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Abstract

This paper aims to shed light on what becomes of discrete torsion within heterotic orbifolds when
they are resolved to smooth geometries. Gauged Linear Sigma Models (GLSMs) possessing (0,2)
worldsheet supersymmetry are employed as interpolations between them. This question is addressed
for resolutions of the non–compact C3/Z2 × Z2 and the compact T 6/Z2 × Z2 orbifolds to keep track
of local and global aspects. The GLSMs associated with the non–compact orbifold with or without
torsion are to a large extent equivalent: only when expressed in the same superfield basis, a field
redefinition anomaly arises among them, which in the orbifold limit reproduces the discrete torsion
phases. Previously unknown, novel resolution GLSMs for T 6/Z2 × Z2 are constructed. The GLSM
associated with the torsional compact orbifold suffers from mixed gauge anomalies, which need to
be cancelled by appropriate logarithmic superfield dependent FI–terms on the worldsheet, signalling
H–flux due to NS5–branes supported at the exceptional cycles.
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1 Introduction

Given the current astrophysical, collider and cosmological data, the standard cosmological and particle
physics models may provide viable parameterisation of all observational data up the Planck scale.
Obtaining further insight into the basic origin of these parameters necessitates the synthesis of the
gauge quantum field theories with gravity. The most developed contemporary mathematical framework
to explore the gauge–gravity unification is string theory.

The consistency conditions of string theory require the existence of a finite number of degrees of
freedom beyond those observed in contemporary experiments. These degrees of freedom may appear in
different guises. They may be interpreted as extra target space dimensions with vector bundles, or as
two dimensional fields propagating on the string worldsheet. Ultimately, the different representations
may describe the same physical objects and it is vital to extract the physical characteristics, irrespective
of the particular language used.

The Z2 × Z2 orbifolds of six dimensional toroidal compactifications are among the most stud-
ied string constructions to date. They have been used to derive phenomenological string models
and to study how the parameters of the Standard Model may be derived from string theory, using
their free fermionic [1–6] and orbifold [7–10] realisations, and their smooth resolutions [11]. Other
phenomenological interesting smooth compactifications have been investigated in e.g. [12–18]. These
phenomenological studies encompass supersymmetric and non–supersymmetric string vacua [19–23]
with symmetric and asymmetric boundary conditions [24,25] and the Z2 ×Z2 orbifolding can enable
the fixing of all of the untwisted geometrical moduli [26].

The relation between worldsheet string models and their effective field theory geometrical lim-
its presently occupies much of the discourse in string phenomenology in the form of the so–called
“swampland program”. This program aims to address the question when does an effective field theory
model of quantum gravity have an ultra–violet complete embedding in string theory, and hence can
be viewed as a bottom–up approach to the study of this relation. An alternative top–down approach
seeks to find the imprint of worldsheet symmetries in the effective field theory target space models.
Notable examples of this approach include mirror symmetry [27] and spinor–vector duality [28–34].

The worldsheet constructions of string vacua consist of a perturbative expansion in string am-
plitudes. They are constrained to preserve the classical symmetries of reparameterisation and Weyl
invariance, i.e. they are invariant under modular transformations of the worldsheet parameter, and
are encoded in the one–loop partition function. The requirement of modular invariance entails that
the partition function is a sum over different sectors that combine to form a modular invariant object.
While most of the signs in this sum are dictated by modular invariance, some other may be arbitrary
and play a vital role in determining the physical properties of the string models. In particular, the
origins of mirror symmetry and spinor–vector dualities may be traced back to (generalised) discrete
torsions. Discrete torsions typically arise in the worldsheet constructions as a result of multiple mod-
ding out operations. For example, we may mod out by several twists of the internal dimensions; or by
identifications by translations of points in the internal compactified space; or we may combine actions
of these shifts and twists. Additionally, in the heterotic–string these may be combined with an action
on the gauge bundles, which results in a reduction of the gauge symmetry. The spinor–vector duality,
for example, arises due to the action of Wilson lines on the gauge bundles.

The interpretation of (generalised) discrete torsions from the geometrical effective field theory
point of view is obscured as one does not have an exact partition function description in which these
discrete torsion phases are present. It is therefore of interest to elucidate the manifestation of the

1



discrete torsions in the effective field theory limit. If there is a discrete action on the target space, this
can be accompanied with discrete torsion in the form of some non–trivial action on the B–field [35–37].
However, in this paper we however wondered what happens to the discrete torsion between orbifold
twists, if one fully resolves the orbifold so that no discrete symmetries are left on the smooth target
space. We aim to investigate this manifestation using the Gauged Linear Sigma Model (GLSM)
representation of string vacua. GLSMs provide a particularly appealing framework to explore this
question, as they provide a single framework in which one can interpolate between different regimes,
like the singular orbifold limit and smooth compactifications.

1.1 Main paper objectives

One of the central objectives of this paper is to systematically study the discrete torsion phases in
smooth string compactifications using the GLSM language to bridge the gap between the orbifold
CFT formulations and the effective field theory descriptions for smooth target spaces. Concretely,
this program is considered for Z2 × Z2 orbifolds of free CFTs where the discrete torsion is known as
the Vafa–Witten phase.

First resolutions of the non–compact C3/Z2 × Z2 orbifold are considered in the GLSM language.
To have a particular simple context the focus is on line bundle resolutions generated by physical
blowup modes, twisted string states without oscillator excitations. The precise identification of such
resolution GLSMs from this data was worked out in the past [38]. Since only the standard embedding
bundles would allow for a (2, 2) worldsheet description, the incorporation of line bundles requires a
(0, 2) GLSM language. For both orbifold CFTs without and with torsion the corresponding resolution
GLSMs are constructed. In order to compare them at the Lagrangian level on the worldsheet, one
has to ensure that one uses the same superfield basis. (In the path integral formulation it only make
sense to compare theories using their classical actions when the same integration field variables are
employed.) Hence, as the charges of the superfields in the GLSMs of the non–torsion and the torsion
orbifolds do not agree, superfield redefinitions are needed before this comparison is possible. As a cross
check of the applied methods the GLSMs are considered in the deep orbifold regime to investigate
how the torsion phases may be recovered.

The study of compact models with torsion is particularly intriguing since certain fluxes cannot be
pushed to infinity and thereby out of the realm of the used description. Hence, the second part of
the paper focusses on resolutions of compact T 6/Z2 × Z2 orbifolds without or with discrete torsion
switched on. Before, a careful study of the imprints of discrete torsion can be investigated, first
GLSMs for resolutions of T 6/Z2 × Z2 have to be set up. In the past GLSMs for compact orbifold
resolutions were worked out in [39]. Even though the necessary techniques were developed there,
GLSM resolutions of T 6/Z2 ×Z2 were not considered explicitly. Moreover, that paper used the (2, 2)
language throughout. However, to match up with the considerations of the non–compact cases, it is
necessary to describe resolutions of T 6/Z2×Z2 here using (0, 2) GLSM terminology. Having fixed the
geometrical aspects in the GLSM description, similar blowups are considered induced by non–oscillator
twisted states as in the non–compact context. However, for the compact GLSM resolutions this leads
to more complicated bundle constructions which take features of standard embedding bundles on the
underlying torus cycles mixed with line bundles on the resolved Z2–singularities. With all this in
place, the resolution GLSMs of the compact orbifolds without and with torsion can be investigated.
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1.2 Paper organisation

The main part of the paper starts with a short review in Section 2 of some features of Z2×Z2 orbifolds
to provide the necessary foundation for the subsequent investigations. Section 3 summarises some
essential prerequisites about (0, 2) GLSMs without which the remainder of this manuscript might be a
bit hard to follow for non–experts. Further technical details on this topic are diverted to Appendix A.
Next, Section 4 focusses on GLSM resolutions of non–compact C3/Z2 ×Z2 without and with torsion.
Some properties described there rely on charge matrices which are collected in Appendix C not to
interrupt the main flow of this section. Section 5 repeats these exercises for compact T 6/Z2 × Z2

GLSM resolutions focussing on the additional features and complications that compactness brings.
Appendix B derives gauge anomalies in two dimensions and provide (0, 2) superspace expressions for
them which are used frequently in Sections 4 and 5.

2 Properties of Z2 × Z2 orbifolds

The purpose of the present section is to recall some crucial information about heterotic Z2×Z2 orbifolds
to understand their resolutions using GLSM methods that are laid out in subsequent sections. Hence,
it does not aim to give a complete review of heterotic orbifolds (for more comprehensive discussions
see e.g. [40–44]). In particular, properties of Z2 × Z2 orbifolds may be found in e.g. [10, 45–48]. A
crucial feature of Z2 × Z2 is that they may posses discrete torsion [27, 49]. As is recalled here this
feature determines which twisted states survive the orbifold projections.

2.1 Orbifold twists and gauge shift vectors

The bosonic description of the Z2 × Z2 orbifold starts with the introduction of two twist vectors

v1 =
(
0, 0, 12 , -

1
2

)
, v2 =

(
0, -12 , 0,

1
2

)
, (2.1)

which act on the complex coordinate fields zu with u = 0, 1, 2, 3. Here z0 denotes the four dimensional
non–compact directions in light–cone gauge. (Since the main interest is on the internal coordinates,
u is taken to label the internal coordinates and then runs over u = 1, 2, 3 only.) Thus the first entries
of the twist vectors indicate that the twists act trivially on the four dimensional Minkowski space.
For the non–compact orbifold C3/Z2 ×Z2 the coordinates zu ∈ C parametrise three complex planes.
While for the compact orbifold T 6/Z2 × Z2 they parametrise the three underlying two–tori T 2. An
arbitrary element g of the Z2 × Z2 orbifold point group then corresponds to the twist vector

vg = t1 v1 + t2 v2 , (2.2)

where t1, t2 = 0, 1 label its four elements.
To complete the definition of the orbifold actions gauge shift vectors have to be given. In the

orbifold standard embedding the gauge shift vectors are taken to be equal to these twist vectors
augmented with the appropriate number of zero entries:

V1 =
(
0, 12 , -

1
2 , 0

5
)(
08
)
, V2 =

(
-12 , 0,

1
2 , 0

5
)(
08
)
, (2.3)

and define the gauge shift embedding

Vg = t1 V1 + t2 V2 , (2.4)
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for each of the four orbifold point group elements. As the notation of the shift vectors suggest, this
paper uses the E8×E8 heterotic string for concreteness. In addition a heterotic orbifold might feature
a number of discrete Wilson lines. In this paper the consequences of them are not considered.

2.2 Discrete torsion phase

At the one loop level it is conventional to distinguish between constructing elements g, h of the orbifold
group, which define the different orbifold sectors of the theory, and the projecting elements g′, h′, which
implement the appropriate orbifold projections. Hence, on the one loop worldsheet torus a heterotic
orbifold model is defined uniquely by the properties introduced above up to a possible discrete torsion
phase [27,49]

Φ×t1,t2
t′1,t

′

2
= eπi ε

×(t1t
′

2−t2t
′

1) (2.5)

in its one loop partition function [49]. The possible torsion phase leads to a specific interplay between
the constructing and projecting orbifold group elements. Clearly, if ε× = 0 there is no torsion as the
torsion phase is equal to unity, but if ε× = 1 the model possesses discrete torsion as the phase is
non–trivial.

An alternative equivalent way that discrete torsion can be introduced is by so–called brother
models, i.e. models with gauge shift vectors that differ from the original ones by appropriate lattice
vectors [50]. In particular, for the model (2.3) the brother model has gauge shift vectors

V×
1 = −V1 =

(
0, -12 ,

1
2 , 0

5
)(
08
)
, V×

2 = −V2 =
(
1
2 , 0, -

1
2 , 0

5
)(
08
)
, (2.6)

so that their differences are indeed lattice vectors.

2.3 Orbifold spectra with(out) torsion

Any state in the orbifold spectrum may be characterised by two shifted momenta

pg = p+ vg , Pg = P + Vg , (2.7)

where the vector p is an element of the lattice V4 ⊕ S4 and P of (O8 ⊕ S8) ⊗ (O8 ⊕ S8). The shifted
momenta of level matched massless states are subject to the following two conditions

1

2
p2g =

1

2
− δcg ,

1

2
P 2
g = 1− δcg − ωg · Ñg − ω̄g · Ñg , (2.8)

where the orbifold vacuum shift

δcg =
1

2

∑

u

ωg,u(1− ωg,u) (2.9)

is defined in terms of ωg,u ≡ (vg)u and ω̄g,u ≡ −(vg)u which satisfy the inequalities: 0 < ωg,u, ω̄g,u ≤ 1.

Finally, (Ñg)u and (Ñg)u are the number operators that count the number of right–moving oscillators
act on the state. Only the states that survive the orbifold projection conditions,

Pg · Vg′ − pg · vg′ ≡
1

2

(
Vg · Vg′ − vg · vg′

)
+

(
Ñg − Ñg

)
· vg′ +

ε×

2

(
t1t

′
2 − t2t

′
1

)
, (2.10)

are part of the physical orbifold spectrum. The last term in these projection conditions encodes the
consequences of discrete torsion on the massless spectrum. Consequently, the discrete torsion phases
only affect the twisted sectors. The resulting orbifold spectrum is conventionally divided in a number
of sectors:
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Sector Shifted momentum Pg Repr. ε× = 0 ε× = 1

(
1, - 12 , -

1
2 , 0

5
)(
08
)

(1)
in out

1 =
(
-1, - 12 , -

1
20

5
)(
08
)
;
(
0, 12 ,

1
2 ,±1, 04

)(
08
)
;
(
-12 , 0, 0, -

1
2

e
, 12

5−e)(
08
)

(27)

(1, 0)
(
-1, 12 ,

1
2 , 0

5
)(
08
)

(1)
out in(

1, 12 ,
1
2 , 0

5
)(
08
)
;
(
0, -12 , -

1
2 ,±1, 04

)(
08
)
;
(
1
2 , 0, 0, -

1
2

o
, 12

5−o)(
08
)

(27)

(
- 12 , 1, -

1
2 , 0

5
)(
08
)

(1)
in out

2 =
(
-12 , -1, -

1
2 , 0

5
)(
08
)
;
(
1
2 , 0,

1
2 ,±1, 04

)(
08
)
;
(
0, -12 , 0, -

1
2

e
, 12

5−e)(
08
)

(27)

(0, 1)
(
1
2 , -1,

1
2 , 0

5
)(
08
)

(1)
out in(

1
2 , 1,

1
2 , 0

5
)(
08
)
;
(
-12 , 0, -

1
2 ,±1, 04

)(
08
)
;
(
0, 12 , 0, -

1
2
o
, 12

5−o)(
08
)

(27)

(
- 12 , -

1
2 , 1, 0

5
)(
00
)

(1)
in out

3 =
(
-12 , -

1
2 , -1, 0

5
)(
08
)
;
(
1
2 ,

1
2 , 0,±1, 04

)(
08
)
;
(
0, 0, - 12 , -

1
2
e
, 12

5−e)(
08
)

(27)

(1, 1)
(
1
2 ,

1
2 , -1, 0

5
)(
08
)

(1)
out in(

1
2 ,

1
2 , 1, 0

5
)(
08
)
;
(
-12 , -

1
2 , 0,±1, 04

)(
08
)
;
(
0, 0, 12 , -

1
2

o
, 12

5−o)(
08
)

(27)

Table 1: This table lists the twisted sector spectra obtained from non–oscillator excitation states and
indicates whether they are in the physical spectrum without or with torsion, ǫ× = 0 or 1, respectively.

Untwisted sector

The untwisted sector is identified by (t1, t2) = (0, 0). This sector corresponds to so–called bulk states
which live everywhere within the internal geometry. It contains the metric, the anti–symmetric tensor
and the dilaton degrees of freedom as well as the target space gauge fields and all their superpartners
in ten dimensions. The non–Abelian unbroken gauge group in four dimensions is E6×E8. In addition,
there are three copies of charged matter in the (27) + (27) of E6 independently of whether torsion is
switched on or not.

Twisted sectors

There are three twisted sectors with t = (t1, t2) : 1 = (1, 0), 2 = (0, 1) and 3 = (1, 1) which only
posses N = 1 supersymmetry in six dimensions4: On the non–compact orbifold C3/Z2 × Z2 the
corresponding twisted states are localised at the three complex codimension two singularities of the
three non–trivial orbifold twists. Each twisted sector is supported on 16 fixed two–tori within the
compact orbifold T 6/Z2 × Z2. Half of these states are projected out by the orbifold action of the
second orbifold element. Which half depends on whether torsion is switched on, see Table 1 which
gives the twisted states without twisted oscillator excitations.

4Also sometimes referred to as N = 2 sectors from the four dimensional point of view.
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Superfield ∂ ∂̄ D+ Φa Λm ΨA ΓM Vi Ai Fi ΣI ΥI

Phys.Comp. (za, φa) (λm, hm) (yA, ψA) (γM , fM ) (Ai
σ, A

i
σ̄, ϕ

i,Di) (sI , χI)

# NΦ NΛ NΨ NΓ NV NΣ

L 0 1 0 0 1
2 0 1

2 0 1 1 1
2

1
2

R 1 0 1
2 0 0 0 0 0 0 1

2 0 1
2

R 0 0 −1 0 0 1 1 0 0 1 0 1

Q 0 0 0 (qi)
a (Qi)

m (qi)
A (Qi)

M n.l. n.l. 0 0 0

Table 2: This table specifies the left– and right–Weyl dimensions, L and R, the R–charge and the
gauge charges Qi of the operators ∂, ∂̄,D± and the superfields which may be used in a (0,2) GLSM.
The physical components of these multiplets are indicated as well as the indices that label them; the
third line gives the total number of these multiplets.

3 Geometries and bundles from (0, 2) gauged (linear) sigma models

3.1 (0,2) Superfields

Two dimensional theories with (0, 2) supersymmetry admit a number of different types of superfields
(or multiplets). Appendix A gives a short review of (0, 2) superfields on superspace and sets notations
and conventions used in this work. Gauged sigma models are a special class of (0, 2) theories with
bosonic and possibly also fermionic gaugings. The superfields used in this work are summarised in
Table 2 and the labels used to enumerate them are indicated there. In addition, their gauge charges,
left– and right–Weyl dimensions and R–charges (defined in Appendix A.3) are given.

The most important matter superfields are chiral and chiral Fermi multiplets. A chiral multiplet
Φ = (z, φ) contain a complex scalar z and a right–moving fermion φ. A chiral Fermi multiplet
Λ = (λ, h) consists of a left–moving fermion λ and an auxiliary scalar field h. In addition, there are
chiral multiplets Ψ = (y, ψ) and chiral Fermi multlplets Γ = (γ, f). The distinction between these
chiral and chiral Fermi superfields is made by their R–symmetry charge: Φ and Λ are neutral while Ψ
and Γ carry charge 1. The last line of this table gives the gauge charges and dictates the super gauge
transformations of these matter superfields.

For the corresponding bosonic gaugings vector multiplets have to be introduced consisting of two
real bosonic superfields V and A from which gauge invariant super field strengths F can be constructed

F = −1
2D+

(
A− i∂̄V

)
. (3.1)

The physical components of these multiplets are the gauge field Aσ, Aσ̄ with field strength Fσσ̄ =
∂σAσ̄ − ∂σ̄Aσ and a right–moving fermion ϕ and a real auxiliary field D.

On the chiral Fermi multiplets fermionic gauge transformations

Λ → Λ + U(Φ)·Ξ , Γ → Γ + ΨW (Φ)·Ξ (3.2)

6



may act with chiral Fermi super gauge parameters. To obtain invariant action under these transfor-
mation, Fermi gauge multiplets Σ need to be introduced with super field strengths

Υ = D+Σ . (3.3)

Their physical components are complex scalars s and left–moving fermions χ.
A few comments are in order. The theories that are studied here do not define proper string

theories as their worldsheet actions are not fully conformal. In particular, dynamical gauge fields
on the worldsheet are not scale invariant as their gauge coupling is dimensionfull. Nevertheless it
is useful to use characterisations, like the left– and right–moving Weyl dimensions, as in the scale
invariant limit the corresponding superconformal symmetries are recovered. Moreover, the “linear”
in GLSMs signifies that only kinetic terms quadratic in the fields are considered, while in non–linear
sigma models this restriction is lifted for chiral superfields.

The main reason why GLSMs are of interest for string theory is that they can provide interesting
insights in how geometries and vector bundles on them can arise:

3.2 Emergent effective geometry

The scalar part of GLSMs can be associated to target space geometries like weighted projective spaces,
complete intersection Calabi–Yaus and many generalisations of these as was realised by the pioneering
paper [51]. The scalar components z of the chiral multiplets Φ can be interpreted as the homogeneous
coordinates of projected spaces, where the C∗–scalings are encoded by the scalar part of the super
gauge transformations:

z → eqi·θ z , θ = 1
2 a− i α ∈ CNV . (3.4)

In the Wess–Zumino gauge the sizes of these projective spaces are set by the D–term equations
∑

a

(qi)
a|za|2 = ri , (3.5)

for each i = 1, . . . , NV . (In principle there is a second sum over the scalars yA here, but they are
typically all forced to zero as discussed below.) Here the parameters r are the real parts of the
Fayet–Iliopoulos (FI) coefficients ρ(Φ) which define superpotentials involving the super gauge field
strengths

WFI = ρ(Φ)·F , ρ(z) = 1
2 r + i β ∈ CNV . (3.6)

This is gauge invariant if the functions ρ(Φ) are neutral. The target space interpretation of r are
moduli, that set the radii of certain cycles, and β may be interpreted as axions in the effective
geometry.

String backgrounds, like Calabi–Yaus, are often defined as hypersurfaces in such projected spaces.
In the GLSM language this can be encoded in a (0, 2) superpotential

Pgeom = ΓP (Φ) . (3.7)

In the conformal limit, the scalar components of the algebraic equations of motion of chiral Fermi
superfields ΓM lead to F–term equations:

PM (z) = 0 , (3.8)

7



for M = 1, . . . , NΓ, which precisely cut out such hypersurfaces. Consequently, the dimension of the
resulting target space manifold M equals:

dim
C

(M) = NΦ −NV −NΓ . (3.9)

This should be equal to 2 or 3 if one only considers the internal manifold of complex dimension 2 or
3; or 4 if the complete spacetime in light–cone gauge is described by the GLSM.

In addition, the GLSM description can be used to determine an atlas of coordinate patches: in a
given phase one or multiplet set(s) of scalar fields are necessarily non–zero. Hence, by analysing the
combined D–term and F–term equations, (3.5) and (3.8), all the coordinate patches within a phase of
the GLSM can be determined.

3.3 Emergent effective vector bundle

The part of (0, 2) GLSMs that involve the chiral Fermi multiplets can be interpreted as vector bundles
(or as sheafs if they are not fully regular) [51–53]. The fermionic components λ of the Fermi multiplets
Λ are line bundle sections on this manifold as their C∗–scalings read

λ→ eQi·θ λ . (3.10)

If there are no fermionic super gauge transformations and no chiral superfields Ψ in the model, then
the target space gauge background is simply a collection of line bundles.

However, in general, they describe a more complicated vector bundle V which is derived from a
complex (generalisation of a monad construction), since they have to satisfy the constraints

M(z)λ = 0 , (3.11)

due to the lowest components of the algebraic equations of motion of Ψ that follows from the bundle
superpotential

Pbundle = ΨM(Φ)Λ (3.12)

and are subject to gauge transformations

λ→ λ+ U(z)·ξ , (3.13)

which are the lowest components of the fermionic super gauge transformations (3.2). Combined the
equations (3.11) and (3.13) imply that a vector bundle V = Ker(U)/Im(M) is constructed from the
complex

0 → ONΣ
U

−→

ÑΛ⊕

m=1

O(Qm)
M
−→

NΨ⊕

A=1

O(−qA) → 0 . (3.14)

Here ÑΛ ≤ NΛ denotes the number of interacting Fermi multiplets in the GLSM. (The numbers in
the Os of such complexes are conventionally integers. But in the normalisations used in this paper
they might be fractional (like 1/2), hence they should then be multiplied by an appropriate common
factor. In addition, the charges of the chiral superfields Ψ are negative in the conventions used in this
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work and they set the degrees of the constraints (3.11) on the fermions.) The dimensionality of the
fibers of resulting vector bundle V is given by

dim
C

(V) = ÑΛ −NΣ −NΨ , (3.15)

provided thatM(z) and U(z) have maximal ranks NΨ ≤ NΛ and NΣ ≤ NΛ, respectively [52]. (If this is
not everywhere the case, this indicates that there are singularities in the bundle instead.) In order that
this bundle can be embedded in the gauge degrees of freedom of the heterotic string dim

C

(V) should
less than eight so as to fit within an E8–factor. (The bundle might also fill up part of both E8–factors,
but then it has to split accordingly.) Since the full rank of E8 × E8 is 16, the total number of Fermi
multiplets is given by NΛ = 16 + NΣ +NΨ. Hence, there are a number of spectator (non–interacting
and neutral) Fermi multiplets Λn, n = 1, . . . ,NΛ − ÑΛ, which lead to the unbroken gauge degrees of
freedom in target space.

The superpotential (3.12) has another important consequence: If M(z) has maximal rank, the
equations of motion of Λ induced by the bundle superpotential (3.12) imply that all yA = 0. This
was implicitly assumed when (3.5) were written down, since, in general, also contributions from the
scalars yA should be present in these equations.

The fermionic gauge transformations (3.2) only leaves the superpotentials (3.7) and (3.12) com-
bined inert when the following compatibility conditions hold

WA
IM (Φ)PM (Φ) +MAm(Φ)UmI(Φ) = 0 . (3.16)

In general, it is not so straightforward to find functions such that these conditions are fulfilled. How-
ever, when the superpotentials and the fermionic gaugings are taken to lie on the (2, 2) locus discussed
below, these conditions are automatically satisfied.

3.4 The (2,2) locus

The interacting part of (0, 2) GLSMs (or at least the part that involves fermionic gaugings) might
possess a higher amount of supersymmetry. For this to happen the (0,2) multiplets need to be able
to pair up. This means in particular, that there are the following relations between the number of
interacting multiplets:

ÑΛ = NΦ , NΓ = NΨ , NΣ = NV , (3.17)

This allows to identify various indices: m = a, M = A and I = i; we use the latter indices for each
type of indices. Furthermore, the gauge charges of chiral and Fermi multiplets need to line up:

Qi = qi , Qi = qi . (3.18)

When some of these relations are not satisfied it is impossible to deform the interactions of the (0, 2)
GLSM to become (2, 2). If this is possible, then the (0, 2) theory is said to be on the (2, 2) locus.

On the (2, 2) locus of the space of (0, 2) GLSM, exact (2, 2) models possess various interactions
encoded in the various functions introduced that need to be of a very specific form. The relations
given here are subject to specific normalizations; but the implied proportionalities are essential. First
of all, the functions U(Φ) and W (Φ) that describe the Fermi gauge transformations now read

Uai(Φ) = (qi)
aΦa , WA

iB = (qi)
BδBA . (3.19)
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They are fully dictated by the index structure and the gauge charges (qi)
a and (qi)

A. The functions
M(Φ) are determined as the derivatives of P (Φ):

MAa(Φ) = PA,a(Φ) , (3.20)

where F,a(Φ) denotes the partial derivative of F (Φ) with respect to Φa. Consequently, the invariance of
the superpotential action under fermionic gauge transformations (3.16) reduces to the gauge invariance
of the superpotential:

(qi)
APA(Φ) + PA,a(Φ)Φ

a(qi)
a = 0 . (3.21)

3.5 Worldsheet instantons and flux quantisation

It is possible that on the worldsheet non–trivial gauge configurations, like instantons, are realised.
The involved gauge fluxes need to be properly quantised [54]:

∑

j

(qj)
a
∫
F j
E2

2π
∈ Z ,

∑

j

(qj)
A
∫
F j
E2

2π
∈ Z (3.22)

for all charged chiral superfields Φa and ΨA. Here the subscript E indicates that the gauge fluxes are
computed in the Euclidean theory.

3.6 Anomaly consistency conditions

On a GLSM there are a number of requirements in order that the theory is both consistent as a
quantum theory and that it is likely to have the right properties in the conformal limit.

First of all, like any gauge theory, the GLSM has to be free of gauge anomalies. With the gauge
charges given in Table 2, this amounts to the following conditions

Aij = −
∑

a

(qi)
a(qj)

a −
∑

A

(qi)
A(qj)

A +
∑

m

(Qi)
m(Qj)

m +
∑

M

(Qi)
M (Qj)

M !
= 0 , (3.23)

for all i, j = 1, . . . , NV . The signs in these equations are determined by whether the fermions in the
matter multiplets are right– or left–moving. For j = i this corresponds to pure and for j 6= i to mixed
gauge anomalies.

The left–, right–Weyl dimensions and R–charge correspond to bosonic parts of super conformal
symmetries in the scale invariant limit of the GLSM. For this limit not to be obstructed the mixed left–
and right–Weyl gauge anomalies should vanish. In detail, from Table 2 it follows that the left–Weyl
– gauge anomalies vanish provided that

∑

m

(Qi)
m +

∑

M

(Qi)
M !

= 0 , (3.24)

for all i, since the only charged superfields that carry L–charge are Λ and Γ. These conditions can be
summarised by the demand that the sum of the charges of all chiral Fermi superfields need to vanish
for each gauge symmetry separately.
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In addition, the charged right–moving fermions φ and γ are obtained by hitting chiral multiplets
Φ and Ψ with D+, hence the right–Weyl – gauge anomalies are absent when

∑

A

(qi)
a +

∑

A

(qi)
A !
= 0 , (3.25)

for all i. Thus, these conditions say that the sum of the charges of all chiral superfields need to
vanish for each gauge symmetry separately. At the same time these conditions ensure that the FI–
parameters (3.6) do not renormalise. If this isn’t the case, it would not be possible to interpret them
to set the scales of target space cycles as they would always run off to zero or infinity.

Finally, the R–symmetry survives quantisation provided that

∑

a

(qi)
a +

∑

M

(Qi)
M !

= 0 , (3.26)

for all i, since the right–moving fermions φ and the left–moving fermions γ have R–charges −1 and
+1, respectively, and opposite chiralities. When these equations are combined with (3.25), they can
be stated as the sum of the charges of the chiral Fermi superfields Γ have to be equal to that of the
chiral superfields Ψ.

3.7 Worldsheet Green–Schwarz mechanism: Torsion and NS5–branes

When the gauge anomalies do not vanish, i.e. not all Aij in (3.23) vanish, the GLSM is anomalous. It
is sometimes possible that certain field dependent none gauge invariant FI–terms (3.6) are precisely
able to cancel these gauge anomalies [55,56]. The FI–term coefficients ρ(Φ) then need to transform as
a shift under the anomalous gauge symmetries. This can be viewed as a Green–Schwarz mechanism on
the worldsheet and might have some far reaching consequences for the geometry and the interpretation
of the theory.

To understand how this comes about, note that in the naive conformal limit, the kinetic terms of
the vector multiplets V,A can be set to zero and their equations of motion become non–dynamical.
In particular, the superfields A appear linear in the actions of the chiral multiplets (A.26) and the
FI–terms (A.30), hence their equation of motion lead to superfield constraints:

Φ e2q·VqiΦ = ρi(Φ) + ρ̄i(Φ) . (3.27)

Thus after enforcing the equations of motion of A, the vector multiplets V become (implicit) functions
of the chiral superfields Φ and their conjugates Φ. In the Wess–Zumino gauge the lowest component of
these equations are the D–term constraints (3.5). However, in any gauge from (3.27) it can be inferred
which (scalars of the) chiral multiplets are necessarily non–zero in a given phase with a certain choice
of the FI–parameters. Hence, a unitary gauge can be chosen such that all chiral superfields, that are
necessarily non–zero, are set to such values that the solution for the vector superfields V are all zero
when all of the remaining chiral superfields are vanishing5.

Non–constant FI–terms (3.6) modify the target space geometry and generically introduces torsion
onto it in the form of non–vanishing H–flux [54,57,58]. Indeed, since by (3.27) the vector superfields

5In the remainder of this paper for presentational simplicity, the D–term equations (3.5) are given in the Wess–Zumino
gauge, while for the analysis of the torsional effects (3.27) the unitary gauges, as defined here, are used implicitly.
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V become (implicit) functions of the chiral multiplets. Inserting them in the kinetic terms of the chiral
multiplets shows that the torsion tensor, the three–form H,

Habc ∼ ρ,[a ·V,b]c , (3.28)

is non–zero in general, see Appendix A.6 or ref. [56] for a derivation. (It reads here in general, because
if both ρi and Vi only depend on a single chiral superfield this expression still anti–symmetrises to
zero.) Since typically, the GLSM only contains chiral superfields Φ, that are linearly charged under the
gauge symmetries, the required FI–coefficients can only be made by taking logarithms of combinations
of them. As was argued in [55,56,59] such logarithmic singularities can be viewed as the imprints of
non–perturbative physics in the form of NS5–branes on the worldsheet as the target space exterior
derivative of (3.28) lead to delta–function–like sources in the Bianchi identity of the three–form6.

3.8 Orbifold resolution GLSMs

Even though this section so far described properties of GLSMs in general, the main focus of this
work is on GLSMs which are associated to (toroidal) orbifold resolutions. The study of resolution of
singularities using (0, 2) GLSMs have a long history. Some pioneering works are [52, 53]. A GLSM
orbifold resolution construction has the advantage over other methods to match the singular orbifold
situations for which exact CFT descriptions exists with smooth compactifications using effective field
theory methods. Within a single GLSM framework one has both access to the orbifold phase as well
as completely resolved (and potentially many other) phases. The trade off here is that a GLSM is not
(yet) a full blown CFT description.

A fully complete correspondence between orbifold CFTs and GLSMs does not exists, but two
methods have been uncovered in the past which apply to partially overlapping situations:

A Twisted shifted momenta as (0,2) GLSM charges [38]:

As was recalled in Section 2.3, twisted states are uniquely identified by their shifted right– and
left–moving momenta (2.7). In particular, the right– and left-moving shifted momenta of non–
oscillator massless twisted states automatically satisfy the pure anomaly cancellation conditions
when they are interpreted as GLSM gauge charges of chiral and chiral Fermi superfields, respec-
tively. In target space these configurations may have the interpretation of line bundles on the
resolved local singularities.

B (2,2) GLSMs for toroidal orbifold resolutions [39]:

Contrary, full global orbifold resolutions in the standard embedding can be obtained in (2, 2)
GLSMs. The underlying two–tori are described using (variants of) the Weierstrass models. On
some of their homogeneous coordinates additional (exceptional) gaugings are implemented. For
certain ranges of their FI–parameters the fixed point structure of toroidal orbifolds, while for
others resolved compact Calabi–Yaus emerge.

In the next section method A is employed, while in Section 5 method A is combined with a partial
(0,2) reduction of method B for the case of T 6/Z2 × Z2 orbifold resolutions that were not discussed
in the literature before explicitly.

6In addition, the inclusion of log–dependent FI–terms may lead to a back reaction to the geometry [56, 59]; in this
paper these consequences are not studied in detail.
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Superfield Φ1 Φ2 Φ3 Φ′
1 Φ′

2 Φ′
3 Λ = (Λ1, . . . ,Λ16) Ω1 Ω2 Ω3

U(1) charge z1 z2 z3 x1 x2 x3 λ = (λ1, . . . , λ16) ω1 ω2 ω3

E1 0 1
2

1
2 −1 0 0 Q1 = (Q1

1, . . . , Q
16
1 ) 1 0 0

E2
1
2 0 1

2 0 −1 0 Q2 = (Q1
2, . . . , Q

16
2 ) 0 1 0

E3
1
2

1
2 0 0 0 −1 Q3 = (Q1

3, . . . , Q
16
3 ) 0 0 1

Table 3: Superfield charge table for resolutions of the non–compact C3/Z2 × Z2 orbifold.

4 Non–compact C3/Z2 × Z2 resolution GLSMs

This section focus on heterotic resolutions of the non–compact C3/Z2×Z2 using (0,2) GLSMs. (Some
ingredients of the present discussion are inspired by ref. [38].) The three complex coordinates zu,
u = 1, 2, 3, of C3 augmented with three exceptional coordinates xr, r = 1, 2, 3, to describe the
resolution. These coordinates become part of the chiral superfields Φu and Φ′

r on which three U(1)
gauge symmetries Er act according to the charge table 3. In this table the unit charged chiral
superfields Ωr are composite, i.e. functions of the fundamental superfields Φu and Φ′

r.

4.1 Geometrical interpretation

The analysis of the geometrical interpretation of this GLSM starts with writing down the D–term
equations

1

2
|z2|

2 +
1

2
|z3|

2 = b1 + |x1|
2 , (4.1a)

1

2
|z1|

2 +
1

2
|z3|

2 = b2 + |x2|
2 , (4.1b)

1

2
|z1|

2 +
1

2
|z2|

2 = b3 + |x3|
2 . (4.1c)

Here the three parameters br are the real parts of the three FI–parameters ρr associated with the
three gaugings Er which are assumed to be constant. An equivalent but useful representation of these
equations are obtained by adding two of them and subtracting the third:

|z1|
2 + |x1|

2 = b2 + b3 − b1 + |x2|
2 + |x3|

2 , (4.2a)

|z2|
2 + |x2|

2 = b1 + b3 − b2 + |x1|
2 + |x3|

2 , (4.2b)

|z3|
2 + |x3|

2 = b1 + b2 − b3 + |x1|
2 + |x2|

2 . (4.2c)

Depending on the relative values of the three FI–parameters the model can be in a number of phases
which have different geometrical interpretations [38]. Here not all of them are listed and discussed,
instead, the focus is on a number of particular interesting phases: the orbifold phase and the three
full resolved phases which are characterised by having all three FI–parameters negative or positive,
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respectively. Other phases, in which some FI–parameters are positive while others are negative,
correspond to partial blowups and are ignored here. (In ref. [38] some aspects of these other phases
were investigated.)

Some topological properties of the effective geometries in the various phases can be determined.
The divisors in the effective geometry can be identified by setting one of the complex coordinates to
zero while satisfying all the D–term equations. The ordinary divisors are defined by Du := {zu = 0}
and the exceptional ones by Er := {xr = 0}. The results of this analysis are summarised in Table 4.

For each set of non–vanishing fields Z(P ) = (Z1
(P ), Z

2
(P ), Z

3
(P )), that defines a coordinate patch

within a phase of the resolution GLSM, the other the complement set of fields {Z̃1
(P ), Z̃

2
(P ), Z̃

3
(P )} ∈ R3

then define a coordinate patch. The resulting patches are also given in Table 4. A gauge can be chosen
such that the phases of these non–zero fields Z(P ) are all trivial, i.e. multiplets of 2πi. This only leaves
residual discrete gauge transformations in each of these patches:

Za
(P ) → ei(Q(P ))

a
r αp

Za
(P )

!
= e2πim

a

Za
(P ) , (4.3)

where Za
(P ), a = 1, 2, 3, are the three scalar fields that do not vanish in patch (P ) with charges (Q(P ))

a
r

and ma are integers. For the coordinate patches under investigation the charge matrices are given
in (C.1). Hence, the gauge parameters of the residual gauge transformations read:

αT = 2πmT Q−T
(P ) . (4.4)

with α =
(
α1, α2, α3

)
and mT =

(
m1,m2,m3

)
. This induces residual gauge transformation on the

coordinates of the coordinate patch (P ) transform

Z̃a
(P ) → ei(Q̃(P ))

a
r αp

Z̃a
(P ) = e2πi (Rm)a Z̃a

(P ) , R(P ) = Q̃(P )Q
−1
(P ) (4.5)

where Q̃(P ) are the charges of the coordinates of the patch which are given in (C.3). Thus if R(P ) is
integral, the residual gauge transformations are trivial.

Orbifold phase

In the orbifold regime all three Kähler parameters are negative: b1, b2, b3 < 0. The D–term equa-
tions (4.1) then imply that all three exceptional coordinates are non–vanishing:

|x1|
2 = −b1 + |z2|

2 + |z3|
2 > 0 , (4.6a)

|x2|
2 = −b2 + |z1|

2 + |z3|
2 > 0 , (4.6b)

|x3|
2 = −b3 + |z1|

2 + |z2|
2 > 0 , (4.6c)

hence there is a single coordinate patch: {z1, z2, z3}. In particular, the D–term equations allow to set
all these three coordinates to zero at the same time. Moreover, it is clear that none of the exceptional
divisors Er exist in this phase. Instead the intersection of D1D2D3 exists.

By exploiting the gauge symmetries it is possible to fix the phases of x1, x2, x3 some arbitrary
values (which are typically taken to be zero for simplicity). However, these gauge fixings do not fix
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Phase Non–zero fields Patches Curves Intersection

Orbifold x1, x2, x3 6= 0 (O) := {z1, z2, z3} D1D2, D2D3, D3D1 D1D2D3

S–triangulation z1, z2, z3 6= 0 (S) := {x1, x2, x3} E1E2, E2E3, E3E1 E1E2E3

z1, z2, x3 6= 0 (33) := {x1, x2, z3} E1E2, E2D3, D3E1 E1E2D3

z1, x2, z3 6= 0 (22) := {x1, x3, z2} E1E3, E1D2, D2E3 E1E3D2

x1, z2, z3 6= 0 (11) := {x2, x3, z1} E2E3, E2D1, D1E3 E2E3D1

E1–triangulation z2, z3, x3 6= 0 (31) := {x1, x2, z1} E1E2, E2D1, D1E1 E1E2D1

z1, z2, x3 6= 0 (33) := {x1, x2, z3} E1E2, E2D3, D3E1 E1E2D3

z2, z3, x2 6= 0 (21) := {x1, x3, z1} E1E3, E3D1, D1E1 E1E3D1

z1, z3, x2 6= 0 (22) := {x1, x3, z2} E1E3, E3D2, D2E1 E1E3D2

E2–triangulation z1, z3, x3 6= 0 (32) := {x1, x2, z2} E1E2, E2D2, D2E1 E1E2D2

z1, z2, x3 6= 0 (33) := {x1, x2, z3} E1E2, E2D3, D3E1 E1E2D3

z2, z3, x1 6= 0 (11) := {x2, x3, z1} E2E3, E3D1, D1E2 E2E3D1

z1, z3, x1 6= 0 (12) := {x2, x3, z2} E2E3, E3D2, D2E2 E2E3D2

E3–triangulation z2, z3, x1 6= 0 (11) := {x2, x3, z1} E2E3, E3D1, D1E2 E2E3D1

z1, z2, x1 6= 0 (13) := {x2, x3, z3} E2E3, E3D3, D3E2 E2E3D3

z1, z2, x2 6= 0 (23) := {x1, x3, z3} E1E3, E3D3, D3E1 E1E3D3

z1, z3, x2 6= 0 (22) := {x1, x3, z2} E1E3, E3D2, D2E1 E1E3D2

Table 4: This table indicates which combination of fields are necessarily non–vanishing in the orbifold
and the three full resolution phases. This in turn determines the coordinate patches of the phases and
hence the curves and intersections that exist within the patches. The notation (ru) of the patches of
the fully resolved geometries signify that the coordinates xr and zv 6=u are non–zero.

15



the gauges completely, since the matrix (4.5) in this case,

R(O) = Q̃(O)Q
−1
(O) = −Q̃(O) =




0 1
2

1
2

1
2 0 1

2

1
2

1
2 0


 , (4.7)

is non–integer, therefore, there are non–trivial residual Z2 gauge transformations which act as

E1 : (z1, z2, z3) → (z1,−z2,−z3) , (4.8a)

E2 : (z1, z2, z3) → (−z1, z2,−z3) , (4.8b)

E3 : (z1, z2, z3) → (−z1,−z2, z3) (4.8c)

on the remaining coordinates. The first two are precisely the transformations that defined the C3/Z2×
Z2 orbifold and the third one is simply the combination of the first two and hence redundant in the
orbifold phase.

S–triangulation full resolution phase

In the S–triangulation the Kähler parameters satisfy the following inequalities:

0 < b3 < b1 + b2 , 0 < b2 < b1 + b3 , 0 < b1 < b2 + b3 . (4.9)

From (4.1) it follows that at least two of the three zu are non–zero. Hence, there is one coordinate patch
{x1, x2, x3} when all three zu are non–vanishing. Taking (4.2) into account, there are, in addition,
three coordinate patches {zu, xp 6=u} for u = 1, 2, 3 when xu and zp 6=u are non–zero.

There is no non–trivial residual gauge transformation on the coordinate patch (S) := {x1, x2, x3},
since fixing the phases of all three zu fixes all gauge parameters θr up to multiples of 2πi, hence
the actions on the coordinates xr are trivial. For the coordinate patch (33) := {z1, x2, x3} the non–
vanishing coordinates of which the phases can be set to unity are x1, z2, z3, consequently, the gauge
parameters θ2,3 are fixed modulo multiples of 4πi and θ1 modulo multiplets of 2πi. But the residual
gauge transformations on coordinates

z1 → e
1
2 θ2+

1
2 θ3z1 , x2 → e−θ2x2 , x3 → e−θ3x3 (4.10)

in the patch (33) only involve the gauge parameters θ2,3, and hence these phase transformations are
trivial. Similar arguments can be provided for the other patches (22) := {x1, x3, z2} and (11) :=
{x2, x3, z1}. The fact that all the coordinate patches of this triangulation are regular can also be
verified by showing that the matrices R(P ) defined in (4.5) are all integral.

It follows that in the S–triangulation all the divisors Du and Er exist, though not in all coordinate
patches. Aside from the curves ErDu 6=r, all three exceptional curves E1E2, E2E3 and E3E1 exist. In
particular, the intersections

E1E2E3 = E2E3D1 = E1E3D2 = E1E2D3 = 1 (4.11)

are all equal to unity as there is just a single solution to the D–term equations and there is no residual
gauge transformation acting on the coordinates in any given coordinate patch. All this information is
encoded in the toric diagram for the S–triangulation:
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D2

E3

D1

E2

D3E1

Indeed, all the divisors are indicated as dots. The existing curves are represented as lines between two
adjacent dots and the unit intersections are the smallest triangles in the diagram. At the same time
these smallest triangles also indicate the four coordinate patches.

E1–triangulation full resolution phase

In the E1–triangulation the Kähler parameters satisfy the conditions

0 < b2 + b3 < b1 , 0 < b3 < b1 + b2 , 0 < b2 < b1 + b3 . (4.12)

Again at least two of the three zu are non–zero. In light of the first inequality above, it is convenient
to write the equation (4.2a) as

|x2|
2 + |x3|

2 = b1 − b2 − b3 + |z1|
2 + |x1|

2 . (4.13)

Hence either x2 or x3 is non–zero. If x2 6= 0 then (4.2c) implies that z3 is non–vanish as there needs
to at least two zu 6= 0. Similarly, if x3 6= 0 then (4.2b) says that z2 is non–vanishing. Therefore, in
total there are four coordinate patches: {x1, x2, z1}, {x1, x2, z3}, {x1, x3, z1}, {x1, x3, z2}. Again all
these patches are regular; there is no residual orbifold action on them.

In this phase the exceptional curves E1E2 and E1E3 exist but E2E3 does not. Instead the curve
D1E1 is allowed by the D–term equations. The following intersections

E1E2D3 = E1E3D2 = E1E2D1 = E1E3D1 = 1 (4.14)

are all equal to unity. All this information is encoded in the toric diagram for the E1–triangulation:

D2

E3

D1

E2

D3E1

A similar analysis can be performed for the other two full resolution phases corresponding to the
triangulations E2 and E3. A summary of the results are given in table 4.
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4.2 Pairs of GLSMs associated to torsion related orbifolds

The charges of the Fermi superfields are kept arbitrary in table 3. In order that the GLSM is free of
gauge anomalies these charge vectors are subject to the conditions [38]

Q2
1 = Q2

2 = Q2
3 =

3

2
, Q1 ·Q2 = Q2 ·Q3 = Q3 ·Q1 =

1

4
(4.15)

and the sum of charges for each of the three gaugings vanishes, see Subsection 3.6. The first three
equations indicates that consistent choices for the charge vectors are given by the shifted momenta of
the three twisted sectors without oscillators, see table 1, since they all square to 3/2. The latter three
equations can be satisfied by taking the shifted momenta

Q1 =
(
0, 12 ,

1
2 , -1, 0, 0, 0

2
)(
08
)
; Q2 =

(
1
2 , 0,

1
2 , 0, -1, 0, 0

2
)(
08
)
; Q3 =

(
1
2 ,

1
2 , 0, 0, 0, -1, 0

2
)(
08
)

(4.16)

out of the three twisted sectors of the orbifold model without discrete torsion or by

Q×
1 = -

(
0, 12 ,

1
2 , -1, 0, 0, 0

2
)(
08
)
; Q×

2 = -
(
1
2 , 0,

1
2 , 0, -1, 0, 0

2
)(
08
)
; Q×

3 = -
(
1
2 ,

1
2 , 0, 0, 0, -1, 0

2
)(
08
)

(4.17)

of the orbifold model with torsion. Notice that this is precisely how the brother gauge shift vectors
were related to the original ones as discussed in Subsection 2.2.

These certainly do not represent unique choices, but for any choice of anomaly free charge vectors
from shifted momenta of the physical twisted states without oscillators in the orbifold model without
torsion, the choice of the same charge vectors but all with the opposite sign, is an anomaly free choice
with torsion. Hence, switching torsion on or off corresponds to the mapping

Q1 ↔ Q×
1 = −Q1 , Q2 ↔ Q×

2 = −Q2 , Q3 ↔ Q×
3 = −Q3 (4.18)

of all the charges in the two associated resolution GLSMs simultaneous. This suggests that there is
a field redefinition from the Fermi superfields Λ in the non–torsion model to the Fermi superfields Λ×

in the torsion model. Formally, in terms of the chiral superfields Ωr defined in table 3 this superfield
redefinition can be stated as

Λ → Λ× = e−2 log Ω·QΛ , (4.19)

since this precisely reverses all the charges of Λ. In order that this field redefinition is well–defined
Ωr should be non–singular. Given that in various coordinate patches within the phases of the theory,
there are always three superfields non–vanishing they can be used in this field redefinition. Table 5
summarises the choices for Ωr in the patches under investigation here.

Notice that (4.19) precisely looks like a super gauge transformation (A.28) but with the super
gauge parameters Θ replaced by −2 log Ω. Since only the Fermi multiplet are involved in this superfield
redefinition, it is anomalous. Because this superfield redefinition is of the same form as a super gauge
transformation, the form of the anomaly is known to be

Wsf redef anom = −
1

2π

∑

r,s

Ars log ΩrF s = −
1

2π

{3

2

∑

r

log Ωr F
r +

1

4

∑

s 6=r

log Ωs F
r
}
, (4.20)
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Phase Patch Non–singular superfield representation of

(P) Ω1 Ω2 Ω3

Orbifold (O) Φ′−1
1 Φ′−1

2 Φ′−1
3

S–triangulation (S) Φ2Φ3Φ
−1
1 Φ1Φ3Φ

−1
2 Φ1Φ2Φ

−1
3

(33) Φ2
2Φ

′
3 Φ2

1Φ
′
3 Φ′−1

3

(22) Φ2
3Φ

′
2 Φ′−1

2 Φ2
1Φ

′
2

(11) Φ′−1
1 Φ2

3Φ
′
1 Φ2

2Φ
′
1

E1–triangulation (31) Φ2
2Φ

′
3 Φ2

3Φ
−2
2 Φ′−1

3 Φ′−1
3

(33) Φ2
2Φ

′
3 Φ2

1Φ
′
3 Φ′−1

3

(21) Φ2
3Φ

′
2 Φ′−1

2 Φ2
2Φ

−2
3 Φ′−1

2

(22) Φ2
3Φ

′
2 Φ′−1

2 Φ2
1Φ

′
2

E2–triangulation (32) Φ−2
1 Φ2

3Φ
′−1
3 Φ2

1Φ
′
3 Φ′−1

3

(33) Φ2
2Φ

′
3 Φ2

1Φ
′
3 Φ′−1

3

(11) Φ′−1
1 Φ2

3Φ
′
1 Φ2

2Φ
′
1

(12) Φ′−1
1 Φ2

3Φ
′
1 Φ2

1Φ
−2
3 Φ′−1

1

E3–triangulation (11) Φ′−1
1 Φ2

3Φ
′
1 Φ2

2Φ
′
1

(13) Φ′−1
1 Φ2

2Φ
−2
3 Φ′−1

1 Φ2
3Φ

′
1

(23) Φ−2
1 Φ2

2Φ
′−1
2 Φ′−1

2 Φ2
1Φ

′
2

(22) Φ2
3Φ

′
2 Φ′−1

2 Φ2
1Φ

′
2

Table 5: This table gives the explicite non–singular forms of Ωr the orbifold and the full resolution
patches in the three triangulations.
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using the general form of the super gauge anomaly (B.14). The latter form is obtained by using the
explicit expression (4.15) of the anomaly matrix Ars = Qr ·Qs given by

A =




3
2

1
4

1
4

1
4

3
2

1
4

1
4

1
4

3
2


 . (4.21)

The superfield anomaly (4.20) is of the form of superfield dependent FI–actions (A.30) but with the
FI–parameters ρr replaced by

ρT → ρ×T = ρT −
1

2π
log ΩT A . (4.22)

where ρT =
(
ρ1, ρ2, ρ3

)
and log ΩT =

(
log Ω1, log Ω2, log Ω3

)
.

The field redefinition anomaly (4.20) is not gauge invariant: it gives a phase in the Euclidean path
integral

δΘSsf redef anom ⊃ −i

∫
αr Ars

F s
E2

2π
. (4.23)

However, since it is only obtained under the assumption that the field redefinition (4.19) is non–
singular, it only receives discrete phase contributions from the scalar fields in Table 4 that do not
vanish.

The flux quantisation conditions (3.22) for the present GLSM read

∫
F 1
E2

2π
∈ Z,

∫
F 2
E2

2π
∈ Z,

∫
F 3
E2

2π
∈ Z , (4.24a)

1

2

∫
F 2
E2

2π
+

1

2

∫
F 3
E2

2π
∈ Z,

1

2

∫
F 1
E2

2π
+

1

2

∫
F 3
E2

2π
∈ Z,

1

2

∫
F 1
E2

2π
+

1

2

∫
F 2
E2

2π
∈ Z . (4.24b)

The first three conditions follow from the charges of the chiral superfields Φ′
r and the latter three from

those of Φu. Thus all gauge fluxes are integers and the sums of two gauge fluxes are even integers.
The latter quantisation conditions are solved by adding two equations and subtracting the third:

1

2π

∫



F 1
E2

F 2
E2

F 3
E2


 = F n , F = Q−1

(S) , (4.25)

in terms of three integers nT =
(
n1, n2, n3

)
. Here, Q(S) is one of the charge matrices defined in (C.1) of

Appendix C and their inverse transposed forms in (C.2). As can be seen from there, F is an integral
matrix, the first three quantisation conditions are fulfilled as well. As was argued in [54] possible
vacuum phases in (orbifold) partition functions may be recovered in the GLSM as non–invariances of
the path integral encoded in

δΘSsf redef anom ⊃ −2πimTM(P ) n , M(P ) = Q−T
r AF = Q−T

(P )
AQ−1

(S)
. (4.26)

20



Hence, the path integral is invariant if M(P ) is an integral matrix. By explicit matrix multiplications
it may be confirmed that M(P ) is indeed integral for all charge matrices (C.1) that correspond to any
of the patches of the three fully resolved phases. On the contrary in the orbifold phase one finds:

M(O) =




1 - 32 -32

-32 1 -32

-32 - 32 1


 ≡




0 1
2

1
2

1
2 0 1

2

1
2

1
2 0


 . (4.27)

The final expression is obtained modulo integral matrices. This shows that in the orbifold phase the
discrete torsion phases are reproduced by the residual gauge transformations of the field redefinition
anomaly.

To summarise, the two non–compact resolution GLSMs associated to the orbifold theories with and
without torsions are both free of gauge anomalies and hence consistent models. The effect of discrete
torsion between the two models is recovered in their orbifold phases, if both models are expressed in
the same field basis (i.e. with chiral Fermi multiplets with the same gauge charges in both models)
because of a field redefinition anomaly (4.20). Even though in this expression there are logs of chiral
superfields, these are non–singular, because the superfields which appear in the field redefinition (4.19)
do not vanish in the patch where the particular field redefinition is defined (see Table 5). In particular
this does not signify that the geometry has torsion or should be augmented with NS5–branes, since in
the unitary gauge the FI–terms are constants in each patch, hence the three–form flux (3.28) vanishes.

5 GLSMs for resolutions of T 6/Z2 × Z2

The study of (0, 2) resolution GLSMs of the toroidal orbifold T 6/Z2 ×Z2 is more involved than those
for the non–compact orbifold C3/Z2 × Z2 considered in the previous section. First of all, additional
ingredients are needed to describe the geometry as the orbifold is compact. And partially because
of this also the description of possible gauge backgrounds is more complicated. Only with these
aspects understood, the consequences of discrete torsion in the underlying orbifold model can be
properly investigated. Therefore, first Subsections 5.1 to 5.4 are used to develop a both accurate
and manageable description of resolution GLSMs associated with the singular T 6/Z2 × Z2 geometry
dubbed a minimal full resolution model. Subsection 5.5 then gives the GLSM for a particular gauge
background using the same blowup modes as in the non–compact model studied in the previous section.
Finally, Subsection 5.6 the GLSM for the compact orbifold model with discrete torsion is studied.

5.1 Construction of resolution GLSMs for compact Z2 × Z2 orbifolds

To construct GLSMs that describe resolutions of toroidal orbifold geometries, the following steps need
to be taken [39]:

1. Give GLSM descriptions for each of the three underlying two–tori compatible with the orbifold
symmetries.

2. Add so–called exceptional gaugings to introduce the orbifold actions and define the exceptional
cycles.
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Superfield Φu 1 Φu 2 Φu 3 Φu 4 Γu Γ′
u

U(1) charges zu 1 zu 2 zu 3 zu 4 γu γ′u

Ru′
1
2δu′u

1
2δu′u

1
2δu′u

1
2δu′u −δu′u −δu′u

Table 6: Superfield charge table for the GLSM for three two–tori admiting Z2 symmetries.

3. Confirm that there is a regime where the GLSM description can be interpreted as the orbifold
geometry under consideration.

4. Determine the regimes in which the GLSM description can be interpreted as resolved geometries.

This program was discussed in [39] for (2, 2) models, but these steps can equally well be executed in
the (0, 2) language, which is used throughout this work.

It is important to realise that there are a number of different T 6/Z2 × Z2 orbifolds depending on
their underlying six–torus lattice, see e.g. [48, 60, 61]. The construction here is aimed to resolve the
particular one with Hodge numbers (51, 3). Moreover, one single orbifold geometry may be associated
to many different GLSMs, even if the target space gauge configurations are not considered. The de-
scriptions differ in the number of exceptional gaugings. Descriptions in which for all exceptional cycles
of the resolved geometry there are exceptional gaugings, were dubbed maximal full resolution GLSMs
in ref. [39]. On the other end there are GLSMs descriptions with the least number of exceptional gaug-
ings such that still the effective geometry in appropriate regimes corresponds to fully resolved orbifold
resolutions. Such models were called minimal full resolution GLSMs. Between these two extremes
there is a whole variety of GLSMs. Some of these models cannot describe fully resolved geometries;
while others do [39]. The focus in this paper is on full resolution GLSMs only. Such resolution GLSMs
might possess many different phases. Only the orbifold phase and fully smooth resolution phases are
investigated in this work in detail, while all kinds of interesting other phases will be ignored.

Maximal full resolution GLSMs are the most complete in the sense that all the Kähler parameters
associated to the volumes of the exceptional cycles are made explicit. On the down side, this means
that such models typically contain a large number of U(1) gauge symmetries. As is discussed below
the maximal full resolution GLSM for the toroidal orbifold T 6/Z2×Z2 contains 51 U(1) gaugings: for
each of the 51 Kähler parameters there is a dedicated gauging available. The minimal full resolution
GLSM for this orbifold only requires six U(1) gaugings: The radii of the three two–tori and collective
volumes of the three types of exceptional cycles are explicit in that description.

Below, first the GLSMs description of a two–torus with Z2 symmetries is recalled. After that the
basic ingredients of the maximal full resolution GLSM are laid out. Details of the resulting geometry
and the consequences of the discrete torsion of the orbifold model are investigated in the minimal full
resolution GLSM only for simplicity.
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5.2 Two–tori GLSM with Z2 symmetries

In ref. [39] it was argued that a convenient description of two–tori that admit Z2 involutions are given
by the superfields given in Table 6 with the superpotential

Pthree two–tori =
∑

u

(
κuΦ

2
u 1 +Φ2

u 2 +Φ2
u 3

)
Γu +

(
Φ2
u 1 +Φ2

u 2 +Φ2
u 4

)
Γ′
u , (5.1)

where

κu =
Pτu(

τu
2 )− Pτu(

1
2)

Pτu(
1+τu
2 )− Pτu(

1
2 )

(5.2)

parameterise the complex structures τu of the three two–tori in terms of the Weierstrass P function.
This description was obtained as a rewriting of the well–known Weierstrass model of an eliptic curve.
On each of the four chiral superfields Φu x of two–torus T 2

u a separate Z2 reflection symmetry Φux →
−Φux can act leaving the superpotential invariant. In addition, there are two involutions per two–
torus which can be identified with Z2 translation on the two–torus lattice [39]. The Kähler structures
of the two–tori are encoded in the GLSM description as the FI–parameter au associated with the
gauging Ru. The resulting D– and F–term equations in the conformal limit read:

|zu 1|
2 + |zu 2|

2 + |zu 3|
2 + |zu 4|

2 = au , (5.3a)

κu z
2
u 1 + z2u 2 + z2u 3 = 0 , z2u 1 + z2u 2 + z2u 4 = 0 . (5.3b)

Because κu 6= 1 the two F–term conditions can never combined to an equation with just two terms.
Together with the U(1) gaugings, which can remove a phase per u, shows that each set of zu 1, . . . , zu 4

coordinates for a given u describes a geometry of real dimension two.

5.3 Maximal full resolution GLSM

The maximal full resolution GLSM for the toroidal orbifold T 6/Z2 × Z2 has three ordinary gaugings
R1, R2 and R3 to define three two–tori and 3 · 16 = 48 exceptional gaugings E1,yz, E2,xz and E3,xy

associated to the exceptional cycles. The full charge table is given in Table 7. The fermi superfields
Γ1,Γ

′
1, Γ2,Γ

′
2 and Γ3,Γ

′
3 feature in the superpotential to define the three underlying two–tori, see (5.1).

Because the exceptional gaugings the superpotential has to be extended to

Pmax res =
(
κ1 Φ

2
1 1

∏
z
Φ′
2 1z

∏
y
Φ′
3 1y +Φ2

1 2

∏
z
Φ′
2 2z

∏
y
Φ′
3 2y +Φ2

1 3

∏
z
Φ′
2 3z

∏
y
Φ′
3 3y

)
Γ1

+
(
Φ2
1 1

∏
z
Φ′
2 1z

∏
y
Φ′
3 1y +Φ2

1 2

∏
z
Φ′
2 2z

∏
y
Φ′
3 2y +Φ2

1 4

∏
z
Φ′
2 4z

∏
y
Φ′
3 4y

)
Γ′
1

+
(
κ2 Φ

2
2 1

∏
x
Φ′
1 1x

∏
z
Φ′
3 1z +Φ2

2 2

∏
x
Φ′
1 2x

∏
z
Φ′
3 2z +Φ2

2 3

∏
x
Φ′
1 3x

∏
z
Φ′
3 3z

)
Γ2

+
(
Φ2
2 1

∏
x
Φ′
1 1x

∏
z
Φ′
3 1z +Φ2

2 2

∏
x
Φ′
1 2x

∏
z
Φ′
3 2z +Φ2

2 4

∏
x
Φ′
1 4x

∏
z
Φ′
3 4z

)
Γ′
2

+
(
κ3 Φ

2
3 1

∏
x
Φ′
1 1x

∏
y
Φ′
2 1y +Φ2

3 2

∏
x
Φ′
1 2x

∏
y
Φ′
2 2y +Φ2

3 3

∏
x
Φ′
1 3x

∏
y
Φ′
2 3y

)
Γ3

+
(
Φ2
3 1

∏
x
Φ′
1 1x

∏
y
Φ′
2 1y +Φ2

3 2

∏
x
Φ′
1 2x

∏
y
Φ′
2 2y +Φ2

3 4

∏
x
Φ′
1 4x

∏
y
Φ′
2 4y

)
Γ′
3

(5.4)
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Superfield Φ1x Φ2 y Φ3 z Γ1 Γ′
1 Γ2 Γ′

2 Γ3 Γ′
3 Φ′

1 yz Φ′
2xz Φ′

3xy

U(1) charge z1x z2 y z3 z γ1 γ′1 γ2 γ′2 γ3 γ′3 x1 yz x2xz x3xy

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0

E1 y′z′ 0 1
2δy′y

1
2δz′z 0 0 0 0 0 0 −δy′yδz′z 0 0

E2 x′z′
1
2δx′x 0 1

2δz′z 0 0 0 0 0 0 0 −δx′xδz′z 0

E3x′y′
1
2δz′z

1
2δy′y 0 0 0 0 0 0 0 0 0 −δx′xδy′y

Table 7: Superfield charge table that determines the geometry of maximal full resolution of T 6/Z2×Z2.

in order to make it gauge invariant under all exceptional gaugings. The resulting D– and F–term
conditions are rather involved and not particularly illuminating. For this reason we refrain from
giving them here and turn to the more transparant minimal full resolution model.

5.4 Minimal full resolution GLSM

The minimal full resolution GLSM has three ordinary and three exceptional gaugings. Contrary to the
maximal full resolution GLSM, the charge assignments of minimal full resolution models are not unique
as for each of the three exceptional gaugings there are 4 · 4 = 16 choices, which of the homogeneous
coordinate superfields to be gauged.

Here only gaugings of the superfields Φ1 1, Φ2 1 and Φ3 1 are considered7, as can be seen in Table 8.
Consequently, the superpotential for the geometry reduces to

Pmin res =
3∑

u=1

Γu

(
κu Φ

2
u 1

∏

r 6=u

Φ′
r +Φ2

u 2 +Φ2
u 3

)
+

3∑

u=1

Γ′
u

(
Φ2
u 1

∏

r 6=u

Φ′
2Φ

′
3 +Φ2

u 2 +Φ2
u 4

)
. (5.5)

The effective target space geometries are determined by six D– and six F–term equations. The six
resulting D–term conditions read

|z1 1|
2 + |z1 2|

2 + |z1 3|
2 + |z1 4|

2 = a1 , |z2 1|
2 + |z3 1|

2 − 2 |x1|
2 = 2 b1 ,

|z2 1|
2 + |z2 2|

2 + |z2 3|
2 + |z2 4|

2 = a2 , |z1 1|
2 + |z3 1|

2 − 2 |x2|
2 = 2 b2 ,

|z3 1|
2 + |z3 2|

2 + |z3 3|
2 + |z3 4|

2 = a3 , |z1 1|
2 + |z2 1|

2 − 2 |x3|
2 = 2 b3

(5.6)

7Other choices would be equally well justified, however we expect that the physical understanding does not depend
much on this, even though the detailed description will.
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Superfield Φ1x Φ2y Φ3z Γ1 Γ′
1 Γ2 Γ′

2 Γ3 Γ′
3 Φ′

1 Φ′
2 Φ′

3

U(1) charge z1x z2y z3z γ1 γ′1 γ2 γ′2 γ3 γ′3 x1 x2 x3

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0

E1 0 1
2δy1

1
2δz1 0 0 0 0 0 0 −1 0 0

E2
1
2δx1 0 1

2δz1 0 0 0 0 0 0 0 −1 0

E3
1
2δx1

1
2δy1 0 0 0 0 0 0 0 0 0 −1

Table 8: A choice for a superfield charge table that determines the geometry of a minimal full
resolution of T 6/Z2 × Z2.

and the six F–term conditions

κ1 z
2
1 1 x2x3 + z21 2 + z21 3 = 0 , z21 1 x2x3 + z21 2 + z21 4 = 0 ,

κ2 z
2
2 1 x1x3 + z22 2 + z22 3 = 0 , z22 1 x1x3 + z22 2 + z22 4 = 0 ,

κ3 z
2
3 1 x1x2 + z23 2 + z23 3 = 0 , z23 1 x1x2 + z23 2 + z23 4 = 0 .

(5.7)

The properties of the resulting geometries depend crucially on the values of the Kähler parameters.
As can be seen from the three D–term conditions on the left in (5.6) the parameters a1, a2, a3 all need
to be positive (since we have assumed that all yA = 0). The other Kähler parameters b1, b2, b3 may in
principle have either sign.

Orbifold phase

Consider the phase in which all three parameters b1, b2, b3 are negative while the parameters a1, a2, a3
all positive. It follows that all three coordinates x1, x2, x3 are necessarily non–zero so that their phases
can be fixed to some preset values. This does not fix the gauge symmetries completely, as there are
residual Z2 actions left over:

Z2 : z2 1 → −z2 1 , z3 1 → −z3 1 ,

Z2 : z1 1 → −z1 1 , z3 1 → −z3 1 ,

Z2 : z1 1 → −z1 1 , z2 1 → −z2 1 .

(5.8)

For concreteness, focus on the first of these three Z2 actions. The fixed set of this action is given by
z2 1 = z3 1 = 0. In the target space geometry this does not correspond to a single fixed set, but a
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collection of disjoint fixed sets. Indeed, inserting this in the second and third equations in (5.7) gives
the equations:

z22 2 + z22 3 = z22 2 + z22 4 = 0 , z23 2 + z23 3 = z23 2 + z23 4 = 0 . (5.9)

Each of these equations are quadratic with two roots:

z2 3 = ±i z2 2 , z2 4 = ±i z2 2 , z3 3 = ±i z3 2 , z3 4 = ±i z3 2 , (5.10)

where all the signs are independent, hence there are 24 = 16 solutions in total. Each of these fixed sets
have the topology of a two–torus: The equations for the homogeneous coordinates z1 x are those of
the deformed two–torus used in Subsection 5.2 since the absolute values of the coordinates x2 and x3
are determined by the second and third equation on the right hand side in (5.6). This argumentation
may be repeated for the second and third Z2 actions in (5.8). Hence one has in total 3 · 16 = 48 fixed
two–tori; precisely the number of fixed two–tori to be expected in the T 6/Z2 × Z2 orbifold.

The coordinate patches suggested by the minimal full resolution model for the orbifold geometry
can be extracted from the D– and F–term equations (5.6) and (5.7). Since all blowup parame-
ters b1, b2, b3 are negative, the three D–term equations on the right–hand–side of (5.6) imply that
x1, x2, x3 6= 0. Each of the other three D–term equations imply that at least one coordinate in each
is non–zero. But then the F–term equations (5.7) imply that two other coordinates are non–zero.
Hence, three out of four z1x, z2y and z3z coordinates are non–zero. This leads to 43 = 64 coordinate
patches; the same number of coordinate patches as the (T 2)3 torus GLSM would have.

Full resolution phases

In the full resolution phases all parameters b1, b2, b3 are positive but parametrically much smaller than
the parameters a1, a2, a3. (If this is not the case, the GLSM might develop more exotic phases, like
critical– and over–blowup phases [39].) In the full resolution phases it is useful to reshuffle the three
D–term equations on the right hand side of (5.6) in the following fashion:

|z1 1|
2 + |x1|

2 = b2 + b3 − b1 + |x2|
2 + |x3|

2 .

|z2 1|
2 + |x2|

2 = b1 + b3 − b2 + |x1|
2 + |x3|

2 ,

|z3 1|
2 + |x3|

2 = b1 + b2 − b3 + |x1|
2 + |x2|

2 .

(5.11)

These equations contain important information as they decide which coordinate fields are necessarily
non–zero. For example, if the sign of the combination b2 + b3 − b1 is positive either z1 1 or x1 is
necessarily non–zero, while if this combination is negative either x2 or x3 is necessarily non–zero.

The following divisors can be easily defined by setting one of the homogeneous coordinates to
zero: the exceptional divisors Er := {xr = 0} and the ordinary divisors Du := {zu 1 = 0}. The
exceptional divisors consists of 24 = 16 disjoint components and the ordinary divisors of 22 = 4
disjoint components. As was observed in [39] the inherited torus divisors Ru and R′

u can be identified
with the polynomials multiplying the chiral Fermi superfields Γu and Γ′

u in the superpotential (5.5).
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S–triangulation full resolution phase

In the S–triangulation phase of the GLSM the three Kähler parameters are of similar size in the sense
that each one is smaller than the sum of the other two, e.g. the following three inequalities

0 < b1 < b2 + b3 , 0 < b2 < b1 + b3 , 0 < b3 < b1 + b2 , (5.12)

hold simultaneously. In this phase the intersection E1E2E3 exists because it is possible to satisfy
all the D– and F–term equations while setting x1 = x2 = x3 = 0. In fact, in this case the F–term
equations have 26 = 64 solutions. This number comes as no surprise, since the T 6/Z2 × Z2 has 64
Z2 × Z2 fixed points. When all resolved using the S–triangulation, one 64 times the intersection of
these three exceptional divisors. Note that the first equation in (5.11) implies that not both z1 1 and
x1 can be zero at the same time, hence, in particular, the curve D1E1 does not exist. All this is in
accordance with the topological properties of the S–triangulation of the resolved T 6/Z2×Z2 orbifold.

E1–triangulation full resolution phase

In the E1–triangulation phase of the GLSM the Kähler parameter b1 is much larger than the sum of
the other two:

0 < b2 < b1 + b3 , 0 < b3 < b1 + b2 , b2 + b3 < b1 . (5.13)

Then (5.11) implies that not both x2 and x3 can be zero at the same time, hence, in particular,
the curve E2E3 and the intersection E1E2E3 do not exist in this phase. Contrary, in this phase the
curve D1E1 does exist. All this is, again, in accordance with the topological properties of the E1–
triangulation of the resolved T 6/Z2 ×Z2 orbifold. The transition from the S– to the E1–triangulation
phase thus provides the GLSM description of the flop transition. Note that in the GLSM there is
nothing singular at the transition b1 = b2+b3 even though the target space geometry is singular there.

The other two full resolutions phases, the E2– and E3–triangulations may be defined in an analo-
gous fashion.

Full resolution coordinate patches

To understand the coordinate patches in the full resolution phases, first observe that the three D–
term equations on the right–hand–side of (5.6) lead to the same options for non–vanishing coordinates
z1 1, z2 1, z3 1, x1, x2, x3 as obtained in the non–compact case summarised in Table 4. Hence, in the S–,
E1–, E2– or E3–triangulation the following coordinate combinations

S : z1 1z2 1z3 1 6= 0 , z1 1z2 1x3 6= 0 , z1 1z3 1x2 6= 0 or z2 1z3 1x1 6= 0 , (5.14a)

E1 : z2 1z3 1x3 6= 0 , z1 1z2 1x3 6= 0 , z2 1z3 1x2 6= 0 or z1 1z3 1x2 6= 0 , (5.14b)

E2 : z1 1z3 1x3 6= 0 , z1 1z2 1x3 6= 0 , z2 1z3 1x1 6= 0 or z1 1z3 1x1 6= 0 , (5.14c)

E3 : z2 1z3 1x1 6= 0 , z1 1z2 1x1 6= 0 , z1 1z2 1x2 6= 0 or z1 1z3 1x2 6= 0 . (5.14d)

are non–zero, respectively. Next, observe that the first D–term equation on the left–hand–side of (5.6)
implies that at least z1x is non–zero. If this happens to be z1 1 then the latter two D–term equations
on the right–hand–side of (5.6) imply that x2 and x3 are also non–zero because a1 is parametrically
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larger than the parameters b1, b2, b3 so that cancellations are never possible. But the the two top
F–term equations (5.7) imply that two other z1x, x 6= 1 are non–zero. There are three options for
this to happen. Finally, it is possible that all three z1x, x 6= 1 are non–zero. In total this gives four
non–vanishing coordinate combinations for the first lines of the D– and F–term equations. A similar
analysis can be performed for the second and third lines of these equations, leading to the following
combinations of non–vanishing coordinates

z1 2z1 3z1 4 6= 0 , z1 1z1 3z1 4x2x3 6= 0 , z1 1z1 2z1 4x2x3 6= 0 or z1 1z1 2z1 3x2x3 6= 0 , (5.15a)

z2 2z2 3z2 4 6= 0 , z2 1z2 3z2 4x1x3 6= 0 , z2 1z2 2z2 4x1x3 6= 0 or z2 1z2 2z2 3x1x3 6= 0 , (5.15b)

z3 2z3 3z3 4 6= 0 , z3 1z3 3z3 4x1x2 6= 0 , z3 1z3 2z3 4x1x2 6= 0 or z3 1z3 2z3 3x1x2 6= 0 . (5.15c)

Coordinate patches can now be composed by taking one out of four equations on each line of (5.15)
combined with one out of the four equations from the line in (5.14) corresponding to the chosen
triangulation. Not all combinations are valid however, in total there should be 12 non–vanishing
coordinates out of the 15 original ones, so that the coordinate patch has complex dimension three.

The results of this analysis are summarised in Table 9. The GLSM description leads to 76 coordi-
nate patches for each of the full resolution phases. There are 72 universal coordinate patches which
exist independently of which triangulation is chosen: for each triangulation choice in (5.14) there is at
least one combination of non–vanishing fields which is contained in the non–vanishing set coordinates
of that patch to the extent that precisely 12 coordinates are non–zero. 54 of those patches do not
involve any of the exceptional coordinates and therefore coincide with the coordinate patches of the
orbifold discussed above. These coordinate patches are indicated above the line that splits the uni-
versal patches in Table 9. In addition, to the 72 universal coordinate patches there are four patches
that depend on the triangulation. The GLSM therefore dictates a gluing procedure in which ten of
the coordinate patches of the orbifold are replaced by 22 patches for the full resolutions.

5.5 Gauge background on the minimal full resolution of the non–torsional orbifold

The gauge charges of the Fermi and chiral multiplets that define a simple gauge bundle on the minimal
full resolution model is given in Table 10. This gauge bundle is quite closely related to the standard
embedding on the two–tori. The exceptional E–gauge charges are identical to those indicated in (4.15)
of the non–compact resolution model. In order to avoid any of the four types of anomalies mentioned
in Subsection 3.6, additional chiral multiplets Ψu,Ψ

′
u are introduced with identical charges as Γu,Γ

′
u

and the sum of charges of all chiral superfields and all chiral Fermi superfields vanish separately.
In total there are 3 · 4 + 3 = 15 Fermi multiplets involved in the gauge bundle subject to 3 · 2 = 6

constraints enforced by the chiral multiplets Ψu,Ψ
′
u. This leave nine Fermi multiplets part of the gauge

background which cannot be fitted into a single E8 factor. Hence a number of fermionic gaugings are
needed. If all six gaugings in the minimal resolution model are accompanied by fermionic gaugings,
(a deformation of) the standard embedding is obtained. To make contact with the non–torsion line
bundle model that was discussed in Section 4.2, only the inherited Ru–gaugings are accompanied with
fermionic gaugings with parameters Ξu, while the exceptional Er–gaugings are not. With this choice
of Fermionic gaugings 9 − 3 = 6 gauge bundle directions are left over, exactly matching the number
in the non–compact resolution of the non–torsion orbifold model.

In target space this gauge background does not correspond to the standard embedding as there
are no fermionic gaugings associated to the exceptional Er–gaugings. Neither can this background be
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Phase # Non–zero fields Patches Conditions

Universal 54 z1 x′ 6=x z2 y′ 6=y zz′ 6=z x1 x2 x3 6= 0 {z1 x, z2 y, z3 z} x, y, z 6= 1

z1 x′ 6=1 z2 y′ 6=y zz′ 6=z x1 x2 x3 6= 0 {z1 1, z2 y, z3 z} y, z 6= 1

z1 x′ 6=x z2 y′ 6=1 zz′ 6=z x1 x2 x3 6= 0 {z1 x, z2 1, z3 z} x, z 6= 1

z1 x′ 6=x z2 y′ 6=y zz′ 6=1 x1 x2 x3 6= 0 {z1 x, z2 y, z3 1} x, y 6= 1

18 zu′ 6=u 1z1x′ 6=1 z2 y′ 6=1 zz′ 6=z x1 x2 6= 0 {zu 1, z3 z, x3} u′, u = 1, 2; z 6= 1

zu′ 6=u 1z1x′ 6=1 z2 y′ 6=y zz′ 6=1 x1 x3 6= 0 {zu 1, z2 y, x2} u′, u 6= 1, 3; y 6= 1

zu′ 6=u 1z1x′ 6=x z2 y′ 6=1 zz′ 6=1 x2 x3 6= 0 {zu 1, z1 x, x1} u′, u = 2, 3;x 6= 1

S–triang. 4 zu x 6= 0 {x1, x2, x3} u = 1, 2, 3;x = 1, .., 4

zu x 6=31x3 6= 0 {z3 1, x1, x2} u = 1, 2, 3;x = 1, .., 4

zu x 6=21x2 6= 0 {z2 1, x1, x3} u = 1, 2, 3;x = 1, .., 4

zu x 6=11x1 6= 0 {z1 1, x2, x3} u = 1, 2, 3;x = 1, .., 4

E1–triang. 4 zu x 6=11x3 6= 0 {z1 1, x1, x2} u = 1, 2, 3;x = 1, .., 4

zu x 6=31x3 6= 0 {z3 1, x1, x2} u = 1, 2, 3;x = 1, .., 4

zu x 6=11x2 6= 0 {z1 1, x1, x3} u = 1, 2, 3;x = 1, .., 4

zu x 6=21x2 6= 0 {z2 1, x1, x3} u = 1, 2, 3;x = 1, .., 4

E2–triang. 4 zu x 6=21x3 6= 0 {z2 1, x1, x2} u = 1, 2, 3;x = 1, .., 4

zu x 6=31x3 6= 0 {z3 1, x1, x2} u = 1, 2, 3;x = 1, .., 4

zu x 6=11x1 6= 0 {z1 1, x2, x3} u = 1, 2, 3;x = 1, .., 4

zu x 6=21x1 6= 0 {z2 1, x2, x3} u = 1, 2, 3;x = 1, .., 4

E3–triang. 4 zu x 6=11x1 6= 0 {z1 1, x2, x3} u = 1, 2, 3;x = 1, .., 4

zu x 6=31x1 6= 0 {z3 1, x2, x3} u = 1, 2, 3;x = 1, .., 4

zu x 6=31x2 6= 0 {z3 1, x1, x3} u = 1, 2, 3;x = 1, .., 4

zu x 6=21x2 6= 0 {z2 1, x1, x3} u = 1, 2, 3;x = 1, .., 4

Table 9: The 76 coordinate patches of the full resolution phases of the minimal full resolution GLSM.
There are 72 universal coordinate patches which are the same for each of the full resolution phases.
In addition, there are four coordinate patches which are specific for the triangulation chosen.
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Superfield Λ1x Λ2y Λ3z Ψ1 Ψ′
1 Ψ2 Ψ′

2 Ψ3 Ψ′
3 Λ′

1 Λ′
2 Λ′

3 Λn

U(1) charge λ1x λ2y λ3z ψ1 ψ′
1 ψ2 ψ′

2 ψ3 ψ′
3 λ′1 λ′2 λ′3 λn

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0 0

E1 0 1
2δy1

1
2δz1 0 0 0 0 0 0 −1 0 0 0

E2
1
2δx1 0 1

2δz1 0 0 0 0 0 0 0 −1 0 0

E3
1
2δx1

1
2δy1 0 0 0 0 0 0 0 0 0 −1 0

Table 10: A choice for a charge table of the superfields that determine a gauge bundle on the minimal
full resolution of T 6/Z2 × Z2. The Fermi multiplets Λn, n = 1, . . . , 18, are spectators and generate
the broken gauge group.

interpreted as line bundles only because of the presence of the chiral multiplets Ψu,Ψ
′
u that enforce

constraints on the bundle degrees of freedom as well as the fermionic gaugings Ξu.
Given the charges of Table 10 the following superpotential can be written down:

Pmin res bundle =
3∑

u=1
Ψu

(
2κu Φu 1

∏
r 6=u

Φ′
r Λu 1 + κu Φ

2
u 1

∏
r 6=s 6=u

Φ′
rΛ

′
s + 2Φu 2Λu 2 + 2Φu 3Λu 3

)

+
3∑

u=1
Ψ′

u

(
2Φu 1

∏
r 6=u

Φ′
r Λu 1 +Φ2

u 1

∏
r 6=s 6=u

Φ′
rΛ

′
s + 2Φu 2Λu 2 + 2Φu 4Λu 4

)
.

(5.16)

This specific form of a general expression for this superpotential is inspired by the standard embedding
following (3.20).

In the model under investigation only the Ru–gaugings are associated to fermionic gauge transfor-
mations, hence the only non–zero fermionic gauge transformations are:

δΛu x = 1
2 Φux Ξu , δΓu = −Ψu Ξu , δΓ′

u = −Ψ′
uΞu . (5.17)

The specific form, given here, is obtained by requiring that the fermionic gauges are on the (2,2)–locus.
In this case is follows automatically that (5.5) and (5.16) combined are inert under these fermionic
transformations.

This construction leads to a regular bundle as for each of the three fermionic gaugings in (5.17)
not all coefficients vanish simultaneously. The same goes for the six constraints coming from (5.16).
It is straightforward to check this for all coordinate patches given in Table 9 for all four fully resolved
phases of this GLSM. This should not come as a surprise as the fermionic gaugings (5.17) and the
bundle superpotential (5.16) are precisely those that are dictated by the (2,2) locus, see Subsection 3.4.

5.6 Gauge background on the minimal full resolution of the torsional orbifold

In section 2.3 it was explained that the twisted states that survive the orbifold projections are precisely
opposite when torsion is switched on to when it is absent. Since the shifted momenta of the twisted
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Superfield Λ×1x Λ×2y Λ×3z Ψ1 Ψ′
1 Ψ2 Ψ′

2 Ψ3 Ψ′
3 Λ× ′

1 Λ× ′
2 Λ× ′

3 Λn

U(1) charge λ1x λ2y λ3z ψ1 ψ′
1 ψ2 ψ′

2 ψ3 ψ′
3 λ′1 λ′2 λ′3 λn

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0 0

E1 0 −1
2δy1 −1

2δz1 0 0 0 0 0 0 +1 0 0 0

E2 −1
2δx1 0 −1

2δz1 0 0 0 0 0 0 0 +1 0 0

E3 −1
2δx1 −1

2δy1 0 0 0 0 0 0 0 0 0 +1 0

Table 11: A choice for a charge table of the superfields that determine a gauge bundle on the minimal
full resolution of T 6/Z2 × Z2 with torsion.

states without oscillators dictated the exceptional E1, E2, E3–charges in the GLSM of the Fermi mul-
tiplet Λ. Hence the charge Table 8, which determines the geometry, remains unchanged when torsion
is switched on, but the charge table for the vector bundle is modified to Table 11: the Ri–charges
remain the same while the Er–charges are all sign–flipped as compared to those in Table 10.

The flipping of the Er–gauge charges has various consequences. First of all, the fermionic gauge
transformations (5.17) are not gauge covariant any more. This is easily alleviated by inserting appro-
priate factors of Φ′

r in the first column of fermionic gauge transformations of Λu1:

δΛ×u 1 =
1
2

∏

r 6=u

Φ′
r Φu 1 Ξu , δΛ×u x = 1

2 Φux Ξu , δΓu = −Ψu Ξu , δΓ′
u = −Ψ′

uΞu , (5.18)

for x 6= 1. Secondly, the bundle superpotential (5.16) has to be modified to

Pmin res bundle =
3∑

u=1
Ψu

(
2κu Φu 1 Λ

×
u 1 + κuΦ

2
u 1

∏
r 6=s 6=u

Φ′
rΦ

′2
s Λ

× ′
s + 2Φu 2Λ

×
u 2 + 2Φu 3Λ

×
u 3

)

+
3∑

u=1
Ψ′

u

(
2Φu 1Λ

×
u 1 +Φ2

u 1

∏
r 6=s 6=u

Φ′
rΦ

′2
s Λ

× ′
s + 2Φu 2Λ

×
u 2 + 2Φu 4Λ

×
u 4

) (5.19)

by making the following replacements

Λu1 → Φ′−1
r Φ′−1

s Λ×u1 , Λux → Λ×ux , Λ′
r → Φ′2

r Λ
× ′
r , (5.20)

with x 6= 1 and r 6= s 6= u, to ensure that it is gauge invariant again. With these modifications of
the fermionic gauge transformations and the bundle superpotential, it is not difficult to see that the
full superpotential including the part for the geometry (5.4) is invariant under the fermionic gauge
transformations.

The replacements (5.20) are the same as the field redefinitions (4.19) in the non–compact case with
the chiral superfields Ωr given by the ones in the orbifold case (O) of Table 5. It should be stressed
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that in the present case the replacements (5.20) in the bundle superpotential apply to the GLSM
theory as a whole globally, not just to a particular (coordinate patch within a) phase of the theory.
Moreover, it is unique in the sense that other factors, that would have the same charges (like the
other combinations in Table 5), would always involve some powers of Ψu or Ψ′

u, but that is forbidden
because they are only allowed to appear linearly in the superpotential because of the R–symmetry, as
was emphasised below (3.16).

Mixed anomalies and worldsheet Green–Schwarz mechanism

The flipped Er–gauge charges in Table 11 is irrelevant for most anomalies which still vanish identically
as can be verified using (3.23) through (3.25). Only mixed RuEr 6=u–anomalies are now non–zero:

Aur = Aru = 1
2 · 1

2 − 1
2 · (−1

2 ) =
1
2 , (5.21)

u 6= r. Hence, contrary to the GLSMs associated to the non–compact orbifold models, the GLSMs
associated to the compact orbifold models without or with torsion are genuinely physically distinct.

These mixed anomalies need to be cancelled by field dependent FI–terms of the form

WFI anom =
1

4π

∑

u,r

cru
2

log(N r)F u +
1

4π

∑

u,r

1− cru
2

log(Nu)F r , (5.22)

where the composite N r and Nu have negative unit charge under the Ru– and Er–gaugings, re-
spectively, and all other gauge charges zero. The arbitrary coefficients cru arise as it is possible by
counter terms to shift two dimensional mixed anomalies around. The choice cru = 1/2 would treat
all mixed anomalies symmetrically. (See e.g. ref. [55] for a more extensive discussion.) The composite
chiral superfields Nu and N r can be realised as rational functions of (fractional) powers of the chiral
superfields. They may be expressed as

N r = Φ′
r , Nu =

∑

x,y 6=1

nuxy Φ
−1
uxΦ

−1
uy + nu11Φ

−2
u1

∏

r 6=u

Φ′−1
r +

∑

x 6=1

nu1xΦ
−1
u1Φ

−1
ux

∏

r 6=u

Φ
′−1

2
r , (5.23)

with some generically non–zero parameters nuxy, nu11 and nu1x. Since the chiral superfields Ψu and
Ψ′

u cannot appear here as they would break R–symmetry, the possible forms in these expressions are
restricted.

The superfield dependent FI–terms (5.22) are defined on the level of the definition of the model
and are singular independently of how the coefficients cru and nuxy, nu11 and nu1x are chosen, hence
they signify the presence of NS5–branes [55, 56]. The interpretation of the coefficients cru is not so
clear. However, if they are all set to zero: cru = 1, then the expressions of Nu become irrelevant. The
NS5–branes are then located on the resolved exceptional cycles Er and they would disappear inside
the orbifold singularities in the blow down limit. Maybe other values of cru could be interpreted that
the NS5–branes are moved around the resolved orbifold geometry and for cru = 0 they are pushed fully
off the resolved singularities onto the two–torus cycles. This seems to signify that the NS5–branes
can move around on the resolved geometry without losing their influx effects on the worldsheet. This
interpretation may be more transparent in another parameterisation

WFI anom =
1

8π

∑

u,r

cru log Φ
′
rF

u −
1

4π

∑

u,r



∑

x 6=1

cuxr log Φux + cu1r

(
log Φu 1−

∑

r′ 6=u

1
2 log Φ

′
r′

)

F r (5.24)
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of (5.22), since the coefficients determining the position of the NS5–branes are subject to the constraint
cru +

∑
x
cuxr = 1 .

Comparing the pair of torsion related GLSMs

Just like in the non–compact case, it is instructive to compare the resoluton GLSMs of the orbifold
theories without and with torsion with each other by working in the same superfield basis. By
interpreting (5.20) as a superfield redefinition (4.20), but now both Ru– and Eu–transformations
are involved, the anomaly matrix A extends to

A =




1
4 0 0 0 1

4
1
4

0 1
4 0 1

4 0 1
4

0 0 1
4

1
4

1
4 0

0 1
4

1
4

3
2

1
4

1
4

1
4 0 1

4
1
4

3
2

1
4

1
4

1
4 0 1

4
1
4

3
2




. (5.25)

Notice that the lower 3 × 3–block is identical to (4.21). Since in the replacements (5.20) only the
superfields Φ′

r feature, the superfield redefintion anomalies reads

Wfield redef anom = −
1

2π

{1

4

∑

u 6=r

log Φ′
r F

u +
3

2

∑

r

log Φ′
r F

r +
1

4

∑

r′ 6=r

log Φ′
r F

r′
}
. (5.26)

The first contributions coincides with the general expression (5.22) provided that cur = 0 and N r = Φ′
r,

hence they cancel each other exactly. The latter two contributions were also obtained in the non–
compact situation (4.20). Hence, the analysis performed in Subsection (4.2) can be repeated here as
well. In particular in the orbifold phase, that analysis recovers the discrete torsion phases.

6 Conclusions

Discrete torsion within the Z2 × Z2 orbifolds correspond to particular additional phases between the
sum of partition functions of different sectors corresponding to different boundary conditions on the
worldsheet torus. Smooth geometries are typically described by NLSMs which cannot be exactly
quantised and the path integral cannot be represented as a sum over similar sectors as the orbifold
theory. It is therefore unclear how to include effects of discrete torsion for smooth geometries. The
main aim of this paper was to understand where discrete torsion goes when orbifolds have been
resolved to fully smooth geometries. This question was addressed both for resolutions of the non–
compact orbifold C3/Z2×Z2 as well as the compact T 6/Z2×Z2 orbifold with Hodge numbers (51, 3)
to understand both local and global aspects.

GLSMs were chosen as the framework for this investigation, as they can both make contact with
the orbifolds as well as with fully resolved smooth geometries within the same description. From
an effective field theory point of view orbifold resolutions correspond to giving VEVs to twisted
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states defining the blowup modes. Unless very particular blowup modes are selected, this leads to
(0, 2) compactifications in which the gauge backgrounds are not dictated by the standard embedding.
Therefore, in this work (0, 2) GLSMs were used for the interpolation between singular orbifolds and
smooth compactifications.

The non–compact resolution GLSM of theC3/Z2×Z2 geometry had already given in the literature,
the same goes for the resulting line bundle backgrounds obtained by using non–oscillator blowup
modes on the three C2/Z2 singularities. The GLSM gauge charges of the chiral Fermi multiplets
under the resulting three exceptional gauge symmetries are given as the shifted left–moving momenta
of these blowup modes. The effect of discrete torsion on the orbifold is that the twisted states with the
opposite left–moving shifted momenta survive the orbifold projections. Consequently, the chiral Fermi
multiplets in resolution GLSM for the torsional orbifold has the opposite worldsheet gauge charges as
the non–torsional case. The GLSM associated to the torsional orbifold is equally well defined as the
non–torsional model in the sense that all (gauge) anomalies vanish. In many respects the two models
look identical. However, if one wants to express the physics of the GLSM associated with the torsional
orbifold in terms of the superfield basis of the non–torsional GLSM, one has to perform anomalous
superfield redefinitions. Since, these superfield redefinitions have to be well defined in each patch
where they are performed, the expression of the anomaly is harmless within the smooth resolution
phases. But in the orbifold phase this anomaly turns out not to be invariant under residual discrete
Z2 × Z2 gauge transformations, precisely reproducing the torsion phases of the orbifold theory.

The story for the compact case is more involved. GLSMs for resolutions of the T 6/Z2 × Z2

orbifold have not explicitly appeared in the literature. Moreover, GLSMs for other compact orbifold
resolutions have only been studied in the (2, 2) context. Therefore, before the question about discrete
torsion on compact orbifold resolutions could be addressed, first resolution GLSMs for T 6/Z2×Z2 had
to be constructed. Contrary to the existing literature on compact orbifold resolutions, this was done
immediately in the (0, 2) language. The simplest version of such a GLSM involves six gaugings on the
worldsheet: three to define modified Weierstrass models to describe the underlying two–tori of the T 6

and three exceptional gaugings associated with the blowup process. In order to make comparisons
with the non–compact situations most transparant, the same blowup modes were chosen as in the
non–compact case, i.e. non–oscillatory twisted states. To pass all consistency conditions this resulted
in a more complicated bundle that shares both features of line bundles on the resolved fixed two–tori
as well as the standard embedding on the underlying two–tori of the T 6.

The resolution GLSM of the T 6/Z2 × Z2 with discrete torsion was obtained in a similar fashion
as its non–compact analog: the exceptional gauge charges were flipped, while the other three gauge
charges remained unchanged. As a consequence the resolution GLSM associated with the torsional
orbifold suffers from mixed gauge anomalies. These anomalies can be cancelled by superfield dependent
FI–terms in the GLSM globally. This signifies that the target space geometry has torsion in the sense
that the three–form H–flux is non–zero. Moreover, given the GLSM chiral superfield content, the
field dependent FI–terms need to involve logs of chiral superfields. As argued in the past, this signals
that there are NS5–branes in the system. The structure of these logs can be taken such that these
NS5–branes are located at the resolved exceptional cycles. In the orbifold limit they would disappear
inside these singularities.

It is striking to see the differences of the effect of discrete torsion in the resolution process for
non–compact and compact orbifolds. In the non–compact case apart from a physically irrelevant
flip of charge conjugated states the non–torsional and torsional orbifold resolutions are to a large
extent indistinguishable: only the relative signs of the gauge charges of the chiral and chiral Fermi
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multiplets distinguish them. In the compact case the GLSM associated to the torsional orbifold is
really physically different from the non–torsional one as the mixed gauge anomalies and the related
NS5–branes signify. These differences may be explained by realising that in the non–compact case the
effect of flux can be pushed off to infinity while in the compact case this is impossible.

Outlook

The work presented here can be extended in a number of ways.
First of all, it would be interesting if it is possible by other means to show that the emerged

picture that NS5–branes are located at the resolved singularities of the resolved torsional orbifold can
be corroborate. And it would be interesting to confirm the interpretation of the coefficients that allow
to shift mixed gauge anomalies around as moving around the NS5–branes of the resolved geometry.
In addition, it would be interesting to investigate what the geometrical consequences are of the back
reaction induced by the log–dependent FI–terms.

In this paper the focus was on only very simple bundles (line bundles combined with bundles that
are on the (2,2) locus, hence closely related to the standard embedding). However, the procedures used
here could be applied to other gauge backgrounds as well. In particular, by choosing other blowup
modes, for example, those with oscillator excitations, see e.g. [38].

Moreover, in this work only the discrete torsion between two orbifold twists was considered. For
possible applications of the spinor–vector duality on smooth geometries other generalised discrete
torsion phases would be of interest. First attempts in this direction were performed using effective
field theory techniques in [34]. Such phases are between orbifold twists and torus translations and
associated Wilson lines or among two different torus translations. This requires that within the
GLSM distinctions between the various (resolved) fixed tori can be made. Clearly, this is possible in
the maximal full resolution model, which treats all 48 (resolved) fixed tori independently, or in certain
full resolution GLSM that have a certain number of additional gauging so that at least some fixed
two–tori in certain directions can be distinguished. The effect of the Wilson lines would then be that
the exceptional GLSM charges (dictated by the shifted twisted state momenta) are not the same at
the different fixed tori. Then, just like in the models considered here, the effect of generalised discrete
torsion is that particular states are projected out or in, leading to different charge assignments for the
Fermi multiplets. Presumably, the consequences of these differences could then be analysed in much
the same fashion as done in the current work.
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A Elements of (0, 2) sigma models

A.1 (0, 2) superspace

The (0, 2) superspace is spanned by a complex fermionic variable θ+ and its conjugate θ̄+ of positive
chiralilty in two dimensions and worldsheet coordinates σ = 1√

2
(σ1 + σ0) and σ̄ = 1√

2
(σ1 − σ0). Using
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their derivatives denoted by ∂+, ∂̄+, ∂ = 1√
2
(∂1+∂0) and ∂̄ = 1√

2
(∂1−∂0), respectively, super covariant

derivates D+ and D+ = −(D+)
† can be defined as

D+ = ∂+ − iθ̄+ ∂ , D+ = ∂̄+ − iθ+ ∂ ,
{
D+,D+

}
= −2i ∂ . (A.1)

These super covariant derivatives anti–commute with the supercharges

Q+ = ∂+ + iθ̄+ ∂ , Q+ = ∂̄+ + iθ+ ∂ . (A.2)

The supercharges generate the (0, 2) super algebra
{
Q+, Q+

}
= 2P , (A.3)

where P = i ∂ is the right moving momentum generator.

A.2 (0, 2) superfields

A general (0, 2) superfield G is a complex function of (0, 2) superspace on which supersymmetry act
as

δǫG = (ǫ+Q+ + ǭ+Q+)G . (A.4)

Consequently sums, products and super covariant derivatives of superfields are again superfields.
The components of a superfield are defined by taking a number of super covariant derivates and

then set all θ+ and θ̄+ to zero which is denoted as |+. A superfield G is called bosonic (fermionic) if
its lowest component G|+ is bosonic (fermionic).

There are four fundamental multiplets of (0, 2) supersymmetry: the chiral multiplet, the chiral
Fermi multiplet, the vector multiplet and the Fermi gauge multiplet:

Chiral multiplet

A chiral multiplet Φ and its conjugate Φ are bosonic superfields defined by the chirality constraints:

D+Φ = 0 , D+Φ = 0 . (A.5)

Their components,

z = Φ|+ , φ = 1√
2
D+Φ|+ , z̄ = Φ|+ , φ̄ = − 1√

2
D+Φ|+ , (A.6)

are a complex scalar z, a negative chiral (right–moving) complex spinor φ and their conjugates z̄ and
φ̄.

Chiral Fermi multiplet

A chiral Fermi multiplet Λ and its conjugate Λ are fermionic superfields defined by the chirality
constraints:

D+Λ = 0 , D+Λ = 0 . (A.7)

Their components,

λ = Λ|+ , h = 1√
2
D+Λ|+ , λ̄ = −Λ|+ , h̄ = 1√

2
D+Λ|+ , (A.8)

are a positive chiral (left–moving) complex spinor λ, a complex scalar h and their conjugates λ̄ and h̄.
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Vector multiplet

The vector multiplet (V,A) consists of two real bosonic superfields V and A subject to a bosonic super
gauge transformation

V → V − 1
2

(
Θ+Θ

)
, A→ A+ i

2 ∂̄
(
Θ−Θ

)
, (A.9)

with a chiral superfield Θ gauge parameter and its conjugate Θ. (Non–Abelian gauge superfields are
not considered in this work.) Their components are

Θ|+ = θ = 1
2 a+ i α , 1√

2
D+Θ|+ = ζ , Θ|+ = θ = 1

2 a− i α , − 1√
2
D+Θ|+ = ζ̄ , (A.10)

where a and α are real fields. The two dimensional gauge field components are identified as

Aσ = 1
2

[
D+,D+

]
V |+ , Aσ̄ = A|+ , (A.11)

which transform as

Aσ → Aσ − ∂α , Aσ̄ → Aσ̄ − ∂̄α . (A.12)

The super field strengths

F = −1
2D+

(
A− i∂̄V

)
, F = 1

2D+

(
A+ i∂̄V

)
, (A.13)

are super gauge invariant chiral Fermi multiplets, since by construction D+F = D+F = 0. Conse-
quently, their components

F |+ = 1√
2
ϕ , F |+ = 1√

2
ϕ̄ , D+F |+ = 1

2

(
D + i Fσσ̄

)
, D+F |+ = 1

2

(
D − i Fσσ̄

)
, (A.14)

are identical in any gauge. In particular, D = 1
2 [D+,D+]A|+ − ∂∂̄V |+ and Fσσ̄ = F01.

The super gauge transformation can be used to set some of the components of the vector multiplet
to zero: V |+ = D+V |+ = D+V |+ = 0. In this so–called Wess–Zumino (WZ) gauge all quadratic and
higher powers of V vanish. Since V is a real superfield the WZ gauge does not fix the super gauge
transformations completely, there is a residual gauge transformation with Θ = iα.

Fermi gauge multiplet

A Fermi gauge multiplet Σ and its conjugate Σ are complex fermionic superfields subject to fermionic
super gauge transformations

Σ → Σ− Ξ , Σ → Σ− Ξ , (A.15)

where Ξ is a Fermi multiplet and Ξ its conjugate. The associated super field strength Υ and its
conjugate

Υ = D+Σ , Υ = D+Σ , (A.16)

are inert under the fermionic gauge transformations. Their components are

s = 1√
2
Υ|+ , s̄ = 1√

2
Υ|+ , χ = 1

2D+Υ|+ , χ̄ = 1
2D+Υ|+ . (A.17)

Using the fermionic gauge transformations, the following components of the Fermi gauge multiplet
Σ are set to zero in the WZ–gauge: Σ|+ = D+Σ|+ = 0.
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A.3 Super conformal transformations and scaling dimensions

Real conformal transformations of the worldsheet coordinates

σ → f(σ) , σ̄ → f̄(σ̄) , (A.18)

are characterized by two real functions f(σ) of σ only and f̄(σ̄) of σ̄ only. Consequently, their
differential and derivatives transform

dσ → ω−1 dσ dσ̄ → ω̄−1 dσ̄ , ∂ → ω ∂ , ∂̄ → ω̄ ∂̄ , (A.19)

where ω = (∂f)−1 and ω̄ = (∂̄f̄)−1. Moreover, since θ+ is a complex parameter, there is a phase
transformation, often dubbed R–symmetry,

θ+ → eiκ θ+ , θ̄+ → e−iκ θ̄+ , (A.20)

with κ ∈ R. Requiring that the algebra of the super covariant derivatives transforms consistently with
this implies:

D+ → ω
1
2 e−iκD+ , D+ → ω

1
2 e+iκD+ . (A.21)

The left– and right–Weyl dimensions and the R–charge (L,R,R) (often collectively referred to as Weyl
charges) of a general complex superfield G, defined as

G→ ω̄L ωR eiRκG (A.22)

identify how it responds to these conformal transformations. Real superfields are necessarily inert
under the R–symmetry. The Weyl and R–charges of the superfields used in this work can be found in
Table 2.

A.4 Scale invariant matter actions

Scale invariant superspace integrals

Any real bosonic superfield R can be used to form a supersymmetric invariant by an integral over the
full superspace:

Sfull superspace =

∫
d2σd2θ+R =

∫
d2σD+D+R|+ . (A.23)

This action is gauge invariant if R caries no gauge charges and scale invariant if it has Weyl and
R–charges (+1, 0, 0).

Any chiral Fermi superfield Ω can be used to form a supersymmetric invariant by an integral over
the chiral superspace:

Schiral superspace =

∫
d2σdθ+Ω+

∫
d2σdθ̄+Ω =

∫
d2σ

[
D+Ω+D+Ω

]
|+ . (A.24)

This is gauge invariant if Ω carries no gauge charges and conformally invariant if it has Weyl and
R–charges (+1,+1

2 ,+1).
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Chiral superfield action

The gauge interactions of chiral superfields Φa and their conjugates Φ
a
with Abelian vector multiplets

(V,A)i are parameterized by the gauge charges (qi)a. In order to reduce the abundance of indices,
interpret q ·V as the diagonal matrix with on the diagonal

∑
i(q

i)aVi and interpret Φ as standing
and Φ as lying vectors of NΦ chiral superfields and their conjugates, respectively. Their super gauge
transformations read

Φ → Φ eq·Θ , Φ → eq·ΘΦ . (A.25)

Their super gauge invariant kinetic action is given by

Schiral =
i

4

∫
d2σd2θ+

[
Φ e2q·V DΦ−DΦ e2q·V Φ

]
, (A.26)

in terms of the super gauge covariant derivatives of the chiral superfields and their conjugates

DΦ = ∂̄Φ+ q ·
(
∂̄V + iA

)
Φ , DΦ = ∂̄ Φ+ Φ q ·

(
∂̄V − iA

)
. (A.27)

Chiral Fermi superfield action

The gauge and Fermi gauge interactions of the chiral Fermi superfields Λm and their conjugates Λ
m

with the Fermi gauge multiplets are parameterised by the gauge charges (Qi)m and holomorphic
functions UmI(Φ). The super gauge and super fermionic gauge transformations of them read

Λ →
(
Λ+ Ξ·U(Φ)

)
eQ·Θ , Λ → eQ·Θ (

Λ + U(Φ)·Ξ
)
. (A.28)

Here the notation
(
U(Φ) ·Ξ)m = UmI(Φ)ΞI is employed. The gauge charges of the holomorphic

functions UmI(Φ) are (QI)m as well. Their super gauge invariant kinetic action is given by

SFermi = −
1

2

∫
d2σd2θ+

(
Λ+ Σ·U(Φ)

)
e2Q·V (Λ + U(Φ)·Σ

)
. (A.29)

FI actions

The Fayet–Ililopoulos (FI) action is given by the chiral superspace integral

SFI =

∫
d2σdθ+WFI + c.c. , WFI = ρ(Φ)·F + (κ(Φ)·Υ)Λ , (A.30)

where (κ(Φ) ·Υ)Λ = κIm(Φ)ΥIΛ
m employing holomorphic functions ρi(Φ) and κIm(Φ) of the chiral

superfields Φa. The lowest components of ρ(Φ),

ρi|+ = 1
2 ri + i βi , ρ̄i|+ = 1

2 ri − i βi , (A.31)

couple to the auxiliary field Di and the gauge field strength F i
01, respectively:

∫
dθ+ ρ(Φ)·F +

∫
dθ̄+ ρ̄(Φ)·F ⊃ 1

2 r ·D − β ·F01 , (A.32)

where ⊃ indicates that the expression on the left includes terms given on the right.
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Only when ρi(Φ) are super gauge invariant and κIA(Φ) carry the opposite charges as Λa, the FI
action is gauge invariant. This action is only invariant under fermionic gauge transformation if

κIm(Φ)UmJ = 0 , (A.33)

for all I, J . A worldsheet variant of the Green–Schwarz mechanism involves chiral superfield functions
ρi(Φ) that transforms as shifts under super gauge transformations.

A.5 None scale invariant actions

In GLSMs also actions are used that are not scale invariant. They involve parameters of mass dimen-
sion one or two in two dimensions. For simplicity all these parameters are assumed to be equal to
m or |m|2, depending on whether these action are chiral or full superspace integrals. Consequently,
conformal invariance is broken by these actions unless these parameters are send to either 0 or ∞.
Here, the conformal limit is taken to be the strong coupling limit |m| → ∞. In a more precise analysis
one should study the renormalisation of the theory to understand if a conformal limit exists [62,63].

Gauge multiplet actions

Abelian vector multiplets (V,A)i have kinetic actions

Sgauge =
1

2|m|2

∫
d2σd2θ+ FF . (A.34)

The kinetic terms for Fermi gauge multiplets ΣI are given by

SFermi gauge =
1

2|m|2

∫
d2σd2θ+Υ∂̄Υ . (A.35)

Superpotentials

To introduce gauge invariant superpotential actions, chiral superfields ΨA and Fermi superfields ΓM

are needed. They are given in Table 2. The super gauge transformations of Ψ read

Ψ → Ψ eq·Θ , Ψ → eq·ΘΨ . (A.36)

The super gauge and super fermionic gauge transformations of Γ are given by

Γ →
(
Γ + (Ξ·W (Φ))Ψ

)
eQ·Θ , Γ → eQ·Θ (

Γ + (ΨW (Φ)·Ξ)
)
. (A.37)

Here
[
Ψ(W (Φ)·Ξ)

]M
= ΨAWA

IM (Φ)ΞI is parameterised by chiral superfield functions WAI
M (Φ).

The superpotential action contains two pieces associated to the target space geometry and the
gauge bundle that supports it:

SSP = m

∫
d2σdθ+

(
Pgeom + Pbundle

)
+ c.c. , Pgeom = ΓP (Φ) , Pbundle = ΨM(Φ)Λ . (A.38)

Here, Γ and Ψ are interpreted as lying vectors of Fermi multiplets ΓM and chiral multiplets ΨA,
respectively; P (Φ) as a standing vector of chiral superfield functions PM (Φ) and M(Φ) as a matrix of
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chiral superfield functions MAm(Φ). This is gauge invariant if the functions PM (Φ) carry the opposite
gauge charges as ΓM and MAm(Φ) the opposite gauge charges as ΨAΛm. The superpotential action
is only invariant under fermionic gauge transformations if (3.16) holds.

The structure of the superpotential is dictated by a large extend by the Weyl charges: The R–charge
implies that ΨA and ΓM can only appear linearly in this expression. However, the superpotential is
not conformal invariant, hence the mass parameter m sits out front. This implies that in the conformal
limit the superpotential has to vanish strictly.

To complete the description also kinetic terms need to be added for the field Ψ and Γ. The super
gauge invariant kinetic action for Ψ is given by

Schiral =
i

4

∫
d2σd2θ+

[
Ψ e2q·VDΨ−DΨ e2q·V Ψ

]
. (A.39)

The super gauge invariant kinetic action for Γ is given by

SFermi = −
1

2

∫
d2σd2θ+

(
Γ +Σ·W (Φ)Ψ

)
e2Q·V (Γ + ΨW (Φ)·Σ

)
. (A.40)

The are both scale invariant.

A.6 (0,2) non–linear sigma models

The general action of a (0, 2) non–linear sigma model consists of two parts: an action for the chiral
superfields Φα , α = 0, . . . , 3, and Fermi multiplets Λµ , µ = 1, . . . , 16. Here the scalar components of
the chiral multiplets are interpreted as the local coordinates of the target space manifold M and the
fermionic components of the Fermi multiplets as the local coordinates in a section of the bundle V in
the same coordinate patch.

Torsional non–linear sigma models

The most general conformal (0, 2) action of the chiral multiplets

Sn.l. chiral =
i

4

∫
d2σd2θ+

[
K(Φ,Φ) ∂̄Φ− ∂̄ΦK(Φ,Φ)

]
, (A.41)

are parameterised in terms of a lying complex vector function K(Φ,Φ) with entries Kα(Φ,Φ) and
its conjugate, a standing vector K(Φ,Φ) with entries Kα(Φ,Φ). These functions are defined modulo
additions

K(Φ,Φ) → K(Φ,Φ) + k̄(Φ) , K(Φ,Φ) → K(Φ,Φ) + k(Φ) (A.42)

of holomorphic vector functions k(Φ) and k̄(Φ), as this would modify the full superspace integrant by
a sum of a chiral superfield and its conjugate which vanishes. The superfield functions K(Φ,Φ) and
K(Φ,Φ) can be thought of as prepotentials for the metric

Gαα = 1
2

(
Kα,α +Kα,α

)
(A.43)

and the Kalb–Ramond two–form B2

Bαα = 1
2

(
Kα,α −Kα,α

)
, Bαβ = 1

2

(
Kα,β −Kβ,α

)
, Bαβ = 1

2

(
Kα,β −Kβ,α

)
, (A.44)
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combined, as can be seen by working out the kinetic action for the scalar components of the chiral
superfields. The representation of the action for the scalar components is not unique due to B2-
field gauge transformations. A gauge can be chosen such that the components of the B2–field with
purely (anti–)holomorphic indices are absent. The non–vanishing components of the gauge invariant
three–form field strength H3 = dB2 can also be expressed in terms of these prepotential functions:

Hαβγ = Hβγα = Hγαβ = Kα,βγ −Kβ,αγ , Hαβγ = Hβγα = Hγαβ = Kα,βγ −Kβ,αγ . (A.45)

if some of these components are non–zero the manifold possesses torsion.

Chiral superfield interactions with Fermi multiplets

The most general Weyl invariant action of Fermi multiplets is given by

Sn.l. Fermi = −
1

2

∫
d2σd2θ+

{
ΛN(Φ,Φ)Λ+

1

2
ΛT n(Φ,Φ)Λ+

1

2
Λ n̄(Φ,Φ)Λ

T
,
}

(A.46)

parameterised by an Hermitean matrix N(Φ,Φ) with entries Nµν(Φ,Φ) assumed to be invertible

and a complex anti–symmetric matrix n(Φ,Φ) with holomorphic indices nµν(Φ,Φ) and its conjugate
n̄(Φ,Φ) with entries n̄µν(Φ,Φ). They can be thought of as the prepotentials for the target space
gauge fields

Aα(N) = N−1N,α , Aα(N) = N−1N,α , Aα(n) = n,α Aα(n̄) = n̄,α . (A.47)

From (0,2) GLSMs to (0,2) NLSMs

By integrating out the gauge superfields (0, 2) GLSMs can be related to (0, 2) NLSMs. In partic-
ular, the equations of motion of A lead to the constraints (3.27) in the conformal limit. Then, by
applying partial integrations on the derivative ∂̄ in the remaining (A independent) terms in the FI–
interaction (A.30) and combining them with the remaining kinetic terms of the chiral multiplets (A.26),
these actions can be cast in the form of the NLSM action (A.41) with the prepotentials

Ka =
(
Φ e2q·V

)
a
+ 2 ρ,a ·V , Ka =

(
e2q·V Φ

)
a
+ 2 ρ̄,a ·V . (A.48)

To see if these prepotentials for the metric and the B–field possess torsion, we compute the anti–
symmetrised derivative

K[a,b] = Ka,b −Kb,a =
(
Φ e2q·V q ·V,[b

)
a] + 2 ρ,[a ·V,b] . (A.49)

This expression can be simplified by taking the partial derivative w.r.t. Φa of equation (3.27) and after
that contracting it with Vi,b. This gives

(
Φ e2q·V q ·V,b

)
a + 2Φ e2q·V (q ·V,a)(q ·V,b)Φ = ρ,a ·V,b , (A.50)

hence anti–symmetrised:
(
Φ eq·V q ·V,[b

)
a] = ρ,[a ·V,b] . (A.51)

From which in general it may be concluded, that there will be torsion if the FI–functions ρi(Φ) are
not constant

K[a,b] = 3 ρ,[a ·V,b] . (A.52)

From this the three–form H expression (3.28) follows immediately.
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B Anomalies in two dimensional GLSMs

B.1 Chiral anomaly

Let ψ be a Dirac fermion in two dimensions and ψ̄ its conjugate. Consider the chiral transformation

ψ → eiα
1+γ̃

2 ψ , ψ̄ → ψ̄ e−iα 1+γ̃

2 . (B.1)

Here γ̃ = γ0γ1 is the chirality operator in two dimensions satisfying γ̃2 = 1. The anti–symmetrised
product product of two gamma matrices is proportion to this operator:

γµν = 1
2 [γ

µ, γν ] = ǫµν γ̃ , (B.2)

where ǫµν = −ǫνµ is the anti–symmetric epsilon tensor in two with the normalisation ǫ01 = 1. The
Dirac operator of this fermion is assumed to couple chirally to a gauge field Aµ:

D/ = ∂/ + iA/
1+ γ̃

2
, (B.3)

where A/ = γµAµ as usual. Note that

D/2 = D2 +
i

2
γ̃ ǫµνFµν , (B.4)

where iFµν = [Dµ,Dν ] is the invariant gauge field strength or expressed as a two form

F2 =
1
2 Fµνdσ

µdσν = 1
2 ǫ

µνFµν d
2σ = F01 d

2σ . (B.5)

If the path integral measure

DψDψ̄ → DψDψ̄ eiAchiral (B.6)

is not invariant under this transformation, the chiral transformation is said to be anomalous. The
anomaly can be expressed as the trace

Achiral = Tr[α γ̃] (B.7)

over both the full Hilbert and spinor space. This trace needs to be regularised. In case of anomalies
a standard procedure is to use Fujikawa’s regularisation

Achiral =

∫
d2σ α tr〈x|γ̃ eD/

2/M2
|x〉 , (B.8)

where M is a regulator mass taken to be infinitely large. Using a plane wave expansion with a
momentum variable p, scaling it as p → M p and keeping only the leading terms this expression can
be evaluated to

Achiral =

∫
d2σ α

∫
d2p

(2π)2
e−p2tr

[
γ̃ i

2 γ̃ ǫ
µνFµν

]
(B.9)

where all theM dependence dropped out (after taking the limitM → ∞). Using the Gaussian integral
∫

d2p e−p2 = π , (B.10)

the chiral anomaly can be expressed as

Achiral =

∫
i
2 α

F2

2π
. (B.11)
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B.2 Super gauge anomalies

The result for the chiral anomaly above can be used for chiral gauge theories as well where then the
parameter α is interpreted as the gauge parameter of a U(1) symmetry. For left–moving charged
fermion the result can immediately be taken over, while for a right–moving fermion the expression
will have an additional minus sign. If we have a set of left– and right–moving fermions with charges
Qi and qi under a number of U(1) gauge symmetries, the result generalises to

Agauge =

∫
i
2 α

i Aij
F j
2

2π
, (B.12)

where the anomaly matrix is given by

Aij = Qi ·Qj − qi · qj . (B.13)

Here the dot product indicates the sum over all charged left and right fermions present in the theory.
Assuming the existence of a supersymmetric regulator, the general form of super gauge anomalies in
two dimensions can be written as

Sanom =

∫
d2σdθ+

1

4π

∑

i,j

Aij Θ
iF j +

∫
d2σdθ̄+

1

4π

∑

i,j

Aij Θ
i
F

j
. (B.14)

C Charge matrices

In Section 4 a number of so–called charge matrices are used to perform certain computations. In a
given patch of a given phase of the GLSM a number of charged superfields are necessarily non–zero.
Their charge matrices are given by:

Q(O) =




-1 0 0

0 -1 0

0 0 -1


 , Q(S) =




0 1
2

1
2

1
2 0 1

2

1
2

1
2 0


 , (C.1a)

Q(11) =




-1 0 0

1
2 0 1

2

1
2

1
2 0


 , Q(12) =




-1 0 0

0 1
2

1
2

1
2

1
2 0


 , Q(13) =




-1 0 0

0 1
2

1
2

1
2 0 1

2


 , (C.1b)

Q(21) =




1
2 0 1

2

0 -1 0

1
2
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Their transposed inverse are:

Q−T
(O) =
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 , Q−T

(S) =
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1 1 -1


 , (C.2a)
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The charge matrices associated to the superfields that define a given patch read:
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[43] L. E. Ibáñez, H. P. Nilles, and F. Quevedo “Orbifolds and Wilson lines” Phys. Lett. B187 (1987) 25–32.

[44] H. P. Nilles, S. Ramos-Sanchez, P. K. S. Vaudrevange, and A. Wingerter “The Orbifolder: A Tool to
study the low energy effective theory of heterotic orbifolds” Comput. Phys. Commun. 183 (2012)
1363–1380 [arXiv:1110.5229].

[45] S. Förste, H. P. Nilles, P. K. S. Vaudrevange, and A. Wingerter “Heterotic brane world” Phys. Rev. D70
(2004) 106008 [arXiv:hep-th/0406208].

[46] A. E. Faraggi, C. Kounnas, S. E. M. Nooij, and J. Rizos “Classification of the chiral Z(2) x Z(2) fermionic
models in the heterotic superstring” Nucl. Phys. B695 (2004) 41–72 [arXiv:hep-th/0403058].

[47] R. Donagi and A. E. Faraggi “On the number of chiral generations in Z2 × Z2 orbifolds” Nucl. Phys.

B694 (2004) 187–205 [arXiv:0403272].

[48] R. Donagi and K. Wendland “On orbifolds and free fermion constructions” Journal of Geometry and

Physics 59 (Sept., 2008) 46 [arXiv:0809.0330].

[49] C. Vafa “Modular invariance and discrete torsion on orbifolds” Nucl. Phys. B273 (1986) 592.
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