, U

∗, Zn Z
∗
n are replaced by ĉ(t, kn), `ck, ĉ(t, kn)∗,

LRck, LR
c∗
k , U∗c , Zcn and Zc

∗
n , respectively and the bootstrap sample Z∗i (i = 1, . . . , n) replaced by Z∗m

(m = 0, . . . , kn − 1).

6 Monte Carlo simulations

We conduct a Monte Carlo simulation study to investigate the finite sample performance of the tests

proposed in Sections 3 and 4 for the equality of eigenvalues and ratio of unexplained volatility. Our

primary focus is on assessing the empirical size and power of the asymptotic tests in Proposition 3.1

and the bootstrap-based test in Theorem 4.1 (see also Theorems 3.1 3.2) under a variety of data

generating processes (DGPs).

For our simulation settings, we consider a continuous time process Xt ∈ Rq that represents a vector

of q assets’ prices, whose components are generated by the following m-factor model:

dXj,t =
m∗∑
k=1

βk,jdfk,t + dej,t, for j = 1, ..., q,

where Xj,t is the price of asset j at time t, fk,t, for k = 1, . . . ,m∗, is the k-th factor at time t, βk,j is the
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Table 1: Summary of Simulation Parameters

Stochastic Volatility and Jump Diffusion Parameters
κz ξz σz ρz µJz σJz ζz

SV 5 0.152 0.05 -0.5 0 0 -
SVJD 5 0.152 0.05 -0.5 0 0.01 1/∆n

Parameters for the Lévy factors, Lévy noise process and factor loadings

Lévy (hf ) 0.152 Noise (he) 0.152 × π̄∗ Loadings βi,j ∼ U(0, 1)

Note : The term π̄∗ represents the target noise to signal ratio used in the simulations. Note
that because βi,j is uniform then the total expected quadratic variation of the continuous factor
component can be approximated by 1

12m
∗ξz for the SV and SVJD factor models and 1

12m
∗hf for

the Lévy model.

factor loading that captures the exposure of asset’s j price to factor k, and {ej,t} is an uncorrelated

noise process.

Following the literature, we next assume that the factors and noise are pairwise independent semi-

martingale processes; see Pelger (2019). Generically, factors and noise are driven by the following

Stochastic Volatility Jump Diffusion model with a constant jump intensity:

dzi,t =
√
hzi,tdW

z
i,t + Jzi,tdN̄

z
i,t, with Jzi,t

i.i.d.∼ N(µJz , σ
J2

z ), (31)

dhzi,t =κz(ξz − hzi,t)dt+ σz
√
hzi,tdW

z,h
i,t , with [W z

i ,W
z,h
i ]t = ρzt, (32)

where z ∈ {f, e} represents either the factor or the noise process, with their components indexed by

i which belongs to either {1, . . . ,m∗} or {1, . . . , q}, respectively; N̄ z
i,t is a Poisson point process with

arrival rate ζz, and [·, ·] denotes the cross variation of the arguments.

We consider three Monte Carlo designs. Common to all, we restrict ourselves to the case where

the noise is a continuous Lévy process4, with cross sectionally homogenous variance and no jumps;

i.e., hei,t = he = Constant and Jei,t = 0. The factors are simulated using the following DGPs: (i) the

continuous Lévy process with common variance hfi,t = hf and no jumps Jei,t = 0 [hereafter Lévy]; (ii)

the Stochastic Volatility model without jumps Jei,t = 0 [hereafter SV]; and (iii) the full Stochastic

Volatility Jump Diffusion model [hereafter SVJD]. The factor loadings βi,j are independent random

draws from a standard Uniform distribution. A summary of the values of the parameters used in our

simulations can be found in Table 1. We generate data over a range of sampling interval ∆n and

time horizons T with the number of assets set to q = 20 or 100 to replicate a number of different

scenarios such as futures and bond curves (circa 20 variables) and the cross section of assets (circa

100 variables). In each case we set the number of factors in the data generating process to m∗ = 6.

Our simulation experiments have three different parts. In the first one, we investigate the size of

bootstrap tests for testing the number of elements in the cluster of smallest eigenvalues of IV and

the number of factors supporting at least a given ratio of volatility (quadratic variation). The second

4We consider more general dynamics for the noise process but we do not report the results as they are similar to those
included.
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experiment highlights the power curves of the test for equality of eigenvalues. Finally, in our third

simulation experiment, we study the power properties of the bootstrap test for the ratio of quadratic

variation under different eigenvalue structures. Throughout, rejection rates are based on 10,000 Monte

Carlo replications and the bootstrap critical values on 399 bootstrap samples.

6.1 Equality of eigenvalues and ratio of quadratic variation (QV)

Using the various DGPs that we defined in the previous section, in Tables 2 and 3 we report the

rejection rates of our bootstrap tests for testing that: (i) the smallest q − m∗ = q − 6 eigenvalues

are equal [hereafter Equality Test, ALG 1] and (ii) the q −m∗ = q − 6 components associated to the

smallest eigenvalues explain at most π = 5% fraction of quadratic variation [hereafter Proportion QV

Test, ALG 2], i.e. π̄∗ = π = 5%, with π̄∗ the noise to signal ratio. The null hypotheses under test are

correct in all the DGPs. The rejection rates were calculated for different sampling frequency ∆n but

fixed time horizon T [see the upper panels of Tables 2 and 3] and for different T but fixed ∆n [see the

lower panels of Tables 2 and 3]. The columns of the tables report the results obtained for each of the

DGP under consideration: Lévy, SV, and SVJD.

From these tables, we see that the size of the two tests are very close to 5% for almost all cases,

both for q = 20 and q = 100. It is worth noticing that the size slightly increases when we increase the

sampling frequency, with an inflection point at one minute. It is also interesting to note that when

the asymptotic chi-squared test is used instead for testing the equality of trailing eigenvalues, its size

(results are not reported, but available upon request) can reach 100% for small and moderate samples

and for almost all cases, including the continuous Lévy process. Indeed, the bootstrap tests perform

very well compared to the asymptotic tests.

6.2 Power curves for the test for equality of eigenvalues

Having examined the size of the bootstrap tests under the null, we now explore the rejection rates when

we test for either too few or too many equal eigenvalues in the cluster of smallest eigenvalues. Testing

for the equality of too many should lead to large rejection rates (as we are under the alternative).

Testing for too few is consistent with the null hypothesis but the asymptotic distribution of the test

statistic is not available in this case. See Remark 1. Size-correctness of the test requires that rejection

rates do not exceed nominal level.

In this experiment, we use 5, 000 observations to allow for a fair comparison between asymptotic

and bootstrap tests. We again set the number of factors in the DGPs to m∗ = 6. This means that

the correct number of equal trailing (smallest) eigenvalues Q is Q∗ = 14 (for q = 20) and Q∗ = 94 (for

q = 100). Figure 1 presents the power curves for both asymptotic (chi-square) and bootstrap tests for

Q = Q∗ − 6, . . . , Q∗ + 6 (q = 20) and Q = Q∗ − 9, . . . , Q∗ + 6 (q = 100).

The upper plots of Figure 1 illustrate the rejection rates for the asymptotic and bootstrap tests for

the case when both the factors and noise are Lévy (Lévy-Lévy) processes. From this, the chi-squared

test is correctly sized at 5% when testing for Q = Q∗ equal trailing eigenvalues. The bootstrap is

slightly conservative, but only by a small degree. The bootstrap for both q = 20 and q = 100 has
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Table 2: Rejection rates (in percentage) for the Bootstrap Tests when q = 20

Test Equality Test Ratio QV Test
DGP Levy SV SVJD Levy SV SVJD

∆n Fixed T Varying ∆n

5 sec 5.18 5.27 5.30 5.12 5.23 5.25
30 sec 4.93 5.08 5.11 4.94 4.98 4.97
1 min 4.71 4.95 4.88 4.75 4.87 4.79
5 min 4.87 4.88 4.93 4.83 4.88 4.94

T/∆n Fixed ∆n Varying T
160 5.26 5.21 5.33 5.16 5.28 5.32
500 4.98 5.07 5.14 4.94 4.97 5.05
1200 4.81 4.73 4.92 4.72 4.81 4.84
2000 4.78 4.94 4.99 4.82 4.88 5.02

Table 3: Rejection rates (in percentage) for the Bootstrap Tests when q = 100

Test Equality Test Ratio QV Test
DGP Levy SV SVJD Levy SV SVJD

∆n Fixed T Varying ∆n

5 sec 5.02 5.40 5.37 5.31 5.19 5.66
30 sec 5.09 5.22 5.59 5.20 5.10 5.46
1 min 4.80 5.03 5.32 5.01 5.05 5.32
5 min 4.85 5.11 5.45 5.06 5.11 5.74

T/∆n Fixed ∆n Varying T
160 5.23 5.48 5.80 5.39 5.92 6.81
500 5.08 5.31 5.61 5.20 5.29 5.52
1200 4.81 4.99 5.30 5.04 5.12 5.34
2000 4.89 5.02 5.15 5.02 5.05 5.21

Note : The tables report the rejection rates for the test of equality of the 14 and 94 smallest eigenvalues
for q = 20 and q = 100, resp. (Equality Test) and that of the test for 6 principal factors supporting at
least 95% of quadratic variation (Ratio QV Test). In the upper panels of the tables, the time horizon
T = 1 month. In the lower panels, the time interval ∆n = 5 min and the number of observations T/∆n

varies. The nominal level α = 0.05.

a steeper curve than the chi-squared test, indicating more power when we test values at the right of

the correct null, and is more conservative when failing to reject values at the left of the correct null.

When the factors and noise are SVJD and Lévy (SVJD-Lévy) processes, respectively, the lower plots

of Figure 1 show that - for both q = 20 and q = 100 - the asymptotic test does not control anymore

its size, whereas the bootstrap test does and has a very good power.
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Figure 1: This figure illustrates the Size/Power comparison between asymptotic and bootstrap tests for
testing the equality of the Q = q −m smallest eigenvalues: H0 : δq−m+1 = · · · = δq. In each DGP, the
true value is Q∗ = q −m∗ with m∗ = 6 corresponding to the number of simulated factors (marked by the
vertical dotted line). The nominal level is 5% marked by a horizontal dotted line. The data corresponds
to 5, 000 observations at a five minute frequency.

6.3 Power curves for testing the ratio of quadratic variation

In this experiment, we assess the size and power of the bootstrap test for testing the ratio of quadratic

variation explained by factors associated to the trailing (smallest) eigenvalues of the integrated co-

variance matrix. In Section 6.1, we set the noise to signal ratio π̄∗ in the DGPs to be equal to the

proportion π of quadratic variation explained by the trailing factors, for which we were testing the

value π = 5%. In that framework, the factor component accounted for 1− π̄∗ = 95% of the variation

in the simulated prices and noise for π̄∗ = 5%, and we tested for the trailing eigenvalues explaining at

most π = 5% of the quadratic variation. That simulation framework, however, was chosen to check

the size of the test under a straightforward eigenvalue structure.

In this section, we look at a series of cases that illustrate a more complicated eigenvalue structures
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Figure 2: This figure illustrates the Size/Power for Case 1; i.e., rejection rates when using bootstrap to
test for the number of trailing eigenvalues on the abscissa axis that explain at most π = 0.05 fraction of
the quadratic variation. The frequency of sampling is ∆n = 5 min and T/∆n is set to 5, 000 observations.
The DGP is driven by 30 factors, with 6 dominant factors (explaining 85% of the variation) and 24 minor
factors explaining another 10%, with the noise explaining 5%. The null hypothesis under the DGP is
correctly specified when the number of trailing eigenvalues is equal to 70. The three plot lines refer to
the three DGP types for the factor model Lévy, stochastic volatility (SV) and stochastic volatility jump
diffusion (SVJD). For each case we use a Lévy noise process.
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Figure 3: This figure illustrates the Size/Power for Case 2. The simulation conditions are the same as in
Figure 2, except that here the first six dominant factors now explain 95% of the quadratic variation, the
remaining 24 factors explain 4%, and the noise accounts for 1%. As such the null hypothesis is correctly
specified when the number of trailing eigenvalues in the DGP under consideration is 94.
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Figure 4: This figure illustrates the Size/Power for Case 3. The simulation conditions are the same as in
Figure 2 and 3, except that the first six factors in the simulation explain 85% of the quadratic variation, the
remaining 24 factors explain 5% of the quadratic variation and the noise 10% of the quadratic variation.
As such, the null hypothesis is correctly specified when the number of trailing factors explaining at most
5% of the quadratic variation is equal to 35.

that we build into our DGPs. For this, we focus on q = 100 and presume that the DGPs are represent-

ing a broad cross section of assets, such as the S&P 100. We follow, in part, the simulation settings in

Aı̈t-Sahalia and Xiu (2017) to build three blocks into the simulated eigenvalue structure. Overall, in

each of the three cases described below we have 6 ‘dominant’ factors explaining a large fraction of the

quadratic variation, then 24 further ‘weak’ factors that have cross sectionally homogenous variance

and share only a fraction of the quadratic variation to make a total of 30 factors. We then have 70

trailing eigenvalues with associated factors explaining a small, but nonzero fraction of the quadratic

variation. These structures were built by adding a constant to each element of the factor loading βi,j ,

such that the resulting fractions of quadratic variation deliver the proportions of quadratic variation

explained by each block in the following cases:

Case 1: The first six factors in the simulation explain 85% of the quadratic variation, the remaining

24 factors explain 10% of the quadratic variation and the noise 5% of the quadratic variation.

Thus, test should reject at 5% when the number of trailing factors explaining at most 5% of the

variation is equal to 70.

Case 2: The first six factors in the simulation explain 95% of the quadratic variation, the remaining

24 factors explain 4% of the quadratic variation and the noise 1% of the quadratic variation.

Thus, test should reject at 5% when the number of trailing factors explaining at most 5% of the

variation is equal to 94.

Case 3: The first six factors in the simulation explain 85% of the quadratic variation, the remaining 24

factors explain 5% of the quadratic variation and the noise 10% of the quadratic variation. Thus,
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the test should reject when there are 35 trailing eigenvalues.

We simulate the factors described above using the 3 DGPs Lévy, SV and SVJD with Lévy noise

in each case. We set ∆n = 5 min and T/∆n = 5, 000 observations. The rejection rates (size and

power) for testing the proportion of unexplained variance under these different eigenvalue structures

are reported in Figures 2 to 4, which correspond to each of the above 3 cases, respectively.

Figure 2 illustrates the rejection rates to the left and right of the null given the actual DGP. For

Case 1, the number of trailing factors that explain at most π = 5% of the quadratic variation is 70.

From this figure, we see that the bootstrap test is correctly sized for all DGPs and has a good power.

To the right of the null, we see that the bootstrap test has much more power when the factors are

generated by Lévy process, followed by SV and SVJD processes.

Figure 3 shows the empirical rejection rates when the eigenvalue structure corresponds to 6 domi-

nant factors that explain 95% of the quadratic variation within the sample and 24 remaining factors

explain only 4% of the quadratic variation (Case 2). Similarly to the results in Case 1, the boot-

strap test is correctly sized when the number of trailing factors explaining at most 5% is equal to 94.

Furthermore, the test has a reasonable power, with some difference in the power depending on the

DGP under consideration: the test reaches a higher power for Lévy process, followed by SVJD and

SV processes.

Finally, Figure 4 illustrates some of the difficulties in identifying the eigenvalue structure when

quadratic variation is spread most evenly. In Case 3, 85% of the variation in the data is explained

by 6 dominant factors with the remaining 15% split between 24 “weak” factors (5%) and the noise

(10%), characterized by 70 equal eigenvalues. For this case, the test is under the correct null when the

number of trailing eigenvalues is equal to 35. The results in Figure 4 show that the bootstrap test is

doing well in terms of size control, but is slightly conservative for the SVJD and SV processes when

testing for 35 trailing eigenvalues.

7 Empirical study

We now conduct a two part empirical exercise to illustrate the usefulness of one of our bootstrap tests

as a guide to modelling financial time series data. The objective is to generate a series of candidate

factors from a subset of actively traded stocks. We then use these factors to extract the systematic

returns from a large cross section of returns from US equity market securities.

Data and methodology: We make use of two data sets for this empirical study: (i) the historical

record of tick-by-tick best-bid and best-offer data for 597 members of the S&P 500 traded between

January 1, 1996 to the end of the week of April 6, 2020 from the SIRCA-Thomson Reuters data

files and (ii) the daily and monthly CRSP returns data file for US stocks with 21, 965 firms reporting

returns between January 1, 1996 to December 31, 2019 (the latest available sample at the time of

writing this section).

For the tick-by-tick data set, we collect the data into trading weeks (Monday to Friday) and trading

months (first to the last day of the month). Trading weeks are checked against historical holidays and

shutdowns (such as September 11, 2001). For all of the available stocks for a given trading week or
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Figure 5: Comparison of the weekly and monthly cumulative first principal component normalized by
their standard deviations for plotting comparison.

month, the mid price is computed from the best-bid and best-offer after June 2005. The stocks are

next sorted by the total number of price changes over the week or month. The 100 most actively

traded are then selected for the covariance estimation and PCA analysis.

The tick-by-tick prices, observed at specific times stamps, are sampled to an equidistant five minute

grid over the trading day that goes from 09:30 to 16:00 Eastern Time, and then used to calculate

returns.

Our analysis is then performed as follows. For the tick-by-tick data, we first remove: (i) all zero

prices and instant reversions from the bid and ask series; (ii) any records where the standing bid

price is higher than the standing offer price; and (iii) any records where the bid/ask price is more

than 500% different from the daily median bid-ask. We next use the bid-ask tick series to compute

the tick-by-tick mid price/return and record the tick times. Weekly and monthly covariance matrices

are then estimated after we removed jumps using the threshold 3(BV/T )0.5∆0.47
n , where BV is the

estimated bipower variation.

Thereafter, we apply our bootstrap-based test to the weekly and monthly returns to determine

the number of components that explains at least the 1 − π proportion of quadratic variation for the

data set, with π set to 5%. We use 399 bootstrap replications and sequentially increase the number of

components from the largest eigenvalue downwards and stop when the test fails to reject null at the

level α = 5%.

For each week and month, we collect the Q eigenvalues indicated by the quadratic variation test

and their corresponding eigenvectors. The eigenvectors are then used to construct factor components

as in Chen et al. (2019). Figure 5 presents the cumulative returns for the first principal components

for weekly and monthly returns. From this, on the one hand, we see that the pattern of the weekly
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Figure 6: This figure illustrates the number of factors selected each week (month) using our ratio test,
with a target proportion of quadratic variation explained within the cross section of high frequency returns
being 95%.

series is quite consistent with the results found in Chen et al. (2019) (over the period from 2004 to

2014) and in Aı̈t-Sahalia and Xiu (2019) (over the period from 2003 to 2013) who argue that the

first principal component shares the time series features of the market return. On the other hand,

the monthly pattern is substantially smooth and, interestingly, the short positions over the 2008-2010

period appear sufficient to smooth over the evident market dip for the first component cumulative

returns we obtained using weekly data.

Results: Using our bootstrap-based test, Figure 6 presents the weekly and monthly time series of

the number of principal components needed to explain at least 95% (π = 0.05) of quadratic variation

over one-week and one-month-long periods, respectively. There are several interesting points that are

worth commenting on. First, the weekly pattern of the number of principal components over the

2003-2013 period is substantially similar to the one found in Aı̈t-Sahalia and Xiu (2017) as we notice

a rise in the number of components prior to 2009 and a fall after the commencement of the financial

crisis as a single factor dominates. However, the longer time frame of our study provides additional

insights. During the time-period of 1996–2002, we detect a larger number of components for both

weekly and monthly data. Intriguingly, this is prior to the national market service (regulation NMS)

implemented in 2005. Indeed, the number of price changes recorded for the best-bid and best-ask time

series is substantially lower prior to 2002. Furthermore, as noted in Chen et al. (2019), asynchronous

trading due to stale prices in the national best-bid and best-ask (which did not formally exist prior

to 2005) can add significant levels of idiosyncratic noise to the covariance estimation. Similar effects

are mentioned in Aı̈t-Sahalia and Xiu (2017) who argue that subsampling does not fully mitigate the

effect of microstructure noise.
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Figure 7: This figure illustrates the matrix of the tests for significant pairwise correlations between pricing
errors from the regression of weekly excess returns regressed on to the principal components determined
from five minute return covariance matrices as pricing factors, that is εi = ri,weekly − β′iFweekly. We
exclude stocks with less than 75 available weekly returns. The dots in this figure indicate the rejection
of the null hypothesis of no pairwise-correlation. In each subfigure, the total number of tested pairwise
correlations is 42,822,885 i.e. the number of off-diagonal correlations ((N2 − N)/2, with N = 9255).
We set the p-value to 0.05/42,822,885, which yields a critical value of around 6.22 for the t-test. The
squares highlight several sectors, notably Mining (MN), Manufacturing (MA), Transport (TR), Retail
(RT), Finance (FN) and Services (SV).

Having built a set of weekly and monthly factors from the principal component analysis and

identified the candidate number of factors based on our test, we now use the latter factors to explaining

the cross sectional variation of a large number of stocks from the CRSP return dataset.

For comparison with the weekly factors, we aggregated the daily CRSP stock returns to weekly

returns for the available firms in the US stock market. CRSP monthly returns are collected in the
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Figure 8: Significant pairwise correlations for our Principal Component Factors derived from covariance
matrices computed monthly using five minute returns. For the definition of the points in the plot see the
caption in Figure 7.

standard way. For the second stage of the analysis, a stock must have at least six years of daily holding

returns (approximately one quarter of the targeted sample size) to be kept, which leaves us with 9, 255

stocks over the sample period January 1, 1996 to December 31, 2019. For each stock i, we run the

following time series regression:

rmi,t = β′if
m
t + ei,t, for i = 1, . . . , 9255, (33)

where rmi,t is the weekly or monthly CRSP stock return and fmt is the cumulative return over a week

or month for the vector of factors, respectively. We next compute the pairwise covariances between

residuals and record this in a matrix S = [cov(ei,t, ej,t)]i,j . Notice that because the elements of S are
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constructed pairwise, the matrix S is not guaranteed to be positive semi-definite. It is inherently a

reduced rank matrix as the number of variables is larger than the number of observations. We next

calculate the pairwise correlations between residuals ρij = cov(ei,t, ej,t)/
√
var(ei,t)var(ej,t), for i 6= j

and i, j = 1, . . . , 9255, and record this in a matrix Sρ. An adjusted standard t-test is then used to

test H0 : ρij = 0 against H1 : ρij 6= 0, for all i, j, and in a sized matrix M we record 1 if the null

is rejected at 5% significance level, and 0 otherwise. Following Aı̈t-Sahalia and Xiu (2017), we apply

pair-wise sphericity tests and adjust the individual p-values to match the joint power of these tests;

see Onatski et al. (2013) for an example in a similar context. In this instance, 9,255 stocks yield

42,822,885 pairwise correlations.

Thereafter, we construct matrix plots with points representing the significance of the pairwise

correlation. The stocks are sorted as follows. First, they are placed into sector bins following the

example in Aı̈t-Sahalia and Xiu (2017) and second, they are sorted (largest to smallest) by the absolute

value of the weighting of the stock in the eigenvector corresponding to the largest eigenvalue of S. This

approach follows in the tradition of Cochrane (1996); Gomes, Kogan, and Zhang (2003); Jagannathan

and Wang (2007); Cooper, Gulen, and Schill (2008). However, we use individual stock returns in the

spirit of Ang, Liu, and Schwarz (2020), with the objective of assessing to what extent do the factors

from the high frequency PCA mimic the well established factors in orthogonalizing a very large cross

section of lower frequency returns.

Subplots (a) to (d) of Figures 7 and 8 graphically report our 42,822,885 pair-wise correlation tests

for 1, 4, 11 and 14 factors, respectively. These plots are slightly different from Aı̈t-Sahalia and Xiu

(2017) who use a fixed threshold to illustrate the degree of pairwise residual correlation for the assets

within the sample used to compute the factors. Similarly to Aı̈t-Sahalia and Xiu (2017), the blocks

represent the top level industrial sectors and these are marked by a mnemonic. When residual return

correlation is significant, the location is represented by a marker.

The first point to note here is that, consistent with Aı̈t-Sahalia and Xiu (2017), increasing the

number of weekly or monthly factors does reduce the density of residual correlation. However, this

reduction is not the same for the weekly and monthly returns data sets. In Figure 7, we observe that

even for 14 weekly factors there is a fair amount of residual correlation and the latter does have some

structure with certain groups of firms clearly having bands outside their industry boxes.

However, for factors extracted from monthly five minute data, the visible density of residual correla-

tion drops markedly and the pattern does not have any substantive banding or clustering. Indeed, with

14 monthly factors there is no discernible pattern to the location of the significant correlations. The

sparse covariance structure left in the residuals within given industries might, however, be explained

by the fact that our factors are global factors and do not capture all industry specific characteristics.

We conclude that generating 14 approximate factors, obtained by PCA, from high frequency return

data for a subset of 100 most actively traded stocks will effectively capture the systematic variation

of the weekly and monthly holding returns for the available cross section of CRSP stocks.
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8 Conclusion

This paper introduces a testing framework for the eigenvalue structure of the integrated variance

matrix (IV) and the spot variance matrix (ct) of stock price vector processes represented by an Itô

semimartingale dynamics. Likelihood ratio-type tests are proposed for the equality of clusters of eigen-

values of these matrices as well as their related correlation matrices. Unlike the existing approaches

that are valid only in settings with large cross-section dimension, our tests do not require large cross-

section and thus they are useful in a wide variety of applications. Our tests are shown to be useful to

principal component analysis of the price vector process based on ct or IV. More specifically, a test is

proposed that detects the number of principal components or factors sufficient to capture at least a

certain prespecified proportion of variation in the data using ct or IV as dispersion measure. Further,

our tests are also useful to test some special factor structures of the price process, especially those

factor structures that translate into the equality of the smallest eigenvalues of ct or IV.

We derive the asymptotic distributions (under the null) of our test statistics and find that they

are, in general, non-standard with many nuisance parameters. Another main contribution of this

paper consists in proposing some variant of the blocks of blocks bootstrap to approximate these

asymptotic distributions. The proposed bootstrap procedures do not require the estimation of many

nuisance parameters, they provide a better test than the asymptotic approximation, and are simple

to implement. Their first-order asymptotic validity is established.

The finite sample properties of the asymptotic and bootstrap tests have been investigated by an ex-

tensive Monte Carlo simulation study where several data generating processes have been considered as

well as different sampling frequencies and small and large cross-section dimensions. The results reveal

that the bootstrap tests are correctly sized and has power in determining the eigenvalue structure.

We illustrate an application of our tests for factor construction from the 100 most actively traded

constituents of the S&P 500 index. We then use the number of principal components selected by

the test in a cross sectional model for all traded stocks in the CRSP datafile. Analysis of the pair-

wise correlation of the resulting residuals suggests that these principal components are viable pricing

factors.

A Assumptions, Lemmas and Proofs

A.1 Assumptions

Assumption A.1. X satisfies Assumption (H-r) for some r ∈ [0, 2) and the process σ satisfies (H-2); kn
√

∆n →
0 and kn∆τ

n → β ∈ (0,∞) for some τ ∈ (0, 1/2); r < 2/(1 + τ) and $ > τ/[2(2− r)].
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A.2 Lemmas: Law of large numbers

Let ∆n
i X = Xi∆n

− X(i−1)∆n
, and (kn) and (vn) two sequences of integers. Let f be a real-valued function

defined on (Rd)` and let

f̂i(kn, vn) =
1

kn

kn−`∑
m=0

f

(
∆n
i+mX√

∆n

,
∆n
i+m+1X√

∆n

, . . . ,
∆n
i+m+`−1X√

∆n

) `−1∏
j=0

1{‖∆n
i+m+jX‖≤vn}. (A.1)

For t ∈ ((i− 1)∆n, i∆n], define f̂(kn, vn, t) = f̂i+1(kn, vn).

Lemma A.1. Assume (i) X satisfies assumption (H-r) for some r ∈ [0, 2], (ii) kn satisfies: kn → ∞ and

kn∆n → 0 as n→∞, (iii) vn = α∆$
n for some α > 0 and $ ∈ (0, 1/2), and (iv) f is a continuous real-valued

function on (Rd)` which satisfies

|f(x1, . . . , x`)| ≤
∏̀
j=1

Ψ(‖xj‖)(1 + ‖xj‖p) (A.2)

for p ≥ 0 and Ψ is a continuous function on [0,∞) which goes to 0 at infinity.

Then, when X is continuous, or when X jumps and either p ≤ 2 or

p > 2, 0 < r < 2, $ ≥ p− 2

2(p− r) , (A.3)

we have, for any fixed time t ≥ 0,

f̂(kn, vn, t)
P→ ρ⊗`ct f,

where ρ⊗`ct f = Ef(Z1, . . . , Z`), with Zi ∼ i.i.d.N(0, ct).

This lemma covers in particular cases where the function f is continuous and bounded or has a polynomial

growth, that is:

|f(x1, . . . , x`)| ≤ K
∏̀
j=1

(1 + ‖xj‖p), (A.4)

for p ≥ 0 and a constant K > 0. Note that a function satisfying (A.4) also satisfies (A.2) for a value p′ = p+ ε

for any ε > 0. The cost of the application of this lemma to such a function is that when X jumps and p > 2,

the range of $ warranting the stated convergence is 1/2 > $ ≥ (p+ ε− 2)/(2(p+ ε− r)), for some ε > 0. This

can be made sharper as shown by the following lemma.

Lemma A.2. The statement in Lemma A.1 holds under the same conditions but with (A.2) replaced by: (A.4).

Proof of Lemma A.1: Our proof follows the lines of that of Jacod and Protter (2012, Th. 9.3.2). By the

standard localization procedure (see Jacod and Protter, 2012, p.114), the strengthened assumption (SH-r) below

will be relied upon instead of (H-r):

Assumption (SH-r). We have (H-r), and the processes b and σ are bounded, and ‖δ(ω, t, z)‖∧ 1 ≤ Γ(z) with

Γ bounded and
∫

Γ(z)rλ(dz) <∞.

Let in = i+1, with i such that t ∈ I(n, i) = (i∆n, (i−1)∆n]. Let tn = (in−1)∆n, Y
n
t = σtn(Wt−Wtn)1{tn≤t}

and Y ′nt =
∫ t
tn∧t(σs − σtn)dWs. By construction and thanks to the càdlàg property of cs, ctn → ct as n→∞.

Step 1: We show that

f̂i+1,Y n ≡
1

kn

kn−l∑
m=0

f

(
∆n
i+1+mY

n

√
∆n

,
∆n
i+2+mY

n

√
∆n

, . . . ,
∆n
i+`+mY

n

√
∆n

)
P→ ρ⊗`ct f.
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By definition, we have f̂i+1,Y n = 1
kn

∑kn−`
m=0 f(yi+1+m, yi+1+m, . . . , yi+`+m), with yk ∼ i.i.d.N(0, ctn). It is not

hard to see that

E
(
f̂i+1,Y n

)
=
kn − `+ 1

kn
ρ⊗`ctn f → ρ⊗`ct f.

Also, V ar(f̂i+1,Y n) = O(1/kn)→ 0 as n→∞. We conclude that f̂i+1,Y n converges to ρ⊗`ct f in quadratic mean

and therefore in probability.

Step 2: We now show that:

Zn ≡ f̂(kn, vn, t)− f̂i+1,Y n = f̂i+1(kn, vn)− f̂i+1,Y n
P→ 0. (A.5)

For this, we will use the following inequality established in Step 3 bellow. For all v ≥ 1, ε ∈ (0, 1] and A > 0

large enough, with aj ≡ xj + yj + zj + wj ; j = 1, . . . , `, we have:∣∣∣f(a1, . . . , a`)
∏`
j=1 1{|aj |≤v} − f(a1, . . . , a`)

∣∣∣
≤ θA(ε) +KΨ(A)

∏`
j=1 (1 + ‖xj‖p + ‖yj‖p ∧ vp + ‖zj‖p + ‖wj‖p)

+KA2`
∑`
j=1 ε

−p (‖yj‖p ∧ vp + ‖zj‖p + ‖wj‖p)

+
∑`
k=1

[∏`
j=1,j 6=k (1 + ‖xj‖p)

] [
‖xk‖p+2

v2 + ‖yk‖p ∧ vp + ‖zk‖p + ‖wk‖p
]
,

(A.6)

where θA(ε) is a positive valued function converging to 0 as ε→ 0; Ψ(A)→ 0 as A→∞ and K > 0 a generic

constant.

Now we consider the decomposition of the process X given by Eq. (9.2.7) of Jacod and Protter (2012), that is:

X = X ′ +X ′′ with X ′ = X0 +
∫ t

0
b′′sds+

∫ t
0
σsdWs where b′′t = bt +

∫ t
0
δ(t, z)1{‖δ(t,z)‖>1}λ(dz).

Write xi = ∆n
in+iY

n/
√

∆n, yi = ∆n
in+iX

′′/
√

∆n, zi = ∆n
in+iY

′n/
√

∆n and wi = ∆n
in+iB

′′/
√

∆n, with

B′′t =
∫ t

0
b′′sds.

Using (A.6), we obtain for some constant K > 0,

|Zn| ≤ θA(ε) + K
kn

∑kn−`
m=0

(
Ψ(A)Z1

n,m +A2`ε−pZ2
n,m + Z3

n,m

)
, (A.7)

with:

Z1
n,m =

∏`
j=1

(
‖xm+j−1‖p + ‖ym+j−1‖p ∧∆

p($−1/2)
n + ‖zm+j−1‖p + ‖wm+j−1‖p

)
,

Z2
n,m =

∑`
j=1

(
‖ym+j−1‖p ∧∆

p($−1/2)
n + ‖zm+j−1‖p + ‖wm+j−1‖p

)
Z3
n,m =

∑`
s=1

[∏`
j=1,j 6=s (1 + ‖xm+j−1‖p)

]
×

[
‖xm+s−1‖p+2

∆2$−1
n

+ ‖ym+s−1‖p ∧∆
p($−1/2)
n + ‖zm+s−1‖p + ‖wm+s−1‖p

]
.

(A.8)

We have ‖ym+j−1‖p ∧ ∆
p($−1/2)
n = ∆

p($−1/2)
n

[∥∥∥∆n
in+m+j−1X

′′

∆$
n

∥∥∥p ∧ 1
]
. Similar to the arguments of Jacod and

Protter (2012, p.259), we can claim using their Eqs. (2.1.33), (2.1.34) and (2.1.45) that: for all i: 0 ≤ i ≤ kn−1,

‖wi‖p =

∥∥∥∥∆n
in+iB

′′
√

∆n

∥∥∥∥p ≤ K∆p/2
n , E

(
‖∆in+iY

n‖p|F(in+i−1)∆n

)
≤ K∆p/2

n ,
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E
(
‖∆in+iY

′n‖p|F(in+i−1)∆n

)
≤ K∆p/2

n E(γn|F(in+i−1)∆n
) ≤ K∆p/2

n ,

where γn is a bounded random sequence converging almost surely to 0 and finally,

E

(∥∥∥∥∆n
in+iX

′′

∆$
n

∥∥∥∥p ∧ 1

∣∣∣∣F(in+i−1)∆n

)
≤ K∆p(1/2−$)

n φn, (if p ≤ 2), and ≤ K∆1−r$
n φn, (if p > 2),

where φn → 0 as n→∞. Hence:

E
(
‖yi‖p ∧∆p($−1/2)

n |F(in+i−1)∆n

)
≤ Kφn, (if p ≤ 2), and ≤ K∆1−r$+p($−1/2)

n φn, (if p > 2).

Then, under (A.3), E
(
‖yi‖p ∧∆

p($−1/2)
n |F(in+i−1)∆n

)
≤ Kφn for all p > 0.

By successive applications of the law of iterated expectations, we can see that:

E(Z1
n,m) ≤ K,

E(Z2
n,m) ≤ K

(
φn + ∆

p/2
n + E(γn)

)
E(Z3

n,m) ≤ K
(

∆1−2$
n + φn + ∆

p/2
n + E(γn)

)
.

This shows that E|Zn| → 0 by first letting n → ∞ and then A → ∞ and ε → 0. As a result, Zn → 0 in

probability.

Step 3: It remains to show (A.6). We have the following inequality which is a slight extension of Jacod and

Protter (2012, Eq. (8.4.21)). For all ε ∈ (0, 1], A large enough and xi, yi ∈ Rd,

|f(x1 + y1, . . . , x` + y`)− f(x1, . . . , x`)|

≤ θA(ε) +KΨ(A)
∏`
j=1(1 + ‖xj‖p + ‖yj‖p) +KA2`

∑`
j=1

(
‖yj‖p∧1

εp

)
,

(A.9)

with θA(ε) → 0 as ε → 0; Ψ(A) → 0 as A → ∞ and some constant K > 0. By elementary calculations, we

deduce for any v ≥ 1:∣∣∣f(x1 + y1, . . . , x` + y`)
∏`
j=1 1{‖xj+yj‖≤v} − f(x1, . . . , x`)

∣∣∣
≤ θA(ε) +KΨ(A)

∏`
j=1(1 + ‖xj‖p + ‖yj‖p ∧ vp) +KA2`

∑`
j=1

(
‖yj‖p∧vp

εp

)
+|f(x1, . . . , x`)|

(
1−∏`

j=1 1{‖xj+yj‖≤v}

)
≤ θA(ε) +KΨ(A)

∏`
j=1(1 + ‖xj‖p + ‖yj‖p ∧ vp) +KA2`

∑`
j=1

(
‖yj‖p∧vp

εp

)
+
∑`
k=1

∏`
j=1,j 6=k(1 + ‖xj‖p)

[
‖xk‖p+2

v2 + ‖yk‖p ∧ vp
]
.

(A.10)

In the last inequality, we use the fact that (1 + ‖x‖p))1{‖x+y‖≥v} ≤ δ
(
‖x‖p+2

v2 + ‖y‖p ∧ vp
)

with δ = 4(2p + 1).

Then, (A.6) follows easily. �

Proof of Lemma A.2: As stated in the proof of Lemma A.1, by the localisation procedure, it is sufficient to

establish this result under the stronger assumption (SH-r).

Let ψ be C∞ on R with 1[1,∞) ≤ ψ ≤ 1[1/2,∞) and define ψε(x) = ψ(‖x‖/ε) and ψ′ε = 1 − ψε. Write
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fm(x1, . . . , x`) = f(x1, . . . , x`)
∏`
j=1 ψ

′
m(xj) and define f̂m,i(kn, vn) as f̂i(kn, vn) in (A.1) but with f replaced

by fm.

Step 1: We show that the result holds for fm. By definition, each fm is continuous and bounded therefore,

from Lemma A.1, we have

f̂m,i+1
P→ ρ⊗`ct (fm), as n→∞.

Also, by the Lebesgue dominated convergence theorem ρ⊗`ct (fm)→ ρ⊗`ct (f) as m→∞ (note that |fm| ≤ |f | for

all m, fm → f , pointwise and ρ⊗`ct (|f |) <∞).

Step 2: It remains to show that Zn ≡ f̂m,i+1 − f̂i+1 = op(1) for m,n large. For m fixed, for n large enough,

m ≤ un ≡ vn/
√

∆n and thus ψ′m(x) ≤ 1{‖x‖≤un}. Hence, we have:

|f(x1, . . . , x`)
∏`
j=1 1{‖xj‖≤un} − fm(x1, . . . , x`)|

= |f(x1, . . . , x`)| ·
∣∣∣∏`

j=1 1{‖xj‖≤un} −
∏`
j=1 ψ

′
m(xj)

∣∣∣ ≤ |f(x)|∏`
j=1 1{‖xj‖≤un}

∑`
s=1 1{‖xs‖≥m/2}

≤ K
∑`
s=1

∏`
j=1(1 + ‖xj‖p1{‖xj‖≤un})1{‖xs‖≥m/2}.

It is not hard to show that 1 + ‖x+ y‖p1{‖x+y‖≤un} ≤ K (1 + ‖x‖p + ‖y‖p ∧ upn) and

(1 + ‖x+ y‖p1{‖x+y‖≤un})1{‖x+y‖>m/2} ≤ K
(
‖x‖p+1/m+ ‖y‖p ∧ upn

)
; with K from now on a generic constant.

Thus, ∣∣∣f(x1 + y1, . . . , x` + y`)
∏`
j=1 1{‖xj+yj‖≤un} − fm(x1 + y1, . . . , x` + y`)

∣∣∣
≤ K

∑`
s=1

(
‖xs‖p+1

m + ‖ys‖p ∧ upn
)∏`

j=1,j 6=s (1 + ‖xj‖p + ‖yj‖p ∧ upn) .

(A.11)

Then, using the same decomposition of the process X as in the proof of Lemma A.1, and then setting xi =

∆n
in+iX

′/
√

∆n, yi = ∆n
in+iX

′′/
√

∆n in (A.11) and using the bounds presented in that proof for their conditional

expectations, it is not hard to see, applying the law of iterated expectations, that:

E|Zn| ≤ K(1 +K +Kφn)(K/m+Kφn), for p ≤ 2, and

E|Zn| ≤ K
(

1 +K +K∆1−r$+p($−1/2)
n φn

)
(K/m+K∆1−r$+p($−1/2)

n φn) for p > 2,

with φn → 0 as n → ∞. Thanks to (A.3), both right-hand-sides tend to 0 by first letting n → ∞ and then

m → ∞. This shows that E|Zn| converges to 0 therefore Zn converges in probability to 0. This concludes the

proof. �

A.3 Proofs

We introduce the following result that characterizes the asymptotic distribution of estimated eigenvalues and

normalized eigenvectors. We first introduce some notation. Let Bn be a (q, q)-matrix that consistently estimates

a symmetric positive definite matrix Σ, and ∆ the (q, q)-diagonal matrix with the eigenvalues δ1 ≥ . . . ≥ δq > 0

of Σ as diagonal elements. Assume that these eigenvalues have the structure in (9). Let Γ be an orthogonal

matrix of normalized eigenvectors of Σ, i.e.

ΓΓ′ = Iq and Γ′ΣΓ = ∆.
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Let An = Γ′BnΓ. Note that An and Bn have the same eigenvalues d1 ≥ · · · ≥ dq, and let Dn be the diag-

onal matrix containing those eigenvalues and Ê an orthogonal matrix of normalized eigenvectors of An with

nonnegative diagonal elements.

Let Un = rn(An −∆) and Ĥ = rn(Dn −∆), with rn →∞ as n→∞. Let Êkl and Un,kl denote the

(qk, ql)-submatrix of Ê and Un, respectively, with elements at the intersection of rows and columns with index

in Lk and Ll, respectively; for k, l = 1, . . . , r. Let Ĥk be defined as Êkk, but from Ĥ and F̂kl = rnÊkl, for

k 6= l. We have the following result which is a simple adaptation of the results of Anderson (1963) (see also

Davis, 1977).

Proposition A.1. If the eigenvalues of Σ have the structure in (9), almost surely and Un
L−s−→ U, and the

functionally unrelated elements of U have a joint distribution that is continuous with respect to the Lebesgue

measure in Rq(q+1)/2, then, for k, l = 1, . . . , r,

ÊkkÊ
′
kk = Iqk +OP (r−2

n )

Un,kk = ÊkkĤkÊ
′
kk +OP (r−1

n )

Un,kl = λkÊkkF̂
′
lk + λlF̂klÊ

′
ll +OP (r

−1/2
n ), k 6= l

0 = ÊkkF̂
′
lk + F̂klÊ

′
ll +OP (r

−1/2
n ), k 6= l,

(A.12)

and Êkk, Ĥk and F̂kl converge stably in law to limiting distributions Ekk, Hk and Fkl, respectively, uniquely

defined in terms of U by the equations:

EkkE
′
kk = Iqk

Ukk = EkkHkE
′
kk

Ukl = λkEkkF
′
lk + λlFklE

′
ll, k 6= l

0 = EkkF
′
lk + FklE

′
ll, k 6= l,

(A.13)

where Hk is diagonal and Ekk is restricted to have nonnegative diagonal elements; and Ukl is defined similarly

to Un,kl but from U .

The proof of this proposition follows readily from Anderson (1963), with
√
n replaced by rn. The stable

convergence in law deduced for Êkk, Ĥk and F̂kl follows from the stable convergence in law of Un. The last two

equalities in (A.12) imply that F̂kl = OP (1), therefore, Êkl = oP (1) for k 6= l. �

Proof of Proposition 3.1: (a) The maximum likelihood estimator λ̂k of λk (k = 1, . . . , r) is obtained by

solving the first order condition associated with the log-likelihood function in (14) and it is straightforward to

get λ̂k = 1
qk

∑
i∈Lk

d̃i.

(b) Since the log-likelihood in (14) is additively separable in λk’s, it is maximized under H0 by

C − n

2
qk log λ̃k −

n

2

∑
i∈Lk

d̃i

λ̃k
, with λ̃k =

1

qk

∑
i∈Lk

d̃i,

where C is the maximum of the part of log-likelihood that depends on λs, for s 6= k. The unrestricted likelihood

is maximized by

C − n

2

∑
i∈Lk

log λ̃i −
n

2

∑
i∈Lk

d̃i

λ̃i
, with λ̃i = d̃i.

The expression of the likelihood ratio criterion in (15) follows by straightforward derivations.
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(c) Note that b̃ has finite mean and variance and therefore is OP (1). As a result,

ĨV
n − IVT =

n∑
i=1

(∆n
i X)(∆n

i X)′ − IVT +OP (∆n) =

n∑
i=1

yiy
′
i − IVT +OP (∆n),

where yi = ∆n
i X−∆nb ∼ N

(
0, ∆n

T IVT
)
. In this derivation we use the simplification that T/∆n is integer equal

to n.

Let Γ be the matrix of normalized eigenvectors of IVT defined such that: Γ′Γ = Iq and Γ′IVTΓ = ∆,

where ∆ is the diagonal matrix with diagonal vector δ = λ(IVT ). Let Un = 1√
∆n

(
Γ′ĨV

n
Γ−∆

)
. We have

Un =
1√
∆n

n∑
i=1

(
zi −

∆

n

)
+ oP (1),

with zi = (Γ′yi)(Γ
′yi)
′. We can easily verify the Lyapunov central limit theorem conditions and deduce:

Un
d−→ U, (A.14)

where U is normally distributed with mean 0 and covariance: Cov(uij , ugh) =
δiδj
T (δigδjh + δihδjg), with uab

a generic component of U and δab = 1 if a = b and 0 otherwise.

We now derive the asymptotic distribution of L̃Rk. We have

L̃Rk = −n
(∑
i∈Lk

log d̃i − qk log

(
1

qk

∑
i∈Lk

d̃i

))
. (A.15)

Let Ĥ = 1√
∆n

(
D̃ −∆

)
, where D̃ is the diagonal matrix containing d̃ = λ(ĨV

n
) as diagonal. Let Ê be the

matrix of normalized eigenvectors of An = Γ′ĨV
n
Γ, that is: ÊÊ′ = Iq, Ê′AnÊ = D̃, and Êkk (Un,kk, Ukk)

is the submatrix of Ê (Un, U) with rows and columns with indexes in Lk.

From Proposition A.1, we have

Ĥk = OP (1), Un,kk = ÊkkĤkÊ
′
kk + oP (1) and ÊkkÊ

′
kk = Iqk + oP (1). (A.16)

Hence, with hi ≡ Ĥii for i ∈ Lk, we have

L̃Rk = −n
( ∑
i∈Lk

log
(

1 +
√

∆nhi
λk

)
− qk log

(
1 +
√

∆n

∑
i∈Lk

hi

qkλk

))

= −n

 ∑
i∈Lk

[
√

∆n

λk
hi − ∆n

2λ2
k

∑
i∈Lk

h2
i

]
− qk

√∆n

qkλk

∑
i∈Lk

hi − ∆n

2q2kλ
2
k

( ∑
i∈Lk

hi

)2
+ oP (∆n)


= n∆n

2λ2
k

(
tr(H2

k)− 1
qk

(tr(Hk))
2
)

= T
2λ2
k

(
tr(U2

n,kk)− 1
qk

(tr(Un,kk))
2
)

+ oP (1),

(A.17)

where the second and third equalities follow from a second order Taylor expansion and Equation (A.16), respec-

tively. Thus L̃Rk converges in distribution to

T

2λ2
k

(
tr(U2

kk)− 1

qk
(tr(Ukk))

2

)
=

T

2λ2
k

2
∑

i<j i,j∈Lk

u2
ij +

∑
i∈Lk

u2
ii −

1

qk

(∑
i∈Lk

uii

)2
 .

Thanks to Equation (A.14), uij = uji and is independent of all the other entries of U . Moreover, uii ∼
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N(0, 2λ2
k/T ) and uij ∼ N(0, λ2

k/T ) for i 6= j. Therefore, it follows that:

T

2λ2
k

∑
i∈Lk

u2
ii −

1

qk

(∑
i∈Lk

uii

)2
 ∼ χ2

qk−1

and is independent of
T

λ2
k

∑
i<j i,j∈Lk

u2
ij ∼ χ2

1
2 qk(qk−1).

As a result, L̃Rk is asymptotically distributed as a χ2
1
2 (qk−1)(qk+2)

.

We now show that L̃Rk diverges to infinity under the alternative. Let λk,i, for i = 1, . . . , qk, be the

eigenvalues of IVT in the cluster Lk. Under the alternative, at least two of them are distinct. As previously,

let hi = 1√
∆n

(
d̃i − λk,i

)
, i ∈ Lk. From Equation (A.15), we have

L̃Rk = −n
( ∑
i∈Lk

log(λk,i +
√

∆nhi)− qk log

(
1
qk

∑
i∈Lk

(λk,i +
√

∆nhi)

))

= −n
( ∑
i∈Lk

log λk,i +
∑
i∈Lk

[√
∆n

hi
λk,i
− 1

2∆n
h2
i

λ2
k,i

+ oP (∆n)
]

−qk log

 ∑
i∈Lk

λk,i

qk
− qk

√∆n

∑
i∈Lk

hi∑
i∈Lk

λk,i
− 1

2∆n

( ∑
i∈Lk

hi∑
i∈Lk

λk,i

)2

+ oP (∆n)


= nqk

(
log

∑
i∈Lk

λk,i

qk
− 1

qk

∑
i∈Lk

log λk,i

)
+OP (n

√
∆n),

where the second equality is obtained from a second order Taylor expansion. Since log is strictly concave, it

follows that log

∑
i∈Lk

λk,i

qk
> 1

qk

∑
i∈Lk

log λk,i and L̃Rk →∞ as n→∞, in probability.

(d) Similar to the proof of (b), under H0(λ), the log-likelihood in (14) is maximized by

C − n

2
qk log λ− n

2

∑
i∈Lk

d̃i
λ

and the expression of the likelihood ratio criterion in (16) follows easily.

The asymptotic distribution of L̃Rk,λ is obtained similarly to that of L̃Rk derived above. We have

L̃Rk,λ = −n ∑
i∈Lk

log d̃i + nqk log λ+ n
λ

∑
i∈Lk

d̃i − nqk

= −n ∑
i∈Lk

log
(

1 +
√

∆nhi
λ

)
+ n

√
∆n

λ

∑
i∈Lk

hi

= −n ∑
i∈Lk

(√
∆nhi
λ − ∆nh

2
i

λ2 + oP (∆n)
)

+ n
√

∆n

λ

∑
i∈Lk

hi

= n∆n

2λ2

∑
i∈Lk

h2
i + oP (1) = T

2λ2 tr(U
2
n,kk) + oP (1),

(A.18)

which converges in distribution to T
2λ2

(
2

∑
i<j i,j∈Lk

u2
ij +

∑
i∈Lk

u2
ii

)
. Recalling the distribution of uij as given

in the proof of (c) above, we can claim that L̃Rk,λ converges in distribution to χ2
1
2 qk(qk+1)

.

We next show that L̃Rk,λ diverges under the alternative to H0(λ). Similar calculations to those in the proof
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of divergence of L̃Rk above lead to

L̃Rk,λ = n
∑
i∈Lk

[(
λki
λ
− 1

)
− log

λki
λ

]
+OP (n

√
∆n).

Note that x 7→ x − 1 − log x is nonnegative on (0,+∞) and takes value 0 only at x = 1. Since under the

alternative λki/λ 6= 1 for at least one i ∈ Lk, we can conclude that L̃Rk,λ →∞, in probability. �

Proof of Equation (18): Recalling that ∆i
nX ∼ N(∆nb,∆nc), we have

ĨV
n

=

n∑
i=1

(
∆i
nX −∆nb̃

)(
∆i
nX −∆nb̃

)′
=

n∑
i=1

(∆i
nX)(∆i

nX)′ −∆nT b̃b̃
′ = IV

n
+OP (∆n).

To prove the second equality, observe that

ĨV
n − IV n =

n∑
i=1

(yi −∆nb̃)(yi −∆nb̃)
′1{‖yi‖>α∆$

n } +OP (∆n),

where yi ≡ ∆i
nX. Hence,

1√
∆n

(ĨV
n − ÎV n) =

√
∆nc

1/2

(
n∑
i=1

∆−1
n c−1/2(yi −∆nb̃)(yi −∆nb̃)

′c−1/21{‖yi‖>α∆$
n }

)
c1/2 +OP (

√
∆n).

The first term in the right hand side is then of the same order of magnitude as

√
∆n

n∑
i=1

ziz
′
i1{‖yi‖>α∆$

n } +OP (
√

∆n),

where zi’s are N(0, Iq). By The triangle and the Cauchy-Schwarz inequalities, we have∥∥∥∥∥√∆n

n∑
i=1

ziz
′
i1{‖yi‖>α∆$

n }

∥∥∥∥∥ ≤√∆n

n∑
i=1

‖zi‖21{‖yi‖>α∆$
n }.

To conclude the claimed order of magnitude, it suffices to show that the right hand side of the above inequality

converges in absolute mean to 0. By the Cauchy-Schwarz and Markov inequalities, there exists a (generic)

constant C > 0 such that, for any ` > 0,

E

(√
∆n

n∑
i=1

‖zi‖21{‖yi‖>α∆$
n }

)
≤ C

√
∆n

n∑
i=1

P (‖yi‖ > α∆$
n )

1/2 ≤ C∆
1
2−

`$
2

n

n∑
i=1

E
(
‖yi‖

`
2

)
.

Note that

E
(
‖yi‖

`
2

)
= E‖

√
∆nc

1/2zi + ∆nb̃‖
`
2 ≤ C

(
∆

`
4
nE‖zi‖

`
2 + ∆

`
2
nE‖b̃‖

`
2

)
,

where we have used the Cauchy-Schwarz and the Cr inequalities.

Hence, the leading term of ∆
1
2−

`$
2

n

n∑
i=1

E
(
‖yi‖

`
2

)
is at most of order n∆

1
2−

`$
2 + `

4
n = T∆

− 1
2−

`$
2 + `

4
n and the

expected convergence to 0 is warranted since we can find ` such that $ < 1
2 − 1

` . �

Proof of Theorem 3.1: Since Un ≡ 1√
∆n

(
Γ′ÎV

n
Γ−∆

)
= Γ′

(
1√
∆n

(
ÎV

n − IVT
))

Γ converges stably in

law to UT , which has a continuous distribution, Proposition A.1 can be applied as in the proof of Proposition

3.1 and we can claim that the expansion of L̃Rk in Equation (A.17) also holds for LRk and that of L̃Rk,λ in

Equation (A.18) holds for LRk,λ. We can therefore write
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LRk = T
2λ2
k

(
tr
(
U2
n,kk

)
− 1

qk
(tr [Un,kk])

2
)

+ oP (1), and LRk,λ = T
2λ2 tr

(
U2
n,kk

)
+ oP (1), where Un,kk is

the submatrix of Un at the intersection of rows and columns with indexes in Lk. The claimed result then holds

by the continuous mapping theorem.

The proof of divergence of these test statistics follows the exact same lines as the proof of their respective

counterparts of Proposition 3.1. �

Proof of Theorem 3.2: Under the conditions on the theorem, Un = 1√
∆n

(
Γ′ÎV

n
Γ−∆

)
converges stably in

law to UT = Γ′WTΓ; see Equation (20). Assume without loss of generality that the eigenvalues of IVT have the

structure in Equation (9) and let Lk (k = k1, . . . , r) be the clusters of the q − Q smallest eigenvalues of IVT .

We have:
q∑

i=Q+1

di =

r∑
k=k1

∑
i∈Lk

di =

r∑
k=k1

(∑
i∈Lk

[di − λk] + qkλk

)
.

Using the notation leading to Proposition A.1, with Sn = ÎV
n
, Un = Un, etc., this proposition allows us to

claim that 1√
∆n

∑
i∈Lk

(di − λk) = tr(Ĥk) = tr(Un,kk) + oP (1). Thus,

1√
∆n

q∑
i=Q+1

di =

r∑
k=k1

tr(Un,kk) +
1√
∆n

r∑
k=k1

qkλk + oP (1) = tr (Un,Q+1:q,Q+1:q) +
1√
∆n

r∑
k=k1

qkλk + oP (1).

Similarly, 1√
∆n

q∑
i=1

di = tr (Un) + 1√
∆n

r∑
k=1

qkλk + oP (1). As a result,

Tn = tr (Un,Q+1:q,Q+1:q)− π · tr (Un) +
1√
∆n

(
r∑

k=k1

qkλk − π ·
r∑

k=1

qkλk

)
+ oP (1).

(a) If the null hypothesis holds with equality, the claimed asymptotic distribution is obtained thanks to the

continuous mapping theorem. (b) If the null holds with strict inequality, Tn diverges to −∞. (c) If the null

does not hold, Tn diverges to +∞, thus (c). �

Proof of Theorem 3.3: The proof of this theorem follows the same lines as that of Theorem 3.1 and uses the

continuity of the asymptotic distribution UρT in (26). �

Proofs of Proposition 4.1 and Corollary 4.1: We rely on Hounyo (2017, Ths. 3.1 and 3.2) to establish

these results. For this, it suffices to check the Condition A in Hounyo (2017). That is:

(i) For k, l, k′, l′ = 1, . . . , q,

n

2

n−1∑
i=1

(yi,kyi,l − yi+1,kyi+1,l) (yi,k′yi,l′ − yi+1,k′yi+1,l′)

converges in probability to

∫ T

0

[
ckk
′

s cll
′

s + ckl
′

s clk
′

s

]
ds,

(ii) n1+ε
n∑
i=1

|yi,kyi,l|2+ε = OP (1), for k, l = 1, . . . , q and some ε > 2 and

(iii)
√
n

2+ε
1+ε

n = o (1). Both (i) and (ii) follow from Jacod and Protter (2012, Th. 9.4.1) while (iii) is obvious. �

Proof of Theorem 4.1: U∗kk and U∗Q+1:q,Q+1:q can both be written as Γ̂′0S
∗
nΓ̂0 with Γ̂0 = ΓÊ0, where Ê0 is

a matrix equal to the collection of columns of Ê indexed by Lk or
⋃r
k=k1

Lk = {Q + 1, . . . , q}. Thanks to

the arguments leading to Equation (28), we can claim that LR∗k, LR∗k,λ and Z∗n converge in distribution to
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the same limit distributions as those of LRk, LRk,λ and Zn as given in Theorem 3.1(a) and (b) and Theorem

3.3(a), respectively. The claimed uniform consistencies in part (a), (b) and (c) of Theorem 4.1 follow from the

continuity of these asymptotic distributions. �

Proof of Theorem 5.1: Because E∗(ηm) = 1 and V ar∗(ηm) = 1/2, it not hard to see that E∗(S∗nt) = 0 and,

the (q2, q2)-matrix V ∗n = V ar∗(vec(S∗nt)) has its (ab, cd) element, for a, b, c, d = 1, . . . , q, given by:

Covar∗(S∗nt,ab, S
∗
nt,cd) =

1

2kn∆2
n

kn−1∑
m=0

(Zabm −Zabm+1)(Zcdm −Zcdm+1)′.

By Lemma A.2, this quantity converges in probability to cact c
bd
t +cadt c

bc
t corresponding to the asymptotic variance

of Snt. Therefore, it remains to show that S∗nt is asymptotically normally distributed with respect to the

bootstrap measure P ∗. We will show that vech (S∗nt) is asymptotically normal. We can see that the probability

limit of V ∗n is equal to V ar(y ⊗ y) with y ∼ N(0, ct) and ‘⊗′ the Kronecker product. Since ct is almost surely

positive definite, we can rely on Magnus and Neudecker (1979, Th. 4.3(v)) to claim that Ṽ ∗n ≡ V ar∗ [vech (S∗nt)]

is positive definite with probability approaching 1. Thus, it suffices to show that:

Z∗n ≡ Ṽ ∗
−1/2

n vech(S∗nt)
d∗−→ N

(
0, I q(q+1)

2

)
, in probability.

For this, we rely on the modified Cramer-Wold device [see Pauly (2011)] by showing that for any λ ∈ D a

countably dense subset of the unit sphere in R
q(q+1)

2 , λ′Z∗n ≡
∑kn−1
m=0 zn,m

d∗−→ N(0, 1), in probability; with

zn,m = λ′Ṽ ∗
−1/2

n vech(Z∗m − Zm). Since E∗(λ′Z∗n) = 0 and V ar∗(λ′Z∗n) = 1, it suffices to verify the Lyapunov’s

condition: for some δ > 0,

kn−1∑
m=0

E∗ ‖zn,m‖2+δ → 0, in probability as n→∞, (A.19)

where the norm sign denotes the Euclidean norm. By the Cauchy-Schwarz inequality, we have:

‖zn,m‖2+δ ≤ k−
δ
2

n (λ′Ṽ ∗
−1

n λ)(2+δ)/2 1

kn
‖vech(Z∗m −Zm)‖2+δ ≤ k−

δ
2

n (λ′Ṽ ∗
−1

n λ)(2+δ)/2 1

kn
‖Z∗m −Zm‖2+δ.

Note that λ′Ṽ ∗
−1

n λ
P→ λ′Ṽ ∗λ = OP (1) since Ṽ ∗ ≡ plimṼ ∗n is nonsingular almost surely. Also,

‖Z∗m −Zm‖2+δ = ‖Zm+1 −Zm‖2+δ|1− ηm|2+δ ≤ 21+δ[‖Zm+1‖2+δ + ‖Zm‖2+δ](1 + |ηm|2+δ),

where the last inequality follows from the Jensen’s inequality. Thus, taking δ : 0 < δ < ε, we have:

E∗‖zn,m‖2+δ ≤ OP (1)k−δ/2n

1

kn

[
‖Zm‖2+δ + ‖Zm+1‖2+δ

]
= OP (1)k−δ/2n

1

kn

[
‖ym‖4+4δ + ‖ym+1‖4+2δ

]
,

where the OP (1) term keeps its magnitude uniformly over m = 0, . . . , kn − 1 and

ym = ∆n
i+1+mX1{‖∆n

i+1+mX‖≤α∆$}. Hence,

kn−1∑
m=0

E∗‖zn,m‖2+δ ≤ OP (1)k−δ/2n

1

kn

kn−1∑
m=0

(
‖ym‖4+4δ + ‖ym+1‖4+2δ

)
.

Now, choose δ small enough so that $ > 4+2δ−2
2(4+2δ−r) = 1+δ

4−r+2δ .

Lemma A.2 ensures that both (1/kn)
∑kn−1
m=0 ‖ym‖4+4δ and (1/kn)

∑kn−1
m=0 ‖ym+1‖4+4δ are OP (1) and this estab-

lishes (A.19). The statement of the lemma follows from the fact that vech(Snt) and vech(S∗nt) have the same

limit law that is absolutely continuous with respect to the Lebesgue measure on Rq(q+1)/2. �
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