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Abstract—Statistical analysis for material shielding effectiveness
(SE) measurement in a nested reverberation chamber (RC) and a
contiguous RC is given in this article. By using Mellin transform
and the associated statistical methods, the corresponding analytical
expressions of the SE are derived, respectively, for the sample
material under test with good and poor electromagnetic shielding
performance. Moreover, the probability density function, the ex-
pected value, and the standard deviation of SE in different scenarios
using nested and contiguous RCs are obtained analytically. Monte
Carlo simulation and measurements in nested and contiguous RCs
are performed to verify the analytical expressions.

Index Terms—Contiguous reverberation chamber (RC), nested
RC, shielding effectiveness (SE), statistical analysis.

I. INTRODUCTION

SHIELDING effectiveness (SE) is an important figure of
merit to assess the electromagnetic shielding properties of

materials [1], [2]. During these years, various methods have been
introduced and standardized for SE testing [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14]. A reverberation chamber
(RC) is an electrically large shielded cavity, which has been
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widely applied to electromagnetic compatibility testing [15],
[16], [17] and over-the-air testing [18], [19], [20]. The SE mea-
surements of material under test (MUT) in an RC are superior
over other methods because an RC offers a more realistic and
complex environment as compared with an anechoic chamber
that envisaged to offer an ideal reflectionless environment. Mea-
surement samples in an RC are illuminated with electromagnetic
fields with random polarizations and angles of incidence.

Generally, the typical measurement procedure for the SE
measurement is to compare the measured transfer functions with
and without the shielding materials, which is performed in nested
or contiguous RCs [21], [22], [23]. In [3], a better way to define
the SE for the MUT using nested RCs was proposed. Compared
with the conventional definitions [24], [25], in this method, the
effective transmission cross section is obtained, and the value of
SE is basically a function of material properties.

Since the RC can generate a statistically uniform, isotropic,
and randomly polarized electromagnetic field, statistical anal-
ysis and uncertainty calculation should be performed on the
measured physical quantities. Researchers have greatly used
statistical analyses in RCs, such as electromagnetic fields in
nested RCs [26], Q factor [27], [28], antenna efficiency [29],
[30], [31], and enhanced backscatter coefficient [32]. The rele-
vant analytical expressions for many statistics quantities (such
as mean, variance, and unbiased estimators) can be obtained.
However, limited work has been performed to investigate the
statistical analysis of the material SE.

This work focuses on the statistical analysis of the mate-
rial SE measurement in different scenarios using nested and
contiguous RCs. The probability density functions (PDFs) and
cumulative distribution functions (CDFs) of SE can be de-
rived. It is interesting to find that the PDF and CDF de-
pend on the value of measured SE as the electromagnetic
distributions are different for MUT with good and poor
electromagnetic shielding performance. The derived statis-
tics are verified using numerical simulations as well as RC
measurements.

The rest of this article is organized as follows. Section II
reviews the testing procedure of SE and derives the analytical
expressions for different cases in an RC; the Monte Carlo
simulation are also conducted for the different MUT. The mea-
surements in the nested and contiguous RC are performed to
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Fig. 1. Configuration for SE measurement (a) in a nested RC and (b) in a
contiguous RC.

verify the analytical distributions of SE in Section III. Finally,
Section IV concludes this study.

II. STATISTICS ANALYSIS OF SE

Typical configuration setups of the SE measurement in a
nested RC and a contiguous RC are shown in Fig. 1(a) and
(b), respectively. A vector network analyzer (VNA) is used to
measure the scattering parameters (S-parameters). A computer
is used to control the VNA and the rotation of stirrers. One
supposes that Ant 1 is used as the transmitting (Tx) antenna,
and Ant 2, which is used as the receiving (Rx) antenna, is far
from Ant 1 in the outer/left chamber. Ant 3 and Ant 4 are the Rx
antenna and Tx antenna in the inner/right chamber. The SE of a
MUT can be expressed using measured S-parameters [3]:

SE = −10 log10

〈
|S21ns|2

〉
N

〈
|S31ws|2

〉
N

〈
|S34ns|2

〉
N〈

|S21ws|2
〉
N

〈
|S31ns|2

〉
N

〈
|S34ws|2

〉
N

(1)

where the subscript “ws” represents “with sample,” and “ns”
represents “no sample” of the measured S-parameters. 〈·〉N

Fig. 2. PDF of the Rayleigh distribution and double Rayleigh distribution; the
mean values are normalized to 1.

represents the average operation, which is taken over different
stirring sequences. Equation (1) requires a reciprocal MUT and
chambers sufficiently isolated [23], [33]. It is interesting to note
that, for the MUT with good and poor electromagnetic shielding
performance, the distribution of |S31ws| in (1) is different. For
the MUT with good electromagnetic shielding performance, the
electromagnetic distributions of the two chambers are indepen-
dent of each other. However, when the SE of MUT is not good,
the electric field (E-field) in a nested RC is Rayleigh distribution.
As shown in Fig. 2, the PDFs of the Rayleigh distribution and
the double Rayleigh distribution are given. The double Rayleigh
distribution can be seen as a product of two Rayleigh distribu-
tions. The difference of these two distributions influences the
expression of the SE. For nonperfect uniformity of the fields
inside the RCs, Rician distribution could be used to model
the PDFs with different K-factors. Note that the measurement
uncertainty could be reduced by performing measurements in
more than one position/polarization of the antenna(s). However,
analytical expressions could not be available. For the frequencies
lower than the LUF, different RCs may have different PDFs,
which make it more difficult to describe. In this article, we
limit our research to the region of overmoded and well-stirred
conditions.

In this section, we start from (1) and end with (12)–(15), (20),
and (21). Note that the linear units are used, not the log form.

A. MUT With Poor Electromagnetic Shielding Performance

For the MUT with poor electromagnetic shielding perfor-
mance, the E-field in the inner chamber, as well as in the outer
chamber, is spatially Rayleigh distributed. It is well known that
the term |S21ns|2 is envisaged to have an exponential distribution
[17], and the relevant PDF can be expressed as

pX (x) =
1

T21ns
e−x/T21ns , X = |S21ns|2 (2)

where T21ns represents both the mean value and the standard de-
viation value. Similarly, the |S31ws|2, |S34ns|2, |S21ws|2, |S31ns|2,
and |S34ws|2 have the same PDF expression. The mean value
and the standard deviation value are also expressed as T31ws,
T34ns, T21ws, T31ns, and T34ws. The PDF of 〈|S21ns|2〉 from N
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independent samples can be derived as

pXn
(xn) =

(
N

T21ns

)N

Γ (N)
xN−1
n e−

xnN
T21ns , Xn =

〈
|S21ns|2

〉
N
.

(3)
Equation (3) is the PDF of the random variable xn, which is
Gamma distribution or Erlang distribution. The mean value is
still T21ns, and the standard deviation is T21ns/

√
N . Moreover,

one replaces T21ns with T21ws, the PDF of 1/xn, pXn′ (xn′), is
denoted as

pXn′ (xn′) =
(N/T21ws)

N

Γ (N)xN+1
n′

e
− N

x
n′T21ws , Xn′ =

1〈
|S21ws|2

〉
N

(4)

the mean value isN/[T21ws(N − 1)], and the standard deviation
is N/[T21ws (N − 1)

√
N − 2 ]. Here, the Mellin transform (in-

tegral transform) is utilized to derive the analytical expression
of (1). The Mellin transform of function f(t) is defined as [34],
[35]

M (s) =ℳ [f (t)] =

∫ ∞

0

f (t) ts−1dt (5)

where s is in the complex domain. The inverse Mellin transform
is given as

f (t) =ℳ
−1 [M (s)] =

1

2πj

∫ C+j∞

C−j∞
M (s) t−sds (6)

and C is a real number. Noting that the Mellin transform of the
PDF of a product of random variables X × Y is the product of
the Mellin transforms of the PDF of individual random variables,
and the expression is

MXY (s) = MX (s)MY (s) (7)

the mean value isMXY (2) and the variance value isMXY (3)−
M2

XY (2).

ℳ [pXn
(xn)] =

∫ ∞

0

pXn
(xn)x

s−1
n dxn

=
Γ (N + s− 1)

Γ (N)

(
T21ns

N

)s−1

(8)

and

ℳ
[
pXn′ (xn′)

]
=

∫ ∞

0

pXn′ (xn′)xs−1
n′ dxn′

=
Γ (N − s+ 1)

Γ (N)

(
N

T21ws

)s−1

(9)

where Γ(·) is the Gamma function. The PDF of the prod-
uct |S21ns|2, |S31ns|2, |S34ns|2, 1/|S21ws|2, 1/|S31ws|2, and
1/|S34ws|2 of using the Mellin transform is derived as

ℳ [pXSE (xSE)] =

∫ ∞

0

pXSE (xSE)x
s−1
SE dx

=
Γ(N + s− 1)3Γ(N − s+ 1)3

Γ(N)6

(
T21nsT31ws T34ns

T21wsT31ns T34ws

)s−1

(10)

where XSE is defined as〈
|S21ns|2

〉
N

〈
|S31ws|2

〉
N

〈
|S34ns|2

〉
N〈

|S21ws|2
〉
N

〈
|S31ns|2

〉
N

〈
|S34ws|2

〉
N

. (11)

Using the inverse Mellin transform, the PDF of the random
variable is obtained as

pXSE (xSE)

=
MeijerG[{{−N,−N,−N},{ }},{{−1+N,−1+N,−1+N},{ }}, xSE

R ]
RΓ(N)6

where

R =
T21nsT31ws T34ns

T21wsT31ns T34ws
(12)

and

MeijerG
[
{{−N,−N,−N} , { }} , {{−1 +N,−1 +N,

−1 +N} , { }} , xSE

R

]

=
1

2πj

∫ Γ

L

(1 +N − s)3Γ(−1 +N + s)3
(xSE

R

)−s

ds

(13)

where L is the integral path in [29]. Therefore, when s = 2, the
mean value of (10) is obtained as

μ (xSE) =

(
N

N − 1

)3
T21nsT31ws T34ns

T21wsT31ns T34ws
. (14)

Note that the mean value is biased and a correction factor of
[(N − 1)/N ]3 for the measured mean value is necessary. When
substituting s = 2 and s = 3 into (10), the standard deviation
can be derived as

std (xSE) =
√

MXY (3)−M2
XY (2)

=

(
N

N − 2

) 3
2

[
(N+1)3(N−1)3−(N−2)3N3

] 1
2

(N − 1)3

T21nsT31ws T34ns

T21wsT31ns T34ws
. (15)

The relative standard deviation can be obtained from the ratio
of (14) and (15), which is

stdrel (xSE) =
std

mean
× 100% =

√
(N − 1)3(N + 1)3

N3(N − 2)3
− 1.

(16)
Note that when N → ∞, we have

lim
N→∞

μ (xSE) =
T21nsT31ws T34ns

T21wsT31ns T34ws
(17)

and

stdrel (xSE) ≈
√

6

N
. (18)
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Fig. 3. (a) Correction factor for the MUT with good and poor electromagnetic
shielding performance. (b) Biased coefficient of mean value in (14). (c) Curves

for 1/
√
N ,

√
6/N ,

√
8/N , the coefficient of variation in (16) and (24), and

the empirical standard deviation simulated by Monte Carlo simulations.

The correction factor is given in Fig. 3(a). As expected,
when N is larger, the correction factor approaches to 1. The
coefficients in (14) and (18) are plotted in Fig. 3(b) and (c),
respectively. Note that for finite N samples, the measured SE
is not unbiased, but the coefficient in (14) is very close to 1.
However, compared with the coefficient of variation from the
central limit theorem (CLT) (1/

√
N) [36], for the SE measure-

ment of material in a nested RC, when N is large, a factor of√
6 is introduced.

B. MUT With Good Electromagnetic Shielding Performance

This section discusses the relevant statistical analysis of the
material SE measurement for MUT with good electromagnetic
shielding performance in the good stirring nested or contiguous

RC. Note that the E-field in the inner and outer chambers is
spatially Rayleigh distributed. The variables |S31ns|, |S34ns|,
|S21ws|, |S21ns|, and |S34ws| still are of the same PDF expression,
Rayleigh distribution. However, the transmission amplitude co-
efficient (|S31ws|) between Ant 1 and Ant 3 is double Rayleigh
distributed, which can be considered a product of two Rayleigh
distributions. So that the PDF of |S31ws|2 is a product of two
exponential distribution, which can be obtained as

p Xdouble (xdouble)=
2

T 2
31ws

K0

(
2
√
xdouble

T31ws

)
, Xdouble = |S31ws|2

(19)
where K0(·) represents the modified Bessel function of second
kind and zeroth order [37]. The integral definition is

K0 (·) =
∫ ∞

0

cos (x sinh (t)) dt =

∫ ∞

0

cos (xt) dt√
t2 + 1

. (20)

The mean value is T 2
31ws, and the standard deviation is√

3T 2
31ws. The PDF of 〈|S31ws|2〉N fromN independent samples

has no simple analytical expression as the integral cannot be
expressed in terms of elementary functions. Nevertheless, the
mean and the standard deviation can be derived accordingly
as T 2

31ws and (
√
3/

√
N)T 2

31ws by applying the principles of
transformed random variables.

Using (7) and the associated statistical theory [38], the mean
value of the variable XSE is obtained as

μ (xSE) =

(
N

N − 1

)3
T21nsT

2
31ws T34ns

T21wsT31ns T34ws
. (21)

And the standard deviation can be derived as

std (xSE) = E
(
x2

SE

)− E2 (xSE)

=
N

3
2

[
(N + 1)2(N−1)3 (N+3)−(N − 2)3N3

] 1
2

(N−1)3(N−2)
3
2

T21nsT
2
31ws T34ns

T21wsT31ns T34ws
. (22)

Note that when N → ∞, the approximate mean and standard
deviation are

lim
N→∞

μ (xSE) =
T21nsT

2
31ws T34ns

T21wsT31ns T34ws
(23)

and

lim
N→∞

stdrel (xSE) =

√
8N5−17N4+4N3+7N2 + 2N − 3

N3(N − 2)3

≈
√

8

N
. (24)

In Fig. 3, the correction factor, the coefficient of the mean, and
the standard deviation are presented. The correction factor MUT
with good electromagnetic shielding performance is the same as
that for MUT with poor electromagnetic shielding performance,
and both of them are close to 1. For a small value of N , the SE
is biased. For the standard deviation, as shown in Fig. 3(c), the
coefficient in (24) is close to the approximate value

√
8/N . The

summary of the statistics is shown in Table I. The mean value,
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TABLE I
SUMMARY OF THE STATISTICAL EXPRESSION

standard deviation, the approximate expression, and the PDF are
concluded.

To verify the accuracy of the derived statistic expressions,
the Monte Carlo simulations [39], [40], [41], [42], [43] are
conducted for different material samples here. For each number
of samplesN , we randomly generateN independent samples for
each variable, |S21ns|2, |S31ws|2, |S34ns|2, |S21ws|2, |S31ns|2, and
|S34ws|2, which is the exponential distribution for the MUT with
poor electromagnetic shielding performance, or is the exponen-
tial distribution or the product of exponential distribution for the
MUT with good electromagnetic shielding performance. Here,
we suppose that T21ns, T31ws, T34ns, T21ws, T31ns, and T34ws are
1. Thus, the empirical expectation, relative standard deviation
can be obtained.

In Fig. 3(b) and (c), the empirical mean, and relative standard
deviation for not well-shielded MUT and well-shielded MUT
are presented to verify the correctness of the statistical analysis.
These derived statistics are plotted as N = 1–103.

As demonstrated in Fig. 3(b), the derived mean agrees well
with the empirical ones. When N is small, the deviation be-
tween the derived one and the simulation one is large. More-
over, the mean value of the two conditions is biased, but
the coefficient is the same and close to 1. Note that for a
large value of N (no statistical bias), the gap in the statis-
tics between (11) and (19) becomes negligible. The mean
value of the SE is T21nsT31ws T34ns/T21wsT31ns T34ws and
T21nsT

2
31ws T34ns/T21wsT31ns T34ws, which is equal to 1.

In Fig. 3(c), the empirical standard deviation is in good accor-
dance with the analytical ones. The standard deviation, for the
MUT is not well-shielded, is

√
6/N , but for the well-shielded

material sample, the coefficient of the value is close to
√

8/N ,
which means the statistic fluctuation becomes larger. Monte
Carlo simulation results verify the correctness of the theoretical
derivation.

III. MEASUREMENT RESULTS

In this section, the corresponding measurements of the SE for
different MUT in the nested and contiguous RC are performed
and the relevant discussions are also given.

A. Measurement in a Nested RC

The whole measurement system in the nested RC is shown
in Fig. 1(a). The photographs in Fig. 4 show the configuration
of the SE measurements in a nested RC. The dimension of the
outer chamber is 3.9 m × 6 m × 2.8 m, and that of the inner
chamber is 0.6 m × 0.45 m × 0.46 m.

During the whole testing procedure, four antennas are used:
Ant 1 and Ant 2 are wideband dipole antennas, which are sup-
ported in the outer cavity utilizing two fixtures with adjustable
orientation and height. Ant 3 and Ant 4 are dipole antennas
different from the former and are placed in the inner cavity, as
shown in Fig. 4(b). Ant 1 (or Ant 4) is connected to the VNA
Port 1 and Ant 2 is connected (or Ant 3) to the VNA Port 2.
The antennas not connected to the VNA should be connected
on a 50-Ω load. The antennas are located at a sufficient distance
(at least λ/4) from the RC walls and the stirrers. Note that for
the nested RC, the outer chamber has two stirrers, vertical and
horizontal, and the inner chamber has one vertical stirrer. The
step rotation of the stirrer is synchronized. In the measurements,
360 samples for each measurement are shown in Fig. 4(b)
(1 ◦/step for all horizontal and vertical stirrers). For each step of
three stirrers, the computer records the measured S-parameters
from the VNA.

To obtain the material samples with good and poor elec-
tromagnetic shielding performance, the measurements are per-
formed using different samples. When no sample in the testing
system, corresponding to the subscript “ns,” the S31ns, S34ns,
and S21ns are the same for different samples. After placing the
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Fig. 4. Measurement setup in the nested RC experiment. (a) Typical measure-
ment system; the dimension of the outer chamber is 3.9 m × 6 m × 2.8 m.
(b) Antenna 3 and antenna 4 in the inner chamber, and its dimension is 0.6 m ×
0.45 m × 0.46 m. The size of the aperture is 0.36 m × 0.26 m.

material samples in a nested RC, repeat the above steps and
obtain S31ws, S34ws, and S21ws. A total of 6001 frequency points
are recorded for each stirrer position in the frequency range
between 1 and 6 GHz.

The S-parameters without the MUT with poor electromag-
netic shielding performance and with good electromagnetic
shielding performance are given in Fig. 5(a)–(c). Measure-
ment results and the corrected SE in dB form are shown in
Fig. 5(d), which are used to generate the measured CDFs of
the SE in the nested RC from 1 to 6 GHz. Moreover, N was
estimated through the fluctuation of SE. The corrected factor
and the corrected SE can be calculated. The corrected SE is in
accordance with the measured SE, although some fluctuation
occurred.

B. Measurement in a Contiguous RC

This section presents the performed measurement of the SE
in the contiguous RC. The testing setup is given in Fig. 1(b).
In Fig. 6(a) and (b), the measurement setup details of the two
chambers are shown, whose dimensions are 5.1 m × 3.9 m ×
2.95 m and 4.65 m × 3.9 m × 2.95 m, respectively. Moreover,
the aperture is 1 m × 1 m. The photographs of the aperture with
MUT and without MUT are also given in Fig. 6(c) and (d).

Fig. 5. Measured results of the sample in the nested RC from 1 to 6 GHz.
(a) S-parameters without the MUT. (b) S-parameters for the MUT with poor
electromagnetic shielding performance. (c) S-parameters for the MUT with good
electromagnetic shielding performance. (d) Measured SE and the corrected SE
in dB form.

The testing procedure in the contiguous RC is similar to that
in the nested RC. Four antennas are used as Tx antennas and
Rx antennas here, marked as Ant 1, Ant 2, Ant 3, and Ant 4.
Note that for the contiguous RC system, each chamber has two
stirrers, vertical and horizontal. During the testing procedure,
four stirrers are used. A total of 6001 frequency points from 0.2
to 6 GHz were recorded.
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Fig. 6. Measurement setup in the contiguous RC experiment. (a) Typical
measurement system in the left chamber, and its dimension is 5.1 m × 3.9 m ×
2.95 m (b) in the right chamber, and its dimension is 4.65 m × 3.9 m × 2.95
m. Details of the configuration (c) with MUT and (d) without MUT. The size of
the aperture is 1 m × 1 m.

The measured S-parameters 〈|S21ws|2〉N , 〈|S31ws|2〉N ,
〈|S34ws|2〉N , 〈|S21ns|2〉N , 〈|S31ns|2〉N , and 〈|S34ns|2〉N are
shown when N = 1 and N = 360 in Fig. 7(a)–(c). Testing
and the corrected SE in dB form for MUT with different SE are
given in Fig. 7(d) in the contiguous RC. N is also estimated
through by the fluctuation of SE in the frequency range between
1 and 6 GHz. Thus, the corrected SE can also be obtained. It is
observed that small deviations exist between the measured SE
and the corrected SE.

Fig. 7. Measured results of the sample in the contiguous RC from 0.2 to
6 GHz. (a) S-parameters without the MUT. (b) S-parameters for the MUT with
poor electromagnetic shielding performance. (c) S-parameters for the MUT with
good electromagnetic shielding performance. (d) Measured SE and the corrected
SE in dB form.

The analytical and the measured CDFs in the nested RC and
the contiguous RC are then given in Figs. 8 and 9. As expected, in
Figs. 8(a) and 9(a), the analytical and the measurement results
agree well for the MUT with poor electromagnetic shielding
performance. A small deviation exists because of the finite
samples. When N increases, the deviation becomes smaller.
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Fig. 8. Comparison of analytical and measured CDF of the not well-shielded
sample withN = 10,120, and360 (a) in the nested RC and (b) in the contiguous
RC.

Fig. 9. Comparison of empirical and measured CDF of the MUT with good
electromagnetic shielding performance with N = 10, 120, and 360 (a) in the
nested RC and (b) in the contiguous RC.

Fig. 10 (a) Measured PDF of |S31ws|. (b) Measured SE for different MUT
from 3 to 4 GHz.

Moreover, the empirical results and the measurement results for
the MUT with good electromagnetic shielding performance are
also presented due to the lack of simple expressions. It is shown
that under different N , the curves agree well.

In Figs. 8(b) and 9(b), we compare the analytical results,
the empirical results, and the measurement results in a dif-
ferent stirring position in the contiguous RC. The analytical
and measurement results are consistent with each other. When
N = 10, the deviation of the curves occurs. As N increase,
the deviation becomes smaller. Moreover, the empirical and
the measurement CDFs of the MUT with good electromagnetic
shielding performance agree well.

Compared to the measurement results in the nested and the
contiguous RC, the measured CDFs agree well with the theo-
retical CDFs for the MUT with poor electromagnetic shielding
performance or the empirical CDFs for the MUT with good
electromagnetic shielding performance. When N is small, some
deviations occur and the statistics are biased. The measurement
results also verify the correctness of the theoretical derivation.

Also, it is observed that for the transition |S31ws| between
these Rayleigh distribution and double Rayleigh distribution,
both hypotheses are found inappropriate. As shown in Fig. 10(a),
the PDFs of |S31ws| at 3.5 GHz are given. Note that MUT 1
is with good shielding electromagnetic performance, MUT 5 is
with poor shielding electromagnetic performance. By tuning the
number of holes of the MUT, three transition states are defined
as MUT 2, MUT 3, and MUT 4.
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TABLE II
REJECTION RATE OF BOTH HYPOTHESES WITH DIFFERENT MUT

We performed the Kolmogorov–Smirnov (K-S) test and Chi-
squared (χ2) test for different MUTs. For MUT 1 and MUT
5, the rejection rates in Table II show that both K-S test and
Chi-squared test fails to reject the hypothesis at a 5% significance
level. That is, when MUT is with poor electromagnetic shielding
performance, |S31ws| is Rayleigh distribution; when MUT is with
good electromagnetic shielding performance, |S31ws| is double
Rayleigh distribution.

For the transition state of Rayleigh distribution and dou-
ble Rayleigh distribution, according to CLT, suppose that
〈|S31ws|2〉N is normal distribution, the mean of 〈|S31ws|2〉N is
μ31ws, and the standard deviation is σ31ws/

√
N . Note that if the

CLT is used, no simple PDF expressions of SE can be obtained
as the integral cannot be evaluated in a closed form. Fig. 10(b)
shows the measured SE from 3 to 4 GHz.

Then, we try to derive relative standard deviation of SE for
different MUT, which is the ratio of standard deviation and mean.
Suppose that the linear form of SE = x1 x2x3/x4x5x6, where
x1 = T21ns, x2 = T31ws, x3 = T34ns, x4 = T21ws, x5 = T31ns,
and x6 = T34ws . The standard deviation of x2 is σ31ws/

√
N and

the standard deviation of other term is std (xi) = xi /
√
N, i =

1, 3, 4, 5, 6.
Using the propagation of uncertainty equation [44], [45], [46],

the standard deviation can be derived as

std (xSE) ≈
√∑6

i=1

[
∂SE
∂xi

std(xi)
2

]
. (25)

Then, substitute the standard deviation of each term; thus, the
relative standard deviation can be obtained as

stdrel (xSE) =
std (xSE)

SE
≈

√
5

N
+

σ2
31ws

T 2
31wsN

. (26)

Note that the relative standard deviation depends on the ratio
of T31ws and σ31ws. When MUT is with poor electromagnetic
shielding performance, for 〈|S31ws|2〉N , the mean value is T31ws

and the standard deviation is T31ws/
√
N ; thus, stdrel(xSE) is ap-

proximately equal to
√
6/N , which is equal to the approximate

value in (18). Moreover, when MUT is with good electromag-
netic shielding performance, stdrel(xSE) is approximately equal
to

√
8/N , which is equal to the approximate value in (24).

IV. CONCLUSION

In this article, we have analyzed and derived the statistical
distributions of the SE for the MUT with good and poor electro-
magnetic shielding performance, respectively. Using the Mellin

transform and corresponding transformed variables methods, the
statistics of the SE, such as mean and standard deviation, and
their approximate expressions are given. It is interesting to note
that the PDF of the measured SE depends on the shielding ability
of the MUT. The analytically derived statistics are verified by
simulation and experiments. Results in the nested and contigu-
ous RC both show good agreements with the theory.

The analysis results show that when N is small, the mean
value is biased for the MUT. It is interesting to find that the
correction factors of these two conditions are the same, which
are both [(N − 1)/N ]3. When N becomes larger, the mean
value of the measurement SE is very close to the expected value
(almost unbiased) whereby the standard deviations are

√
6/N

and
√
8/N , respectively. The analytical expressions derived

in this article give rigorous uncertainty analysis of the SE of
materials. Using the propagation of the uncertainty equation,
for the transition state, the relative standard deviation is also
derived.
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