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Abstract

We study the problem of finding approximate Nash equilibria that satisfy certain
conditions, such as providing good social welfare. In particular, we study the
problem ǫ-NE δ-SW: find an ǫ-approximate Nash equilibrium (ǫ-NE) that is
within δ of the best social welfare achievable by an ǫ-NE. Our main result is
that, if the exponential-time hypothesis (ETH) is true, then solving

(
1
8 −O(δ)

)
-

NE O(δ)-SW for an n × n bimatrix game requires nΩ̃(logn) time. Building on
this result, we show similar conditional running time lower bounds on a number
of decision problems for approximate Nash equilibria that do not involve social
welfare, including maximizing or minimizing a certain player’s payoff, or finding
approximate equilibria contained in a given pair of supports. We show quasi-
polynomial lower bounds for these problems assuming that ETH holds, where
these lower bounds apply to ǫ-Nash equilibria for all ǫ < 1

8 . The hardness of
these other decision problems has so far only been studied in the context of
exact equilibria.

Keywords: Approximate Nash equilibrium, constrained equilibrium,
quasi-polynomial time, lower bound, Exponential Time Hypothesis.

1. Introduction

One of the most fundamental problems in game theory is to find a Nash
equilibrium of a game. Often, we are not interested in finding any Nash equi-
librium, but instead we want to find one that also satisfies certain constraints.
For example, we may want to find a Nash equilibrium that provides high social
welfare, which is the sum of the players’ payoffs.

In this paper we study such problems for bimatrix games, which are two-
player strategic-form games. Unfortunately, for bimatrix games, it is known
that these problems are hard. Finding any Nash equilibrium of a bimatrix
game is PPAD-complete [1], while finding a constrained Nash equilibrium turns

✩The authors were supported by EPSRC grant EP/L011018/1. A short version of this
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out to be even harder. Gilboa and Zemel [2] studied several decision problems
related to Nash equilibria. They proved that it is NP-complete to decide whether
there exist Nash equilibria in bimatrix games with some “desirable” properties,
such as high social welfare. Conitzer and Sandholm [3] extended the list of
NP-complete problems of [2] and furthermore proved inapproximability results
for some of them. Recently, Garg et al. [4] and Bilo and Mavronicolas [5, 6]
extended these results to many player games and provided ETR-completeness
results for them.
Approximate equilibria. Due to the apparent hardness of finding exact Nash
equilibria, focus has shifted to approximate equilibria. There are two natu-
ral notions of approximate equilibrium, both of which will be studied in this
paper. An ǫ-approximate Nash equilibrium (ǫ-NE) requires that each player
has an expected payoff that is within ǫ of their best response payoff. An ǫ-
well-supported Nash equilibrium (ǫ-WSNE) requires that both players only play
strategies whose payoff is within ǫ of the best response payoff. Every ǫ-WSNE
is an ǫ-NE but the converse does not hold, so a WSNE is a more restrictive
notion.

There has been a long line of work on finding approximate equilibria [7,
8, 9, 10, 11, 12, 13]. Since we use an additive notion of approximation, it
is common to rescale the game so that the payoffs lie in [0, 1], which allows
different algorithms to be compared. The state of the art for polynomial-time
algorithms is the following. There is a polynomial-time algorithm that computes
an 0.3393-NE [13], and a polynomial-time algorithm that computes a 0.6528-
WSNE [8].

There is also a quasi-polynomial time approximation scheme (QPTAS) for
finding approximate Nash equilibria. The algorithm of Lipton, Markakis, and

Mehta finds an ǫ-NE in nO( log n

ǫ2
) time [14]. They proved that there is always an

ǫ-NE with support of logarithmic size, and then they use a brute-force search
over all possible candidates to find one. We will refer to their algorithm as the
LMM algorithm.

A recent breakthrough of Rubinstein implies that we cannot do better than a
QPTAS like the LMM algorithm [15]: assuming an exponential time hypothesis
for PPAD (PETH), there is a small constant, ǫ∗, such that for ǫ < ǫ∗, every
algorithm for finding an ǫ-NE requires quasi-polynomial time. Briefly, PETH
is the conjecture that EndOfTheLine, the canonical PPAD-complete problem,
cannot be solved faster than exponential time.
Constrained approximate Nash equilibria. While deciding whether a
game has an exact Nash equilibrium that satisfies certain constraints is NP-hard
for most interesting constraints, this is not the case for approximate equilibria,
because the LMM algorithm can be adapted to provide a QPTAS for them. The
question then arises whether one can do better.

Let the problem ǫ-NE δ-SW be the problem of finding an ǫ-NE whose social
welfare is within δ of the best social welfare that can be achieved by an ǫ-NE.
Hazan and Krauthgamer [16] and Austrin, Braverman and Chlamtac [17] proved
that there is a small but constant ǫ such that ǫ-NE ǫ-SW is at least as hard as
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finding a hidden clique of size O(logn) in the random graph Gn,1/2. This was
further strengthened by Braverman, Ko, and Weinstein [18] who showed a lower
bound based on the exponential-time hypothesis (ETH), which is the conjecture
that any deterministic algorithm for 3SAT requires 2Ω(n) time. More precisely,
they showed that under ETH there is a small constant ǫ such that any algorithm

for O(ǫ)-NE O(ǫ)-SW1 requires npoly(ǫ) log(n)1−o(1)

time2. We shall refer to this
as the BKW result.

It is worth noting that the Rubinstein’s hardness result [15] almost makes
this result redundant. If one is willing to accept that PETH is true, which is a
stronger conjecture than ETH, then Rubinstein’s result says that for small ǫ we
require quasi-polynomial time to find any ǫ-NE, which obviously implies that
the same lower bound applies to ǫ-NE δ-SW for any δ.
Our results. Our first result is a lower bound for the problem of finding ǫ-
NE δ-SW. We show that, assuming ETH, that there exists a small constant δ

such that the problem
(

1−4g·δ
8

)
-NE

(
g·δ
4

)
-SW requires nΩ̃(logn) time3, where

g = 1
138 .
To understand this result, let us compare it to the BKW result. First,

observe that as δ gets smaller, the ǫ in our ǫ-NE gets larger, whereas in the
BKW result, ǫ get smaller. Asymptotically, our ǫ approaches 1/8. Moreover,
since δ ≤ 1, our lower bound applies to all ǫ-NE with ǫ ≤ 1−4g

8 ≈ 0.1214.
This is orders of magnitude larger than the inapproximability bound given by
Rubinstein’s hardness result, and so is not made redundant by that result. In
short, our hardness result is about the hardness of obtaining good social welfare,
rather than the hardness of simply finding an approximate equilibrium.

Secondly, when compared to the BKW result, we obtain a slightly better
lower bound. The exponent in their lower bound is logarithmic only in the
limit, while ours is always logarithmic.

The second set of results in this paper show that, once we have our lower
bound on the problem of finding ǫ-NE δ-SW, we use it to prove lower bounds
for other problems regarding constrained approximate NEs and WSNEs. Ta-
ble 1 gives a list of the problems that we consider. For each one, we provide a
reduction from ǫ-NE δ-SW to that problem. Ultimately, we prove that if ETH
is true, then for every ǫ < 1

8 finding an ǫ-NE with the given property in an n×n
bimatrix game requires nΩ̃(logn) time.

Techniques. At a high level, the proof of our first result is similar in spirit to
the proof of the BKW result. They reduce from the problem of approximating

1While the proof in [18] produces a lower bound for 0.8-NE (1 − O(ǫ))-SW, this is in a
game with maximum payoff O(1/ǫ). Therefore, when the payoffs in this game are rescaled to
[0, 1], the resulting lower bound only applies to ǫ-NE ǫ-SW.

2Although the paper claims that they obtain a nÕ(logn) lower bound, the proof reduces
from the low error result from [19] (cf. Theorem 36 in [20]), which gives only the weaker lower

bound of npoly(ǫ) log(n)1−o(1)
.

3Here Ω̃(log n) means Ω( log n

(log log n)c
) for some constant c.
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Problem description Problem definition

Problem 1: Large payoffs u ∈ (0, 1] Is there an ǫ-NE (x,y) such that
min(xTRy,xTCy) ≥ u?

Problem 2: Restricted support S ⊂
[n]

Is there an ǫ-NE (x,y) with supp(x) ⊆ S?

Problem 3: Two ǫ-NE d ∈ (0, 1]
apart in Total Variation (TV) dis-
tance

Are there two ǫ-NE with TV distance ≥ d?

Problem 4: Small largest probabil-
ity p ∈ (0, 1)

Is there an ǫ-NE (x,y) with maxi xi ≤ p?

Problem 5: Small total payoff v ∈
[0, 2)

Is there an ǫ-NE (x,y) such that xTRy +
xTCy ≤ v?

Problem 6: Small payoff u ∈ [0, 1) Is there an ǫ-NE (x,y) such that xTRy ≤ u?

Problem 7: Large total support size
k ∈ [n]

Is there an ǫ-WSNE (x,y) such that
|supp(x)| + |supp(y)| ≥ 2k?

Problem 8: Large smallest support
size k ∈ [n]

Is there an ǫ-WSNE (x,y) such that
min{|supp(x)|, |supp(y)|} ≥ k?

Problem 9: Large support size k ∈
[n]

Is there an ǫ-WSNE (x,y) such that
|supp(x)| ≥ k?

Problem 10: Restricted support
SR ⊆ [n]

Is there an ǫ-WSNE (x,y) with SR ⊆
supp(x)?

Table 1: The decision problems that we consider. All of them take as input a
bimatrix game (R,C) and a quality of approximation ǫ ∈ (0, 1). Problems 1 - 4
relate to ǫ-NE, and Problems 7 - 10 relate to ǫ-WSNE.
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the value of a free game. Aaronson, Impagliazzo, and Moshkovitz showed quasi-
polynomial lower bounds for this problem assuming ETH [19]. A free game
is played between to players named Merlin1 and Merlin2, and a referee named
Arthur. The BKW result creates a bimatrix game that simulates the free game,
where the two players take the role of Merlin1 and Merlin2, while Arthur is
simulated using a zero-sum game.

Our result will also be proved by producing a bimatrix game that simulates
a free game. However, there are a number of key differences that allow us
to prove the stronger lower bounds described above. The first key difference is
that we use a different zero-sum game to simulate Arthur. Our zero-sum game is
inspired by the one used by Feder, Nazerzadeh, and Saberi [21]. The advantage
of this construction is that it is capable of ensuring that play distributions that
a very close to uniform in all approximate Nash equilibria, which in turn gives
us a very accurate simulation of Arthur.

The downside of this zero-sum game is that it requires 2n rows to force
the column player to mix close to uniformly over n rows. Arthur is required
to pick two questions uniformly from a set of possible questions. The free
games provided by Aaronson, Impagliazzo, and Moshkovitz have question sets
of linear size, so if we reduce directly from these games, we would end up with
an exponentially sized bimatrix game. The conference version of this paper [22]
resolved the issue by using a sub-sampling lemma, also proved by Aaronson,
Impagliazzo, and Moshkovitz, that produces a free game with logarithmically
sized question sets. This allowed us to produce polynomially sized bimatrix
games, but at the cost of needing randomization to implement the reduction,
and so the result depended on the randomized version of the ETH.

In this version, we show that we are able to assume only the ETH by using
a stronger result that was discovered by Babichenko, Papadimitriou, and Ru-
binstein [23]. Their results imply that approximating the value of a free game
requires quasipolynomial time even when the size of the question sets is loga-
rithmic in the game size. They do not explicitly formulate this result, but it is
clearly implied by their techniques. For the sake of completeness, we provide
an exposition of their ideas in Section 3.

The second main difference between our result and the BKW result is that
we use a different starting point. The BKW result uses the PCP theorem
of Moshkovitz and Raz [24], which provides a completeness/soundness gap of
1 vs δ for arbitrarily small constant δ in the label cover problem. The use
of this powerful PCP theorem is necessary, as their proof relies on the large
completeness/soundness gap produced by that theorem. This choice of PCP
theorem directly impacts the running time lower bound that they produce, as
the (log n)1−o(1) term in the exponent arises from the blowup of n1+o(1) from
the PCP theorem.

In contrast to this, our stronger simulation of Arthur allows us to use the
PCP theorem of Dinur [25] as our starting point. This PCP theorem only

involves a blowup of n polylog(n), which directly leads to the improved Ω̃(logn)
exponent in our lower bound. The improved blowup of the PCP theorem comes
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at the cost of providing a completeness/soundness gap of only 1 vs 1 − ǫ for
ǫ < 1

8 , but our simulation is strong enough to deal with this. It is also worth
noting that if a PCP theorem with a constant completeness/soundness gap and
linear blow up is devised in the future, then the exponent in our lower bound
will improve to Ω(log n).

One final point of comparison is the size of the payoffs used in our simulation.
The zero-sum games that we use have payoffs in the range (−4, 4), which directly
leads to the 1−4g·δ

8 bound on the quality of approximation. In contrast to this,
the zero-sum games used by the BKW result have payoffs of size O(1ǫ ), which
ultimately means that their lower bound only applies to the problem ǫ-NE ǫ-SW.

Other related work. The only positive result for finding ǫ-NE with good
social welfare that we are aware of was given by Czumaj, Fasoulakis, and Jur-
dziński [26, 27]. In [26], they showed that if there is a polynomial-time algorithm
for finding an ǫ-NE, then for all ǫ′ > ǫ there is also a polynomial-time algorithm
for finding an ǫ′-NE that is within a constant multiplicative approximation of
the best social welfare. They also give further results for the case where ǫ > 1

2 .

In [27] they derived polynomial-time algorithms that compute ǫ-NE for ǫ ≥ 3−
√
5

2
that approximate the quality of plutocratic and egalitarian Nash equilibria to
various degrees.

2. Preliminaries

Throughout the paper, we use [n] to denote the set of integers {1, 2, . . . , n}.
An n× n bimatrix game is a pair (R,C) of two n× n matrices: R gives payoffs
for the row player and C gives the payoffs for the column player.

Each player has n pure strategies. To play the game, both players simul-
taneously select a pure strategy: the row player selects a row i ∈ [n], and the
column player selects a column j ∈ [n]. The row player then receives payoff
Ri,j , and the column player receives payoff Ci,j .

A mixed strategy is a probability distribution over [n]. We denote a mixed
strategy for the row player as a vector x of length n, such that xi is the prob-
ability that the row player assigns to pure strategy i. A mixed strategy of the
column player is a vector y of length n, with the same interpretation. If x and y
are mixed strategies for the row and the column player, respectively, then we
call (x,y) a mixed strategy profile. The expected payoff for the row player under
strategy profile (x,y) is given by xTRy and for the column player by xTCy.
We denote the support of a strategy x as supp(x), which gives the set of pure
strategies i such that xi > 0.

Nash equilibria. Let y be a mixed strategy for the column player. The set of
pure best responses against y for the row player is the set of pure strategies that
maximize the payoff against y. More formally, a pure strategy i ∈ [n] is a best
response against y if, for all pure strategies i′ ∈ [n] we have:

∑
j∈[n] yj · Ri,j ≥∑

j∈[n] yj · Ri′,j . Column player best responses are defined analogously.

6



A mixed strategy profile (x,y) is a mixed Nash equilibrium if every pure
strategy in supp(x) is a best response against y, and every pure strategy in
supp(y) is a best response against x. Nash [28] showed that every bimatrix
game has a mixed Nash equilibrium. Observe that in a Nash equilibrium, each
player’s expected payoff is equal to their best response payoff.

Approximate Equilibria. There are two commonly studied notions of ap-
proximate equilibrium, and we consider both of them in this paper. The first
notion is that of an ǫ-approximate Nash equilibrium (ǫ-NE), which weakens the
requirement that a player’s expected payoff should be equal to their best re-
sponse payoff. Formally, given a strategy profile (x,y), we define the regret
suffered by the row player to be the difference between the best response payoff
and the actual payoff: maxi∈[n]

(
(R · y)i

)
− xT · R · y. Regret for the column

player is defined analogously. We have that (x,y) is an ǫ-NE if and only if both
players have regret less than or equal to ǫ.

The other notion is that of an ǫ-approximate-well-supported equilibrium (ǫ-
WSNE), which weakens the requirement that players only place probability on
best response strategies. We say that a pure strategy j ∈ [n] of the row player
is an ǫ-best-response against y if:

max
i∈[n]

(
(R · y)i

)
− (R · y)j ≤ ǫ.

An ǫ-WSNE requires that both players only place probability on ǫ-best-responses.
Formally, the row player’s pure strategy regret under (x,y) is defined to be:
maxi∈[n]

(
(R · y)i

)
−mini∈supp(x)

(
(R · y)i

)
. Pure strategy regret for the column

player is defined analogously. A strategy profile (x,y) is an ǫ-WSNE if both
players have pure strategy regret less than or equal to ǫ.

Since approximate Nash equilibria use an additive notion of approximation,
it is standard practice to rescale the input game so that all payoffs lie in the
range [0, 1], which allows us to compare different results on this topic. For the
most part, we follow this convention. However, for our result in Section 4, we
will construct a game whose payoffs do not lie in [0, 1]. In order to simplify the
proof, we will prove results about approximate Nash equilibria in the unscaled
game, and then rescale the game to [0, 1] at the very end. To avoid confusion,
we will refer to an ǫ-approximate Nash equilibrium in this game as an ǫ-UNE,
to mark that it is an additive approximation in an unscaled game.

Two-prover games. A two-prover game is defined as follows.

Definition 1 (Two-prover game). A two-prover game T is defined by a tu-
ple (X,Y,A,B,D, V ) where X and Y are finite sets of questions, A and B are
finite sets of answers, D is a probability distribution defined over X × Y , and
V is a verification function of the form V : X × Y ×A×B → {0, 1}.

The game is a co-operative and played between two players, who are called
Merlin1 and Merlin2, and an adjudicator called Arthur. At the start of the
game, Arthur chooses a question pair (x, y) ∈ X × Y randomly according to D.

7



He then sends x to Merlin1 and y to Merlin2. Crucially, Merlin1 does not
know the question sent to Merlin2 and vice versa. Having received x, Merlin1
then chooses an answer from A and sends it back to Arthur. Merlin2 similarly
picks an answer from B and returns it to Arthur. Arthur then computes p =
V (x, y, a, b) and awards payoff p to both players. The size of the game, denoted
|T | = |X × Y ×A×B| is the total number of entries needed to represent V as
a table.

A strategy for Merlin1 is a function a : X → A that gives an answer for every
possible question, and likewise a strategy for Merlin2 is a function b : Y → B.
We define Si to be the set of all strategies for Merlini. The payoff of the game
under a pair of strategies (s1, s2) ∈ S1 × S2 is denoted as

p(T , s1, s2) = E(x,y)∼D[V (x, y, s1(x), s2(y))].

The value of the game, denoted ω(T ), is the maximum expected payoff to
the Merlins when they play optimally:

ω(T ) = max
s1∈S1

max
s2∈S2

p(T , s1, s2).

Free games. A two-prover game is called a free game if the probability distri-
bution D is the uniform distribution U over X × Y . In particular, this means
that there is no correlation between the question sent to Merlin1 and the ques-
tion sent to Merlin2. We are interested in the problem of approximating the
value of a free game within an additive error of δ.

FreeGameδ

Input: A free game T and a constant δ > 0.

Output: A value p such that | ω(T )− p | ≤ δ.

3. Hardness of approximating free games

The exponential time hypothesis (ETH) is the conjecture that any determin-
istic algorithm for solving 3SAT requires 2Ω(n) time. Aaronson, Impagliazzo,
and Moshkovitz have shown that, if ETH holds, then there exists a small con-
stant ǫ > 0 such that approximating the value of a free game within an additive
error of ǫ requires quasi-polynomial time. However, their result is not suitable
for our purposes, because it produces a free game in which the question and
answer sets have the same size, and to prove our result, we will require that the
question sets have logarithmic size when compared to the answer sets.

The conference version of this paper [22] solved this issue by using a sub-
sampling lemma, also proved by Aaronson, Impagliazzo, and Moshkovitz, which
shows that if we randomly choose logarithmically many questions from the orig-
inal game, the value of the resulting sub-game is close the value of the original.

8



However, this comes at the cost of needing randomness in the reduction, and so
our result depended on the truth of the randomized ETH, which is a stronger
conjecture.

In this exposition, we will instead use a technique of Babichenko, Papadim-
itriou, and Rubinstein [23], which allows us to produce a free game with a
logarithmic size question set in a deterministic way. The result that we need
is a clear consequence of their ideas, but is not explicitly formulated in their
paper. For the sake of completeness, in the rest of this section we provide our
own exposition of their ideas.

The PCP theorem. The starting point of the result will be a 3SAT instance φ.
We say that the size of a formula φ is the number of variables and clauses in
the formula. We define SAT(φ) ∈ [0, 1] to be the maximum fraction of clauses
that can be satisfied in φ. The first step is to apply a PCP theorem.

Theorem 1 (Dinur’s PCP Theorem [25]). Given any 3SAT instance φ of
size n, and a constant ǫ in the range 0 < ǫ < 1

8 , we can produce in polynomial
time a 3SAT instance ψ where:

• The size of ψ is n · polylog(n).

• Every clause of ψ contains exactly 3 variables and every variable is con-
tained in at most d clauses, where d is a constant.

• If SAT(φ) = 1, then SAT(ψ) = 1.

• If SAT(φ) < 1, then SAT(ψ) < 1− ǫ.

After applying the PCP theorem given above, we then directly construct a
free game. Observe that a 3SAT formula can be viewed as a bipartite graph
in which the vertices are variables and clauses, and there is an edge between
a variable xi and a clause Cj if and only if xi is appears in Cj . In particular,
the 3SAT formulas produced by Theorem 1 correspond to bipartite graphs with
constant degree, since each clause has degree at most 3, and each variable has
degree at most d.

The first step is to apply the following lemma, which allows us to partition
the vertices of this bipartite graph. The lemma and proof are essentially identical
to [23, Lemma 6], although we generalise the formulation slightly, because the
original lemma requires that the two sides of the graph have exactly the same
number of nodes and that the graph is d-regular.

Lemma 1 ([23]). Let (V,E) be a bipartite graph with |V | = n, where V =
U ∪W are the two sides of the graph, and where each node has degree at most
d. Suppose that U and W both have a constant fraction of the vertices, and
hence |U | = c1 · n and |W | = c2 = (1 − c1) · n for some constants c1 < 1 and
c2 < 1. We can efficiently find a partition S1, S2, . . . , S√

n of U and a partition
T1, T2, . . . , T√n of W such that each set has size at most 2

√
n, and for all i and j

we have
|(Si × Tj) ∩ E| ≤ 2d2.

9



Proof 1. The algorithm is as follows. First we arbitrarily split U into
√
n

many sets S1, S2, . . . , S√
n, and so each set Si has size c1

√
n < 2

√
n. Then we

iteratively construct the partition of W into sets T1, T2, . . . , T√n in the following
way. We initialize each set Tj to be the empty set. In each iteration, we pick a
vertex of w ∈ W that has not already been assigned to a set. We find a set Tj
such that |Tj | ≤ 2 · √n, and such that for all i we have |(Si × Tj) ∩E| ≤ 2 · d2.
We assign w to Tj and repeat.

Obviously, for the algorithm to be correct, we must prove that for each ver-
tex w that is considered, there does exist a set Tj that satisfies the required
constraints. For this, we rely on the following two properties.

• The average number of vertices in a set Tj is at most c2
√
n <

√
n, and so

by Markov’s inequality strictly less than half the sets can have size more
than 2

√
n, and so we lose strictly less than half the sets Tj to the size

constraint.

• Since each vertex has degree at most d, the graph has at most dn edges,
and so the average number of edges between each pair of sets Si and Tj is
dn/(

√
n ·√n) = d. Again, using Markov’s inequality we can conclude that

there are at most 1/2d pairs of sets Si and Tj that have more than 2d2

edges between them. Hence, even in the worst case, we can lose at most
1/2d sets Tj to the edge constraints.

So, we lose strictly less than half the sets to the size constraints, and 1/2d ≤ 1/2
the sets to the edge constraints. Hence, by the union bound, we have shown that
there is at least one set Tj that satisfies both constraints simultaneously. �

A free game. Note that Lemma 1 can be applied to the 3SAT formula that
arises from Dinur’s PCP theorem, because the number of variables and num-
ber of constraints are both a constant fraction of the number of nodes in the
associated bipartite graph, and because each vertex has either has degree d or
degree 3. We use this to construct the following free game, which is highly
reminiscent of the clause variable game given by Aaronson, Impagliazzo, and
Moshkovitz [19].

Definition 2. Given a 3SAT formula φ of size n, we define a free game Fφ in
the following way.

1. Arthur begins by applying Dinur’s PCP theorem to φ to obtain a formula ψ
of size N = n polylog(n), and then uses Lemma 1 to split the variables of
ψ into sets S1, S2, . . . , S√

n and the clauses of ψ into sets T1, T2, . . . , T√N .

2. Arthur picks an index i uniformly at random from [
√
N ], and indepen-

dently an index j uniformly at random from [
√
N ]. He sends Si to Merlin1

and Tj to Merlin2.

3. Merlin1 responds by giving a truth assignment to every variable in Si, and
Merlin2 responds by giving a truth assignment to every variable that is
involved with a clause in Tj.

10



4. Arthur awards the Merlins payoff 1 if and only if both of the following
conditions hold.

• Merlin2 returns an assignment that satisfies all clauses in Tj.

• For every variable v that appears in Si and some clause of Tj, the
assignment to v given by Merlin1 agrees with the assignment to v
given by Merlin2. Note that this condition is always satisfied when
Si and Tj share no variables.

Arthur awards payoff 0 otherwise.

If n is the size of φ, then when we write Fφ down as a free game (X,Y,A,B,D, V ),

the number of questions in the sets X and Y is
√
n polylog(n), and the number

of answers in A and B is 22
√

n polylog(n), where the extra polylog(n) factor arises
due to the application of the PCP theorem.

The following lemma shows that if φ is unsatisfiable, then the value of this
free game is bounded away from 1. Again, the ideas used to prove this lemma are
clearly evident in the work of Babichenko, Papadimitriou, and Rubinstein [23].

Lemma 2 ([23]). If φ is satisfiable then ω(Fφ) = 1. If φ is unsatisfiable then
ω(Fφ) ≤ 1− ǫ/2d.

Proof 2. The case where SAT(φ) = 1 is straightforward. Since there exists a
satisfying assignment for φ, there also exists a satisfying assignment for ψ. If
the two Merlins play according to this satisfying assignment, then they obviously
achieve an expected payoff of 1.

For the other claim, first observe that we can assume that both Merlins play
deterministic strategies, since the game is co-operative, and therefore nothing
can be gained through randomization. So, let s1 be a strategy for Merlin1. Ob-
serve that since S1, S2, . . . , S√

N partition the variables of ψ, we have that s1
yields an assignment to the variables of ψ.

Let us fix an arbitrary deterministic strategy s1 for Merlin1. We have that
the payoff to Merlin2 for an individual question Tj can be computed as follows:

• For every set Si for which there are no edges between the variables in Si

and Tj, Merlin2 gets payoff 1 “for free.”

• Otherwise, Merlin2 gets payoff 1 only if the assignments to the clauses
agree with the assignment implied by s1.

From this, we can see that when Merlin1 plays s1, Merlin2 can maximize his
payoff by playing the strategy that agrees everywhere with the assignment chosen
by Merlin1. So let s2 denote this strategy.

Since φ is unsatisfiable, the PCP theorem tells us that SAT(ψ) < 1−ǫ. Thus,
there are at least ǫdN clauses that are not satisfied when s1 is played against
s2. Since Lemma 1 ensures that the maximum number of edges between two
sets is 2d2, there must therefore be at least ǫdN/2d2 = ǫN/2d pairs of sets that
give payoff 0 to the Merlins under s1 and s2. Since there are exactly N pairs
of sets in total, this means that the expected payoff to the Merlins is bounded by
1− ǫ/2d. �
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Finally, we can formulate the lower bound that we will use in this paper.
The proof is the same as the one given in [19], but we use the free game Fφ,
rather than the construction originally given in that paper.

Theorem 2 ([23]). Assuming ETH, there is a small constant δ below which

the problem FreeGameδ cannot be solved faster than N Õ(logN), even when the
question sets have size logN .

Proof 3. Lemma 2 implies that if we can approximate the value of Fφ with
an additive error of less than ǫ/2d, then we can solve the satisfiability problem
for φ.

Assume, for the sake of contradiction, that there exists an algorithm that can

solve the FreeGameδ problem in time No( log N

(log log N)c ) for some constant c that

will be fixed later. Observe that the free game Fφ has size N = O(2
√

npolylog(n)),
and so the hypothesized algorithm would run in time:

exp

(
o

(
log2N

(log log(N))c

))
= exp

(
o

(
n polylog(n)

(log(
√
n polylog(n)))c

))
.

If we set c to be greater than the degree of the polynomial in the polylog(n)
from the numerator, then we can conclude that the running time would be 2o(n),
which would violate the ETH. �

4. Hardness of approximating social welfare

Overview. In this section, we study the following social welfare problem for
a bimatrix game G = (R,C). The social welfare of a strategy profile (x,y) is
denoted by SW(x,y) and is defined to be xTRy + xTCy. Given an ǫ ≥ 0, we
define the set of all ǫ equilibria as

Eǫ = {(x,y) : (x,y) is an ǫ-NE}.

Then, we define the best social welfare achievable by an ǫ-NE in G as

BSW(G, ǫ) = max{SW(x,y) : (x,y) ∈ Eǫ}.

Using these definitions we now define the main problem that we consider:

ǫ-NE δ-SW

Input: A bimatrix game G, and two constants ǫ, δ > 0.

Output: An ǫ-NE (x,y) s.t. SW(x,y) is within δ of BSW(G, ǫ).

We show a lower bound for this problem by reducing from FreeGameδ. Let F
be a free game of size n from the family of free games that were used to prove

12



Theorem 2 (from now on we will drop the subscript φ, since the exact construc-
tion of F is not relevant to us.) We have that either ω(F) = 1 or ω(F) < 1− δ
for some fixed constant δ, and that it is hard to determine which of these is the
case. We will construct a game G such that for ǫ = 1− 4g · δ, where g < 5

12 is a
fixed constant that we will define at the end of the proof, we have the following
properties.

• (Completeness) If ω(F) = 1, then the unscaled BSW(G, ǫ) = 2.

• (Soundness) If ω(F) < 1− δ, then the unscaled BSW(G, ǫ) < 2(1− g · δ).

This will allow us to prove our lower bound using Theorem 2.

4.1. The construction

We use F to construct a bimatrix game, which we will denote as G through-
out the rest of this section. The game is built out of four subgames, which are
arranged and defined as follows.

❅
❅
I

II

R −D2

C D2

D1 0

−D1 0

• The game (R,C) is built from F in the following way. Each row of the
game corresponds to a pair (x, a) ∈ X×A and each column corresponds to
a pair (y, b) ∈ Y ×B. Since all free games are cooperative, the payoff for
each strategy pair (x, a), (y, b) is defined to be R(x,a),(y,b) = C(x,a),(y,b) =
V (x, y, a(x), b(y)).

• The game (D1,−D1) is a zero-sum game. The game is a slightly modified
version of a game devised by Feder, Nazerzadeh, and Saberi [21]. Let H
be the set of all functions of the form f : Y → {0, 1} such that f(y) = 1
for exactly half4 of the elements y ∈ Y . The game has |Y × B| columns
and |H | rows. For all f ∈ H and all (y, b) ∈ Y the payoffs are

(D1)f,(y,b) =

{
4

1+4g·δ if f(y) = 1,

0 otherwise.

4If |Y | is not even, then we can create a new free game in which each question in |Y |
appears twice. This will not change the value of the free game.

13



• The game (−D2, D2) is built in the same way as the game (D1,−D1), but
with the roles of the players swapped. That is, each column of (−D2, D2)
corresponds to a function that picks half of the elements of X .

• The game (0, 0) is a game in which both players have zero matrices.

Observe that the size of (R,C) is the same as the size of F . The game
(D1,−D1) has the same number of columns as C, and the number of rows is
at most 2|Y | ≤ 2O(log |F|) = |F|O(1), where we are crucially using the fact that
Theorem 2 allows us to assume that the size of Y is O(log |F|). By the same
reasoning, the number of columns in (−D2, D2) is at most |F|O(1). Thus, the
size of G is |F|O(1), and so this reduction is polynomial.

4.2. Completeness

To prove completeness, it suffices to show that, if ω(F) = 1, then there
exists a (1 − 4g · δ)-UNE of G that has social welfare 2. To do this, assume
that ω(F) = 1, and take a pair of optimal strategies (s1, s2) for F and turn
them into strategies for the players in G. More precisely, the row player will
place probability 1

|X| on each answer chosen by s1, and the column player will

place probability 1
|Y | on each answer chosen by s2. By construction, this gives

both players payoff 1, and hence the social welfare is 2. The harder part is to
show that this is an approximate equilibrium, and in particular, that neither
player can gain by playing a strategy in (D1,−D1) or (−D2, D2). We prove this
in the following lemma.

Lemma 3. If ω(F) = 1, then there exists a (1 − 4g · δ)-UNE (x,y) of G with
SW(x,y) = 2.

Proof 4. Let (s1, s2) ∈ S1 × S2 be a pair of optimal strategies for Merlin1 and
Merlin2 in F . For each (x, a) ∈ X ×A and each (y, b) ∈ Y ×B, we define

x(x, a) =

{
1

|X| if s1(x) = a.

0 otherwise.
y(y, b) =

{
1

|Y | if s2(y) = b.

0 otherwise.

Clearly, by construction, we have that the payoff to the row player under (x,y)
is equal to p(F , s1, s2) = 1, and therefore (x,y) has social welfare 2.

On the other hand, we must prove that (x,y) is a (1 − 4g · δ)-UNE. To do
so, we will show that neither player has a deviation that increases their payoff
by more than (1− 4g · δ). We will show this for the row player; the proof for the
column player is symmetric. There are two types of row to consider.

• First suppose that r is a row in the sub-game (R,C). We claim that the
payoff of r is at most 1. This is because the maximum payoff in R is 1,
while the maximum payoff in −D2 is 0. Since the row player already
obtains payoff 1 in (x,y), row r cannot be a profitable deviation.
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• Next suppose that r is a row in the sub-game (D1,−D1). Since we have∑
b∈B y(y, b) = 1

|Y | for every question y, we have that all rows in D1 have

the same payoff. This payoff is

1

2
·
(

4

1 + 4 · δ

)
=

2

1 + 4g · δ = 2− 8g · δ
1 + 4g · δ .

Since δ ≤ 1 and g ≤ 1
4 we have

8

1 + 4g · δ ≥ 8

1 + 4g
≥ 4 .

Thus, we have shown that the payoff of r is at most 2 − 4g · δ. Thus the
row player’s regret is at most 1− 4g · δ. �

4.3. Soundness

We now suppose that ω(F) < 1− δ/2, and we will prove that all (1− 4g · δ)-
UNE provide social welfare at most 2 − 2g · δ. Throughout this subsection, we
will fix (x,y) to be a (1 − 4g · δ)-UNE of G. We begin by making a simple
observation about the amount of probability that is placed on the subgame
(R,C).

Lemma 4. If SW(x,y) > 2− 2g · δ, then

• x places at least (1− g · δ) probability on rows in (R,C), and

• y places at least (1− g · δ) probability on columns in (R,C).

Proof 5. We will prove the lemma for x; the proof for y is entirely symmetric.
For the sake of contradiction, suppose that x places strictly less than (1− g · δ)
probability on rows in (R,C). Observe that every subgame of G other than
(R,C) is a zero-sum game. Thus, any probability assigned to these sub-games
contributes nothing to the social welfare. On the other hand, the payoffs in
(R,C) are at most 1. So, even if the column player places all probability on
columns in C, the social welfare SW(x,y) will be strictly less than 2 · (1 − g ·
δ) + g · δ · 0 = 2− 2g · δ, a contradiction. �

So, for the rest of this subsection, we can assume that both x and y place at
least 1− g · δ probability on the subgame (R,C). We will ultimately show that,
if this is the case, then both players have payoff at most 1− 1

2 ·δ+mg ·δ for some
constant m that will be derived during the proof. Choosing g = 1/(2m + 2)
then ensures that both players have payoff at most 1− g · δ, and therefore that
the social welfare is at most 2− 2g · δ.
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A two-prover game. We use (x,y) to create a two-prover game. First, we
define two distributions that capture the marginal probability that a question is
played by x or y. Formally, we define a distribution x′ overX and a distribution
y′ over Y such that for all x ∈ X and y ∈ Y we have x′(x) =

∑
a∈A x(x, a),

and y′(y) =
∑

b∈B y(y, b). By Lemma 4, we can assume that ‖x′‖1 ≥ 1 − g · δ
and ‖y′‖1 ≥ 1− g · δ.

Our two-prover game will have the same question sets, answer sets, and
verification function as F , but a different distribution over the question sets.
Let T(x,y) = (X,Y,A,B,D, V ), where D is the product of x′ and y′. Note that
we have cheated slightly here, since D is not actually a probability distribution.
If ‖D‖1 = c < 1, then we can think of this as Arthur having a 1− c probability
of not sending any questions to the Merlins and awarding them payoff 0.

The strategies x and y can also be used to give a us a strategy for the Merlins
in T(x,y). Without loss of generality, we can assume that for each question x ∈ X
there is exactly one answer a ∈ A such that x(x, a) > 0, because if there are two
answers a1 and a2 such that x(x, a1) > 0 and x(x, a2) > 0, then we can shift all
probability onto the answer with (weakly) higher payoff, and (weakly) improve
the payoff to the row player. Since (R,C) is cooperative, this can only improve
the payoff of the columns in (R,C), and since the row player does not move
probability between questions, the payoff of the columns in (−D2, D2) does not
change either. Thus, after shifting, we arrive at a (1 − 4g · δ)-UNE of G whose
social welfare is at least as good as SW(x,y). Similarly, we can assume that for
each question y ∈ Y there is exactly one answer b ∈ B such that y(y, b) > 0.

So, we can define a strategy sx for Merlin1 in the following way. For
each question x ∈ X , the strategy sx selects the unique answer a ∈ A such
that x(x, a) > 0. The strategy sy for Merlin2 is defined symmetrically.

We will use T(x,y) as an intermediary between G and F by showing that
the payoff of (x,y) in G is close to the payoff of (sx, sy) in T(x,y), and that the
payoff of (sx, sy) in T(x,y) is close to the payoff of (sx, sy) in F . Since we have
a bound on the payoff of any pair of strategies in F , this will ultimately allow
us to bound the payoff to both players when (x,y) is played in G.

Relating G to T(x,y). For notational convenience, let us define pr(G,x,y) and
pc(G,x,y) to be the payoff to the row player and column player, respectively,
when (x,y) is played in G. We begin by showing that the difference between
pr(G,x,y) and p(T(x,y), sx, sy) is small. Once again we prove this for the payoff
of the row player, but the analogous result also holds for the column player.

Lemma 5. We have |pr(G,x,y) − p(T(x,y), sx, sy)| ≤ 4g · δ.

Proof 6. By construction, p(T(x,y), sx, sy) is equal to the payoff that the row
player obtains from the subgame (R,C), and so we have p(T(x,y), sx, sy) ≤
pr(G,x,y). On the other hand, since the row player places at most g ·δ probabil-
ity on rows not in (R,C), and since these rows have payoff at most 4

1+4g·δ < 4,

we have pr(G,x,y) ≤ p(T(x,y), sx, sy) + 4g · δ. �
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Relating T(x,y) to F . First we show that if (x,y) is indeed a (1−4g ·δ)-UNE,
then x′ and y′ must be close to uniform over the questions. We prove this
for y′, but the proof can equally well be applied to x′. The idea is that, if y′ is
sufficiently far from uniform, then there is set B ⊆ Y of |Y |/2 columns where y′

places significantly more than 0.5 probability. This, in turn, means that the row
of (D1,−D1) that corresponds to B, will have payoff at least 2, while the payoff
of (x,y) can be at most 1+3g · δ, and so (x,y) would not be a (1− 4g · δ)-UNE.
We formalise this idea in the following lemma. Define uX to be the uniform
distribution over X , and uY to be the uniform distribution over Y .

Lemma 6. We have ‖uY − y′‖1 < 16g · δ and ‖uX − x′‖1 < 16g · δ.

We begin by proving an auxiliary lemma.

Lemma 7. If ‖uY − y′‖1 ≥ c then there exists a set B ⊆ Y of size |Y |/2 such
that ∑

i∈B

y′
i >

1

2
+
c

4
− 2g · δ.

Proof 7. We first define d = y′ − uY , and then we partition Y as follows

U = {y ∈ Y : dy >
1

|Y | },

L = {y ∈ Y : dy ≤ 1

|Y | }.

Since ‖y′‖1 ≥ 1− g · δ and ‖u‖1 = 1, we have that

∑

y∈U

dy ≥ c/2− g · δ,

∑

y∈L

dy ≤ −c/2 + g · δ.

We will prove that there exists a set B ⊆ Y of size |Y |/2 such that
∑

y∈B dy ≥
c/4− g · δ.

We have two cases to consider, depending on the size of U .

• First suppose that |U | > |Y |/2. If this is the case, then there must exist
a set B ⊆ U with |B| = |U |/2 and

∑
i∈B di ≥ c/4 − g · δ. We can then

add arbitrary columns from U \B to B in order to make |B| = |Y |/2, and
since di > 0 for all i ∈ U , this cannot decrease

∑
i∈B di. Thus, we have

completed the proof for this case.

• Now suppose that |U | ≤ |Y |/2. If this is the case, then there must exist a
set C ⊆ L with |C| = |L|/2 and

∑
i∈C di ≥ − c

4 + g · δ. So, let C′ ⊆ C be
an arbitrarily chosen subset such that |C′|+ |U | = |Y |/2. This is possible
since |L| = |Y | − |U | and hence |L|/2 = |Y |/2− |U |/2, which implies that
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|L|/2 + |U | > |Y |/2. Setting B = C′ ∪ U therefore gives us a set with
|B| = |Y |/2 such that

∑

i∈B

di ≥ (c/2− g · δ)− (c/4 + g · δ)

= c/4− 2 · g · δ .

So we have completed the proof of this case, and the lemma as a whole. �

We can now proceed with the proof of Lemma 6.

Proof 8 (Proof of Lemma 6). Suppose, for the sake of contradiction that
one of these two properties fails. Without loss of generality, let us assume that
‖uY −y′‖1 ≥ c. We will show that the row player can gain more than 1 in pay-
off by deviating to a new strategy, which will show that (x,y) is not a 1-UNE,
contradicting our assumption that it is a (1− 4g · δ)-UNE.

By assumption, x places at least 1− g · δ probability on rows in (R,C). The
maximum payoff in R is 1, and the maximum payoff in −D2 is 0. On the one
hand, the rows in D2 give payoff at most 8/(2 + g · δ) ≤ 4. So the row player’s
payoff under (x,y) is bounded by

(1− g · δ) · 1 + (g · δ) · 4 = 1 + 3g · δ.

On the other hand, we can apply Lemma 7 with c = 16g · δ to find a set
B ⊆ Y such that

∑

i∈B

y′(i) >
1

2
+

16g · δ
4

− 2g · δ.

=
1

2
+ 2g · δ

=
1 + 4g · δ

2
.

So, let rB be the row of D1 that corresponds to B. This row has payoff 8
2+g·δ

for every entry in B. So, the payoff of row rB must be at least

(
1 + 4g · δ

2

)
·
(

4

1 + 4g · δ

)
= 2.

Thus, the row player can deviate to rB and increase his payoff by at least 1−3g·δ,
and (x,y) is not a (1− 4g · δ)-UNE. �

With Lemma 6 at hand, we can now prove that the difference between
p(T(x,y), sx, sy) and p(F , sx, sy) must be small. This is because the question
distribution D used in T(x,y) is a product of two distributions that are close to
uniform, while the question distribution U used in F is a product of two uniform
distributions. In the following lemma, we show that if we transform D into U ,
then we do not change the payoff of (sx, sy) very much.
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Lemma 8. We have |p(T(x,y), sx, sy)− p(F , sx, sy)| ≤ 64g · δ.
Proof 9. The distribution used in F is the product of uY and uX , while the
distribution used in T(x,y) is the product of y’ and x′. Furthermore, Lemma 6
tells us that ‖uY − y′‖1 < 16g · δ and ‖uX − x′‖1 < 16g · δ. Our approach is to
transform uX to x′ while bounding the amount that p(F , sx, sy) changes. Once
we have this, we can apply the same transformation to uY and y′.

Consider the effect of shifting probability from a question x1 ∈ X to a differ-
ent question x2 ∈ X. Since all entries of V are in {0, 1}, if we shift q probability
from x1 to x2, then p(F , sx, sy) can change by at most 2q. This bound also holds
if we remove probability from x1 without adding it to x2 (which we might do since
‖x‖1 may not be 1.) Thus, if we shift probability to transform uX into x′, then
we can change p(F , sx, sy) by at most 32g · δ.

The same reasoning holds for transforming uY into y′. This means that we
can transform F to T(x,y) while changing the payoff of (sx, sy) by at most 64g ·δ,
which completes the proof. �

Completing the soundness proof. The following lemma uses the bounds
derived in Lemmas 5 and 8, along with a suitable setting for g, to bound the
payoff of both players when (x,y) is played in G.
Lemma 9. If g = 1

138 , then both players have payoff at most 1 − g · δ when
(x,y) is played in G.
Proof 10. Lemmas 5 and 8 tell us that

| pr(G,x,y) − p(T(x,y), sx, sy)| ≤ 4g · δ,
| p(T(x,y), sx, sy)− p(F , sx, sy)| ≤ 64g · δ.

Hence, we have | pr(G,x,y) − p(F , sx, sy)| ≤ 68g · δ. However, we know that
p(F , sx, sy) ≤ 1− δ/2. So, if we set g = 1

138 , then we we will have that

pr(G,x,y) ≤ 1− 1

2
· δ + 68

138
· δ

= 1− 1

138
· δ

= 1− g · δ.
�

Hence, we have proved that SW(x,y) ≤ 2− 2g · δ.

4.4. The result

We can now state the theorem that we have proved in this section. We first
rescale the game so that it lies in [0, 1]. The maximum payoff in G is 4

1+4g·δ ≤ 4,

and the minimum payoff is − 4
1+4g·δ ≥ −4. To rescale this game, we add 4 to all

the payoffs, and then divide by 8. Let us refer to the scaled game as Gs. Observe
that an ǫ-UNE in G is a ǫ

8 -NE in Gs since adding a constant to all payoffs does
not change the approximation guarantee, but dividing all payoffs by a constant
does change the approximation guarantee. So, we have the following theorem.
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Theorem 3. If ETH holds, then there exists a constant δ below which the prob-

lem (1−4g·δ
8 )-NE ( g4 · δ)-SW, where g = 1

138 , requires n
Ω̃(log n) time.

Proof 11. By Lemmas 3 and 9, we have

• if ω(F) = 1 then there exists a (1 − 4g · δ)-UNE of G with social welfare
1+1 = 2. In the rescaled game this translates to a (1−4g·δ

8 )-NE of Gs with
social welfare 1+4

8 + 1+4
8 = 10

8 .

• if ω(F) < 1− δ then all (1− 4g · δ)-UNE of G have social welfare at most
(1 − g · δ) + (1 − g · δ) = 2 − 2g · δ. After rescaling, we have that all
(1−4g·δ

8 )-NE of Gs have social welfare social welfare at most

5− g · δ
8

+
5− g · δ

8
=

10

8
− g · δ

4

By Theorem 2, assuming ETH we require |F|Ω̃(log |F|) time to decide whether
the value of F is 1 or 1 − δ for some small constant δ. Thus, we also require

nΩ̃(log |n|) to solve the problem (1−4g·δ
8 )-NE ( g4 · δ)-SW. �

5. Hardness results for other decision problems

In this section we study a range of decision problems associated with approx-
imate equilibria. Table 1 shows all of the decision problems that we consider.
Most are known to be NP-complete for the case of exact Nash equilibria [2, 3].
For each problem in Table 1, the input includes a bimatrix game and a quality
of approximation ǫ ∈ (0, 1). We consider decision problems related to both ǫ-NE
and ǫ-WSNE. Since ǫ-NE is a weaker solution concept than ǫ-WSNE, i.e., every
ǫ-WSNE is an ǫ-NE, the hardness results for ǫ-NE imply the same hardness
for ǫ-WSNE. We consider problems for ǫ-WNSE only where the corresponding
problem for ǫ-NE is trivial. For example, observe that deciding if there is an
ǫ-NE with large support is a trivial problem, since we can always add a tiny
amount of probability to each pure strategy without changing our expected
payoff very much.

Our conditional quasi-polynomial lower bounds will hold for all ǫ < 1
8 , so let

us fix ǫ∗ < 1
8 for the rest of this section. Using Theorem 3, we compute from ǫ∗

the parameters n and δ that we require to apply Theorem 3. In particular, set
δ∗ to solve ǫ∗ = (1−4g·δ∗

8 ), and choose n∗ as 1
δ∗ . Then, for n > n∗ and δ = δ∗ we

can apply Theorem 3 to bound the social welfare achievable if ω(F) < 1− δ∗ as

u :=
10

8
− 1

522
δ∗.

Theorem 3 implies that in order to decide whether the game Gs possesses an ǫ∗-
NE that yields social welfare strictly greater than u requires nÕ(logn) time, where
δ no longer appears in the exponent since we have fixed it as the constant δ∗.
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Problem 1 asks to decide whether a bimatrix game possesses an ǫ∗-NE where
the expected payoff for each player is at least u, where u is an input to the
problem. When we set u = 5

8 , the conditional hardness of this problem is an
immediate corollary of Theorem 3.

For Problems 2 - 9, we use Gs to construct a new game G′, which adds one
row i and one column j to Gs. The payoffs are defined using the constants u

and ǫ∗, as shown in Figure 1.

G ′ =

j

0, 58 + ǫ∗

Gs ...

0, 58 + ǫ∗

i 5
8 + ǫ∗, 0 · · · 5

8 + ǫ∗, 0 1, 1

Figure 1: The game G′.

In G′, the expected payoff for the row player for i is at least 5
8 + ǫ∗ irrespec-

tive of the column player’s strategy. Similarly, the expected payoff for j is at
least 5

8 + ǫ∗ irrespective of the row player’s strategy. This means that:

• If Gs possesses an ǫ∗-NE with social welfare 10
8 , then G′ possesses at least

one ǫ∗-NE where the players do not play the pure strategies i and j.

• If every ǫ∗-NE of Gs yields social welfare at most u, then in every ǫ∗-NE of
G′, the players place almost all of their probability on i and j respectively.
Note that (i, j) is a pure exact Nash equilibrium.

Problem 2 asks whether a bimatrix game possesses an ǫ-NE where the row
player plays with positive probability only strategies in a given set S. Let SR

(SC) denote the set of pure strategies available to the row (column) player from
the subgame (R,C) of Gs. To show the hardness of Problem 2, we will set we
set S = SR.

Recall that Gs is created fromF . First, we prove in Lemma 10 that if ω(F) = 1,
then G′ possesses an ǫ∗-NE such that the answer to Problem 2 is “Yes”. Note
that we actually argue in Lemma 10 about the existence of an ǫ∗-WSNE, since
this stronger claim will be useful when we come to deal with Problems 7 - 9.

Lemma 10. If ω(F) = 1, then G′ possesses an ǫ∗-WSNE (x,y) such that
supp(x) ⊆ SR. Under (x,y), both players get payoff 5

8 , so SW(x,y) = 10
8 .

Moreover, |supp(x)| = |X | and maxi xi ≤ 1
|X| , where X is the question set of

Merlin1 in F .

Proof 12. The proof of Lemma 3 shows that, if ω(F) = 1, then G possesses an
ǫ∗-WSNE (x,y) where the expected payoff for each player is 1 and supp(x) ⊆ SR.
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The reason that (x,y) is well supported is that all rows in supp(x) have equal
expected payoff. Moreover, x is a uniform mixture over a pure strategy set of
size |X |, where X is the question set of Merlin1 in F . Since Gs is obtained
from G by adding 4 to the payoffs and dividing by 8, (x,y) is as an ǫ∗-NE in Gs

where each player has payoff 5
8 . To complete the proof we show that (x,y) in an

ǫ∗-NE for G′, which is the same as Gs apart from the additional pure strategies i
and j. Since i and j yield payoff 5

8 + ǫ∗, but not more, the claim holds. �

Next we prove that if ω(F) < 1− δ∗, then the answer to Problem 2 is “No”.

Lemma 11. If ω(F) < 1 − δ∗, then in every ǫ∗-NE (x,y) of G′ it holds that
xi > 1− ǫ∗

1−ǫ∗ and yj > 1− ǫ∗

1−ǫ∗ .

Proof 13. Let Gs := (P,Q) and suppose that (x,y) is an ǫ∗-NE of G′. From
Theorem 3 we know that if ω(F) < 1 − δ∗, then in any ǫ∗-NE of Gs we have
that each player gets payoff at most u

2 <
5
8 . Under (x,y) in G′ the row player

gets payoff

xTPy < (1− xi) · (1− yj) ·
5

8
+ xi · (1− yj)(

5

8
+ ǫ∗) + xi · yj

= xi · ((1− yj) · ǫ∗ + yj) + (1− yj) ·
5

8
.

From the pure strategy i, the row player gets

Pi · y = (1− yj)(
5

8
+ ǫ∗) + yj.

In order for (x,y) to be an ǫ∗-NE it must hold that xTPy ≥ Piy − ǫ∗. Using
the upper bound on xTPy that we just derived, we get:

xi > 1− ǫ∗

(1− yj) · ǫ∗ + yj

. (1)

By symmetry, we also have that the column player must play j with probability:

yj > 1− ǫ∗

(1− xi) · ǫ∗ + xi

. (2)

Recall that in this section ǫ∗ is a constant. Observe that the right-hand side
of (2) is increasing in xi, and we can thus use it to replace xi in (2) as follows:

yj > 1− ǫ∗

(1− 1 + ǫ∗

(1−yj)ǫ∗+yj
)ǫ∗ + 1− ǫ∗

(1−yj)ǫ∗+yj

= 1− ǫ∗

ǫ∗2

(1−yj)ǫ∗+yj
+ 1− ǫ∗

(1−yj)ǫ∗+yj

= 1− (1− yj)ǫ
∗2

+ yjǫ
∗

ǫ∗2 + (1− yj)ǫ∗ + yj − ǫ∗
.
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Noting that (ǫ∗
2

+ (1− yj)ǫ
∗ + yj − ǫ∗) ≥ 0, by rearranging we get that

y2
j (1− ǫ∗) + yj(2ǫ

∗ − 1) > 0.

Then, since ǫ∗ < 1
8 , we have 1− ǫ∗ > 0, and we get that

yj >
1− 2ǫ∗

1− ǫ∗
= 1− ǫ∗

1− ǫ∗
.

By symmetry, we have xi > 1− ǫ∗

1−ǫ∗ , which completes the proof. �

Next we recall Problems 3 and 4 and we show that, as for Problem 2, Lem-
mas 10 and 11 can also be used to immediately show that there are instances
of these decision problems where the answer is “Yes” if and only if ω(F) = 1.

Given two probability distributions x and x′, the Total Variation (TV) dis-
tance between them is maxi{|xi−x′

i|}. We define the TV distance between two
strategy profiles (x,y) and (x′,y′) to be the maximum over the TV distance of
x and x′ and the TV distance of y and y′. Problem 3 asks whether a bimatrix
game possesses two ǫ-NEs with TV distance at least d. In order to apply Lem-
mas 10 and 11, we will set d = 1 − ǫ∗

1−ǫ∗ . Then an instance G′ of Problem 3 is
“Yes” when ω(F) = 1 since the ǫ∗-NE (x,y) identified in Lemma 10, has TV
distance one from the pure exact Nash equilbrium (i, j). Lemma 11 says that,
if ω(F) < 1 − δ∗, every ǫ∗-NE (x,y) of G′ has xi > 1 − ǫ∗

1−ǫ∗ and so all ǫ∗-NE

are within TV distance 1− ǫ∗

1−ǫ∗ of each other.
Problem 4 asks to decide whether there exists an ǫ-NE where the row player

does not play any pure strategy with probability more than p. For this problem,
we set p = 1

|X| , where X is the question set for Merlin1. According Lemma 10,

if ω(F) = 1, then an instance G′ of Problem 4 is a “Yes”. Lemma 11 says that,
if ω(F) < 1− δ∗, then for all ǫ∗-NE (x,y) of G′, maxi xi ≥ xi > 1− ǫ∗

1−ǫ∗ >
1

|X| .

Problem 5 asks whether a bimatrix game possesses an ǫ-NE with social
welfare at most v, and Problem 6 asks whether a bimatrix game possesses an
ǫ-NE where the expected payoff of the row player is at most u. We fix v = 10

8
for Problem 5, and for Problem 6 we fix u = 5

8 . As we have already explained
in the proof of Lemma 10, if ω(F) = 1, then there is an ǫ∗-NE for G′ such that
the expected payoff for each player is 5

8 and thus the social welfare is 10
8 . So, if

ω(F) = 1, then the answer to Problems 5 and 6 is “Yes”. On the other hand,
from the proof of Lemma 11 we know that if ω(F) < 1− δ∗, then in any ǫ∗-NE
of G′ both players play the strategies i and j with probability at least 1− ǫ∗

1−ǫ∗ .

So, each player gets payoff at least (1 − ǫ∗

1−ǫ∗ )
2 > 5

8 , since ǫ
∗ < 1

8 , from their
pure strategies i and j. So, if ω(F) < 1 − δ∗, then the answer to Problems 5
and 6 is “No”.

Problems 7 - 9 relate to deciding if there exist approximate well-supported
equilibria with large supports (for ǫ-NE these problems would be trivial). Prob-
lem 7 asks whether a bimatrix game possesses an ǫ-WSNE (x,y) with |supp(x)|+
|supp(y)| ≥ 2k. Problem 8 asks whether a bimatrix game possesses an ǫ-
WSNE (x,y) with min{|supp(x)|, |supp(y)|} ≥ k. Problem 9 asks whether
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a bimatrix game possesses an ǫ-WSNE (x,y) with |supp(x)| ≥ k. Recall that X
and Y are the question sets of Merlin1 and Merlin2 respectively that were used
to define F and in turn Gs. We will fix k = |X | = |Y | for all three problems.

If ω(F) = 1, then Lemma 10 says that there exists an ǫ∗-WSNE (x,y) for G′

such that |supp(x)| = |supp(y)| = k and thus the answer to Problems 7 - 9 is
“Yes”. On the other hand, if ω(F) < 1 − δ, then we will prove that there is a
unique ǫ∗-WSNE where the row player plays only the pure strategy i and the
column player plays the pure strategy j.

Lemma 12. If ω(F) < 1 − δ∗, then there is a unique ǫ∗-WSNE (x,y) in G′

such that xi = 1 and yj = 1.

Proof 14. We consider only the case that ω(F) < 1 − δ∗. Then Lemma 11
says that in every ǫ∗-NE of G′ the column player plays the pure strategy j with
probability at least 1− ǫ∗

1−ǫ∗ . Against j, the row player gets 0 for all pure strategies
i 6= i and 1 for i. Thus, in any ǫ∗-NE of G′, for every pure strategy i 6= i, the
row player gets at most ǫ∗

1−ǫ∗ from every pure strategy i, and the row player

gets at least 1 − ǫ∗

1−ǫ∗ from i. So, in every ǫ∗-WSNE the row player must play
only the pure strategy i since from every other pure strategy the player suffers
regret at least 1 − 2ǫ∗

1−ǫ∗ , which is strictly larger than ǫ∗ for every ǫ∗ < 1
8 . In

turn, against i, every pure strategy j 6= j for the column player yields zero payoff
while the strategy j yields payoff 1. So, the unique ǫ∗-WSNE of G′ is xi = 1
and yj = 1. �

Hence, when ω(F) < 1 − δ∗ the answer to Problems 7 - 9 is “No”. Thus, we
have shown the following:

Theorem 4. Assuming ETH, any algorithm that solves the Problems 2 - 9 for

any constant ǫ < 1
8 requires nΩ̃(logn) time.

Finally, for Problem 10, we define a new game G′′ by extending G′. We add
the new pure strategies i′ for the row player and j′ for the column player. The
payoffs are shown in Figure 2. Recall that Problem 10 asks whether a bimatrix
game possesses an ǫ-WSNE such that every strategy from a given set S is played
with positive probability.

In order to prove our result we fix S = i′. First, we prove that if ω(F) = 1
then the game G′′ possesses an ǫ∗-WSNE (x,y) such that i′ ∈ supp(x). Then we
prove that if ω(F) < 1−δ, then for any ǫ∗-WSNE (x,y) it holds that i′ /∈ supp(x).

Lemma 13. If ω(F) = 1, then G′′ possesses an ǫ∗-WSNE (x,y) such that
i′ ∈ supp(x).

Proof 15. Lemma 10 says that if ω(F) = 1, then G′ possesses an ǫ∗-WSNE
(x′,y′) that gives payoff 5

8 for each player, and x′ is uniform on a set of size |X |.
We construct the required ǫ∗-WSNE of G′′ from (x′,y′) as follows. We add i′

to the support of x′ so that x is a uniform mixture over supp(x′) ∪ i′. For the
column player, we extend y′ by adding zero probability for j′.
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G ′′ =

j′

5
8 ,

5
8

G ′ ...

5
8 ,

5
8

i′ 5
8 ,

5
8 · · · 5

8 ,
5
8 0, 0

Figure 2: The game G′′.

Against y, pure strategies in supp(x′) give payoff 5
8 , pure strategy i in G′

yields payoff 5
8 +ǫ

∗, and i′ gives payoff 5
8 . Thus, since (x′,y′) is an ǫ∗-WSNE of

G′, x has pure regret at most ǫ∗ against y, as required. What remains is to show
that the pure regret of y is no more than ǫ∗ against x. Recall that, in G′, against
x′, the payoff of each pure strategy in supp(y′) is 5

8 . Now consider G′′. Since,
against i′, the column player gets 5

8 for all j ∈ supp(y), the column player still
gets 5

8 against x for all j ∈ supp(y). Moreover, against x, the payoff of j′ is
|X|

|X|+1 · 5
8 <

5
8 . Thus, since (x′,y′) is an ǫ∗-WSNE of G′, we have that (x,y) is

an ǫ∗-WSNE of G′′ with i′ ∈ supp(x), which completes the proof. �

Lemma 14. If ω(F) < 1− δ∗, then for any ǫ∗-WSNE (x,y) of G′′ it holds that
i′ /∈ supp(x).

Proof 16. We prove that the unique ǫ∗-WSNE of G′′ is the pure profile (i, j).
Using exactly the same arguments as in the proof of Lemma 11 we can prove
that if ω(F) < 1− δ∗, then in any ǫ∗-NE of G′′ it holds that xi > 1− ǫ∗

1−ǫ∗ and

yj > 1− ǫ∗

1−ǫ∗ . Then, using exactly the same arguments as in Lemma 12 we can

get that the pure strategy j for the column player yields payoff at least 1− ǫ∗

1−ǫ∗

while any other pure strategy, including j′, yields payoff at most ǫ∗

1−ǫ∗ . Hence, in
any ǫ∗-WSNE of G′′ the column player must play only the pure strategy j. Then,
in order to be in an ǫ∗-WSNE the row player must play the pure strategy i. Our
claim follows. �

The combination of Lemmas 13 and 14 gives the following theorem.

Theorem 5. Assuming the ETH, any algorithm that solves the Problem 10 for

any constant ǫ < 1
8 requires nΩ̃(logn) time.

Acknowledgements. We would like to thank Aviad Rubinstein for alerting
us to the existence of Theorem 2.
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