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Meanwhile, community structure refers to the composition and
inter-relationship of a network community and is one of the most
significant features of CN theory [8]. The community detection can
be applied to understand the structural characteristics of networks [9].
The modularity index in both unweighted and weighted graphs denoted
by [10,11] is widely applied in detecting communities in an extensive
network. It evaluates the quality of the partitioning of a network
into clusters. The fundamental challenge of these topology-based ap-
proaches is transforming the power grid into a matrix to represent a
graph. However, these works only explore limited aspects (e.g. line
impedance) for measuring the importance of each connection between
nodes. It may over-simplify the principle of power transmission, includ-
ing the path of power flows and the power delivery capacity. [12,13]
developed the topological adjacency matrix as the combination of
reactive power–voltage and real power–voltage sensitivity index. They
improved the modularity index with the considerations of reactive
power balancing in each sub-networks.

In distribution network planning, with the evolution of CDN into
microgrid-style interconnected sub-networks, some papers denoted the
concept of VM [14–17]. VM is to partition an existing CDN into
several sub-grids with the ability of self-balancing, voltage controlla-
bility, energy management, power grid protection, etc. Interconnected
VMs have similar characteristics to conventional Microgrids, such as
Soft Open Point (SOP), island mode operation in an emergency, the
ability of self-adequacy, etc. Thus, the partitioning of VMs is a cru-
cial problem for the transformation from CDN to interconnected VMs
structure. [18] proposed the concept of dynamic Microgrids, which
incorporate flexible virtual boundaries. They determined the bound-
aries of each sub-network dynamically by adjusting the capacity of
Distributed Generators (DGs) to maximize the self-adequacy of each
partitioned network. Nevertheless, these works discussed the partition
strategy from empirical simulations. It is unsuitable for large-scale
power grid partitioning as the computation duty may increase rapidly.
Meanwhile, they supposed that deployment of DGs is a given condition
for VM partitioning; however, the impact of power sources deployment
was not considered in the partitioning process.

For addressing the above difficulties, some two-step optimization
model for the DGs allocations is suggested in [19–22]. The metric for
power grid partition is for minimizing the supply security index related
to the power exchange between VMs. The allocation of DERs, including
Energy Storage Systems and probabilistic demand, are solved in a
subsequent multi-objective model. [20–22] developed VM planning by
the concept of complex network theory. They divided the CDN first by
the Electrical Coupling Strength (ECS) metric and later allocated DERs
to minimize the total operational cost and power exchange between
VMs. However, it does not comprehensively evaluate interactions be-
tween the quality of power grid partitions and power network economic
operations. [23] introduced a co-planning structure for partitioning
CDN and allocating DERs simultaneously. They combined the rate of
self-adequacy and success indicator of static power flow as a single
objective. Nevertheless, it does not provide a clear metric for measuring
impacts from the grid’s infrastructure. Meanwhile, the number of VMs
is determined manually, not from any convinced standards.

In summary, the planning of VMs has two critical tasks, i.e., CDN
partitioning and DER allocation. In some works [2,4,7,19,24], DGs
have been pre-allocated inside the network. Then they partitioned
the CDN by the network’s characteristics or the dynamic operating
states of generators (and load) only. Alternatively, the partitioning
result was determined in advance by structural analysis, and then
DERs were allocated within partitioned VMs [20–22]. Different DERs
allocations lead to a trade-off between partitioning quality and oper-
ational performance. If the objective contains the cost and/or system
controllability without measuring the partitioning indicator or vice
versa, the advantage of VM planning, such as better performance of
self-adequacy, cannot be adequately guaranteed. DERs allocation and
VMs partitioning have strong mutual interactions during the planning

process. However, no paper denotes a simultaneous planning strategy
for improving the DERs allocation and quality of partitioning with a
clear indicator. Table 1 shows a brief comparison between the former
research and our works.

Based on the above discussions, the contributions of this paper can
be summarized below:

1. A co-planning method for VMs by concurrent optimization in
DERs allocation and CDN partitioning is proposed.

2. Power Functional Strength (PFS) matrix, by integrating static
structural, economic and generation-load relations in the power
grid is proposed to improve the conventional weighted adja-
cency matrix.

3. Power Dispatch Modularity (PDM) by PFS in power supply is
proposed to evaluate VMs partitioning.

4. An algorithm is introduced to detect optimal VMs partitioning
based on PDM.

2. An improved method for power grid partitioning

2.1. The definition of modularity

The modularity index proposed by Girvan and Newman [27] has
been widely used for quantitatively measuring the quality of parti-
tioned sub-networks. The potential existence of sub-communities is
revealed by comparing the difference between the existent edges in the
target network, and the expected number of edges which are placed
randomly between nodes. Different from other partition methods, such
as the k-means clustering algorithm [28] or searching dynamic bound-
aries [18] by the Monte-Carlo method, the modularity-based commu-
nity detection algorithm can search the optimal number of partitioned
networks without pre-defining the number of clusters as a constant or
heavy computational cost.

Recalling an arbitrary network N(V ,E,W ), where V represents the
set of vertex, E := {l(i, j) œ V ù V } is the set of edges inside the
network and W describes the weight of edges. The adjacency matrix
A represents a graphical network with an algebraic expression. It is a
square matrix of order NV , which equals the number of nodes in the
network. aij is the ith-row and jth-column element of the adjacency
matrix. It indicates the connection and weighting between nodes:

aij =

T

wij l(i, j) œ E
0 Otherwise

, (1)

where wij denotes the weight of the connection between node i and
j. The modularity index for a weighted (or unweighted) network N is
defined as:

Q(N) =
1

2M
…

iÀV ,jÀV
[aij *

kikj
2M

] � �(ci, cj ), (2)

where M = 1_2
≥

ij aij is the total weight of edges inside the network.
ki =

≥

j aij and kj =
≥

i aij represent the weighted degree value
of nodes i and j respectively. ci (or cj ) is the cluster index where
the node i (or j) is allocated. The delta-function �(ci, cj ) yields 1 if
ci = cj and 0 otherwise. The ordinary modularity index evaluates the
performance of partitioned communities from an arbitrary network.
However, it over-simplifies the physical characteristics and engineering
natures of power grids, such as directional power flow, line impedance,
power transmission capacity, etc. Therefore, in this study, an enhanced
modularity index, Power Dispatch Modularity, is developed to consider
these natures comprehensively. This metric is proposed to address two
main features while partitioning a conventional distribution network
into Virtual Microgrids:

1. To transform the grid’s infrastructure factors (e.g. topology, gen-
eration capacity, generation cost, etc.) into a weighted adjacency
matrix.

2. To partition the CDN into several VMs with less interaction
between VMs.



Table 1
Comparisons between literature and our works.
Obj. Solution Advantage & Disadvantage Ref.

VM planning

Partitioned-Allocating Power source deployment is not considered in boundary determination. [19–22]
Allocated-Partitioning Cannot actively enhance functionalities of VM (e.g. self-adequacy). [2,4,7,19,24]
Partitioning & Allocating
(Single obj.)

Pre-defined the number of VMs; Combines objectives by weighted summation; Not include an
indicator for evaluating the partitioned result.

[23]

This Paper Assessing the clustering indicator and cost jointly with flexible number of VMs. –

CN expression
One (or two) aspect Cannot comprehensively consider interactions between factors (e.g. DG cost & capacity, line

impedance & connection topology, etc.)
[20–22,25,
26]

This Paper (PFS) Combines DGs costs & capacity, line’s impedance, capacity & connection topology and power flows dynamic. –

Table 2
Approaches of weighted edges and nodes in the power grid.
Objects Expression of weight Ref.

Edge

Reactance (or impedance) of the line [11]
Equivalent impedance distance [2]
Power Transfer Distribution Factors [31]
Jacobian of apparent power flow sensitivities [24]
Power flow through a line [2]
Electrical Coupling Strength (ECS) [20–22]
Electrical Functional Strength (EFS) [26]

Node Shortest paths through nodes, betweenness [32]
Load power [33]

2.2. Modeling the power system as a graph

Based on the complex network theory, a power system can be
described as a connected graphical network N(V ,E,W ). The most
straightforward approach to interpret a power grid as a graph is to
define the weight of each edge as one equally. It could be considered
as a small-world or scale-free network, which is used for discussing
structural resilience in the North American power grid [29]. However,
the purely topological relations cannot reflect some specific physical
features of power system operation, including line impedance or power
flow. Meanwhile, electric buses in power grids have different functional
roles, such as supplier, consumer, or transmission. The capacity of
generation (or demand) is also distinct between buses. The topological
expression for network structure cannot present these roles. Therefore,
some approaches have been proposed for addressing ‘‘electrical’’ weight
of edges and nodes. Table 2 summarizes approaches of weighted edges
and nodes inside power grids [25,30].

However, most research focuses on one aspect of edge (or node)
weight. [6] denoted a multi-objective optimization for optimizing two
weighted metrics: power flows and voltage sensitivity. However, power
flow is a dynamic factor. Loads and intermittent DERs output are ran-
dom and subsequently impact the distribution of power flows. Mean-
while, computational efficiency in [6] is too heavy to integrate into
a co-planning structure. The ECS metric proposed in [20–22] com-
bines two isolated features: the equivalent transmission capacity and
Thevenin equivalent impedance distance into a single weighted matrix.
They allocate two normalized metrics into a two-dimensional coordi-
nator and measure the Euclidean distance between a node and the ori-
gin. [26] reinforces the ECS with the consideration of supply–demand
relations. They add a direct interaction strength between generator and
load into the ECS matrix. This paper will propose a new metric: the PFS.
It comprehensively integrates the mutual interaction between the net-
work infrastructure (e.g. topological connection, line impedance, etc.),
relations between generation-load, and the cost-efficiency of different
DERs into an improved adjacency matrix.

2.3. PFS and PDM

This paper aims to upgrade a CDN into an ADN composed of
interconnected VMs by partitioning a network and allocating DERs
simultaneously. Different combinations of relevant factors of DERs,

including installed location and capacity, resource type (e.g., wind,
gas, etc.), and capital costs, may lead to different power flow distri-
bution through the network. This section describes derivations of PFS
and PDM. In addition, the main characteristic of VM is that it can
operate under both grid-connected and is-landing modes. Less inter-VM
power flows could reduce the influence while switching VM operational
modes. Therefore, power flow through boundary lines which connect
two VMs is regarded as the interaction factor in the following part.

2.3.1. Power dispatch strength
One distinguishing engineering feature of Virtual Microgrid is to

maximize independency and flexibility by minimizing power exchanges
between different sub-grids with less impact on daily operational secu-
rity and efficiency. For a CDN to be upgraded to ADN while its DERs
are still underdevelopment, the location and capacity of new DERs may
have significant influence on reasonable partitioning. However, this
concurrent interaction between partitioning and DERs allocation has
never been considered in previous studies about planning of VMs or any
self-sufficient autonomous sub-networks. In previous studies, the DERs
deployments were either considered as given and fixed conditions, or
partitioning was only performed according to structural characteristics
of networks but not DERs distribution. Furthermore, even with given
network structure and DERs distribution, system operating states may
greatly depend on the dispatching principle of operators. Therefore,
a reasonable partitioning is expected to be consistent with power
dispatching principle. However, up to now, relevant power dispatching
factors, especially the economy efficiency in power transmission, have
not been considered in the structural partitioning algorithms. Hence-
forward, in this paper, we propose an improved adjacency matrix:
PDS which considers DERs distribution, corresponding power supply
relations, and the economic aspect of power dispatch.

Power Transfer Distribution Factors (PTDF) is a linear approxima-
tion for describing derivations of power flows through a transmission
line(s) while injecting power from an arbitrary node. PTDF has been
applied to the congestion model or circuit equivalents. It is determined
solely by the network topology and transmission line’s impedance
values. Due to its characteristics of linearity, changes in power flows
through the network caused by a unit power injection at node v and
withdrawal at node w can be expressed as the difference between vth
and wth column of the PTDF matrix [34]:

pfvw
l = pfv

l * pfw
l , (3)

where pfvw
l represents changes of power flows through a particular

line l while a unit power exchanges from node v to w. Supposing
that there is a generator set G := {g(1),… , g(NG)} and demand set
D := {d(1),… , d(ND)} allocated inside the power network N(V ,E,W ).
NG and ND are the number of generator and load buses, respectively.
If P units of power are injected from a generator gv and withdrawn by
load dw, power flow variations through the line l is expressed as:

�P gvdw
l (P ) = P � pfgvdw

l gv À G, dw À D. (4)

In addition, the quantity of power delivery between a generator-
load pair is constrained by allowable maximum power transmission.
The maximum generation capacity constrain is Pmax

gv
, the peak demand



is Pmax

dw
, and the equivalent capacity of transmission pathways in the

network is Cgvdw . This equivalent capacity across the network between
gv and dw is denoted in Eq. (5) for measuring the maximum power
flow between two nodes throughout the entire network until the most
vulnerable line is crashed. The equivalent transmission capacity is
indicated as:

Cgvdw = min
lÀE

H

Û

Û

Û

Û

Û

Û

Pmax

l

pfgvdw
l

Û

Û

Û

Û

Û

Û

I

, (5)

where Pmax

l is the active power capacity of the particular line l. In
conclusion, the power delivery capability between g* d pair is defined
as follows:

!gvdw = min

⇠

Pmax

gv
,Cgvdw ,P

max

gv

⇡

. (6)

For a particular generator-load pair, the capability to transfer en-
ergy from the generator to load through line l is:

Pagvdwl = �P gvdw
l

⇠

!gvdw

⇡

= !gvdw � pfgvdw
l . (7)

Therefore, electricity will prefer to be transmitted through line
l where the value of Pagvdwl is more significant. Subsequently, the
networkwide energy transferring capability through line l, Pal is the
sum of the absolute value of power transactions from all generator-
load pair combinations [35]. It captures the strength of power supply
engagement, as reflected in whether more electricity will be potentially
transmitted through this line. Hence, the boundary of VMs is preferred
to select lines with less value of Pal for minimizing the inter-VM power
exchange.

Pal =
…

gvÀG

…

dwÀD

Û

Û

Û

!gvdw � pfgvdw
l

Û

Û

Û

. (8)

However, the value of Pal cannot reflect the cost-efficiency of differ-
ent generator-load pairs. Usually, the operator prefers that the system
operates under the least-cost condition. The power generation plan is
distributed by minimizing costs, including power losses and fuel costs
from generators. For this reason, the cost function for different gener-
ators will impact dispatches of power flows through lines. Meanwhile,
more types of generators, such as wind turbines and gas microturbines,
are allocated in modern distribution networks. The cost-efficiency of
different types of generators will be distinctive. The system has the best
cost performance while operating under the optimal power flow states.
However, the real-time nodal load and RES output varies because
of the uncertainty of consumer actions or intermittent energy. It is
problematic to preserve a fixed generation schedule in partitioning VMs
by a Complex Network Approach. Henceforward, we use a simplified
Economic Dispatch (ED) under averaged networkwide total demands to
estimate the approximate output level for each generator. The objective
function of ED is defined as [36]:

obj:min

…

gvÀG
(agvP

2

gv
+ bgvPgv + cgv ), (9)

s.t.:
h

n

l

n

j

…

gvÀG
Pgv = P total

load

Pmin

gv
f Pgv f Pmax

gv

, (10)

where agv , bgv and cgv are the individual fuel cost polynomial coefficient
for vth generator located at the bus gv. The quantity of total power
generation is equal to averaged net load P total

load
in the designated net-

work. Meanwhile, nodal power output Pgv is constrained by its upper
and lower bound Pmin

gv
and Pmax

gv
, respectively. Then, the estimated duty

for different DERs ÇPgv is found by solving the quadratic objectives in
Eq. (9) and the estimated output weight of each generator wgen

gv is:

wgen

gv =

ÇPgv

P total

load

. (11)

In summary, the following line PDS merges the two aspects men-
tioned above: power transmission capability between generator-load

pairs constrained by static parameters, and cost-efficiency of DERs in
power dispatch. It is represented as:

PDSlvw =

…

gvÀG

…

dwÀD
wgen

gv � ÛÛ
Û

!gvdw � pfgvdw
l

Û

Û

Û

. (12)

Furthermore, the Nv-by-Nv PDS matrix is grouped as follows:

PDSvw =

T

PDSlvw v,w are connected

0 Otherwise

. (13)

Meanwhile, to ensure the symmetry of the weighted matrix PDS,
elements are symmetrical concerning the main diagonal:

PDSvw = PDSwv. (14)

In conclusion, the pair of generator and demand with lower cost
of power supply and better capability in power will have higher ranks
inside the network, resulting in a more significant value of PDS.

2.3.2. Power functional strength
As discussed in the previous part, the PDS assigns the capability

of power dispatch between generator-load pairs with consideration of
the economic performance of all generators. However, the prospect
mentioned above did not integrate the power losses inside the network,
where it cannot be neglected in the distribution network. Similar to ECS
and EFS discussed in Table 2, we denote the power functional strength
with the integration of PDS and the admittance of line:

PFSvw =
Û

Û

Û

fN (PDSvw) + j � fN
�

Û

Û

YvwÛ
Û

�

Û

Û

Û

(15)

where Û
Û

YvwÛ
Û

represents the magnitude of line admittance between node
v and w. Similar to the adjacency matrix, the element PFSvw in the
Nv-by-Nv PFS matrix equals zero if node v and w are not connected. If
the magnitudes of PDSvw and Û

Û

YvwÛ
Û

are significantly different, PFS
will be dominated by one aspect. Therefore, the min–max rescaling
normalization is applied to eliminate the difference as follows:

fN (x) = x *minX
maxX *minX

, (16)

where x is the element of the non-zero set X.

2.3.3. Power dispatch modularity
Recall Eq. (2), the Power Dispatch Modularity QPD with improved

weighted adjacency matrix PFS is updated as:

QPD =
1

2M ®

…

v,wÀV

L

PFSvw *
kPFS
v kPFS

w
2M ®

M

� �(cv, cw), (17)

where M ®
= 1_2

≥

vw PFSvw is the sum of all PFS in the network and
kPFS
v =

≥

w PFSvw and kPFS
w =

≥

v PFSvw are the PFS degree of bus v
and w, respectively.

The value of PFSvw denotes the quantity of interactions between
two arbitrary nodes. On the other side, if the power network is formed
randomly, the expected power functional strength if the weighted edge
is placed randomly is, by definition of modularity [27], kPFS

v kPFS
w _

2M ®. Therefore, larger power dispatch modularity represents higher
probabilities of internal power interactions inside a partitioned subnet-
work compared with a random network.

2.4. Power grid partitioning algorithm

As mentioned above, a higher value of QPD represents better quality
of partitioning results. Hence, an algorithm is essential for finding the
best value of QPD. The optimal number of partitioned VMs is also
decided where QPD is the maximum. This paper selects the Newman
fast algorithm [10] for detecting communities by using power dispatch
modularity. The pseudo-code of the algorithm is listed in Algorithm 1:



Algorithm 1 Modified Newman fast algorithm for finding max QPD
Input: Network data, DERs allocation
Output: Partitioned result

1: Calculate the entire PFS matrix;
2: Separate nodes into clusters and calculate Q0

PD;
3: while Number of clusters ë 1 do
4: if «�(ci, cj ) = 1 then
5: Group two clusters randomly;
6: end if
7: Calculate the increment of �QPD;
8: Select the partitioning with maximum �QPD;
9: Update QPD according to the result of partitioning;
10: Conserve the number of communities;
11: end while

3. Co-planning for partitioning and DERs allocation

This section proposes an optimal VMs planning scheme with an in-
tegrated consideration between partitioning performance features and
the economic aspect of DER allocation. Fig. 1 describes the difference
between two-stage serial VM-DER planning and our proposed VM-DER
co-planning. In previous studies about VMs planning, there are mainly
two serial planning methods: partitioning–allocating and allocating–
partitioning. The first solution is to partition the network first to
identify VMs boundaries according to network structures [20–22].
Subsequently, it optimizes the DERs allocation which is constrained
by identified boundaries. However, as illustrated in Fig. 1, with every
updating of DER locations and capacities, the network partitioning
performance, such as the rate of self-adequacy or power flow sen-
sitivities, would be influenced accordingly. This solution, however,
neglects it by assuming the partitioning result is static. The second
method plans DERs allocation in the first instance without consider-
ing any requirements for self-sufficiency and autonomy of VMs, and
then partitions the network into VMs with allocated DERs as fixed
conditions [2,4,7,19,24]. However, the DERs allocation in the first
step cannot actively adapt to VMs structures and requirements since
VMs have not been partitioned at that time. And the partitioning
in the second step can only passively adapt to the DERs allocation
solution. In reality, mutual interaction between partitioning and DERs
allocation exists in daily operations. For these reasons, we propose a
multi-objective optimization model in this paper for finding the balance
between functional–structural performance and the economic aspect.
The objective function maximizes the total modularity of partition-
ing and minimizes operational costs. A schematic of the co-planning
program is illustrated in Fig. 2. In a heuristic optimization process,
every time a new DERs allocation scheme is assessed, the network
partitioning solution is updated accordingly. Therefore, these two plan-
ning targets (i.e. network partitioning and DERs allocation), will be
optimized concurrently in an integrated manner.

3.1. Objective function, constraints and optimization algorithm

The multi-objective function of the integrated concurrent planning
for VMs is defined as follows:

obj: =

T

min fdaily.(↵)
max QPD(↵)

. (18)

where ↵ is the set of DGs allocation settings. It includes DER’s location,
type and capacity. QPD is the value of PDM under the optimal partition-
ing circumstance. Referring to the definition of PDM, VMs have better
performance, because there is less power exchange between inter-VMs
while the QPD(↵) increases. fdaily.(↵) is the cost function of the entire
power grid within a given period (e.g. 24 h). It contains the gener-
ation cost, installation & replacement cost from DGs, and purchasing
cost from the main grid. Meanwhile, a penalty function is added for
examining the rate of intermittent renewable source penetration.

3.1.1. Evaluation of cost function
In daily operation, the power dispatch is implemented most eco-

nomically. The deterministic AC-Optimal Power Flow (AC-OPF) could
address the solutions for economic power dispatch within a period.
Similar to ED, the objective of AC-OPF is to minimize total generation
cost listed in Eq. (19) with additive constraints for power flows:

foper = min

…

gvÀG
(agvP

2

gv
+ bgvPgv + cgv ),

s.t.:

h

n

n

n

n

n

n

l

n

n

n

n

n

n

j

E1:Pi =

Nbus
…

k=1
ViVk

⌅

Gik cos ✓ik + Bik sin ✓ik
⇧

E2:Qi =

Nbus
…

k=1
ViVk

⌅

Gik sin ✓ik + Bik cos ✓ik
⇧

I1 : V
min

i f Vi f V
max

i

I2 : P
min

gi
f Pgi f P

max

gi

I3 : Q
min

gi
f Qgi f Q

max

gi

I4 : Sl f Sl,max

. (19)

The equality constraints Eq. E1 and Eq. E2 represent the active and
reactive power balancing for every node i in each time interval t. Eq. I1
describes the limitation for the magnitude of nodal voltage. Eq. I2 and
Eq. I3 denote constraints on apparent power Pgi , Qgi of the generator gi.
Apparent power flow through transmission line l is limited by its rated
capacity as shown in Eq. I4. Meanwhile, the structural configuration
of CDN is normally radial; the forward–backwards sweep method is
used for determining power flows between each node as it has bet-
ter computational efficiency than the conventional Newton–Raphson
method [37]. The radial AC-OPF is implemented by an open-source
MATLAB-based simulation package, MATPOWER [38].

The CDN-VMs transformation is performed by installing DERs into
the distribution network, leading to extra DER installation and mainte-
nance costs. In this paper, the cost equivalent within a day is propor-
tional to its installed capacity P cap

n :

finst =
…

gvÀG

⇠

Co
inst.
gv

� Pmax

gv

⇡

(20)

where Co
inst.
gv

is the capital installing & maintaining cost for DERs.
Furthermore, for reaching the target of carbon emission, the penetra-
tion rate of intermittent renewable sources is also examined. A penalty
function is designated for enforcing less RES involved in the VMs. The
penalty is in effect while the total installed RES capacity is less than a
pre-defined constant Pmin

RES
.

fpen =

T

0 P total
RES

> P
min

RES

Co
pen

RES

�

P
min

RES
* P total

RES

�

Otherwise
, (21)

where Co
pen

RES
and P

min

RES
are constants as capital penalty cost for sub-

standard penetration level and minimum expected capacity of installed
RES, respectively. P total

RES
refers the total amount of actual planned RES

in the selected system:

P total
RES

=

…

gvÀGRES

Pmax

gv
, (22)

where GRES is the set of intermittent RES generators. In summary, the
objective function for assessing the economic aspect within a day is
represented as:

f 0

daily =
…

T
foper + finst + fpen. (23)

Afterwards, uncertainty variables, such as wind power output or
load leveling, are included while assigning the total cost inside the
network. Monte-Carlo Simulation (MCS) [39] is a simple and accu-
rate solution for evaluating the uncertainty factors in the power grid
operation; therefore, we propose MCS-based AC-Probabilistic-OPF (AC-
POPF) as the daily net cost evaluation program in this stage. The



Fig. 1. A comparison between serial planning and co-planning for VM boundaries and DERs allocation. Serial planning strategy cannot revise effects from the secondary aspect.

Fig. 2. The schematic of co-planning for VM boundaries and DERs allocation.

probability density function (pdf ) generates the uncertain load ratio
in buses and output from a wind turbine(s). The pdf of load between
days, months or seasons is different. To reflect the variance of load
circumstances, the aforementioned daily cost fdaily in Eq. (18) is the
sum of cost under different load & wind scenarios with its weight.

fdaily =
…

s
f 0

daily �ws, (24)

where ws is the weight factor for different scenarios.
The optimized output for each generator and the total cost in each

sample are subsequently calculated by the deterministic radial AC-OPF.
The daily cost is assessed by summing costs of all time intervals and the
progress is repeated for all samples.

3.1.2. Optimization algorithm
Genetic Algorithm (GA) is emerging as an efficient optimization

method that is widely used to solve the non-linear, non-convex opti-
mization [40]. GA has good reliability during the calculation procedure
and it can easily collaborate with hybrid optimization approaches [41].
Meanwhile, the optimization problem in this paper includes some non-
linear variables; for instance, the capacity for each DER installed in
the different bus is discrete as integers. Standard convex relaxation
techniques, such as semi-definite programming, may fail to round
discrete variables and lead to large errors [42]. Meanwhile, maximizing
of modularity indices is NP-hard [8]. Furthermore, unlike the single
objective optimization, a trade-off between two objectives occurs until
the system’s best capabilities are decided in this paper. Compared with
weighed sum or ✏-constraint approximation, the Non-dominated Sort-
ing Genetic Algorithm-II (NSGA-II) have better calculation efficiency
and convergence with a single evaluation. Hence, we use a controlled,
elitist NSGA-II for finding the Pareto optima between the enhanced
modularity QPD and the cost function fcost. The main work of this stage
is for encoding DERs capacity, location & type into chromosomes of GA,
defining the fitness function and relevant constraints. The variable is

equivalent to a gene, and it constitutes a chromosome. MATLAB Global
Optimization Toolbox implements the algorithm.

In practical power engineering, the capacities of DGs are often lim-
ited due to investment caps, design targets or socioeconomic resources,
et al. Therefore, the multi-objective GA function is firstly restricted by:

…

gvÀG
Pmax

gv
f P

max

net
, (25)

where Pmax

net
is the upper limitation of net DERs capacities. Additionally,

DER total capacity in each node is constrained by nodal allowable
installation Pmax

n,total as:
…

gv@n
Pmax

gv
f Pmax

n,total. (26)

To guarantee power supply to critical demands while VM(s) operate
under the islanding mode, the penetration level of dispatchable DGs is
constrained as follows:
≥

gvÀGdDG

⇠

Pmax

gv
� ci

⇡

≥

dwÀD

⇠

P
R
dw

� ci
⇡

g kdDG, (27)

where GdDG represents the set of dispatchable generators and kdDG is
the minimum penetration rate of dispatchable generators. PRdw repre-

sents the nodal rated demand in bus dw. ci denotes the VM index. If
the element is located within the area of VM, ci equals to 1, otherwise
0.

3.2. System modeling

3.2.1. Modeling of generators
Recently, more RES are involved in modern power grid operations.

In this paper, we model the uncertainties of wind turbines as the type
of non-dispatchable DER and uncertain load demands in the network.



Table 3
Load leveling information in different seasons and day-type.

S1 S2 S3 S4 S5 S6 S7 S8

Season Spring Summer Autumn Winter

Day-type Wkd Wknd Wkd Wknd Wkd Wknd Wkd Wknd

ws 5/28 2/28 5/28 2/28 5/28 2/28 5/28 2/28
� 0.641 0.551 0.560 0.649 0.624 0.564 0.553 0.678
� 0.019 0.014 0.016 0.018 0.019 0.015 0.015 0.021

Weibull distribution is utilized as a stochastic model for wind speed
distribution [43]. The Probability Distribution Function of the wind
speed is as follows:

f (v) =
bwei

awei

0

v
awei

1bwei*1

exp

H

0

v
awei

1bwei

I

, (28)

where awei, bwei are Weibull parameters. The wind turbine rotors extract
energy from wind and convert wind energy to electricity by a linked
generator. A simplified algebraic relation between wind speed and
electrical power is described as follows:

Pwind (v) =
h

n

l

n

j

0.5kWTv3 vci < v < vr

Pr vr f v < vco

0 Otherwise

, (29)

where Pwind is the power output from a wind turbine generator, vci,
vco and vr denote the cut-in speed, cut-off speed, and rated wind speed
while the wind turbine generates rated power. kWT is a coefficient of
the wind turbine. The rated output of the wind turbine is symbolized
as a constant Pr . The power output for a wind turbine is stochastic
as represented by the pdf. of v. However, in performing partitioning
according to the definition in Eq. (6), the generation capability Pgv
should be a static parameter for generators. The generator’s capability
for a wind turbine generator under the stage of grid partitioning is
selected as its theoretical expected outputs [44].

PW T
g = PW T =

1

2
kWT  

vr

vci

v3f (v)dv +  
vco

vr

Prdv

˘
1

2
kWTa

3
wei

�
0

1 +
3

bwei

1
, (30)

where � (�) is the Gamma function.
In addition, the output of the dispatchable generator is adjustable

within the generator’s capacity and constrained by Eq. (19).

3.2.2. Modeling of load leveling
Each load follows Gaussian distribution with upper limits Lup and

lower limits Llo [45]:

fL(lv) =
h

n

l

n

j

1
˘

2⇡�2
exp

0

*
(lv * �)2

2�2

1

Llo f lv f LUP

0 Otherwise

(31)

where lv is the hourly demand leveling. It is the ratio between the real-
time demand and its nominal peak load in different nodes. Estimation
of � and � values are based on the IEEE-RTS [46] system, which
provides hourly, daily, and weekly peak load in the percentage of
nominal demands. Table 3 summarizes the configuration of parameters
in different load scenarios.

4. Case study

In this section, the proposed PDM metric is tested by simulation
in the IEEE-118 bus system under different allocations of generators.
The second part is the co-planning result for the IEEE-69 bus radial
system. The program is run on the following platform: Intel quad-
core CPU@3.2 GHz, 8G RAM and MATLAB 2021b. MATPOWER 7.0
implements the AC-PF and AC-OPF. The ED quadratic programming in
PDS is solved by MATLAB optimization toolbox.

Table 4
Power plants distribution in 3 testbed systems. Units for Prgv& Pmax

gv
are in MW.

Type Case I Case II Case III Prgv Pmax

gv
agv bgv cgv

Wind
10 12 10 308 1000 0.01 5 0
66 75 60 246.4 800 0.01 5 0
80 91 79 308 1000 0.01 5 0

Slack 69 77 64 516 805 0.02 20 0

Fuel

12 16 15 85 185 0.12 20 0
25 34 20 220 320 0.05 20 0
26 35 23 314 414 0.03 20 0
31 39 30 7 107 1.43 20 0
46 57 38 19 119 0.53 20 0
49 58 39 204 304 0.05 20 0
54 59 42 48 148 0.21 20 0
59 63 54 155 255 0.06 20 0
61 65 55 160 260 0.06 20 0
65 74 59 391 491 0.03 20 0
87 94 82 4 104 2.5 20 0
89 98 87 607 707 0.02 20 0
100 106 97 252 352 0.04 20 0
103 107 98 40 140 0.25 20 0
111 114 110 36 136 0.28 20 0

4.1. Evaluation of PDM performance in IEEE-118 bus system

This part evaluates the performance of the proposed partitioning
metric PDM by the IEEE-118 bus system. The target system includes 54
fuel & wind generators, 186 branches and 4242 MW networkwide total
peak demand. In the following tests, the configuration of parameters in
the load-leveling ratio for all loads is displayed in Table 3 with eight
seasonal load scenarios. This part includes three cases for examining
the PDM. Case I is the original IEEE-118 bus system with a replacement
of 3 fuel generators by wind turbines. For validating the performance
of PDM under different power sources allocations, we reshuffle the
location of generators in Case II and Case III. Other components, such as
network topology or demand distribution, are kept the same in these
testbeds. A brief overview of the allocation of generators is listed in
Table 4 where 2nd, 3rd and 4th columns represent the location of
generators in different cases, respectively. Prgv is the nominal quantity
of generation analyzed in AC power flow. agv , bgv and cgv are fuel cost
polynomial coefficients for the generator located at the corresponding
bus.

All tested cases contain random variables, such as the real-time
load-leveling and output of wind turbines. The MCS-based AC-POPF
is implemented for addressing the quantity of power flows throughout
the network. Factors in Weibull distribution denoted in Eq. (28) are
set as awei = 10, bwei = 2. The repeat times of MCS in P-OPF is
defined as 10 000 times. Furthermore, as introduced in Section 2.3,
the boundary power, which equals the quantity of power flows through
linkages between partitioned subnetworks, is adopted as the metric for
measuring the performance of partitioning. The boundary power flow
of a single sub-net Pbf (SNn) is expressed as follows:

Pbf (SNn) =
…

iÀSNn

…

jÀV ,jÃSNn

Pbf ,l(i, j), (32)

where Pbf ,l(i, j) indicates the quantity of P-OPF power flows through
the line between node i inside SNn and j where outside the cluster. It
equals to zero if i and j are not connected directly.

Table 5 lists simulation results from the examined cases. NSN
represents the number of clustered sub-nets where the modularity
indicator reaches the largest. Pmax

bf ,ci
and Pmean

bf ,ci
are the maximum and

average value of inter-network power flow, respectively. Pmax

bf ,l describes
the maximum power flow through a line where connects two sub-
nets. For validating the effectiveness of PDM, we involve another four
tests with different power grid complex network approaches: topology
unweighted adjacency matrix, Equivalent impedance, EFS and power
flow matrix introduced in Table 2. The value of power flow matrix is



Table 5
Statistic of boundary power flow under different weights representations in each case study.

PDM (t = 1.21 s) Unweighted (t = 1.01 s) Equivalent Z (t = 10.4 s) EFS (t = 1.10 s) Power Flow (t = 1.17 s)

NSN Pmean
bf ,ci

Pmax

bf ,l Pmax

bf ,ci
NSN Pmean

bf ,ci
Pmax

bf ,l Pmax

bf ,ci
NSN Pmean

bf ,ci
Pmax

bf ,l Pmax

bf ,ci
NSN Pmean

bf ,ci
Pmax

bf ,l Pmax

bf ,ci
NSN Pmean

bf ,ci
Pmax

bf ,l Pmax

bf ,ci

Case I 12 193.85 169.83 648.56 11 337.04 226.72 868.06 6 463.70 293.50 606.25 4 338.53 123.55 553.52 7 221.15 142.20 438.09
Case II 10 194.07 122.05 431.32 11 335.75 333.29 725.67 6 629.51 603.77 944.34 5 393.76 235.57 590.19 7 243.49 235.57 552.78
Case III 10 240.56 209.95 563.97 11 446.69 359.20 706.28 6 436.79 584.35 724.48 5 528.88 435.88 879.21 7 251.47 190.78 484.79

Fig. 3. The partitioned result in Case I by PDM approach.

Fig. 4. The Pareto-front of VM-DER co-planning method.

from the system operating under its nominal rated demand and pre-
set generation plan listed in the IEEE 118-bus system. These weighted
matrixes are processed by the Newman fast community detection de-
scribed in Algorithm 1, subsequently. For example, Fig. 3 illustrates
the trend of PDM in Case I. The modularity indicator QPD has the
largest value of 0.7249 when the 118-bus system is partitioned into 12
clusters. In addition, matrix approaches by pure topology and equiv-
alent Thevenin impedance only depend on the topology connections
and line’s impedance. It is independent from the allocation of DERs.
Therefore, partition results are static in all test cases in unweighted and
Thevenin-Z approaches.

The result shows that the proposed PFS approaches have the least
averaged sub-nets power exchange Pmean

bf ,ci
in Case I, Case II, and III. The

smaller quantity of inter-net power exchanges allows for a smoother

Table 6
Statistic of boundary power flow under PFS weights representations in each case study.

QPD
≥

Pbf ,ci Pmean
bf ,ci

Pmax

bf ,ci
Pmean
bf ,l Pmax

bf ,l

Case I 0.7249 1163.1 193.85 648.56 39.84 169.83
Case II 0.7332 970.36 194.07 431.32 35.92 122.05
Case III 0.7237 1202.8 240.56 563.97 41.51 209.95

Table 7
System parameter settings in VM-DER co-planning.
CopenRES Pmin

RES MC_times Pmax

net Pmax

n,total

100$/MW 3 MW 1000 10 MW 4 MW

transition from the original operating states to islanding individual
operations. In Case II, the max power flow through inter-subnet lines
and the maximum and averaged power variation in the cluster of
the PDM approach is the smallest in all five metrics. Meanwhile, the
averaged computation time for five approaches in three cases is also
recorded. Although the proposed PDM solution uses more time than
most solutions, no significant difference occurred in all these tested
approaches. In conclusion, the PDM representation can provide a better
solution for power grid partitioning.

In addition, as denoted in Section 3, the value of QPD is selected as
the indicator of network partitioning performance. The Table 6 records
the value of QPD and power flow metric in all three cases.

≥

Pbf ,ci
represents the total value of inter-subnet power exchange inside the
designated system. The inter-subnet power exchanges increase while
the system has less value of QPD. For Case II, it has the best value of
QPD in all three tests, resulting in lower power exchanges in most se-
lected metrics (

≥

Pbf ,ci , P
max

bf ,ci
, Pmean

bf ,l and Pmax

bf ,l ). In our proposed model,

we prefer to select a system with less inter-cluster power exchange
as the better-partitioned scheme. The indicator QPD can effectively
represent the performance of power grid partitioning.

4.2. Implementation of VM-DER co-planning in IEEE-69 bus system

Examinations in the previous section show that the PDM has good
performance in power network partitioning. It can effectively reduce
interaction between different clusters. Therefore, PDM is selected as
the indicator of VM performance. The IEEE-69 radial distribution net-
work is utilized to assess the performance of the VM-DER co-planning
procedure. Only one ‘main-grid’ electricity supplier is addressed in
the original system with 68 branches, 48 loads and 3.8 MW total
peak demand. A summary of parameter settings denoted in Section 3
is listed in Tables 7 and 8. The mixed-integer, nonlinear-constrained
multi-objective function is solved by Multi-Objective Genetic Algorithm
(MOGA) with integer variables. Table 9 shows the parameter setting
of MOGA in this case, where the Crossover, Mutation and ParetoFrac
represent the rate of crossover, the rate of mutation and the fraction of
the Pareto Front, respectively.

Fig. 4 illustrates the optimal Pareto front of the VM-DER co-planning
method. Eighteen individuals are selected from the Pareto front, where
they dominate other individuals by better or lower cost (or both).
There is a trade-off between partitioning performance and the total
cost introduced in Eq. (18). Two scenarios are selected in the following
analysis: the top left with the best modularity and the bottom right



Fig. 5. Schematic of 69-bus system under Intermediate condition.

Table 8
DERs parameter settings in VM-DER co-planning.
Type agv bgv cgv Coinst.g kdDG Min.Unit

Main-grid 0.01 100 0 N/A N/A N/A
Wind 0.01 5 0 0.1 N/A 0.05 MW
Bio-fuel 0.01 20 0 0.15 50% 0.05 MW

Table 9
Parameter settings in MOGA for 69-bus case.
Popsize Generation Crossover Mutation ParetoFrac.

150 100(max.)
50(MaxStall)

0.8 0.01 0.3

with the least cost. Meanwhile, VM planned by ECS metric proposed
by [20–22] are also compared.

Table 10 compares the daily cost, modularity indicator QPD and
statistics of boundary power flow between four cases. The value of QPD
and cost changes while adjusting DERs allocation. The PDM-Priority
and Cost-Priority points are local optima on the Pareto Frontier with
biasing on structural integration (evaluated by QPD) or minimum cost,
respectively. In addition, QPD in [21] is calculated by the definition
of modularity with the weighted network approach of the ECS matrix.
The objective function of their solution is to minimize total cost un-
der constraints, including zonal dispatchable generator participation
and total capacity. The result shows that the proposed PDM-priority
VM-DER co-planning has better performance than the Xu’s planning
strategy, which only considers static network features. The objective
(or biased priority) of Cost-Priority and [21] is similar: minimize the
total cost during the operation period. Our solution has better cost
efficiency than plans in [21]. Boundaries of VMs and their members
are flexible in our solutions, leading to a broader search space than the
ECS-represented VM plan. Meanwhile, in the average, the maximum
and the total quantity of inter-VM power exchanges, our solution still
presents more exemplary achievements than the [21] in these aspects.

In addition, compared with the PDM-Priority strategy, Cost-Priority
allocation reduces the equivalent daily cost by sacrificing inter-VM
interaction, especially the networkwide total inter-VM power exchange
≥

Pbf ,ci . The PDM-priority strategy receives the least networkwide
boundaries and averaged inter-VMs power exchange, resulting in VMs’
supply–demand relationship being more united internally. Addition-
ally, an intermediate strategy is also implemented and listed in the
Table 10. In most situations, the planner does not prefer to select
plans under extreme conditions. The intermediate selection provides a
feasible solution which makes a balance between the cost efficiency
and network partitioning performance. The schematic of partitioning
network by the intermediate method is illustrated in Fig. 5. This plan
reduces the inter-VM power exchange efficiently with about $4.64
cost increase more than the minimum-cost plan. In summary, VM-DER

Table 10
Statistic of boundary power flow, operational cost and modularity indicator QPD in
each cases. Unit of power is in MW.

Min. CostM
(Cost-priority)

Max. PDMM

(PDM-priority)
IntermediateM
(Trade-off)

Xu et al. [21]S
(Min. CostS)

Cost ($) 63.15 72.39 67.79 64.82
QPD 0.738 0.746 0.742 0.299a
NVM 7 8 8 6
Pmax

bf ,ci
0.217 0.389 0.334 1.982

Pmean
bf ,ci

0.164 0.079 0.083 0.394
≥

Pbf ,ci 0.982 0.638 0.662 1.982

M is selected from the Pareto Front of Co-planning solution by MOGA. Min. CostM and
Max. PDMM are two extreme points from the Pareto Front.
S is the result of a single-objective function solved by SOGA.
aThe modularity indicator QPD in [21] is calculated with its ECS matrix.

Table 11
Comparisons between single-objective GA (SOGA) under extreme conditions (maximize
the PDM and minimize cost) and MOGA. PDM-PriorityM and Cost-PriorityM are from
co-planning solutions displayed in Table 10.

Max PDMS PDM-PriorityM Cost-PriorityM Min CostS

QPD 0.749 0.745 0.738 0.734
Cost 277.61 72.39 63.15 61.34

M is the result selected from the Pareto Front by MOGA
S is the result by SOGA under given objective.

co-planning strategy can address challenges in upgrading CDN into
interconnected VMs.

Finally, to ensure the optimality of the multi-objective optimization,
we have two more single-objective tests under two extremely condi-
tions: 1. Minimum the total cost and 2. Maximizing the PDM. Results
from additional tests are listed in Table 11. The result shows that two
extreme scenarios cannot dominate other points on the Pareto front.
The case under the Minimum cost objective obtains fewer charges but
less PDM, resulting in poorer partitioning performance. Meanwhile,
most DG is allocated as bio-fuel DGs in the single-obj. Max. PDM
case, resulting in more penalties from insufficient penetration of wind
sources denoted in Eq. (21). Therefore, the single-objective solution is
unreliable in this case, where it cannot comprehensively consider cost
penalties from additional requirements.

5. Conclusion

This paper proposes a new co-planning approach for updating CDN
to ADN by interconnected VMs, which also include a new power
grid partitioning approach: PFS-based PDM metric QPD. It visualizes
the power grid into a weighted complex network presentation. The
power dispatch inside the network is a complicated process, many
aspects, such as transmission line capacity or generation cost, should be
considered while modeling the network. Compared with other studies,



our approaches comprehensively integrate the power flow dynamic,
supply–demand relations, network line impedance and generation cost
efficiency into a single static weighted adjacency matrix and processed
in subsequent partitioning algorithm. Tests on the 118-bus transmis-
sion and 69-bus radial distribution networks show that inter-subnets
power exchanges decrease while increasing QPD, leading to tighter
supply–demand relations inside the subnet.

Meanwhile, in the previous study, network partitioning and re-
courses allocation are treated separately. The serial planning strategy
neglects mutual interactions between the partition and operational
performance (e.g. cost). We also denote a parallel VM-DER co-planning
structure by combining the QPD and equivalent daily cost into a
multi-objective function solved by multi-objective GA. Results from the
69-bus system demonstrate the compromise between cost and QPD in
the Pareto front curve. For balancing these two aspects, we selected an
intermediate point as our suggestion for VMs planning. It has a slight
increase ($4.64) in cost compared to the minimum cost strategy with
much better performance on averaged inter-VMs power exchanges.
This paper has denoted an efficient solution for planning the VM
with concurrent grid partitioning and resource allocation. However,
different control mechanisms and trading strategies from multi-agent
VM individuals are also critical in the progress of transformation from
the CDN to VM clusters. In future works, coordination between VM-DER
planning and islanded individuals’ controls, such as enhancing stability
or consensus in multi-VMs, can be discussed for transforming the CDN
into a multi-VMs structure. The decision-making mechanism of trade
games between VM operators can also be developed in later research.
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