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Abstract—Radio frequency fingerprint (RFF) identification
is an emerging device authentication technique that exploits
the hardware imperfections resulting from the manufacturing
process. Due to the varying impact of the wireless channel during
RFF training and test stages, it is challenging to design channel-
independent RFF techniques. This paper designs a channel robust
RFF identification scheme by leveraging the different spectrum
of adjacent signal symbols, named the difference of the logarithm
of the spectrum (DoLoS), which does not rely on a single RFF
feature or requires additional manipulation of the devices under
test. Specifically, DoLoS exploits the fact that two different
symbols in a packet exhibit different RFF features but have
a similar channel response during the channel coherence time.
We implemented the DoLoS with the IEEE 802.11 orthogonal
frequency division multiplexing (OFDM) system as a case study.
We carried out extensive experiments using 7 Wi-Fi devices
of the same model in different wireless channel environments,
including 12 data collection positions in two completely different
environments. Compared with conventional RFF identification
schemes that do not eliminate channel effects, our scheme
is robust to channel variations and the highest identification
accuracy is 99.02% in the single-environment evaluation and
97.05% in the cross-environment evaluation.

Index Terms—Device authentication, radio frequency
fingerprint, 802.11, OFDM, wireless channel

I. INTRODUCTION

W IRELESS communication technologies are rapidly
evolving, leading to 5G-and-beyond network, Internet

of things (IoT) and many applications enabled by them.
However, the widespread deployment of radio transmissions
are accompanied by increasingly serious security breaches [1],
[2], due to the broadcast nature of wireless communication
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signals. Device authentication is an essential part of achieving
communication security by authorizing legitimate users
and rejecting malicious ones. Traditional cryptography-based
authentication schemes, such as password-based authentication
and certificate-based authentication, have some limitations
when applied to IoT devices [3], [4]. These schemes require
computational and energy resources, which may not be
suitable for resource-constrained IoT devices, e.g., radio-
frequency identification (RFID) chips. In addition, the secure
storage of passwords is challenging and it is at the risk
of being cracked by high-computing attackers or intercepted
during login [5], [6]. Finally, the public key infrastructure
(PKI) in certificate-based authentication may increase the
initial deployment cost. Therefore, it is desirable to design an
effective and low-cost device identification scheme for IoT.

Radio frequency fingerprint (RFF) identification has
emerged as an effective and lightweight solution for device
authentication [7]–[9], which is particularly suitable for IoT.
In any wireless communication system, the baseband signal is
processed by the transmitter components including the digital
to analog converter (DAC), filter, mixer, oscillator, power
amplifier, etc., and then becomes a radio frequency signal. The
hardware involved has unavoidable imperfections during the
manufacturing process, including the mismatch between the
In-phase (I) and Quadrature (Q) branches of the mixer, power
amplifier nonlinearity, etc. However, these imperfections are
usually within the tolerance of the nominal values, which only
slightly distort transmitted signals without severely impact the
communication functions [10]. These hardware impairments
are collectively referred to as RFF. RFF is device-specific
and difficult to forge and tamper. Furthermore, RFF has good
environmental robustness and long-term stability [11], [12]
Therefore, it can be extracted for device identification.

RFF identification consists of two stages, namely training
and identification stages [13]. In the training stage, a receiver
extracts the RFF features of each legitimate device under
test (DUT) and then trains them using a classifier such as
the convolutional neural network (CNN) or distance-based
classifiers, etc. In the identification stage, the authenticator
collects signals from a device, extract RFF features, and infer
its identity using the trained classifier.

RFF identification has been investigated for several wireless
systems, such as Wi-Fi [14]–[18], ZigBee [11], [19],
radar [20]–[22], LoRa [23], etc. Among them, Wi-Fi is one
of the most popular wireless technologies and much RFF
identification work uses Wi-Fi as case studies. For example,
Brik et al. [14] utilized several RFF features including carrier
frequency offset (CFO), in-phase/quadrature (I/Q) offset, and
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phase error. They evaluated 130 Wi-Fi devices and achieved
99% accuracy. In practical applications, wireless channels
of training data and test data are usually different due to
the varying environments and locations of data collection.
Furthermore, the wireless channel has a severer effect to
the signal distortion than RFF. Then, the RFF identification
accuracy will be greatly affected by the varying wireless
channels. For example, Al-Shawabka et al. [17] carried out
extensive experiments on 20 Wi-Fi devices and found out that
the wireless channel significantly affected the classification
accuracy, which dropped from 85% (train-and-test-one-day) to
9% (train-one-day-test-another). The experiments in [18] also
showed a similar phenomenon.

Therefore, designing a channel robust RFF identification
scheme is challenging but highly desirable. The current
research efforts can be divided into three categories. The first
category is to extract RFF features that are independent from
channels such as CFO. Vo-Huu et al. [24] evaluated the RFF-
based Wi-Fi device identification using CFO and transients
on an in-the-wild testbed. Hua et al. [25] demonstrated that
CFO obtained from the channel state information (CSI) is an
effective RFF feature, which remains stable over time and
locations. However, it requires a large number of signals to
extract a CFO, which cannot realize the device identification
of single-frame signals. Hou et al. [26] proposed a physical
layer authentication scheme utilizing CFO. It states that CFO
includes a constant bias of the oscillator mis-match and
a variable Doppler shift, which is time-varying. Similarly,
we also found that the CFO of the same Wi-Fi device
has deviations among different frame signals, mainly due
to the variable Doppler shift and the instability of the
device oscillator. In addition, our experiment showed that the
CFOs of different Wi-Fi devices overlapped with each other,
which means that CFO-based device identification is prone
to misidentification (Section IV). Liu et al. [27] extracted the
nonlinear phase offset between different subcarriers from CSI
as RFF features. Experiments indicated this phase feature is
robust to location, environment, and time. However, the types,
brands, and models of Wi-Fi terminals in their experiments
were different, which means that the RFF differences among
devices are more obvious. The identification performance of
the same model of devices requires further investigation.

The second category is to manipulate transmitters to
construct channel robust features. Sankhe et al. [18] amplified
the RFF features by adding device hardware impairments, such
as I/Q imbalance and direct current (DC) offset. However,
this approach requires a secure feedback channel between the
transmitter and the receiver, which may not be available. The
interaction will also increase additional overhead. Restuccia
et al. [28] designed a digital finite input response filter
at the transmitter to resist channel interference, which is
achieved by slightly modifying transmitted signals based on
the known current channel. This also requires the receiver to
send the designed filter information to DUTs, which brings
communication overhead and delay.

The last category is to eliminate channel effects by signal
processing algorithms. Kennedy et al. [29] and Fadul et
al. [15] presented to eliminate channel interference through

channel estimation and channel equalization. However, the
channel estimation process will be influenced by the RFF.
In theory, such schemes require data without channel effects
as the training set, which may be difficult to obtain
in practical applications. Liu et al. [30] estimated the
channel coefficients by using known training sequences to
approximate the symbols with low-amplitude levels. It was
mainly based on the fact that symbols with lower amplitude
levels have relatively lower distortion levels. However, this
approach was only evaluated on the identification of two
simulated transmitters, hence the performance requires further
experimental verification. Li et al. [31] proposed to extract the
different features between two long training symbols (LTSs)
in IEEE 802.11 OFDM signals. This method requires signals
collected from multiple locations to generate the RFF features,
which is difficult in practical applications. Zheng et al. [32]
proposed an F(·) function as the RFF to model the modulation
and timing errors, CFO, and power amplifier noise of the
device. However, its channel estimation is affected by RFF
and noise, so the algorithm may not learn exactly the channel.

In order to address the above challenges and limitations,
this paper designs a channel robust RFF identification scheme,
which does not rely on a single feature or requires extra
resources to manipulate DUTs. Specifically, we proposed an
RFF extraction algorithm, which exploits the Difference of
the Logarithmic Spectra (DoLoS) of the received signals. The
main contributions are summarized as follows:

• We proposed a DoLoS algorithm to extract channel-
independent RFF features. The algorithm first obtains
two different symbols with different amplitudes and
phases from the received signals; these symbols exhibit
different RFF characteristics. When the two symbols
are within the channel coherence time, during which
the channel can be assumed stationary, the difference
between the logarithmic spectrum of the two symbols
can effectively eliminate the channel response but retain
the RFF features.

• We implemented the proposed DoLoS algorithm with
IEEE 802.11 OFDM as a case study. Specifically, we use
the short training symbol (STS) and LTS in the preamble
of the physical waveform which have different amplitudes
and phases. In addition, we leverage the repeated symbols
to denoise the received signals and further refine the
received data by removing anomaly ones.

• We carried out extensive experimental evaluation and
demonstrated our algorithm can effectively extract
channel-independent RFF features. We have collected
84,000 packets from 7 Wi-Fi devices of the same model.
Specifically, 1,000 data packets were collected from each
position of each WiFi router for experiment evaluation.
We used DoLoS algorithm to extract the channel
robust RFF features and employed a CNN classifier
for identification. Compared with the method without
removing channel effects, the highest increase in the
identification rate is 68.75%. In addition, denoising and
data refining algorithms have brought 7.30% and 2.75%
performance improvement on average, respectively.
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Fig. 1. System module of RFF sources.

The remainder of this paper is organized as follows.
Section II gives the channel robust RFF identification scheme
and the DoLoS algorithm. Section III introduces the preamble
structure of IEEE 802.11 OFDM systems. Section IV presents
a case study of implementing the DoLoS algorithm on IEEE
802.11 OFDM devices. Section V and Section VI show the
experimental setup and performance evaluation, respectively.
Finally, Section VII concludes this paper.

II. CHANNEL ROBUST RFF IDENTIFICATION

A. System Model

RFF is the collective term for device hardware impairments.
It can be seen from Fig. 1 that the hardware impairments in
a typical transmitter mainly come from DAC, intermediate
frequency (IF) filter, I/Q modulation block, amplifier, and
antenna, including harmonic distortion, DC offset, poor
filter response, oscillator frequency difference, I/Q imbalance,
quadrature offset, amplifier non-linear, antenna mismatch, etc.
Considering the transmitter as a black box, the effect of RFF
on the signal to be transmitted x can be denoted as a function
fi(·), and the f(x) is the signal after hardware distortion.

As shown in Fig. 2, there are N legitimate devices to be
classified by a receiver. A CNN model is adopted as the
classifier.

The received signal can be written as

yi,p = fi(x) ∗ hp + np, i = 1, 2, · · · , N, (1)

where fi(x) is the signal of device i with RFF, ∗ represents
linear convolution operation, p = {T, I} represents the
training and identification stage, respectively, hp is the wireless
channel effect, and np denotes the additive white Gaussian
noise (AWGN).

It can be seen in (1) that the received signal consists of
both the hardware imperfection fi(·) and the channel effect
hp. As the hardware imperfection is usually very slight, the
wireless channel has a more dominant effect. In addition,
the wireless channel varies with the environment, location,
and time. Thus, hT and hI will be different for training and
identification stages because they will probably be carried out
at different places and time in practical applications. Therefore,
it is essential to design a robust algorithm to eliminate channel
effects and extract channel-independent RFF.

B. DoLoS Algorithm

We proposed a channel robust RFF feature extraction
algorithm based on the Difference of the Logarithmic Spectra
of received signals, named DoLoS.

There are three conditions for the transmitted signal x to be
met, required by the DoLoS algorithm.
• There should be at least two fixed and different symbols
xA and xB in the signal x, as shown in Fig. 2.
The hardware components, such as filters and power
amplifiers, have different responses to signals with
different amplitudes and phases, hence the RFF of
different symbols will also be different, i.e., fi(xA) 6=
fi(x

B).
• Symbols xA and xB both have the cyclic prefix (CP),

which refers to the prefixing of a symbol, with a repetition
of the end. Multiple repetitive symbols can also form the
CP structure. In some techniques, e.g., OFDM, the CP
is intentionally designed as a guard interval to eliminate
inter-symbol interference. As a CP repeats the end of
the symbol, the linear convolution of the symbol and
the multipath channel can be modeled as the circular
convolution between them. Thus, the received signal can
be transformed into the frequency domain via the fast
Fourier transform (FFT).

• The symbols xA and xB should be within the
channel coherence time, during which wireless channels
experienced by the symbols xA and xB can be considered
the same.

Thanks to the CP, linear convolution operation can be
converted to circular convolution operation. The received
signals in the time domain can be given as

ysymi,p = fi(x
sym) ~ hp + nsymp , (2)

where sym = {A,B} represents symbols A and B,
respectively, ~ donates circular convolution.

The time-domain signal, ysymi,p , can be transformed to the
frequency domain by FFT, expressed as

Y symi,p = FFT (ysymi,p )

= FFT (fi(x
sym))FFT (hp) + FFT (nsymp ), (3)

where FFT (·) represents FFT operation.
Next, without considering the noise, we can convert the

amplitude of the frequency domain signal from a linear scale
to the logarithmic scale, which can be given as

Y symi,p,log = log[|Y symi,p |]
= log[|FFT (fi(x

sym))|] + log[|FFT (hp)|],
(4)

where log(·) denotes natural logarithm and | · | represent
absolute value operation.

Finally, we can remove the channel effect through a simple
subtraction operation as

RFFi,p = Y Ai,p,log − Y Bi,p,log

= log[|FFT (fi(x
A))|]− log[|FFT (fi(x

B))|].
(5)

It can be observed that the RFFi,p is only affected by
xA, xB , and the hardware effect fi(·). Different devices will
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transmit the same symbols xA and xB while the hardware
imperfection, fi(·), is different among devices. Therefore,
RFFi,p can represent the device’s RFF features for device
identification, which is channel independent.

III. PRELIMINARY: IEEE 802.11 OFDM

IEEE 802.11 OFDM is chosen as a case study to verify the
proposed channel robust RFF identification scheme. In this
section, we will introduce the IEEE 802.11 OFDM physical
layer packet format. The DoLoS algorithm implementation
will be introduced in Section IV.

The Wi-Fi devices used in our experiments are in the IEEE
802.11n legacy mode, i.e., the IEEE 802.11 OFDM. OFDM
is first employed by IEEE 802.11a (1999) and becomes very
successful because of the high spectrum efficiency and robust
to inter-symbol interference. Hence, it is adopted by the IEEE
802.11g/n/ac. Wi-Fi has become one of the most popular
communication technologies, which is widely used in laptops,
tablets, smartphones, etc.

There are 64 sub-carriers over a 20 MHz OFDM channel.
Among them, there are 52 active sub-carriers, i.e., sub-carrier
[-26 -1] and [1 26], while the rest are used as guard bands.
As shown in Fig. 3, IEEE 802.11 OFDM standard defines a
preamble at the beginning of the packet, which consists of
a short training field (STF) and a long training field (LTF).
STF and LTF are predefined public sequences and all the
Wi-Fi compliant devices should follow. The STF is used for
packet detection, CFO estimation, and automatic gain control
while the LTF is employed for symbol alignment and channel
estimation [33].

Specifically, the STF is composed of ten repetitive STSs,
t1, t2, ..., t10. Each STS is generated as follows. A frequency-

domain STS utilizes 12 sub-carriers with indices

ς = [−24,−20,−16,−12,−8,−4, 4, 8, 12, 16, 20, 24] (6)

and each subcarrier is quadrature phase shift keying (QPSK)
modulated, which can be defined as

S =1.472× {0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j,

0, 0, 0,−1− j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0,

0, 0, 0, 0,−1− j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j,

0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0}.

(7)

S is transformed into the time domain using a 64-point FFT
operation. The output contains four identical sequences, t, each
with 16 samples. Then, one sequence is repeated 10 times to
obtain a complete STF.

There are 52 active subcarriers in the LTS and the frequency
domain LTS is defined as

L ={1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1,

1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 1,−1,

− 1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1,

1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1},

(8)

which is binary phase shift keying (BPSK) modulation. L is
also transformed to the time domain LTS using a 64-point
FFT operation. The time-domain LTF is constructed by one
CP (GI2), and two LTSs (T1, T2).

The STF and LTF meet the three conditions required by the
DoLoS algorithm.
• The STF and LTF are present in all the IEEE 802.11

OFDM packets. In addition, STF (QPSK modulated) and
LTF (BPSK modulated) have different amplitudes and
phases, which will lead to different RFF.

• The LTF has a designated CP (GI2) and the STF has ten
repetitions of STS which can form the CP structure.

• STF and LTF are adjacently contained in a preamble
and their duration is 16 µs, which is much smaller
than the channel coherence time in most scenarios,
such as Vehicle-to-Vehicle scenario (includind suburban,
highway and rural) , walking scenario, the static indoor
scenario [34], [35]. Hence, their channel responses can
be assumed the same.

Therefore, we used Wi-Fi as a case study to evaluate our
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proposed DoLoS algorithm. In addition, multiple repetitive
symbols can also form a CP structure.

IV. CASE STUDY: IEEE 802.11 OFDM-BASED RFF
IDENTIFICATION

In this section, the RFF-based identification of IEEE 802.11
OFDM devices is introduced as a case study of the proposed
channel robust RFF identification scheme. Corresponding to
Fig. 2, the preprocessing in this case study includes packet
detection, CFO compensation, and denoising. In the training
stage, the channel-independent RFF features extracted by the
DoLoS algorithm are used to train a two-layer CNN as the
classifier. In the identification stage, the RFF features of the
unknown signal will be identified by the trained CNN model.

A. Preprocessing

1) Packet Detection: In a standard IEEE 802.11 OFDM
system, the receiver employs the autocorrelation algorithm
using the repeated STS to detect the signal arrival and then
the cross-correlation algorithm using LTS to locate the starting
point of the packet. We used these standard algorithms and
interested readers please refer to [33] for details.

The preamble part of a received signal is illustrated in
Fig. 4(a). There are 10 STSs (r1, r2, ..., r10) in STF
and two LTSs (R1, R2) in LTF. As shown in Fig. 4(a),
the received signals differ greatly from the local standard
preamble due to the channel effect and noise, but their periodic
characteristics maintain (10 repeated STSs in STF and 2.5
LTSs in LTF). The normalized autocorrelation coefficient is
illustrated in Fig. 4(b), which clearly shows the plateau of high
autocorrelation coefficients. Then we can roughly estimate the
start of the packet. The start of the first LTS can be accurately
detected from the correlation coefficients.

The first STS is discarded as there is no signal before it,
which does not satisfy the condition of CP. In addition, a 64-
point FFT operation requires four STS (each has 16 samples)
as input, hence we concatenated four consecutive STSs as a
valid time-domain OFDM symbol. We can then extract ysymi

from the packets, where sym = {{sts1, sts2}, {lts1, lts2}}
denote STS and LTS, respectively.

2) CFO Compensation: Influenced by the oscillator drift
of transmitter and receiver as well as the Doppler shift of
the wireless channel [26], there will be CFO between the
transmitter and receiver, which brings distortion to the signals.

In this paper, we used the ten repeated STSs to estimate
the CFO, as described in [33]. As shown in Fig. 5, even if the
Wi-Fi device has been running for half an hour in advance, the
collected CFO of different Wi-Fi devices vary in a short time
and overlap with each other. The main reason is the variable
Doppler shift and the instability of the device oscillator. Hence,
it is necessary to estimate and compensate CFO before the RFF
feature extraction.

The symbols after CFO compensation can be given as

ŷsymi (n) =ysymi (n)ej2π∆fnTs , (9)

where ∆f is the estimated CFO and Ts is the sampling
interval, which is 50 ns in this paper.
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3) Denoising: In order to suppress noise, we consider
a denoising method designed in [36], which leverages the
repeatability of STS and LTS, given as

ŷstsi =
1

2

(
ŷsts1 + ŷsts2

)
,

ŷltsi =
1

2

(
ŷlts1 + ŷlts2

)
.

(10)

Therefore, the SNR for STS and LTS can be increased by up
to 2 times.

B. RFF Extraction Using DoLoS Algorithm

The logarithmic spectrum of the extracted symbol ŷsymi can
be given as

Y symi,log = log [|(FFT (ŷsymi )|] . (11)
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An example is given in Fig. 6. It can be seen that the
subcarriers used by STS and LTS are not the same, which
is in accordance with the 802.11 OFDM protocol introduced
in Section III. We need to extract a common subset of
subcarriers, namely ς defined in (6), from Y symi,log . Specifically,
Y symi,log contains 64 data points, which can be numbered [1 64].
Then, the point [9, 13, 17, 21, 25, 29, 37, 41, 45, 49, 53, 57]
of Y symi,log corresponds to the subcarrier numbered ς =
[−24,−20,−16,−12,−8,−4, 4, 8, 12, 16, 20, 24]. It can be
seen from Fig. 6 that there is a good match between Y sts1i,log

and Y sts2i,log and between Y lts1i,log and Y lts2i,log. Hence, it is valid to
carry out the denoising algorithm.

We extract the data corresponding to these subcarriers from
Y symi,log , carry out denoising and obtain the final RFF features,
given as

RFFi =Y stsi,log(ς)− Y ltsi,log(ς)

= log
[
|FFT (ŷstsi )|

]
(ς)− log[|FFT (ŷltsi )|](ς),

(12)
which is a vector with 12 dimensions. Some examples are
shown in Fig. 7, where the signals were captured from the
same Wi-Fi device.

C. Data Refining

According to the 802.11 OFDM protocol, the theoretical
amplitudes of the STS and LTS of the common subcarriers
in the frequency domain are 1.472 and 1, respectively.
Without considering the RFF, the theoretical amplitude of the
difference of logarithm spectra should be

Y = log(|S ′|)− log(|L′|)| = 0.7332I, (13)

where

S ′ =1.472[1 + j,−1− j, 1 + j,−1− j,−1− j,
1 + j,−1− j,−1− j, 1 + j, 1 + j, 1 + j, 1 + j]

and L′ = [−1,−1, 1, 1,−1, 1, 1,−1,−1, 1,−1, 1] are the
values of STS and LTS on the common subcarriers,
respectively, I is a 12 dimensions unit vector.

Fig. 7 displays the RFF features obtained from actual
signals and the theoretical amplitudes. Firstly, it is clear that
theoretical results Y is 0.7332 for all dimensions, whose mean
and variance are 0.7332 and 0, respectively. However, due to
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Fig. 7. Comparison of actual signal’s RFF features of ith device, RFFi,
with the theoretical results without considering RFF, Y .
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Fig. 8. The architecture of CNN model.

the existence of RFF in the actual signal, the value of RFFi
for one device has a small and relatively stable deviation from
the theoretical value Y in various dimensions.

The extracted RFF features of different packets are not
exactly the same due to the residual channel effects and noise.
It is possible some packets have poor quality and the extracted
RFF features will be noisy, as shown in Fig. 7. We can refine
RFF features which satisfy the following conditions:

µl ≤ mean(RFFi) ≤ µh;

δl ≤ var(RFFi) ≤ δh,
(14)

where mean(·) and var(·) denote the mean and variance
operations, µl, µh and δl, δh are the lower and upper thresholds
of mean and variance, respectively. Thereby, the packets whose
quality is too poor can be removed.

In practical applications, the distribution of the mean and
variance values of target devices with different brands or
models will vary. Hence, different thresholds are required.
Fortunately, the training data set can always be obtained in
advance. We can select reasonable thresholds based on the
mean and variance distribution of the training set.

D. RFF Identification Using CNN

After data refining, we use the training data to train a CNN
model. The final RFF features RFFi is a 12-dimensional
vector, which is small size. Hence, we choose a two-layer
CNN model, whose network depth is basically the same as a
well-run network on the MNIST dataset [37].

The network architecture are given in Fig. 8. There are two
convolutional layers, two dense layers, and a softmax classifier.
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Fig. 9. Photo of Wi-Fi devices and the receiver.

The rectifying linear unit (ReLU) activation function is used.
To train the CNN, the categorical cross-entropy is used as the
loss function.

We define the identification accuracy rate ξ as

ξ =
Nc
Nall

, (15)

where Nall is the number of packets to be identified and Nc
is the number of correctly identified packets. We also use the
confusion matrix to visualize the classification performance.

V. EXPERIMENTAL SETUP

A. Devices

The devices involved in the experiment include the WiFi
device to be identified and the receiver.

Wi-Fi DUT: As shown in Fig. 9(a), seven Wi-Fi routers
of the same model, namely DWL-2000AP+A, were tested
as DUTs, which were purchased in bulk from D-Link
manufacturers. In the experiments, their working protocol,
carrier frequency, and bandwidth were configured as IEEE
802.11n, 2.4 GHz, and 20 MHz, respectively.

Receiver: As shown in Fig. 9(b), we used a software-
defined radio (SDR) device, namely Ettus universal software
radio peripheral (USRP) N210 with a UBX daughterboard,
to collect signals from DUTs. The sampling rate was set to
20 MS/s. In addition, we placed it on a mobile cart equipped
with a mobile power supply to facilitate movement. The data
collected by the USRP N210 was stored in the host computer
for our RFF identification algorithm. The data processing and
RFF extraction were carried out by MATLAB R2018b. The
CNN model was trained and tested using NVIDIA GeForce
GTX 1660 Ti GPU on TensorFlow 1.13.1 and Keras 2.2.4.

B. Experimental Environments

The main purpose of this paper is to study the impact
of wireless channels on RFF identification. Therefore, we
evaluated our approach under two experiments with different
wireless environments. Their photos and layout are displayed
in Fig. 10 and Fig. 11, respectively.

Experiment Environment 1 includes an office and a
corridor, as shown in Fig. 10(a) and Fig. 11(a). The size of
the office is 9 m × 12 m, and there is a large bookcase,
two laboratory tables, several tables with partitions, chairs

(a) Environment 1. (b) Environment 2.

Fig. 10. Photos of the experiment environments.
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 10 m
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(b) Environment 2.

Fig. 11. Layout of the experiment environments.

and a lot of sundries. The environment is crowded and the
multipath effect is severe. The corridor is simply furnished,
with only two rows of tables and chairs. In addition, the iron
door connecting the office and the corridor was closed during
the experiment.

Experiment Environment 2 is a laboratory with a size of
9 m × 10 m. Compared with Environment 1, the laboratory
is relatively empty. A table and a few chairs are scattered in
the middle of the room while other obstacles are distributed
around the room, such as tables, sofas, computers and
monitors.
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C. Experimental Scenarios

There are two scenarios considered regarding the receiver
movement, namely a static scenario and a dynamic scenario.

Static Scenario: A Wi-Fi router (DUT) and the USRP
receiver were placed at the TX and RX positions, respectively.
For each data collection process, the receiver remained
stationary at a fixed position. As shown in Fig. 11(a), for
Environment 1, the receiver collected data at five fixed
positions, where S1_P1, S1_P2, and S1_P3 were located in
the office, and S1_P4 and S1_P5 were set on the corridor.
Due to the closed iron door, when the receiver was located
at the positions of S1_P4 and S1_P5, there is no direct line-
of-sight (LOS) path between the DUT and the receiver. For
Environment 2 shown in Fig. 11(b), the fixed positions are
S2_P1, S2_P2, S2_P3, and S2_P4. The router and receiver
always have a direct line-of-sight (LoS) path. There were
random movement in the lab and the wireless channel was
varying.

Dynamic Scenario: A Wi-Fi router (DUT) was placed
in the position TX and the USRP receiver moved at an
average speed of 1 m/s. The movement route and direction
were random. As shown in Fig. 11(a), Environment 1
contained two dynamic data collection areas, namely the office
room (S1_M1) and the corridor (S1_M2). Environment 2
demonstrated in Fig. 11(b) had one dynamic scenario, i.e., the
entire laboratory room. There were people walking around the
room, which might occasionally block the LoS between the
router and the receiver.

D. Data Collection

The data sets used in this paper were collected in two
different environments (Environment 1 and Environment 2),
and the data collection took place four months apart. In a
data collection experiment, one DUT was fixed at the TX
position and the receiver was placed in different RX positions
(including fixed positions in the static scenario and moving
areas in the dynamic scenario) to collect data. We collected
1,000 data packets from each position of each WiFi router, for
a total of 1,000*7*12=84,000 packets. The recorded data set
of 7 Wi-Fi routers, hereinafter referred to as AP1-AP7.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of our scheme, we conducted
data collection and analysis at multiple positions in two
different environments, respectively. First, we analyzed
the channel characteristics of the original signal and the
extracted RFF features after using the DoLoS algorithm.
Then, we presented the RFF identification results, including
the evaluation of DoLoS algorithm, the evaluation of
denoising and data refining method, and the evaluation of
cross-environment identification. Finally, we compared the
performance of our scheme with solutions using IQ data and
FFT data.

A. Results of Channel and RFF Features

1) Channel Characteristics: Fig. 12 shows the logarithmic
spectrum of STS, Y stsi,log(ς), and LTS, Y ltsi,log(ς), extracted from
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Fig. 12. Comparison of the logarithmic spectrum of STS and LTS in 12 valid
subcarriers, i.e., Y sts

i,log(ς) and Y lts
i,log(ς).

four different frames of the same device. It is obvious that
these four packets differ greatly in amplitude and trend,
which indicates that the channel has a great influence on the
spectrum. However, the STS and LTS of the same packet
show a highly similar contour. Furthermore, the amplitude
difference between STS and LTS on each subcarrier is close
to the theoretical value (0.7332). This demonstrates that the
STS and LTS in a packet are within the channel coherence
time. Their channel responses can be considered unchanged
in the same packet.

In order to visually observe the channel changes, we
calculated the spectrum of two LTSs, ŷlts1i and ŷlts2i , and
took their average. Fig. 13 illustrates the spectrum curves of
the signals collected from AP1 at different positions, S1_P1,
S1_P4, S1_M2, S2_P2, and S2_M1. As can be observed from
the figures, the curves of the five positions vary greatly in
amplitude and shape. Even in some static scenarios, such as
S1_P4, the amplitude and shape of the spectrum curve have
changed a lot, which may be caused by people walking in
the office. In other static positions, the spectral curves are
relatively concentrated, but the curves at different positions
still vary greatly. In addition, the spectrum curves variations in
dynamic scenarios (S1_M2 and S2_M1) were more significant
than those in static scenarios. This demonstrates that the
channel characteristics of the Wi-Fi signal are affected by
different locations and environments.

2) RFF Features: Our goal is to eliminate the channel
effect in the signal without compromising the RFF
information. In other words, for the same device, the RFF
features collected at different positions (or different channel
environments) should remain the same.

Fig. 14 presents the extracted RFF feature sets of AP1
in S1_P1, S1_P4, S1_M2, S2_P2, and S2_M1. In order to
quantify the similarity among the extracted RFF features, we
calculated the variance of their RFF features in each dimension
and the results are given in Table I. It can be found that
the RFF features were stable in static scenarios S1_P1 and
S2_P2, whose variances in each dimension only ranges from
0.07 ×10−3 to 0.88 ×10−3. In contrast, the variances of
dynamic scenarios S1_M2 and S2_M1 have increased a lot
in all dimensions, with the biggest variance, 6.72×10−3, in
dimension 1 (S1_M2). This is mainly because the channel
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Fig. 13. Y lts
1 , the spectrum (linear scale, all 52 subcarriers) of AP1 in positions S1_P1, S1_P4, S1_M2, S2_P2, and S2_M1.
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Fig. 14. RFF1, the RFF feature set of AP1 in positions S1_P1, S1_P4, S1_M2, S2_P2, and S2_M1.

TABLE I
VARIANCE OF RFF FEATURES IN DIFFERENT DIMENSIONS (AP1, ALL

VALUES ×10−3).

Dimension S1_P1 S1_P4 S1_M2 S2_P2 S2_M1
1 0.74 4.31 6.72 0.44 1.93
2 0.37 2.54 3.33 0.13 0.69
3 0.88 1.56 2.25 0.41 1.41
4 0.57 1.93 2.30 0.35 1.11
5 0.16 1.11 1.68 0.12 0.35
6 0.18 1.81 1.46 0.30 0.32
7 0.29 3.52 3.21 0.49 0.49
8 0.07 2.69 0.94 0.11 0.23
9 0.13 2.14 1.56 0.33 0.42

10 0.09 0.76 0.79 0.15 0.34
11 0.20 1.47 1.15 0.84 1.04
12 0.15 0.80 1.60 0.46 1.32

changes drastically in the dynamic scenario and has a greater
impact on the extracted RFF. Similarly, due to the influence of
human walking in the experiment, the channel at the position
S1_P4 also changed drastically, which results in the dispersion
of its RFF features.

However, even the dispersion of RFF feature values in
some dimensions is relatively obvious, the absolute amplitude
differences are small, as the maximum amplitude difference
is about 0.2 in dimension 1 of S1_M2. In addition, although
the absolute values of the RFF features are different, their
trends and shapes are similar. Compared with the huge channel
characteristics difference in Fig. 13, it demonstrates that
the proposed DoLoS algorithm can effectively eliminate the
channel influence.

In Fig. 15, we displayed the RFF features extracted from
four Wi-Fi devices (AP1, AP3, AP5, and AP7) in the position
S1_P2. The channel characteristics at the same location should
be similar. Therefore, the differences in Fig. 15 are caused
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Fig. 15. The RFF feature set of four different APs at position S1_P2.

by hardware imperfections, which represent RFF features.
In addition, the degree of dispersion of values in various
dimensions is a kind of RFF feature because the severity of
the RFF jitter of different devices is not the same.

B. Results of RFF Identification in Single-Environment

CNN was used for RFF-based device classification. We
sequentially selected the data of one position as training data
(80% as the training set and 20% as the verification set) and
the data of other locations were used for test to verify the
identification performance.

1) Evaluation of DoLoS Algorithm: We performed RFF
identification on the data collected in different positions
in Environment 1 to evaluate the DoLoS algorithm. The
identification accuracy of the DoLoS algorithm, ξ, is shown
in Table II.
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TABLE II
RFF IDENTIFICATION PERFORMANCE OF ENVIRONMENT 1 DATA SET. (ξ:

ACCURACY OF ORIGINAL DATA WITH DOLOS ALGORITHM; ξd :
ACCURACY OF DENOISED DATA WITH DOLOS ALGORITHM; ξd,r :

ACCURACY OF DENOISED AND REFINED DATA WITH DOLOS ALGORITHM;
ξIQ : ACCURACY BASED ON RAW I/Q DATA IN THE TIME DOMAIN; ξFFT :
ACCURACY BASED ON RAW I/Q DATA AFTER FFT; ξAoQ : ACCURACY OF

THE AOQ ALGORITHM.)

Train Test
Identification rate (%)

ξ ξd ξd,r ξIQ ξFFT ξAoQ

S1_P1

S1_P2 65.77 77.49 82.98 27.97 7.17 45.30
S1_P3 76.09 84.04 89.44 28.37 54.45 55.34
S1_P4 68.39 75.63 80.29 14.29 24.10 37.73
S1_P5 72.97 80.62 82.78 14.43 14.37 43.12
S1_M1 72.33 86.16 90.87 28.04 28.67 56.22
S1_M2 56.24 66.45 70.65 15.41 19.16 35.24

S1_P2

S1_P1 83.24 94.08 94.31 42.00 32.63 63.93
S1_P3 71.14 79.54 83.57 17.98 31.66 47.21
S1_P4 65.07 78.26 80.43 14.29 14.29 31.14
S1_P5 66.12 79.05 78.01 14.43 14.43 35.01
S1_M1 78.45 88.04 90.00 28.26 29.36 60.15
S1_M2 64.87 71.41 71.90 14.58 14.58 33.67

S1_P3

S1_P1 88.44 91.96 95.87 42.71 42.31 64.93
S1_P2 83.16 90.40 94.43 18.90 17.36 55.71
S1_P4 71.89 80.41 80.52 17.90 17.93 38.17
S1_P5 74.24 81.46 81.66 14.53 19.39 40.22
S1_M1 81.39 88.29 92.64 34.47 27.98 58.28
S1_M2 63.39 69.00 71.01 18.84 19.54 34.34

S1_P4

S1_P1 81.13 85.43 91.24 13.93 30.13 37.80
S1_P2 74.81 76.24 77.98 28.73 33.81 30.20
S1_P3 89.31 92.11 92.59 20.97 29.95 43.16
S1_P5 71.31 82.80 86.12 33.15 40.38 35.56
S1_M1 77.94 83.78 90.42 26.03 28.77 38.54
S1_M2 62.96 70.09 74.57 23.07 21.42 31.35

S1_P5

S1_P1 90.83 94.70 95.98 27.66 28.44 45.59
S1_P2 65.17 70.56 74.52 27.71 28.14 38.49
S1_P3 77.50 85.71 88.55 12.67 8.75 41.58
S1_P4 58.46 69.97 81.10 20.14 28.73 30.27
S1_M1 72.15 78.94 88.81 22.94 23.12 39.70
S1_M2 60.12 68.82 74.71 21.22 24.73 32.84

S1_M1

S1_P1 95.29 98.81 99.02 70.47 76.77 73.51
S1_P2 89.94 98.57 98.43 76.06 77.70 72.10
S1_P3 92.19 98.40 98.64 74.53 80.98 65.27
S1_P4 85.10 86.67 88.43 39.83 51.94 41.86
S1_P5 82.19 90.85 91.80 16.71 62.87 40.65
S1_M2 72.08 79.97 80.44 25.82 52.32 37.34

S1_M2

S1_P1 96.44 98.61 98.80 68.86 78.16 54.77
S1_P2 93.57 98.76 98.65 78.37 83.53 57.30
S1_P3 89.15 93.69 95.42 71.02 73.63 51.46
S1_P4 77.89 86.33 89.39 65.76 72.43 39.60
S1_P5 86.32 93.00 93.30 89.88 90.16 45.25
S1_M1 90.75 97.40 97.96 76.12 80.79 55.57

In the static scenario (Train: S1_P1-P5), the average
performance of ξ is 72.83% and the highest accuracy

is 90.83%. Fig. 13 has illustrated that the channel
characteristics of the Wi-Fi signal collected in different
positions/environments are very different. When the training
data and test data are collected in different locations, the results
of our method, ξ, are still acceptable. This indicates that the
DoLoS operation can mitigate the channel response of the
received signal.

In the dynamic scenario (Train: S1_M1-M2), the average
identification rate of ξ is 87.58%, and the highest accuracy
is 96.44%. It is relatively higher compared with the static
scenario. The main reason is that the training data collected
in the dynamic scenarios contained channel effects at different
fixed positions, which means it also included channels of most
of the test signals. Therefore, the influence of the channel on
CNN learning RFF becomes smaller.

2) Evaluation of Denoising and Data Refining: Fig. 16
shows the distribution of the mean and variance of the original
data and denoised data in different positions. Compared with
the original data, the average distribution of the denoising
data is more concentrated near the theoretical value, and the
outliers are significantly reduced. This phenomenon explains
the improvement in signal quality. Similarly, the variance trend
of the denoised data is closer to 0 and most outliers have
entered between the upper and lower limits.

For the data refining, based on the mean distribution in
Fig. 16(b) and the theoretical mean (0.7332), we set the mean
thresholds as [0.72, 0.77]. It can be seen that most data is
concentrated within the mean threshold. Only about 8000
signal packets are filtered from the all signal packets (about
300,000). Furthermore, we set the variance thresholds as [0,
0.0017] according to Fig. 16(d), and about 10,000 packets
are outside the threshold range. In addition, some packets
outside the threshold have reached the quality requirements of
RFF identification after denoising. Finally, about 6% of signal
packets have been removed after denoising and data refining.

At the same time, it can be found that even if the received
signal power is different for the data collected at different
locations, the mean and variance distributions of the obtained
RFF features are similar. In other words, even if the test data is
collected under completely different conditions, the threshold
in the data refining can still work.

Furthermore, we tested the effects of denoising and data
refining on RFF identification performance, denoted as ξd and
ξd.r, respectively, in Table II. Compared with ξ, the denoising
algorithm brought an average of 7.30% improvement on the
accuracy. The highest performance improvement was 13.84%
(86.16% of ξd and 72.33% of ξ ) when the data from S1_P1
was training and the data from S1_M1 was testing. The
improvement demonstrated that the denoising algorithm is a
simple but effective method for noise elimination and RFF
stabilization. In addition, we refined the data reasonably to
obtain the final recognition performance of ξd,r. The overall
identification rate has increased by 2.75% on average. It
is clear that the data refinement is helpful to improve the
precision of RFF identification by removing signals with bad
qualities.

Fig. 17 shows the confusion matrix of the best, worst
and two intermediate cases of ξd,r. The distribution of
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(a) Mean of original data.
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(b) Mean of denoised data.
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(c) Variance of original data.
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(d) Variance of denoised data.

Fig. 16. Mean and variance distribution of the RFF feature set.
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Fig. 17. Confusion matrixes in different cases for the Wi-Fi devices
identification problem.

identification errors of other devices is relatively uniform,
which may be caused by the residual noise and channel
information.

C. Results of RFF Identification in Cross-Environment

In order to further improve the data diversity, we added the
RFF cross-recognition evaluation based on the data collected
in different environments. In this paper, the data sets under the
two environments were collected four months apart and their
collection environments were completely different. Table III
shows the results of RFF identification using Environment 1
data for training and Environment 2 data for testing.

TABLE III
RFF IDENTIFICATION PERFORMANCE OF TWO ENVIRONMENT DATA SETS.

Train Test
Identification rate (%)

ξd,r ξIQ ξFFT ξAoQ

S1_P1

S2_P1 83.17 26.00 19.00 49.64
S2_P2 83.88 21.03 20.41 40.10
S2_P3 87.39 16.20 18.43 54.09
S2_P4 97.05 28.50 26.56 56.27
S2_M1 87.88 22.06 31.01 50.96

S1_P2

S2_P1 70.31 14.29 14.01 45.84
S2_P2 80.07 14.29 14.29 51.27
S2_P3 86.47 14.44 20.59 45.33
S2_P4 88.98 28.63 38.40 50.31
S2_M1 79.05 20.09 22.10 49.93

S1_P3

S2_P1 92.20 44.53 25.83 56.29
S2_P2 84.76 34.89 29.50 48.40
S2_P3 85.92 28.74 13.96 57.81
S2_P4 91.86 24.00 45.37 55.56
S2_M1 81.86 31.69 27.09 52.59

S1_P4

S2_P1 91.96 32.56 40.46 41.23
S2_P2 83.48 46.66 37.03 29.46
S2_P3 83.48 35.60 37.19 41.99
S2_P4 91.57 30.83 27.69 34.27
S2_M1 89.02 33.26 33.06 35.06

S1_P5

S2_P1 84.21 35.67 33.84 43.23
S2_P2 78.30 28.84 19.20 28.59
S2_P3 89.45 44.03 37.29 40.36
S2_P4 73.18 28.31 41.27 38.60
S2_M1 78.38 27.21 26.60 35.84

S1_M1

S2_P1 84.03 55.84 35.34 58.47
S2_P2 69.63 14.13 1.91 53.13
S2_P3 76.14 30.04 36.04 59.89
S2_P4 71.29 18.10 14.29 60.61
S2_M1 72.95 19.16 18.36 57.63

S1_M2

S2_P1 84.88 27.79 27.96 48.34
S2_P2 79.89 32.00 34.69 42.94
S2_P3 84.31 27.44 28.89 48.57
S2_P4 88.51 28.36 28.49 51.74
S2_M1 83.55 28.63 30.01 46.87

It can be seen that in the static scenario, the average
identification rate of our scheme ξd,r in Table III is around
85%, which is consistent with the results in Table II. It turns
out that the good performance of our scheme ξd,r is indeed
because of the mitigation of channel characteristics on RFF
identification, rather than assuming that channel characteristics
may be similar at different locations in the same room.

In the dynamic scenario, the average identification rate
of ξd,r is also a acceptable result (around 80%). However,
it is a little worse compared with the single-environment.
This is because all the data used in the single-environment
are collected in a similar environment, which means that
the dynamically collected training data contains most of the
channel characteristics in the test data. Therefore, CNN can



12

perform RFF recognition more easily.

D. Comparison with Existing Solution

The work in [17] has carried out extensive WiFi-based
experimental evaluation by using raw IQ samples in the time
domain and the data after FFT operation, i.e., the frequency
domain data, respectively, as the input for the CNN model.
Both methods do not specifically adopt channel elimination.
These two methods are compared in this paper as baseline, and
their identification accuracy are denoted as ξIQ and ξFFT ,
given in Table II (single-environment) and Table III (cross-
environment). Specifically, the IQ-based solution took the time
domain I/Q data, ŷsts1i and ŷlts1i , which is a 128*2 vector. The
FFT-based solution used FFT coefficients of the raw-data ŷsts1i

and ŷlts1i , which is also a 128*2 vector.
In addition, three categories methods of channel robust RFF

identification are discussed in Section I. For the first category,
CFO-based RFF feature is investigated in this paper. The
results in Fig. 5 show that CFO is unstable and overlap with
each other, which implies poor identification performance. The
second category requires manipulation of the emitter, which
is not suitable for the scenario in this paper. For the third
category, we compared our solution with the AoQ algorithm
in [31], whose identification accuracy is shown in Table II (
single-environment) and Table III (cross-environment) denoted
as ξAoQ. Specifically, the AoQ algorithm extracts two LTSs in
the same frame signal and calculates the amplitude quotient of
the two LTS spectrums (named AoQ) to eliminate the channel
response. The RFF feature is constructed by collecting AoQ
from multiple locations. The signals from multiple locations
used to generate the RFF are considered to be sent by
the same device. This process lacks device authentication,
which is a security vulnerability. Our scheme performs RFF
identification utilizing a single frame signal, which does not
have the aforementioned security risks. For a fair performance
comparison, we tested the identification performance of the
AoQ algorithm with a single frame signal.

1) Single-Environment: As shown in Table II, the average
performance of ξIQ in the static scenario is poor, whose
highest accuracy is only 42.71% and the lowest value is
12.67%. The main reason is that the channel influence was
dominant and the tiny RFF features were completely swamped
when the channels of the training and test sets are different.
This is echoed in [17], the accuracy obtained by IQ data
is only 1.7% when training and test sets were collected in
different environments. Similarly, the identification rate ξFFT
was also quite bad, which shows that the FFT operations
cannot eliminate the channel response of the received signal.
In contrast, the identification rate of our scheme ξ in the
static scenario has been greatly improved. Especially, the
maximum value of ξ (90.83%) is more than 3 times the value
of ξFFT (28.44%). The channel effect is mitigated by the
DoLoS algorithm, thus CNN can effectively learn the tiny RFF
features as the device identity.

Regarding the dynamic scenario, the average identification
rate of ξIQ are 50.57% of S1_M1 and 75.00% of S1_M2, and
the average identification rate of ξFFT are 67.10% of S1_M1

and 79.78% of S1_M2, which have significant improvement
compared with their counterparts in the static scenarios. The
training data in the dynamic scenarios included channels of
most of the signals collected at the fixed positions. Then, in
the identification stage, the fixed position data can easily find
similar samples in the training set to identify the corresponding
device. However, it is difficult to obtain a data set containing
all channel effects in practical applications. Furthermore, the
environment and channel characteristics are likely to change
with time or site. Thus, device identification based on certain
fixed channel characteristics does not have long-term stability.
However, ξIQ and ξFFT are still much lower than our
approach, i.e., average ξd,r: 92.79% of S1_M1 and 95.59%
of S1_M2), .

Compared with ξIQ and ξFFT , the performance of ξAoQ
has small improvement in the static scenario. However, its
performance is much lower than our scheme in both static
and dynamic scenario. The main reason may be that the RFF
difference between two identical symbols is smaller than that
between two different symbols.

2) Cross-Environment: As shown in Table III, the
identification rates of ξIQ and ξFFT in the static scenario are
also too low to meet the requirements of device identification.
In the dynamic scenario, the ξIQ and ξFFT did not show a
significant improvement. The main reason is that the training
and test data for the dynamic scenario were collected in
completely different environments, which resulted in varied
channel characteristics. Compared to ξIQ and ξFFT , the
average performance improvement of ξd,r exceeds 55%.
This phenomenon demonstrates that our RFF identification
scheme can effectively remove the most influence of channel
characteristics. In addition, the identification performance
obtained by training on data from different locations is very
similar. In other words, even if the data collection time and
environment are very different, our scheme still shows great
channel robustness. Compared with ξAoQ, our algorithm also
show satisfied performance improvement.

VII. CONCLUSION

This paper proposed a channel robust RFF identification
scheme to address the serious interference of the channel
on RFF identification in practical applications. Our proposed
DoLoS algorithm leverages the different spectra of signal
symbols as the RFF features. We implemented the algorithm
with the IEEE 802.11 OFDM system as a case study. We
found that when the training set and the test set are collected
in different channel environments, the RFF-based device
identification cannot work well without an effective method
to process variable channels. Then, after using the DoLoS
algorithm, the channel interference on the RFF features is
effectively eliminated. In the single-environment evaluation,
DoLoS algorithm can bring a significant improvement
compared to the raw IQ-based RFF identification, up to
68.75% in the best case. Furthermore, the denoising and data
refining methods proposed for the IEEE 802.11 devices can
also bring about 10% performance improvement on average in
the experiments. In cross-environment evaluation, our scheme
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also showed excellent RFF identification performance with the
highest accuracy of 97.05%.
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