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DNA methylation is one of the earliest epigenetic regulation
mechanisms studied extensively, and it is critical for normal
development, diseases, and gene expression. As a recently iden-
tified chemical modification of DNA, N4-acetyldeoxycytosine
(4acC) was shown to be abundant in Arabidopsis and highly
associated with gene expression and actively transcribed genes.
Precise identification of 4acC is essential for studying its bio-
logical function. We proposed the 4acCPred, the first computa-
tional framework for predicting 4acC-carrying regions from
Arabidopsis genomic DNA sequences. Since the existing 4acC
data are not precise for a specific base but only report regions
that are hundreds of bases long, we formulated the task as a
weakly supervised learning problem and built 4acCPred using
a multi-instance-based deep neural network. Both cross-valida-
tion and independent testing on the four datasets under
different conditions show promising performance, with mean
areas under the receiver operating characteristic curve
(AUCs) of 0.9877 and 0.9899, respectively. 4acCPred also pro-
vides motif mining through model interpretation. The motifs
found by 4acCPred are consistent with existing knowledge,
indicating that the model successfully captured real biological
signals. In addition, a user-friendly web server was built to
facilitate 4acC prediction, motif visualization, and data access.
Our framework and web server should serve as useful tools for
4acC research.

INTRODUCTION
DNA methylation is one of the major epigenetic mechanisms that
critically influence a number of vital biological processes.1 Aberrant
DNA methylation patterns are frequently observed in diseases.2

Currently, more than 17 types of modified bases have been iden-
tified in DNA.3 Among them, N6-methyladenine (6mA) and
5-methylcytosine (5mC) are the two most prevalent modifications,
and their biological roles have been widely studied. 6mA usually plays
critical roles in the regulation of gene expression,4 DNA repairs,5 and
DNA replication6 and is closely associated with cancer development7

and neuro development,7,8 and 5mC is responsible for the silencing of
transposable elements,9 atherosclerosis,10 and aging.11
Molecular Thera
This is an open access article under the CC BY-NC-
Apart from 5mC to 6mA, other DNA methylations have not
been extensively detected and explored. Recently, inspired by direct
analogs of chemical modifications of RNA and DNA, such as
m5C/5mC, hm5C/5hmC, and m6A/6mA, as well as the widely distrib-
uted and highly conserved RNA modification N4-acetylcytosine
(ac4C),12,13 Wang et al. proposed 4acC immunoprecipitation
followed by sequencing (4acC-IP-seq) to explore the presence and func-
tion of 4acC in DNA of Arabidopsis thaliana.14 The protocol of 4acC-
IP-seq is similar to methylated DNA IP (MeDIP) and 6mA-IP-
seq,15,16 applying the 4acC-specific antibody IP method to enrich
DNA fragments containing 4acC modification and then constructing
ahigh-throughput sequencing library. 4acC-IP-seq revealed that the en-
riched 4acC modification peaks were mostly distributed around the
transcription start sites of protein-coding genes among euchromatin re-
gions. Potential interactions of 4acC with 5mC and histones were also
observed in the context of gene-expression regulation. Furthermore,
the existence of 4acC in genomic DNA samples of rice, maize, mouse,
andHomo sapienswas also confirmedbymass spectrometry.Therefore,
precise identification of 4acC in eukaryoticDNA is crucial for exploring
its biological function and its interplays with other epigenetic marks.

In practice, wet-lab experiments to detect modifiable sites, such as
mass spectrometry and antibody-based sequencing method, are
often time consuming with a high cost, and the specific antibodies
used for IP sequencing restrict the accuracy of sequencing results.17

To date, various computational models based on DNA or RNA
sequences have been proposed to serve as useful alternatives.
The existing algorithms can be roughly divided into two
categories: feature-based algorithms and deep-learning-based algo-
rithms. Examples of the former include iDNA6mA-Rice,18 i6mA-
Fuse,19 SDM6A,20 Methylator,21 MethCGI,22 iDNA-Methyl,23

4mCPred,24 4mCPred-SVM,25 4mCpred-EL,26 4mCpred-IFL,27
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Figure 1. A simplified graphic illustration of the proposed 4acCPred

framework

Molecular Therapy: Nucleic Acids
Meta-4mCpred,28 and i4mC-ROSE, which rely on hand-crafted fea-
tures to represent sequence context.29 For instance, iDNA6mA-Rice
applied multiple encoding schemes, including PseKNC, single-
nucleotide binary encoding, and natural vectors, and predicted
6mA using random forest on rice DNA. While the performance
of feature-based methods relies heavily on choosing the best repre-
sentation in each case, many deep-learning-based methods have
recently been proposed to learn from raw sequences and achieve su-
perior performance, including iDNA6mA-Rice-DL,30 DNA6mA-
MINT,31 4mCPred-CNN,32 Deep6mAPred,33 BiLSTM-5mC,34 and
so on. For instance, 4mCPred-CNN is the first method based
on a convolutional neural network (CNN) to identify 4mC sites
in the mouse genome.32 Similar machine-learning-based ap-
proaches have also been proposed to predict modifications in
RNA sequences, which can be easily transferred to DNA. Examples
include iRNA-Methyl,35 SRAMP,36 WHISTLE,37 DeepPromise,38
338 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
MultiRM,39 NmRF,40 BRPCA,41 EDLm6APred,42 REW-ISA V2,43

m7GDisAI,44 HN-CNN,45 and m6Acomet.46

Most existing frameworks are based on strong supervision, which re-
quires the precise location of the modified bases. However, such data
are currently unavailable for 4acC. The only high-throughput-
sequencing-based technology, 4acC-IP-seq, only allows the detection
of 4acC-carrying DNA fragments of at least 200–400 bases in
length.14 Because there usually exist multiple cytosines in each frag-
ment, it is unclear which ones are modified. Such data do not allow
the model to learn modification-specific sequence contexts from
fixed-length sequences centered on the target cytosine as strongly su-
pervised learning does. Instead, the only label information that can be
used for training is associated with DNA regions of different lengths,
i.e., whether the region contains at least one 4acC site. To address the
challenge of learning from these coarse-grained labels, here we
consider a multiple-instance learning (MIL) framework, one of the
weakly supervised learning algorithms.

Weakly supervised learning aims to construct predictive models by
learning from noisy, limited, or imprecise sources. In genomics,
weakly supervised learning, especially MIL, is widely considered in
protein-DNA interaction prediction,47–50 where the bound DNA
sequence may contain multiple binding sites, and the exact location
is unknown. WSCNN and its updated version, WSCNNLSTM,
combine MIL with deep neural networks and have achieved superior
results in in vivo and in vitro transcription factor binding site predic-
tion.49,50 In addition to DNA modeling, MIL has been applied to
automate the annotation of protein functions,51 protein splice
variants,52 specific functional binding sites in microRNA targets,53

and proteome-wide interactions.54 More recently, to predict RNA
modifications from only low-resolution epitranscriptome data,
WeakRM combined MIL and attention mechanisms and showed
promising performance on three RNA modifications, including
ac4C.55 WeakRM divided the RNA sequence into multiple fixed-
length subsequences. For peak regions called by bioinformatics tools,
at least one subsequence contains a target modification and should
cover specific sequence patterns. Thus, the integrated representation
of all subsequences can be linked to a positive label. Whereas for
regions from the same transcript but not detected as peaks, modifica-
tion-specific sequence patterns should not be included in any subse-
quences, and their integration remains negative. Inspired by the
WeakRM framework and considering the direct analog of ac4C and
4acC, we consider the 4acC prediction from 4acC-IP-seq data natu-
rally and inherently an MIL task.

We propose 4acCPred, the first prediction framework for high-accu-
racy identification of 4acC-carrying regions from Arabidopsis
genomic DNA sequences. Under the MIL framework, we combine
CNN and bidirectional long short-term memory (LSTM) to exploit
their advantages in local motif extraction and long-term interaction
learning, respectively. A simplified graphic framework of 4acCPred
is illustrated in Figure 1. Evaluation of all four conditions provided
by 4acC-IP-seq (wild type, NH2OH treatment, met1 mutant, and



Table 1. Performance of 4acCPred under 10-fold cross-validation with standard deviations

Model Group Accuracy AUC AP MCC

WSCNN

WTa 0.7089 (±0.0222) 0.8052 (±0.0438) 0.8041 (±0.0220) 0.4474 (±0.0270)

NH2OH 0.6860 (±0.0460) 0.8306 (±0.0595) 0.8271 (±0.0344) 0.4265 (±0.0616)

met1 0.6788 (±0.0438) 0.8705 (±0.0704) 0.8695 (±0.0454) 0.4337 (±0.0625)

Rdd 0.6668 (±0.0591) 0.8558 (±0.0738) 0.8584 (±0.0407) 0.4121 (±0.0891)

WSCNNLSTM

WT 0.8064 (±0.0099) 0.8801 (±0.0082) 0.8453 (±0.0123) 0.6175 (±0.0195)

NH2OH 0.8124 (±0.0077) 0.8881 (±0.0048) 0.8578 (±0.0068) 0.6263 (±0.0158)

met1 0.8511 (±0.0088) 0.9226 (±0.0077) 0.9015 (±0.0115) 0.7027 (±0.0176)

Rdd 0.8433 (±0.0079) 0.9216 (±0.0068) 0.8985 (±0.0122) 0.6884 (±0.0152)

4acCPred

WT 0.9485 (±0.0050) 0.9794 (±0.0018) 0.9695 (±0.0033) 0.8981 (±0.0098)

NH2OH 0.9506 (±0.0050) 0.9857 (±0.0021) 0.9800 (±0.0055) 0.9019 (±0.0098)

met1 0.9679 (±0.0061) 0.9928 (±0.0024) 0.9875 (±0.0064) 0.9360 (±0.0122)

Rdd 0.9706 (±0.0037) 0.9928 (±0.0030) 0.9890 (±0.0055) 0.9414 (±0.0071)

All methods were evaluated using the same datasets with a positive-to-negative ratio of 1:1. The performance is given as average ± standard deviation. The threshold for accuracy is 0.5.
aWT represents the condition of wild type.
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ros1dml2dml3 [rdd] mutant) demonstrated the general effectiveness
of our approach in predicting 4acC from DNA regions (average areas
under the receiver operating characteristic curve [AUCs] in a 10-fold
cross-validation test were 0.9877 and 0.9899 in independent testing).
Furthermore, model interpretation showed that 4acCPred also
captured motifs consistent with existing knowledge. The 4acCPred
web server, accessible via http://www.rnamd.org/4accpred, is de-
signed to help users predict 4acC modifications and visualize
captured motif patterns on Arabidopsis genomic DNA. All data
used in this study (the peak information called by MACS2 with anno-
tation) and trained 4acCPred models have also been uploaded to the
web server for user convenience. We anticipate that our newly pro-
posed model and the web server can take full advantage of limited
experimental data and facilitate the study of DNA 4acC modification
by providing alternative computational prediction approaches.

RESULTS
We developed the first DNA 4acC modification predictor based on
MIL. To demonstrate the model’s stability, we formed four bench-
mark datasets based on four conditions provided in 4acC-IP-seq
(GEO: GSE168538) and evaluated the model performance sepa-
rately.14 The initial learning rate, decayed learning rate, instance
length, and instance stride are set as 5 � 10�4, 1 � 10�5, 40, and 5,
respectively. Details can be found in the materials and methods.
For each dataset, one-third of the data was selected as an independent
test dataset. The proposed method was found to be robust on both
cross-validation and independent testing.

The whole structure of the model contains a four-layer encoding
module (see Figure 1): after the first convolutional layer, a max-pool-
ing layer withdraws weak features in datasets to expand the receptive
field. There also involves a dropout layer to prevent overfitting in
training the model. Finally, a bidirectional LSTM layer captures the
hidden long-term dependencies between sequential patterns. Each
instance passes through the same encoding module (weights are
shared) and outputs instance-level features. The network learns
weights for each instance and sums all instance features as features
for the entire input sequence for final classification.

Comparison with existing frameworks developed for protein-

DNA binding prediction

We compared our algorithms 4acCPred with WSCNN and its up-
dated version WSCNNLSTM using the same datasets,49,50 which
were originally developed for transcription factor binding site predic-
tion. We split each dataset equally into ten partitions to perform
10-fold cross-validation. Table 1 shows the average performances in
terms of the AUC, average precision (AP), Matthews correction coef-
ficient (MCC), and accuracy of different algorithms under cross-vali-
dation. In the wild-type case, the AUC of 4acCPred is about 0.1 higher
than that of WSCNN andWSCNNLSTM. 4acCPred also achieved an
improvement of at least 0.07 AUC under the other three conditions.
Under all four conditions, 4acCPred had an AUC of at least 0.97 and
an AP of at least 0.96, indicating its promising performance in pre-
dicting 4acCPred-carrying regions.

Performance evaluation on independent test datasets

To further test the performance and robustness of our newly pro-
posed predictor in finding 4acC-carrying regions, we apply the ten
models obtained from the cross-validation for each condition to
held-out independent test datasets and show their average results.
As shown in Table 2, with accuracy, AUC, MCC, and AP as evalua-
tion metrics, the results of our model are consistent with those
in cross-validation. A significant improvement from the baseline
model to 4acCPred can also be observed. The average performances
in terms of AUC, AP, MCC, and accuracy of different algorithms un-
der the ensemble of these ten models are shown in Table S1. It is
pleasing that all metrics of 4acCPred are higher than WSCNN and
WSCNNLSTM.
Molecular Therapy: Nucleic Acids Vol. 30 December 2022 339
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Table 2. Performance of 4acCPred on independent test datasets with standard deviations

Model Group Accuracy AUC AP MCC

WSCNN

WTa 0.7101 (±0.0216) 0.8051 (±0.0483) 0.8044 (±0.0260) 0.4509 (±0.0251)

NH2OH 0.6831 (±0.0452) 0.8293 (±0.0652) 0.8250 (±0.0372) 0.4209 (±0.0601)

met1 0.6766 (±0.0402) 0.8691 (±0.0740) 0.8694 (±0.0424) 0.4301 (±0.0524)

Rdd 0.6728 (±0.0590) 0.8643 (±0.0744) 0.8647 (±0.0426) 0.4213 (±0.0898)

WSCNNLSTM

WT 0.8119 (±0.0032) 0.8866 (±0.0014) 0.8551 (±0.0020) 0.6288 (±0.0054)

NH2OH 0.8154 (±0.0033) 0.8893 (±0.0018) 0.8607 (±0.0035) 0.6324 (±0.0068)

met1 0.8526 (±0.0036) 0.9241 (±0.0020) 0.9018 (±0.0032) 0.7061 (±0.0074)

Rdd 0.8594 (±0.0053) 0.9284 (±0.0011) 0.9056 (±0.0020) 0.7200 (±0.0107)

4acCPred

WT 0.9512 (±0.0015) 0.9855 (±0.0006) 0.9796 (±0.0007) 0.9031 (±0.0031)

NH2OH 0.9530 (±0.0017) 0.9859 (±0.0005) 0.9779 (±0.0009) 0.9066 (±0.0033)

met1 0.9728 (±0.0033) 0.9950 (±0.0004) 0.9926 (±0.0006) 0.9458 (±0.0065)

Rdd 0.9726 (±0.0016) 0.9932 (±0.0002) 0.9891 (±0.0006) 0.9453 (±0.0031)

All methods were evaluated using the same datasets with a positive-to-negative ratio of 1:1. The performance is given as average ± standard deviation. The threshold for accuracy is 0.5.
aWT represents the condition of wild type.
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Since an essential question in deep learning is to what extent the
system learns peculiarities of a particular experimental setup (rather
than the underlying biology), we designed an experiment for perfor-
mance comparisons where training and evaluation data come from a
different experiment to deal with this. 4acCPred also makes the best
prediction (see Table S2).

Motifs identified by 4acCPred are consistent with existing

knowledge

In 4acCPred, we quantified attribution scores for each input feature
using the integrated gradient (IG) method.56 Then, we extracted
consensus motifs from instances by using TF-MoDISco.57 TF-
MoDISco first identifies subsequences (called seqlets) with signifi-
cant importance scores, then clusters and aligns all seqlets to obtain
representative motifs. After pruning through the overall letter fre-
quency, we selected the consensus motif with the highest number
of supporting seqlets. The top 1 result from wild-type models is
shown in Figure 2. Due to the lack of strand information in the
training data, it is natural to obtain two motifs separately from
the two strands, and they should complement each other. According
to Figure 2, our proposed model tends to assign high weights to CT-
enriched or GA-enriched (complement) subsequences. Since 4acC is
a kind of DNA modification, and we input sequence on both ‘+ ’

and ‘� ’ strands to train the model, 4acCPred provides two corre-
sponding motifs on two strands, respectively.

Compared with the known motifs identified by HOMER with the
same BED results from MACS2,58,59 unsurprisingly, the motif
learned by 4acCPred with the strictest score (a total of 229 seqlets
were found) is consistent with the top 1 motif found by HOMER.
To numerically measure the similarity between these two motifs,
we applied the motif comparison tool MEME-Tomtom,60 resulting
in a significant p value of 0.0019. More results from the other three
conditions can be found in Figures S1–S3, and the top 5 motifs
340 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
found by 4acCPred for each condition are shown in Figures S4–
S7. Together, we show that the motifs revealed by our model are
consistent with existing knowledge, providing some evidence that
our model learns true biological signals rather than technical biases
and that attention weights have the potential to be used to predict
acetylation at higher resolutions.

Web implementation

To facilitate the use of our model and assess of the used data, a web
server has been developed using Hyper Text Markup Language
(HTML), Cascading Style Sheets (CSSs), and JavaScript (JS) and is
accessible at http://www.rnamd.org/4accpred (see Figure 3). The
web server allows users to upload DNA sequences in FASTA format
and provides predicted probability scores under user-specified condi-
tions (wild type [WT], NH2OH, rdd, andmet1mutant). All the results
could be downloaded in a CSV format file. The display of motifs is
available upon request. In addition, all processed data originating
from 4acC-IP-seq and analyzed using MACS2 can be freely down-
loaded from the web server.

DISCUSSION
4acC is a recently discovered abundant DNA chemical modification
that is involved in various gene-expression functions. Precise predic-
tion of 4acC modification-containing regions is vital for scientific in-
vestigations to understand its role in biological regulation. In this
study, we designed the first 4acC predictor, 4acCPred, on Arabidopsis
based on weakly supervised learning and LSTM. We collected data
from all four conditions provided by 4acC-IP-seq and divided them
into cross-validation and independent test datasets. 4acCPred
achieved average AUCs of 0.9877 and 0.9899 in the two datasets,
respectively. Additionally, the motif discovered by 4acCPred with
the strictest score is consistent with motifs found in existing knowl-
edge. Together, these results demonstrate the robustness of our model
as a useful alternative to detect DNA 4acC acetylation. To facilitate

http://www.rnamd.org/4accpred


Figure 2. Top 1 motif found in 4acCPred

The top motif found in 4acCPred matches the result of

HOMERwith a p value of 1.93� 10�2 under the wild-type

condition. The first p value (up) represents the significance

of the HOMER motif. The second p value (down)

represents the probability that a random motif of the

same width has the same or better matching score as

the reported motif.

www.moleculartherapy.org
the use of 4acCPred, we have also built a user-friendly web server for
prediction and motif visualization, available at http://www.rnamd.
org/4accpred. It is worth noting that 4acCPred is currently only con-
structed for Arabidopsis, and its performance in other species needs
further experimental verification.

MATERIALS AND METHODS
Benchmark datasets

The high-throughput 4acC-IP-seq samples were collected from
the recently published article.14 All data were downloaded from
NCBI Gene Expression Omnibus (GEO) under GEO: GSE168538
(see Table 3). Confident 4acC peaks were obtained through peak
calling of MACS2 (https://github.com/macs3-project/MACS).59 The
sequencing results of four conditions were used to form four datasets
separately: WT, NH2OH treatment, met1 mutant, and rdd mutant.
Since there were two biological replicates for each condition, to
improve data quality, we used the intersection of the two replicates
as positive data. Considering that a single DNA fragment is 200-
400 nt in length, we randomly supplemented regions that were too
short after the intersection to 200-nt to ensure a consistent peak width
distribution. Such supplemented sequences still contain the peak
intersection regions and thus can be treated as positive. On the other
hand, peaks longer than 2,000 nt in length were not used in this study
to avoid potential false positives caused by peak calling software. Since
such data only account for a very small proportion, treating them as
outliers does not lose much information. For negative data, we select
regions from the upstream and downstream regions of the called peak
that do not have any overlap with the positive peak. The positive-to-
negative ratio is set as 1:1 to avoid imbalance problems in training.
Furthermore, for each positive peak, we extracted a negative sequence
of the same length and left them in the same part of the dataset so that
the model is not biased by input length. Conceivably, 4acC is one kind
of DNA modification, so we reverse complemented the sequence and
divided the results into instances as additional inputs. It is to be noted
that we randomly retained two-thirds of the data as training sets and
Molecular Therap
the rest of the data as independent valid sets
to evaluate our model. The DNA sequence is
represented using one-hot encodings (i.e., A:
[1, 0, 0, 0], C: [0, 1, 0, 0], G: [0, 0, 1, 0], and T:
[0, 0, 0, 1].).

Weakly supervised learning of 4acC

The 4acCPred framework treats each DNA
sequence as a “bag” with multiple subsequences
known as “instances.” Specifically, a sliding window of length cmoves
along the bag sequence with stride s. This means that each time a sub-
sequence of length c is extracted as an instance, the next instance
starts s-bases downstream of where the previous instance started. If
the length of a specific bag sequence is L, there will be L� c

s + 1 in-
stances in total. Window length c and stride s are two hyper-param-
eters. In our study, we chose a sliding window of length 50 and a stride
of 10 for ac4C RNA modification in 4acCPred. The available label in-
formation is associated with the entire bag, not with each instance.
The underlying logic of the MIL framework used in 4acCPred is
that the network should highlight instances in positive data that
contain target acetylation and capture their sequential patterns.
Conversely, for negative data, the model should treat all instances
as negative.

The network structure used to extract sequence features consists of
one convolutional layer and one bidirectional LSTM layer. One of
the greatest strengths of CNNs in genomics is that it naturally cap-
tures sequence motifs for a given target through its local receptive
fields. However, it inevitably overlooks hidden long-term depen-
dencies between sequential patterns, which can be addressed by using
LSTMs. Between CNN and LSTM, we add a max-pooling layer to fil-
ter weak features and expand the receptive field and a dropout layer to
prevent overfitting in model training. It is worth noting that the
network uses shared weights to extract features for each instance.

A key step of the MIL framework is to merge the instance-level fea-
tures to obtain the bag-level probability (i.e., the predicted value that
a DNA sequence contains at least one 4acC acetylation). Unlike
WSCNN and WSCNNLSTM,49,50 which first let the network output
a score for each instance and then use functions such as mean, max,
and Noisy-and to aggregate scores into one value for the entire
bag,61,62 we assign weights to each instance using an attention
mechanism and treat the weighted sum of all instance features as
the final bag representation. Specifically, we use gated attention,
y: Nucleic Acids Vol. 30 December 2022 341
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Figure 3. A web server of 4acCPred

We designed a user-friendly web server for prediction and motif visualization to facilitate the use of 4acCPred.
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which consists of three fully connected layers. The attention weight
ak is calculated as follows:

ak =
exp

�
wT

�
tanh

�
VbTk

�
1sigm

�
UbTk

���
PK
j = 1

exp
n
wT

�
tanh

�
VbTj

�
1sigm

�
UbTj

��o

where K represents the number of instances in a bag; bi is the hidden
representation of instance i; w, U , and V are weights of three neural
network layers; tanh and sigm are tanh and sigmoid activation func-
tions; and T means transposition. The weights are normalized to
guarantee that all weights sum to 1 so that the network can handle
the input of any number of instances.
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The advantage of this feature-merging approach is that the network
can learn to assign high weights to instances with preferred sequence
patterns. The attention weight can also be considered as an indicator
to infer the subsequences most likely to contain acetylation.
Conversely, score merging using a fixed function tends to lose infor-
mation. For example, using the maximum value will force the
network to make decisions based on only one instance, ignoring
sequence context from upstream and downstream. Using the mean
function is limited by the fact that acetylation is sparsely distributed
across many instances. WSCNN and WSCNNLSTM demonstrated
that Noisy-and is better than max and mean functions.49,50 However,
although Noisy-and allows a learnable threshold, it is still constructed
based on the average score of the instances, whichmay suffer from the



Table 3. Positive peaks collected in 4acCPred

Modification Technology Condition Sizea Species Sample

4acC 4acC-IP-seq Wild type (IP) 19,849 Tair10
GSM514569014

GSM514569114

4acC 4acC-IP-seq NH2OH (WT IP) 16,682 Tair10
GSM514569214

GSM514569314

4acC 4acC-IP-seq met1 (mutate IP) 10,989 Tair10
GSM514569814

GSM514569914

4acC 4acC-IP-seq rdd (mutate IP) 9,844 Tair10
GSM536930014

GSM536930114

4acC 4acC-IP-seq Wild type (input) – Tair10 GSM514569414,b

The ratio of positive and negative labels is 1:1.
aSize denotes the total number of sequences.
bWild-type input sample GSM5145694 is used to call peaks by MACS2.
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same drawbacks of mean function, i.e., the model is insensitive to pos-
itive instances due to a large number of negative instances.

Motif mining

In this study, we use the IG method to perform model interpretation
and modification motif mining.56 The IG method was developed
based on backpropagation, a key design of neural networks. It uses
the gradient value from the final output to each input multiplied by
the input value itself as the contribution of that input (known as attri-
bution score). To solve the problem of gradient saturation, the IG
method first selects a reference for each input, performs linear inter-
polation from the reference to the input, calculates the attribute score
of each interpolation point, and then averages all scores to get final
values.63 Its mathematical formula is given as

IGiðxÞ = ðx � x0Þ �
Xm
k = 1

vF
�
x0 + k

m � ðx � x0Þ�
vx

� 1
m

where x is the input to be interpreted, x0 is a selected reference of the
same shape as x, andm is the number of steps in linear interpolation.

Two kinds of reference selection methods were explored in this
study: fixed reference for all inputs such as zero matrices and dinu-
cleotide-shuffled sequence for each specific input. The former is
computationally efficient and can provide a cleaner view when in-
terpreting individual sequences using one-hot encodings because,
in this case, only one value remains for each base, directly corre-
sponding to the contribution of that base. The dinucleotide-shuffled
sequence refers to shuffling the sequence but maintaining the fre-
quency of dinucleotides. Compared with the zero matrices, it takes
more time but is more biologically interpretable and thus was used
for motif discovery in our study.64 Both references can be selected in
the web server analysis.

After obtaining attribution maps for each input, we used TF-
MoDISCO to obtain the consensus motif for DNA 4acC acetylation.57

It firstly identifies input segments of user-specific length with high
contribution scores, then clusters these segments based on contin-
uous Jaccard similarity calculation, and finally aligns the segments
in each cluster to form consensus motifs.

Web interface implementation

The web interface has been established by HTML, CSSs, and JS.
MySQL database management systems were used to store our data.
Datatables, a table plugin, was applied to show the data.
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