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PRECIS 

In a multicenter retrospective case-control study, the artificial intelligence algorithm 

combining parameters from Scheimpflug-based corneal tomography and 

biomechanical assessments was optimized to further enhance corneal ectasia 

detection. 
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ABSTRACT  

Purpose: To optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based 

corneal tomography and biomechanics to enhance ectasia detection. 

Design: Multicenter cross-sectional case-control retrospective study. 

Methods: 3,886 unoperated eyes from 3,412 patients had Pentacam and Corvis ST (Oculus 

Optikgeräte GmbH; Wetzlar, Germany) examinations. The database included one eye 

randomly selected from 1,680 normal patients (N), and from 1,181 "bilateral" keratoconus 

(KC) patients, along with 551 normal topography eyes from very asymmetric ectasia patients 

(VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-

biomechanical index) was tested, and an optimized AI algorithm was developed for 

augmenting accuracy. 

Results: The area under the receiver operating characteristic curve (AUC) of the TBIv1 for 

discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% 

specificity [cutoff 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff 

0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees 

using 10-fold cross-validation, had significantly higher AUC (0.945; DeLong, p<0.0001) for 

detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff 0.43; DeLong, p<0.0001), 

and similar AUC for clinical ectasia (0.999; DeLong, p=0.818; 98.7% sensitivity; 99.2% 

specificity [cutoff 0.8]). Considering all cases, the TBIv2 had higher AUC (0.985) than TBIv1 

(0.974; DeLong, p<0.0001). 

Conclusion: AI optimization to integrate Scheimpflug-based corneal tomography and 

biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia 

susceptibility in the diverse VAE-NT group. Some VAE patients may be true unilateral 

ectasia. Machine learning considering additional data, including epithelial thickness or other 

parameters from multimodal refractive imaging, will continuously enhance accuracy. 
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INTRODUCTION 

Refractive Surgery has stimulated tremendous advances in corneal imaging to 

enhance safety and predictability of elective and therapeutic procedures. As 

predicted by Wilson and Klyce in 1991, advances in corneal analysis enable the 

surgeon to customize refractive corrections and enhance the efficacy to a level that 

Helmholtz, Placido, and Gullstrand would undoubtedly have been impressed.1 

Nevertheless, the overwhelming data generated determined the need for more 

efficient ways to analyze the data. Artificial Intelligence (AI), introduced in 1956, has 

gained increased relevance in ophthalmology with multiple potential applications.2-6 

AI algorithms utilize computer processing power to simulate and augment human 

interpretation. Such an approach enhances data analysis and the efficiency of 

clinical decisions by employing a consistent multidimensional assessment of the 

large volume of information available, such as when assessing data from multimodal 

corneal and refractive imaging.7,8 

Maeda, Klyce, and Smolek pioneered the field in describing a neural network 

(NN) model based on eleven Placido-disk-based topography indices.9 The 

automated NN pattern interpretation provided a correct classification for all 108 maps 

in the training set but correctly classified only 80% (60 out of 75) of the maps in the 

testing group. While such a difference was statistically significant, the authors 

discussed the concept of reinforced learning for further refining the model and 

predicted the paradigm shift related to AI in the field.9 Since then, AI has made a 

significant impact on the detection and treatment of keratoconus and ectatic corneal 

diseases (ECD).10-24  
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The paradigm shift in ECD management was related to introducing 

crosslinking (CXL) and intrastromal corneal ring segments (ICRS) that could be 

utilized earlier in the disease process than penetrating keratoplasty.25,26 These newer 

treatment modalities highlighted the importance of recognizing mild or subclinical 

ectatic disease, which is also paramount for identifying patients at risk for iatrogenic 

ectasia after corneal laser vision correction (LVC).27 Assessing ectasia risk among 

elective refractive surgery candidates has evolved to the characterization of the 

inherent susceptibility of the cornea for biomechanical decompensation and ectasia 

progression, which lies beyond detecting mild cases with ECD.28-30 In addition, the 

ectasia risk assessment should also include the impact of the LVC procedure, which 

has been heightened by studies involving finite element analysis.31,32 This concept is 

in agreement with McGhee's two-hit hypothesis that genetic (intrinsic) and 

environmental (extrinsic) factors play a role in the etiology of keratoconus,25 and the 

biomechanical cycle of decompensation of corneal ectasia proposed by Dupps and 

Roberts.33 

 Patients presenting with clinical ectasia in one eye but with the contralateral 

eye with normal anterior curvature (topography) and normal vision have been 

classically referred to as one of the possible categories of forme fruste 

keratoconus.34 While there are no unified criteria to define subclinical keratoconus 

and forme fruste keratoconus in the literature,35 such asymmetric cases have been 

studied using advanced imaging, such as corneal tomography, to demonstrate an 

improved ability to detect ECD at an early preclinical stage.7,12,13,17,19,36-39 Such cases 

are referred to as very asymmetric ectasia (VAE)17 or highly asymmetric ectasia 

(HAE).19 In a study involving cases from Rio de Janeiro (Brazil) and Milan (Italy), the 

tomographic and biomechanical index (TBI) was developed with AI by applying 
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random forest with leave-one-out cross-validation (RF/LOOCV). The training set 

included 94 normal topography eyes from very asymmetric ectasia patients (VAE-

NT), along with one eye randomly selected from each of 480 normal patients, one 

eye randomly selected from 204 "bilateral" keratoconus cases, and the 72 

unoperated ectatic eyes (VAE-E). Considering the LOOCV result, the cutoff of 0.79 

provided 100% sensitivity and specificity to detect clinical ectasia (KC + VAE-E 

cases). An adjusted cutoff of 0.29 provided specificity of 96% and 90.4% sensitivity, 

with an area under the receiver operating characteristic (ROC) curve (AUC) of 

0.985.17  

External validation studies confirmed that the TBI had very high sensitivity and 

specificity for detecting ECD.40-47 Some studies, however, found a relatively lower 

sensitivity for detecting abnormality among eyes considered subclinical keratoconus 

(SCKC).48-52 This could be explained by different criteria used to define SCKC,53 

including having normal tomography and biomechanics, based on BAD-D 

(Belin/Ambrósio Enhanced Ectasia Deviation)37 and CBI (Corvis Corneal 

Biomechanical Index).15 One must consider that some of these supposedly false 

negatives SCKC cases may truly represent unilateral ectasia patients due to 

mechanical trauma such as eye rubbing.54-57 Nevertheless, these findings support 

the unquestionable need for further enhancing the sensitivity to identify subclinical or 

mild ectasia cases.  

The current study aimed to test if artificial intelligence for integrating 

Scheimpflug tomography and biomechanical assessments could be upgraded or 

optimized by machine learning, utilizing a more extensive population data set, 

thereby providing higher accuracy for ectasia detection.   
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METHODS 

The current multicenter retrospective study followed the 1964 Declaration of 

Helsinki (revised in 2000). The Institutional Review Board (IRB) and Human Ethics 

Committee of the Universidade Federal de São Paulo (UNIFESP, SP, Brazil) 

approved this study. 

 

Participants 

The study database comprised three thousand eight hundred and eighty-six 

unoperated eyes from 3,412 patients. Twenty-five international centers contributed to 

the data collection. In a similar fashion to work accomplished in the development of 

the first version of the TBI,17 the eyes were divided into four groups: normal patients 

(N), clinical "bilateral" keratoconus (KC) patients, normal topometric (front surface 

curvature from Pentacam) from very asymmetric ectasia patients (VAE-NT), and the 

unoperated ectatic (VAE-E) eyes from the VAE patients. One eye was randomly 

selected from the N and KC groups. Both eyes of the VAE patient entered the study 

unless the VAE-E eye had undergone any surgery (n = 1,680 [N], 1,181[KC], 

551[VAE-NT], and 474[VAE-E], respectively) 

Every patient had a comprehensive ophthalmic examination, including the 

Corvis ST and Pentacam HR (Oculus Optikgeräte GmbH; Wetzlar, Germany). As 

discussed below, only exams with adequate quality for proper analysis were 

included. Patients were asked to suspend the use of soft contact lens wear for at 

least one week before the exam, and rigid or hybrid contact lenses were 

discontinued for a minimum period of three weeks. All cases had the Quad 
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Refractive Map tomographic data blindly re-evaluated by a fellowship-trained expert 

(RA) on Cornea and Refractive Surgery to confirm the inclusion criteria. 

The inclusion criteria for a normal subject (N) was a clinically unremarkable 

general eye exam in both eyes, including normal slit-lamp biomicroscopy, distance 

corrected visual acuity (DCVA) of 20/25 or better, normal Pentacam topometric 

findings, no previous surgery, and no use of topical medications different than 

artificial tears in both eyes. The diagnostic criteria for keratoconus (KC) were clinical 

ectasia in both eyes without previous ocular surgeries.58,59 The criteria for the 

diagnosis of corneal ectasia included topometric characteristics, such as skewed 

asymmetric bow-tie, inferior steepening, and at least one biomicroscopic slit lamp 

finding (Munson's sign, Vogt's striae, Fleischer's ring, apical thinning, Rizutti's 

sign).59 Very asymmetric ectasia (VAE) criteria were the diagnosis of ectasia in one 

eye based on the prior hitherto described criteria and the fellow eye being clinically 

normal based on normal biomicroscopy and a relatively normal front surface 

curvature (Pentacam topometric data).   

All measurements with the Corvis ST and Pentacam HR were taken by 

experienced technicians considering previously reported protocols.17 Proper exam 

quality was also assured by a manual, frame-by-frame analysis of each exam, made 

by an independent masked examiner to ensure the quality of each acquisition. The 

primary criterion for the Corvis ST measurement was good edge detection over the 

whole deformation response, excluding alignment errors (x-direction) and blinking 

errors. Pentacam HR and Corvis ST data were exported to a custom spreadsheet 

using special software. The Pentacam software version 1.21r59 and Corvis ST 

software version 1.6b2015 were used to extract an anonymous database containing 
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340 parameters from rotating Scheimpflug tomography and 90 parameters from the 

ultra-high-speed Scheimplfug deformation response during non-contact tonometry.  

 

Artificial Intelligence Optimizing Protocol & Statistics 

Different software performed statistical analyses and AI development: 

MedCalc Statistical Software version 16.8.4 (MedCalc, Ostend, Belgium. URL 

https://www.medcalc.org/), SPSS version 23 (IBM Corp. in Armonk, NY, USA), the 

R-Core Team version 3.3.1.2016 (R Foundation for Statistical Computing, Vienna, 

Austria. URL https://www.R-project.org/), a custom-written MATLAB program (R14, 

The MathWorks, Natick, MA, USA)`, the Orange version 3.21.1 (University of 

Ljubljana, URL https://orangedatamining.com/), and the Seaborn Python data 

visualization version 0.11.2 (http://seaborn.pydata.org/). 

The data protection procedures included de-identifying the data by a computer 

server to store and process the data were based on the TRIPOD (transparent 

reporting of a multivariable prediction model for individual prognosis or diagnosis) 

recommendations.60 The data were analyzed and combined utilizing different 

artificial intelligence (AI) approaches using the "Knowledge Discovery in Databases" 

methodology.61 The basic flow of steps for the data mining and the creation of the AI 

functions is summarized in Figure 1. The process goes from understanding the 

problem based on previous knowledge, feature selection, and creating different 

algorithms with cross-validation to validate the models. Then, these AI models are 

carefully analyzed and further refined to select the final best algorithm.  
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The first step was data cleaning and preprocessing. The initial data set has 

430 attributes, including data related to the exam acquisition. Basic operations 

removed all irrelevant attributes with more than 40% of the same value, more than 

40% of empty values, or with a variance of less than 0.09 among the patients. This 

step reduced the data set to 219 attributes. Then, the data sets from the original 

Tomography and Biomechanical Index (TBIv1) study (n=778 patients; 850 eyes),17 

and from the first external validation, including cases from Rio de Janeiro (n=487 

patients; 544 eyes)42 were separated. The remaining 2,474 eyes from 2,147 patients 

were divided into two subsets training (2/3) and validation (1/3 eyes) for multiple 

iterations in the next step. Data reduction and projection were performed on training 

subsets using automatic feature selection techniques, such as forward selection, 

backward elimination, and genetic algorithms.62 These methods were applied in a 

wrapper approach with the following machine learning algorithms: Neural Network 

with multilayer perceptron (NN/MLP), k-Nearest Neighbors (k-NN), Decision Tree 

(DT), Logistic Regression Analysis (LRA), and Random Forrest (RF). More than 

1,500 different attribute combinations were extracted as the next step considering or 

not including the TBIv1. 

The next phase focused on the models that did not include the TBIv1 and 

applied those models to the complete data set. At this point, the goal was to build up 

and rank the predictive models based on the accuracy for ectasia detection. Each 

selected attribute combination was done using the selected machine learning 

algorithm. The 10-fold cross-validation was chosen because of the larger population, 

decreasing computational time and complexity. In this step, 790 predictive models 

were analyzed and ranked automatically based on the best area under the receiver 

operating characteristic (ROC) curves (AUC) and sensitivity for detecting VAE-NT 
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cases. The top fifteen models were selected and carefully analyzed for electing the 

best five models. Each model was carefully reviewed, considering the clinical 

relevance of the selected features. Finally, the set of features for each model was 

tested with different machine learning algorithms to define the best model based on 

the highest consistency and accuracy.  

 

Statistical Analysis 

There were three types of analysis performed: normal versus "disease" (KC + 

VAE-E + VAE-NT), N versus clinical ectasia (KC + VAE-E), and N versus VAE-NT. 

First, the Shapiro-Wilk test checked for normal distributions. Considering the 

distributions of the parameters in the keratoconus group were non-normally 

distributed, the analyzed parameters were compared among the groups using the 

nonparametric Kruskal-Wallis test, followed by the post hoc Dunn's test to compare 

each pair of groups. Statistical significance was determined for a p-value lower than 

0.001.  

The AUC was calculated for each parameter, considering the best cutoff value 

for the highest accuracy, determining sensitivity and specificity. Pairwise 

comparisons of the AUCs were accomplished with a nonparametric approach as 

described by DeLong and coworkers to compare the performance of diagnostic 

tests.63 Separation curves that display accuracy as a function of shifting the cutoff 

value were plotted as described by Bühren.11 This method allows for comparisons 

among the different metrics using normalized cutoff points by a Z transformation in 

which the optimum cutoff is adjusted to zero. The area under the separation curve 
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(AUSEP) calculates for the y limits of 50 and 100% accuracy, separating the x limits 

of -1 and 1 standard deviations. Thus, the separation curves (AUSEP) values 

indicate the tolerance to shifts on the cutoff criteria, which may evaluate the 

discriminatory ability of the parameter.11 For ROC analysis, a custom-written 

MATLAB program (R14, The MathWorks, Natick, Mass.) was used to confirm results 

obtained by MedCalc. All combined parameters were programmed to have their 

output values as a scale value ranging from zero to one. An LRA function was 

created for the BAD-D to facilitate graphical comparisons.17 

The correlations between the parameters were tested with Pearson's 

correlation coefficient (r) or Spearman's coefficient of rank correlation (rho) 

accordingly to the distribution of the variables. 
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Results 

Table 1 summarizes the age demographics. The mean age in the normal 

group was 34.2 years old and 31.6 and 31 years old in the KC and VAE groups, 

respectively. There were significant differences in age (Kruskal-Wallis test, p<0.001), 

with post hoc Dunn's analysis being significant for the differences with normal 

patients being older than the other groups (p<0.001). However, such differences 

were considered of limited clinical significance, as shown in Figure 2. 

The algorithm with the highest accuracy for enhancing ectasia detection was a 

novel random forest algorithm, called the BrAIN-TBI (Brazilian Artificial Intelligence 

Networking in Medicine) or TBIv2. The TBIv2 included eighteen features using 156 

trees with 10-fold cross-validation. Table 2 summarizes the 18 features selected, 

including ten parameters from rotating Scheipflug corneal tomography (Pentacam) 

and eight parameters from corneal deformation response during non-contact 

tonometry (Corvis ST).  

A LRA function was applied for the BAD-D version 3 (Belin/Ambrósio 

Enhanced Ectasia Deviation [v3]), so that it was normalized as an index, ranging 

from 0 to 1 (BAD-DI). The BAD-DI was (y = a + b * x): -4.02447 (constant) + (2.5203 

* BAD-D). The BAD-D and BAD-DI had a perfect correlation (Spearman's coefficient 

of rank correlation; p<0.0001; rho=1.0).  

Figure 3 illustrates the scatterplot matrices of the most significant parameters 

plotted pairwisely: age, BAD-D, BAD-DI, PRFI, SPA1, CBI, TBIv1, and TBIv2. Figure 

4 presents the box/dot-plot distributions for the most relevant parameters in the four 

groups.  
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Tables 3A, 3B, and 3C summarize the AUC data, comparing the accuracy of 

the TBIv1,17 the novel TBIv2, the PRFI (Pentacam Random Forest Index),16 the 

BAD-D37 and CBI (Corvis Corneal Biomechanical Index)15 for N x all (KC+VAE-

E+VAE-NT), N x clinical ectasia (KC+VAE-E), and N x VAE-NT. For every pairwise 

comparison for every analysis, the random forest parameters (TBIv1, TBIv2, and 

PRFI) had a statistically significant higher AUC than BAD-D and CBI (DeLong, 

p<0.001). In addition, the BAD-D had a higher AUC than CBI for all studies (DeLong, 

p<0.001). 

For all cases (N x KC+VAE-E + VAE-NT), the TBIv1 had AUC 0.974, with 

90% sensitivity and 96.2% specificity with 0.41 as a cutoff. The AUC of the TBIv1 

was 0.999 for discriminating clinical ectasia (KC and VAE-E), having 98.5% 

sensitivity; 98.6% specificity with a cutoff of 0.5. The AUC of the TBIv1 was 0.899 for 

VAE-NT, having 76% sensitivity and 89.1% specificity for an optimized cutoff of 0.29. 

For all cases, the TBIv2 had an AUC of 0.985, with 92.8% sensitivity and 97.4% 

specificity (cutoff 0.65), which was higher than TBI (0.974; DeLong, p<0.0001). The 

TBIv2 had similar AUC for clinical ectasia (0.999; DeLong, p=0.818; 98.7% 

sensitivity; 99.2% specificity [cutoff 0.8]), but had a higher separation curve. The 

TBIv2 had significantly higher AUC (0.945; DeLong, p<0.0001) for detecting VAE-NT 

(84.4% sensitivity and 90.1% specificity; cutoff 0.43; DeLong, p<0.001). The 

combination of these 18 features also performed well in a logistic regression analysis 

(LRA) with AUC 0.984, and a neural network with multilayer perceptron (NN/MLP) 

including these features had AUC 0.981 for all cases (N x KC+VAE-E + VAE-NT).  

The study comparing normal versus all cases or "disease" (KC + VAE-E + 

VAE-NT) is summarized in Table 3A and Figure 5A. The TBIv2 had a significantly 

higher AUC than all other parameters (DeLong, p<0.0001). The TBIv1 had a larger 
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AUC (0.974) than PRFI (0.972) but with no statistical significance (DeLong, 

p=0.2979). The AUSEP curves provided higher separation for the TBIv2, than the 

TBIv1 and PRFI  (87, 82, and 68, respectively) 

Table 3B and Figure 5B indicate the study to distinguish N from clinical 

ectasia cases (KC + VAE-E). The TBIv2, the TBIv1, and the PRFI had a similar AUC 

of 0.999 and the same 95% confidence intervals between 0.997 to 1. The AUC of the 

BAD-D was 0.995, which was statistically lower than the TBI and PRFI, but higher 

than the AUC of the CBI (0.968; DeLong, p<0.0001). 

The comparison of normal corneas versus the VAE-NT cases is presented in 

Table 3C and Figure 5C. In these diverse cases, the difference in accuracy is more 

pronounced. The TBIv2 had a higher AUC (0.945) than all other parameters 

(DeLong, p<0.0001). The TBIv1 had a larger AUC (0.899) than PRFI (0.893) but was 

not statistically significant (DeLong, p=0.299). The AUSEP curves provided higher 

separation for the TBIv2, than the TBIv1 and PRFI  (70, 58, and 36, respectively). 

The BAD-D had an AUC of 0.823, which was statistically lower than the TBIv1 and 

PRFI but higher than the AUC of the CBI (0.788; DeLong, p<0.0001). The TBIv1 and 

TBIv2 had a very high positive correlation with rho of 0.902 (95% Confidence 

Interval: 0.896 to 0.908; Spearman, p<0.0001; Figure 6).  

The Kruskal-Wallis test found statistically significant differences for TBIv1, 

TBIv2, PRFI, BAD-D, CBI, for maximal axial keratometric value (Kmax), inferior-

superior asymmetry value (IS-value), and Ambrósio's relational thickness to the 

meridian with maximal pachymetric increase (ART-max).64 There was statistical 

significance for every parameter at each pairwise group comparison in post hoc 
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Dunn (p<0.001), unless for KC versus VAE-E in any parameter. Table 4 summarizes 

the descriptive statistics (median and range) for these parameters.    

The BAD-D, the best cutoff for distinguishing normal corneas from all groups 

(KC + VAE-E + VAE-NT) was 1.82, with a sensitivity of 85.5% and a specificity of 

97.7%. The BAD-DI cutoff of 0.63 provided similar accuracy. For detecting clinical 

ectasia (KC + VAE-E), the best cutoff of the BAD-D was 1.98 (BAD-DI of 0.72), with 

a sensitivity of 96.8% and a specificity of 99.3%. The best cutoff for distinguishing 

normal and the diverse VAE-NT group was 1.27 (BAD-DI of 0.31) with 70.8% 

sensitivity and 80.4% specificity. Interestingly, the cutoff of 1.6 (BAD-DI of 0.51), in 

which the parameter turns yellow in the Belin/Ambrósio Enhanced Ectasia Display, 

would lead to 94% specificity and 98.4% sensitivity for clinical ectasia, but with a low 

sensitivity of 52.1% for the VAE-NT cases.  

In the original TBIv1 study,17 objective criteria were rigorously applied for the 

VAE-NT cases to be considered typical topometric data, including the keratoconus 

percentage index, KISA%, lower than 60 and a paracentral inferior–superior (I-S 

value) asymmetry value at 6mm (3mm radii) less than 1.45D.65 This criterion avoids 

recognized problems related to subjectivity and inter and intra-examiner 

inconsistencies for the classifications of topometric maps.66 While 511 (92.7%) VAE-

NT eyes obeyed such criterion, there were forty eyes from this group in the current 

study with objective topometric abnormalities. These cases were kept in the VAE-NT 

group as primarily selected subclinical keratoconus (SCKC) because they were 

confirmed to be very asymmetrical ectasia cases, considering the findings in the 

fellow VAE-E eye. Interestingly, accordingly to Rabinowitz, these cases are 

consistent with the criteria for forme fruste keratoconus.35,67 From the 511 VAE-NT 
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cases with objectively typical topometric data, 75.1% had TBIv1 higher than 0.29, 

and 83.3% had TBIv2 higher than 0.43. 

The asymmetry of the superior and inferior keratometric values (IS-value) 

within 6mm, as described by Rabinowitz,59 with the classical cutoff value of 1.6, 

would lead to a specificity of 99.6% and a sensitivity of 5.1% for the VAE-NT cases 

and 84.5% for the clinical ectasia. Reducing the cutoff to 1.45D as the cutoff, the 

specificity would decrease to 99.3%, with a sensitivity of 86.6% for the clinical 

ectasia and 6.9% for the VAE-NT cases. The maximal axial keratometric value 

(Kmax), with a cutoff value of 47.6D would lead to a specificity of 97.7% and a 

sensitivity of 82.1% for clinical ectasia and 4.9% sensitivity in the VAE-NT cases. 

Interestingly, 8% of the clinical ectatic patients had a Kmax lower than 46D, and 

3.3% had a Kmax lower than 45D. The ART-max,64 with a cutoff value of 329 

microns, has a specificity of 98% and a sensitivity of 93.7% for clinical ectasia but 

only 34.7% for VAE-NT. If considering the cutoff of 387 microns for ART-max, the 

specificity would decrease to 83.6%, with a sensitivity of 65.7% for the VAE-NT. 
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Discussion 

The current multicenter cross-sectional case-control retrospective study 

demonstrated the ability to optimize artificial intelligence (AI) algorithms integrating 

Scheimpflug-based corneal tomographic and biomechanical data to enhance ectasia 

detection. AI has the capacity to (and should) continuously evolve, boosting its 

complexity to improve accuracy.7,68 AI improvements occur through better training, 

which necessitates more data for the refinements. The "Knowledge Discovery in 

Databases" process was applied for data mining and developing AI functions.61 

Feature selection techniques included forward selection, backward elimination, and 

genetic algorithms.62 There are two ways to gather more information for the training 

protocols: larger population data sets and novel attributes or parameters.2,7,68 We 

analyzed 3,886 eyes from 3,412 patients, considering 340 parameters extracted 

from the Pentacam and Corvis ST examinations.  

Besides an extensive population data set, including a relatively large set of 

subclinical cases was a major reason for the success in optimizing AI training in this 

study. Including such cases allows for identifying nuances in the very mild, 

asymptomatic cases. In this context, patients presenting with very asymmetric 

ectasia (VAE), in which the fellow eye had a comprehensive ophthalmic exam within 

normal limits, have served as the most common models to develop, test, and 

demonstrate the improved ability to detect ECD by using advanced imaging 

data.7,12,13,17,19,36,37,69 Other inclusion criteria that could represent subclinical ectasia 

cases include the retrospective analysis of the preoperative state of eyes that 

developed progressive ectasia after laser vision correction procedures,70 and 
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longitudinal studies that identify the relatively normal cases with natural ectasia 

evolution.55,71,72  

The first version of the TBI training set included 94 VAE-NT eyes, from which 

85 (90.4%) had TBIv1 higher than 0.29.17 The current study included 551 very 

asymmetric ectasia patients, with 511 within the rigorous, objective criteria for VAE-

N: KISA less than 60 and I-S value lower than 1.45D.65 In this more extensive series 

of VAE-NT cases, the sensitivity of the TBIv1 for the same cutoff 0.29 was 76%. The 

new TBIv2 augmented the sensitivity up to 84.4% (DeLong, p<0.0001).   

The higher accuracy of the TBIv2 over the TBIv117 and the PRFI16 could not 

be shown by the ability to detect clinical ectasia. Either TBIv1, TBIv2, and PRFI had 

a similar AUC of 0.999 with no statistical significance (DeLong, p=0.818). The 

TBIv2had a slight advantage in accuracy, with 98.7% sensitivity, 99.2% specificity, 

and a cutoff of 0.8. The TBIv1 had 98.5% sensitivity, 98.6% specificity, and 0.5 as 

the cutoff. Paradoxically, the AUSEP of the TBIv2 was lower, which may be related 

to the higher cutoff. Also, while TBIv2 had a higher specificity, more normal cases 

had higher values (Figure 4). The interpretation for the high TBIv2 scores in some 

eyes in the clinically normal group is that those cases may have a higher 

susceptibility to developing ectasia, which can be tested in future prospective studies 

using finite element simulations.31 Considering all cases, the TBIv2 also had a higher 

AUC (0.985) than the TBIv1 (0.974; DeLong, p<0.0001) and PRFI (0.972; DeLong, 

p<0.0001). 

A significant limitation of this study is related to the fact that the VAE cases 

represent a diverse group because some may be genuine unilateral ectasia cases.54-

57,72,73 According to Global Consensus from 2015, Keratoconus is, by definition, 

asymmetric bilateral disease, while secondary mechanical-related ectasia may occur 
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in only one eye. In addition, the 2015 consensus failed to reach an agreement on the 

definition of forme fruste keratoconus (FFKC).58 Nevertheless, the concept that 

FFKC remains with high ectasia susceptibility but did not progress to the full-blown 

presentation of the disease.74 While there is a significant variability in the criteria for 

defining subclinical keratoconus and forme fruste keratoconus in the literature, the 

VAE-NT group may represent a logical group to test the ability of any parameter to 

quantify the level of predisposition or susceptibility for corneal biomechanical 

decompensation.55,69,75 Another limitation of the current study was not to include less 

common phenotypes of "natural" ectasia: pellucid marginal degeneration, and 

keratoglobus.76 Nevertheless, these cases have typical presentations that may 

facilitate clinical diagnosis, there is a need for future studies testing the accuracy of 

the novel TBIv2 for detecting such cases. 

The BrAIN-TBI or TBIv2 was the most consistent AI algorithm utilizing a novel 

random forest (RF), including 18 features (Table 2) in 156 trees with 10-fold cross-

validation, the most consistent AI algorithm. The parameters that were selected had 

relatively high clinical relevance. Rotating Scheimpflug tomography (Pentacam) 77,78 

provided ten features, and eight parameters were derived from the Corvis ultra-high-

speed Scheimpflug imaging during the non-contact tonometry.79,80 The Pentacam 

parameters included: the PRFI,70 the paracentral inferior–superior (IS-value) 

asymmetry value at 6mm (3mm radii),65 three metrics from corneal wavefront,11 one 

metric from peripheral vertical pachymetric asymmetry,81,82 the vertical deviation of 

the Kmax, and two metrics from Belin's enhanced back elevation and one from 

anterior elevation.83-85 The CBI,15 Roberts's stiffness parameters (at first applanation 

and at highest concavity momentum),86,87 and other corneal deformation parameters 

were included.79,80  
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Random forest (RF) is an advanced compound method that involves multiple 

decision trees. As in a classic decision tree, the analyzed case is successively split 

into two mutual subgroups (branches) that subdivide until a final decision on class 

assignment (leaves). The RF approach considers numerous trees for a cooperative 

effort for the decision output. The algorithm grows the trees by sampling the data into 

random subgroups. Some input variables are also randomly selected to test the data 

splitting at each node. According to an objective function, the predictor variable that 

delivers the best split is applied to each node. Each tree gets a "vote" in the 

classification process. The final classification is based on the votes of all trees for 

providing a combined value that typically varies from zero to one.88  

The consistency of the model is highlighted because both the NN/MLP and 

LRA algorithms employing the same 18 variables had equally good diagnostic 

performances. As an iteration process, the RF model with these 18 variables trained 

with leave-one-out cross-validation (LOOCV) had a slightly better AUC of 0.987 for 

all cases (N x KC + VAE-E + VAE-NT), but with no statistical significance (DeLong, 

p=0.169). As for any machine learning method, it is fundamental to include a cross-

validation method to minimize the risk of overfitting. Proper cross-validation will infer 

or presume the ability to generalize the external validity of the model. The first 

version of the TBI utilized LOOCV.17 In contrast, the current study employed ten-fold 

cross-validation because of the larger population as it decreases computational time 

and complexity, still maintaining and possibly enhancing generalization. By this 

means, the 10-fold cross-validation ensures the reliability or robustness of the model 

for classifying new data. Unlike LOOCV, the database is randomly divided into ten 

groups, balancing the number of cases in the subgroups. Subsequently, the AI 

training of the model has repeated ten folds. Each time, one group is excluded, in 
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which the model trained with the 9/10 cases is tested. The reported outcomes of the 

TBIv2 include the outputs from the 10-fold cross-validation model. These results 

present a lower (less optimistic) accuracy when compared to the virtually perfect 

accuracy of the final TBIv2 model that contemplates all cases and will be 

programmed in the commercial Oculus software (Ambrósio, Roberts & Vinciguerra 

Tomography and Biomechanical Display). However, the cross-validation results are 

expected to represent a more trustworthy picture of the expected generalized 

performance for the TBIv2 in clinical application. 

The last three decades witnessed a tremendous advance in corneal imaging, 

which includes the development of high-resolution technologies capable of detailed 

characterizations of different aspects of corneal shape and anatomy and introducing 

scientifically validated methods for representing and interpreting the generated 

data.89 Applying AI was a natural progression for analyzing the overwhelming 

plethora of available data.7,8,54  

Placido-disk-based corneal topography characterizes the anterior or front 

corneal surface, enabling the detection of abnormalities consistent with mild to 

moderate forms of keratoconus in eyes with normal slit-lamp biomicroscopy and 

normal distance corrected visual acuity.90,91 There are still cases that develop ectasia 

despite relatively normal preoperative topography prior to LASIK,30,92-94 SmILE (small 

incision lenticular extraction),95,96 surface ablation,97 and even LASIK-Xtra (LASIK 

with prophylactic crosslinking).98 Ectasia detection is also relevant when evaluating 

candidates for refractive cataract surgery,99 because it impacts IOL calculation, 

quality of vision, and the ability for corneal enhancements.100,101   
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Front surface corneal topography evolved into three-dimension (3D) 

tomographic analysis, which characterizes the front (including topometric or 

curvature) and back surfaces' elevation and thickness mapping.102 Further advances 

in corneal imaging allowed for segmental or layered tomographic (3D) 

characterization with epithelial thickness,14,103-105 and Bowman's layer 

mapping.20,106,107 Beyond shape analysis, in the context of multimodal refractive 

imaging,8 clinical biomechanical assessment has been considered an additional tool 

for augmenting the sensitivity for identifying mild forms of ECD and the 

characterization of the inherent susceptibility for ectasia progression.17,53,108,109 

Future biomechanical assessment to characterize material stiffness using Corvis ST 

data (i.e., Stress-Strain Index [SSI] map),110 or from novel tools such as Brillouin 

microscopy,111-115 and phase-decorrelation ocular coherence tomography (PhD-

OCT)111,116-118 may further enhance AI applications. Ultimately, genetic testing 

through linkage analysis or genome-wide association studies may further elucidate 

about the intrinsic susceptibility for biomechanical decompensation, which promises 

to test and further improve AI for ectasia diagnosis.119-121 

This study was limited to patients with unoperated corneas. Future external 

validation studies are needed to test the accuracy of the TBIv2, including testing the 

specificity among cases with high astigmatism, corneal warpage and dry eye. 

Further AI optimization is expected for post-laser vision correction procedures, as 

developed by Vinciguerra and coworkers for the CBI-post LVC.122 In addition, 

specific improvements for certain ethnicities (i.e., Chinese and Sub-Saharan Africa) 

can augment specificity while not jeopardizing the model's sensitivity. Besides 

diagnosis, AI can be developed to improve prognosis and clinical follow-up, as 

described by integrating biomechanical parameters into Belin's tomographic ABCD 
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system.123-125 The relevance for enhanced ectasia detection may go beyond the 

management of ECD cases and assessing ectasia risk prior to elective laser vision 

correction procedures. For example, there are different associations of keratoconus 

with posterior segment structures findings (i.e., optic nerve head and the choroid).126 

In addition, the hypothesis that mild or subclinical keratoconus could be a risk factor 

for a mother to have a baby with Down's syndrome was also raised.127 While 

understanding the underlying mechanisms for such relationships is not complete, 

enhanced analysis of the cornea based on properly trained AI, considering specific 

well-designed fundamental questions, may provide relevant parameters for future 

clinical applications.  

The current study validated the hypothesis that AI can be optimized to 

improve ectasia detection. Such advances may augment the reliability of clinical 

decisions related to screening cases at risk for ectasia after LVC. The relevance of 

AI develops fast in different areas of Ophthalmology. We predict rapid developments 

with increasing applications for enhancing the safety and efficiency of therapeutic 

and elective Refractive Surgery. AI advances should involve gathering extensive 

data from large populations and including features from multimodal imaging 

technologies, such as epithelial thickness (segmental or layered tomography), axial 

length, and ocular wavefront data.     
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Legends for Figures: 

Figure 1. Basic flow of steps for the data mining and the creation of the AI 
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Figure 2. Descriptive statistics for Age 
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Figure 3. Scatterplot Matrix of the first version of the Tomographic and 

Biomechanical Index (TBI v.1), the optimized version of the Tomographic and 

Biomechanical Index (TBI v.2), Pentacam Random Forest Index (PRFI), Corvis 

Biomechanical Index (CBI), the stiffness parameter at first applanation (SPA1), 

Belin/Ambrósio Deviation (BAD-D), Belin/Ambrósio Deviation normalized index 

(BAD-DI) and age. 
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Figure 4. Box and dot plots showing the distribution of metric values across the 

groups (n = 1,680 normal eyes [N], 1,181 keratoconic eyes [KC], 551 eyes with 

normal topography from very asymmetric ectasia patients [VAE-NT], and 474 ectatic 

unoperated eyes from the very asymmetric ectasia patients [VAE-E]). (A) The first 

version of the Tomographic and Biomechanical Index (TBI v.1); (B) The optimized  

version of the Tomographic and Biomechanical Index (TBI v.2); (C) Pentacam 

Random Forest Index (PRFI); (D) Corvis Biomechanical Index (CBI); (E) 

Belin/Ambrósio Deviation (BAD-D); (F) Belin/Ambrósio Deviation normalized index 

(BAD-DI). The box spans the first and third quartile. The whiskers indicate the 1.5-

fold interquartile range. Colored markers representing each value in each patient and 

its mean are superimposed. 
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Figure 5. Receiver operating characteristic (ROC) and separation (SEP) curves for 

the different studies. (A) Normal vs all groups (keratoconus [KC] + very asymmetric 

ectasia with clinical ectasia (VAE-E) + the normal topography eye from very 

asymmetric ectasia patients [VAE-NT]); (B) Normal vs clinical ectasia (KC + VAE-E); 

(C) Normal vs VAE-NT. BAD-D v3 = Belin/Ambrósio (version 3) Deviation; BAD-DI = 

Belin/Ambrósio Deviation normalized index (BAD-DI); CBI = Corvis Biomechanical 

Index; PRFI = Pentacam Random Forest Index; TBI = Tomographic and 

Biomechanical Index 
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Figure 6. Correlation between the original (TBI v.1) and the optimized version (TBI 

v.2) of the Tomographic and Biomechanical Index. 
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Legends for Tables: 

 

Table 1. Descriptive statistics for Age. 

Table 1. 

Grou
p 

n 
Mea

n 
SD 

Media
n 

Minimu
m 

25th percentil
e 

75th percentil
e 

Maximu
m 

CLIN 
NOR

M 

1680,0
0 

34,1
9 

13,6
9 

30,37 6,99 24,45 41,00 90,06 

KC 
1181,0

0 
31,5

9 
11,1

8 
29,59 6,64 23,67 37,18 78,39 

VAE-
E 

474,00 
31,0

3 
12,7

4 
27,88 10,34 21,88 37,44 83,15 

VAE-
NT 

551,00 
31,0

2 
13,0

3 
27,93 10,34 21,65 37,22 83,15 

 

 

Table 2.  The 18 features selected for the AI algorithm of the TBI v.2. 

Table 2.  

Parameter Origin Parameter 

CBI Corvis ST Corvis Corneal Biomechanical Index 

DARatioTMax2mm Corvis ST Ratio of the Deformation Amplityde at 2mm 

DensitoIncreaseMax Corvis ST 
Maximal change in backscattering of the 

cornea from  

HC Deformation Amp_mm Corvis ST Highest concavity deformation amplitude 

MaxInverseRadius  Corvis ST 
Minimal Radius of Curvature during 

concave phase of deformation 

PeakDist_mm Corvis ST 
Horizontal distance between the two 

highest points (nasal and temporal) of the 
cornea at time of maximum defoormation 
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SPA1 Corvis ST Stiffness Parameter at first applanation 

SPHC Corvis ST Stiffness Parameter at Highest Concavity 

BADDb Pentacam 
Deviation from normality of the enhanced 

posterior elevation best-fit-sphere  

BFSFront Thinnest 3mm Pentacam 
Best-fit sphere for anterior 3mm centered 

at the thinnest point 

ISValue Pentacam Inferior-Superior Axial Steepening 

KMaxFrontY Pentacam 
Vertical Deviation of the point with maximal 

keratometry (Kmax)from the Apex 

Pac_Asymm_ApexVert8.0mm Pentacam 
Vertical Asymmetry of the Pachymetry at 

8mm  

PRFI Pentacam Pentacam Random Forest Index 

SphRMin Pentacam 
The minimal mean radius of a ring based 

on Fourier analysis (zero order 
component) 

TiltMinAxisMVP Pentacam 
Axis location of maximal decentration 

based on Fourier analysis (first order wave 
component) 

TiltMinMVP Pentacam 
The maximumal decentration based on 

Fourier analysis (first-order wave 
component) 

Ele. BBFTE 8mm @ Thinnest Pentacam 
Back (posterior) elevation at the thinnest 

point considering best-fit-toric ellypsoid for 
8mm 
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Table 3. Descriptive of the summarizes the area under the receiver operating 

characteristic (ROC) and separation (AUSEP) curves calculated between the limits 

of −1 and +1 standard deviations for (A) Normal vs all groups (keratoconus [KC] + 

very asymmetric ectasia with clinical ectasia (VAE-E) + the normal topography eye 

from very asymmetric ectasia patients [VAE-NT]); (B) Normal vs clinical ectasia (KC 

+ VAE-E), and (C) Normal vs VAE-NT. SE=standard error, calculated by Bimonial 

exact; 95% confidence interval, calculated based on DeLong’s method.59 

Table 3A. Normal x “disease” (KC+VAE-E+VAE-NT) 

Variable AUC SE 
a
 95% CI 

b
 AUSEP 

c
 

TBI_v.1 0.974 0.00236 0.968 to 0.979 82 

TBI_v.2 0.985 0.00156 0.981 to 0.989 87 

PRFI 0.972 0.00239 0.967 to 0.977 68 

BADD 0.952 0.00336 0.945 to 0.959 72 

CBI 0.923 0.00418 0.914 to 0.931 68 

 

Table 3B.  Normal x “clinical ectasia” (KC+VAE-E) 

Variable AUC SE 
a
 95% CI 

b
 AUSEP 

c
 

TBI_v.1 0.999 0.000269 0.997 to 1.000 93 

TBI_v.2 0.999 0.000339 0.997 to 1.000 75 

PRFI 0.999 0.000326 0.997 to 1.000 87 

BADD 0.995 0.00114 0.992 to 0.997 75 

CBI 0.968 0.00283 0.962 to 0.974 81 

 

Table 3C.  Normal x “disease” (VAE-NT) 

Variable AUC SE 
a
 95% CI 

b
 AUSEP 

c
 

TBI_v.1 0.899 0.00861 0.886 to 0.911 58 

TBI_v.2 0.945 0.00574 0.935 to 0.954 70 

PRFI 0.893 0.00862 0.879 to 0.905 36 

BADD 0.823 0.0112 0.807 to 0.839 38 

CBI 0.788 0.0116 0.771 to 0.805 39 
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Table 4. Descriptive  median, and range (minimum to maximum) for the main 

parameters: TBIv1 = original Tomographic and Biomechanical Index; TBIv2= 

optimized version of the Tomographic and Biomechanical Index; PRFI= Pentacam 

Random Forest Index; BAD-D=Belin/Ambrósio Deviation (version 3); CBI= Corvis 

Biomechanical Index (CBI), IS-value=the inferior-superior asymmetry at 6mm in 

diameter; Kmax=maximal keratometric (axial) value on the front surface; 

ARTmax=Ambrósio’s relational thickness to the maximal progression meridian. 

Table 4. 

  
Clin. Normal 

(n=1.680) 
KC (n=1.181) VAE-E (n=474) 

VAE-NT 
(n=551) 

  Min 
Medi

an 
Max 

Mi
n 

Medi
an 

Ma
x 

Mi
n 

Medi
an 

Ma
x 

Mi
n 

Medi
an 

Ma
x 

TBI v.1 0 
0.02

8 
0.73

4 
0.1
48 

1 1 
0.2
61 

1 1 0 
0.54

6 
1 

TBI v.2 0 0.09 
0.98

5 
0.1
41 

1 1 
0.2
9 

1 1 0 
0.86

5 
1 

PRFI 0 
0.03

8 
0.46

6 
0.0
54 

0.98
6 

1 
0.1
24 

0.97
8 

1 0 
0.30

2 
0.9
86 

BADD 
(v3) 

-
1.13 

0.81 2.81 
0.4
9 

6.64 
33.
42 

0.1 
6.10

5 
30.
63 

-
0.8
2 

1.64 
5.6
5 

CBI 0 
0.17

5 
0.96

4 
0.0
35 

0.97
9 

1 
0.0
19 

0.96
7 

1 
0.0
03 

0.56
6 

1 

IS-
value 

(D) 

-
1.63 

0.11 2.16 
-

2.8
7 

4.66 
29.
68 

-
7.0
8 

3.85 
19.
84 

-
1.4
9 

0.6 4.3. 

K max 
(D) 

39.6 44.5 49.8 
41.
5 

52.3 
85.
1 

42.
5 

51.6 
86.
2 

38.
9 

44.7 
55.
1 

ART-
max 

(micra) 
267 454 786 0 176 720 0 196 467 126 362 638 
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