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Abstract: Dengue fever is an acute mosquito-borne disease that mostly spreads within urban or
semi-urban areas in warm climate zones. The dengue-related risk map is one of the most practical
tools for executing effective control policies, breaking the transmission chain, and preventing disease
outbreaks. Mapping risk at a small scale, such as at an urban level, can demonstrate the spatial
heterogeneities in complicated built environments. This review aims to summarize state-of-the-art
modeling methods and influential factors in mapping dengue fever risk in urban settings. Data
were manually extracted from five major academic search databases following a set of querying and
selection criteria, and a total of 28 studies were analyzed. Twenty of the selected papers investigated
the spatial pattern of dengue risk by epidemic data, whereas the remaining eight papers developed
an entomological risk map as a proxy for potential dengue burden in cities or agglomerated urban
regions. The key findings included: (1) Big data sources and emerging data-mining techniques
are innovatively employed for detecting hot spots of dengue-related burden in the urban context;
(2) Bayesian approaches and machine learning algorithms have become more popular as spatial
modeling tools for predicting the distribution of dengue incidence and mosquito presence; (3) Climatic
and built environmental variables are the most common factors in making predictions, though the
effects of these factors vary with the mosquito species; (4) Socio-economic data may be a better
representation of the huge heterogeneity of risk or vulnerability spatial distribution on an urban scale.
In conclusion, for spatially assessing dengue-related risk in an urban context, data availability and the
purpose for mapping determine the analytical approaches and modeling methods used. To enhance
the reliabilities of predictive models, sufficient data about dengue serotyping, socio-economic status,
and spatial connectivity may be more important for mapping dengue-related risk in urban settings
for future studies.

Keywords: dengue; risk mapping; urban environment; influential factors; spatial models

1. Introduction

Dengue fever (DF) is one of the most prevalent mosquito-borne viral diseases in the
world and causes a huge health burden worldwide. The lack of effective mosquito control,
changing lifestyles, unplanned urbanization, and globalization are cited as the major drivers
of the spread of dengue [1]. Female Aedes species mosquitoes are the main vector of dengue
virus (DENV), namely Aedes aegypti and Aedes albopictus [2]. Both are highly domesticated
urban mosquitoes and prefer to live with humans in and around their homes, feed on
humans, and lay eggs in small containers. The process of rapid urbanization will likely
generate high demographic regions with disproportionate infrastructure quality, which
creates ideal conditions for mosquito breeding and increases the risk of DENV transmission.
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In the last two decades, the number of DF cases has increased sharply to over 5.2 million
in 2019 [3]. Meanwhile, climate change and the urban heat island phenomenon result in a
warmer environment in urban areas, favoring the proliferation of both vectors and dengue
virus [4]. According to a prediction by Messina et al. [5], 2.25 billion more people might be
faced with a risk of DF at the end of the 21st century, compared with 2015. By that time,
some megacity aggregated regions with no DF risk areas could become suitable for the
spread of dengue virus, such as the southeastern USA, coastal eastern China, Japan, and
inland areas of Australia.

To break the chain of DENV transmission and reduce the DF incidence rate, an
incidence or risk map is the one of most effective tools for public health management.
The resultant maps not only intuitively illustrate the spatial or spatio-temporal pattern of
dengue-related risk, but also propose determinants based on spatial modelling [6]. Though
there is a rich literature about developing reliable mathematic models for displaying the
interaction between dengue transmission and influential factors, most of them ineffectively
predict or evaluate the risk in the region without any sampling or surveillance data. In
the meantime, an abstract scientific model is difficult for use by non-specialists. Therefore,
taking the advantage of visualization and prediction, mapping dengue-related risk is
valuable for local governments and stakeholders to detect the locations of hot spots and
take action in controlling disease transmission.

Many review studies have investigated influential factors on DENV transmission,
including the impacts of socio-economic factors [7], urban landscape [8], and climatic
variables [9]. Various modelling techniques have also been discussed, such as quantitative
approaches [10] and Bayesian methods [11]. However, mapping technologies have been
less structurally reviewed in the last decades. So far, Louis et al. [12] is the only review on
the available mapping tools, based on papers published until 2014. Four types of mapping
are defined in that study, namely descriptive, validated, predictive, and early warning
system (EWS) maps. The descriptive map is based on clustering analysis rather than
predicting models, whereas the EWS attempts to establish criteria in early recognition of
disease outbreaks for applications in public health. Only 9 of 26 papers generated predictive
or EWS for DF risk in Louis et al. [12].

With the evolution of predictive maps for dengue-related risk in recent years, the
spatial patterns of DF risk can be predicted at different scales, such as on the global [5],
continental [13], national [14–17], and urban level [8,18]. However, mapping dengue-
related risk at a large scale will significantly underrepresent dengue occurrence in urban
regions [19]. First, as interpreted in Attaway et al. [20], mapping approaches in urban and
rural areas should be different because the data availability and characteristics of these
regions are largely distinct. Secondly, mapping of dengue endemicity on the global scale is
usually coarse because global climate datasets have relatively low spatial resolution [21].
Lastly, a model developed with site-specific data is often restricted within a small region
that shares a similar climate, geography, urbanization, life behaviors, and so on. Therefore,
controversial outcomes and significant uncertainty may be resulted when applying a
developed model on predicting the spatial pattern of dengue-related risk at a larger scale.

Currently, there have been few review studies focused on the predictive maps of
dengue-related risk in urban settings. Investigating the risk at a relatively small scale,
such as in a single city or urban agglomeration, may be more valuable for local interested
administrations to guide urban planning and implementation of policies for preventing
disease spread, as this could capture the complexities that contribute to a risk distribution,
which may be missed at a larger scale. Thus, the objectives of this research include:
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(1) Reviewing available modeling tools for generating predictive maps of dengue-related
risk since 2014;

(2) Investigating determinants in urban settings used for spatial and spatio-
temporal modeling;

(3) Discussing the limitations and advantages of different methods for developing dengue-
related risk;

(4) Proposing improvements for future works.

2. Methods

The review was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement. We developed a systematic
review protocol and registered with PROSPERO. All the review team members followed
the protocol established at the beginning of the review.

2.1. Search Terms and Selection Criteria

Five major academic search databases were accessed to retrieve the relevant studies,
namely Science Direct, ProQuest, Web of Science, PubMed, and Scopus. As shown in
Table 1, a set of four-level querying was conducted in each database, respectively.

Table 1. Keywords for the set of four-level querying.

Levels Key Words for Querying

1 ‘dengue’ OR ‘dengue fever’
2 ‘risk’ OR ‘vulnerability’ OR ‘hot spot’
3 ‘map*’ OR ‘model*’

4 ‘spatial’ OR ‘spatiotemporal’ OR ‘distribution’

As Louis et al. [12] reviewed the mapping tools before 2013, this research only focused
on articles published after January 2014. In that previous review study, only the maps
modelled with dengue fever cases were included. However, Sallam et al. [22] found that
mapping entomological risk, such as mosquito presence or abundance, could also be a
proxy for transmission risk of various vector-borne diseases, especially in non-dengue
epidemic regions that still have potential dengue risk from future changes in climate and
importation from abroad. Therefore, both epidemic and entomological risk mapping for the
dengue virus were included in this research. Meanwhile, descriptive maps were excluded
as no predictive model was developed. Finally, the study complied to all 5 inclusion criteria
to determine selection for further analysis:

• Articles published from January 2014 to May 2022;
• In an English peer-reviewed paper or non-conference proceedings;
• A spatial or spatio-temporal modeling tool employed to predict the potential dengue

risk distribution;
• A predictive risk map or early warning system about dengue-related burden in a city

or area of urban agglomeration as the outcome;
• Includes an investigation of the impacts of environmental and socio-economic deter-

minants for modeling.

2.2. Data Extraction

All data were manually extracted from selected studies and categorized into four
strands: general observation, data characters, modeling approaches, and influential factors.
In the first section, the location and basic information about the investigated urban area were
collected. Then, information about the spatial resolution of the outcome map, surveillance
data applied in studies, mosquito species, and buffers were recorded. The variables
applied in modeling were further retrieved and grouped into climate, built environment,
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socio-economic, and others, according to their natures. Additionally, there were 7 and
4 subgroups in the built environment and socio-economic groups, respectively, due to
the number of variables in these two groups being very large. The data sources and
corresponding temporal resolutions of climatic data were recorded, i.e., from monitoring
records or remote sensing. Thirdly, the analytic methods, including spatial and temporal
models and spatial connectivity assumptions were collected and classified according to
their functions and purposes. Spatial connectivity assumptions were grouped into three
categories, i.e., distance-based, human movement, and vector movement, accordingly [23].
In the last section, the influential factors in each outcome model and corresponding effect
were compared. If the factor was included in the final predicting model but no coefficient
was reported in the study, their effects were marked as unknown. Finally, the applications
of these incidence maps, limitations, and future works were proposed.

3. Results
3.1. General Observation

As shown in Figure 1, in total 518 non-repetitive articles were extracted from the five
databases. Based on the above inclusion criteria, 220 articles were chosen for abstract
review after reading their titles, and then 68 papers entered the round for full-text review.
Finally, a total of 28 qualified articles were selected and numbered in chronological order
(listed in Table 2). Twenty papers directly investigated the risk of dengue incidence and
were designated by a combination of “D” and corresponding numbers in the following
sections, e.g., D1 is a proxy for the article of Dickin and Schuster-Wallace [24]. Eight of
the selected papers developed mosquito presence or abundance as a proxy for the risk of
dengue outbreaks, and “A” was combined with the corresponding number of articles, e.g.,
A1 is a proxy for Machault et al. [25].
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Table 2. List of publications selected for critical review.

No. References No. References No. References

D1 Dickin and Schuster-Wallace [24] D11 Ong et al. [26] A1 Machault et al. [25]

D2 Wen et al. [27] D12 Martinez-Bello et al. [28] A2 Espinosa et al. [29]

D3 Mao et al. [30] D13 Ghosh et al. [31] A3 Fatima et al. [32]

D4 Yu et al. [33] D14 Desjardins et al. [34] A4 Little et al. [35]

D5 Chen et al. [36] D15 Ordonez-Sierra et al. [37] A5 Estallo et al. [38]

D6 Wijayanti et al. [39] D16 Pham et al. [40] A6 Wiese et al. [41]

D7 Li et al. [42] D17 Naqvi et al. [43] A7 Ha et al. [44]

D8 Ren et al. [45] D18 Wu et al. [46] A8 Trewin et al. [47]

D9 Acharya et al. [48] D19 Yin et al. [49]

D10 Ajim Ali and Ahmad [50] D20 Jaya and Folmer [51]

The information about the location, year, and numbers of selected articles are overlaid
with a map of global dengue burden and 10 ◦C isotherms in the winter season (Figure 2).
Almost all the selected references were located in the “Frequent or Continuous” region in
Southeast Asia and South America. Three studies investigated potential dengue risk in a
no evidence region in North America (A4 and A6) and Oceania (A8). The dengue burden
was investigated by multiple scholars in Pearl River Delta (four papers), Southern Taiwan
(three papers), West Bengal in India (two papers), and Java in Indonesia (two papers). As
shown in Figure 3, the population densities of those urban areas are predominantly in the
ranges of 100 to 10,000 inhabitants per km2. The densest environment investigated was
Kolkata, India (almost 22,000 inhabitants per km2). The Tartane possessed the sparsest
inhabitants among all investigated areas.
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Figure 2. Location of selected studies overlaid with the map of the global dengue burden. The levels
of dengue risk are based on reports from the Centers for Disease Control and Prevention, National
Center for Emerging and Zoonotic Infectious Diseases, and Division of Vector-Borne Diseases [52].



Int. J. Environ. Res. Public Health 2022, 19, 15265 6 of 20

“Frequent or Continuous” risk means that either frequent outbreaks occur, or transmission is ongoing.
“Sporadic or Uncertain” risk means that the risk varies and is unpredictable, and that country-level
data is not available. The 10 ◦C isotherms in the winter season were generated using the mean
temperature (2 m height, world) data from January and July in the year 2018 retrieved from the
ERA-Interim.
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3.2. Data Characters

As shown in Table A1, most studies predicted dengue risk at a district level or in grids
with few hundreds of meters. A1 even evaluated the entomological dengue risk at the
building level.

Only two studies predicted dengue-related risk without any surveillance data, namely
D10 and A8. A8 modeled the mosquito population instead of surveillance data from
mosquito traps. In terms of species, Aedes aegypti was the focus of twelve papers, whereas
Aedes albopictus was only investigated in five studies. Another vector of DENV, Culex,
was studied in A7. Meanwhile, six studies simultaneously mapped the two species of
Aedes mosquito. Considering the limited flying capacity of mosquitoes, a buffer zone was
employed in eight studies and the radius of the mosquito trap ranged from 50 to 500 m.

Regarding environmental and socio-economic variables for predicting dengue-related
risk, the climatic variables were the most popular predictors. Half of them had monthly
temporal resolution, followed by yearly, seasonally, and daily. In addition, seven studies
used remote sensing data rather than weather monitoring datasets. In terms of built
environmental variables, land use and land cover (LULC), landscape, and road were the
most common type of factors for modeling. Population density was the most common
socio-economic variable for assessing dengue risk, followed by demographic information.

It is worth noting that there were four special variables for mapping dengue risk in
selected studies. Cellphone data was used for evaluating the mobility of humans in D3;
D18 employed future socio-economic development data to predict potential dengue risk in
scenarios of urban expansion from 2015 to 2050. D19 analyzed pictures from the Google
Street Views dataset and extracted eight types of artificial container densities as predic-
tors; A8 considered the effect of non-compliant rainwater tanks increasing entomological
dengue risk.
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3.3. Modeling Approaches

As shown in Figure 4, the analytic methods employed in selected studies were cat-
egorized into four main sections, including cluster analysis, covariates screen, spatial
(temporal) modeling, and calibration or validation.

3.3.1. Cluster Analysis

Moran’s I and kernel density were the most popular techniques for detecting spatial
patterns and hot spots according to epidemic or entomological surveillance data in prepro-
cessing. D13 used scan statistics (ScSAT) for assessing probability risk, and then applied
local Moran’s I for cluster analysis. D17 combined kernel density and Getis-Ord Gi* for
detecting the hot spot of dengue burden.
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3.3.2. Covariates Screen

Over half of the selected studies employed correlation coefficients (r), principal com-
ponent analysis (PCA), probability value (p-value), or variance inflation factor (VIF) for
reducing multi-collinearity between covariates. Pearson’s r was employed in seven studies,
and only one applied the Spearman’s r. Some studies used multiple methods to select
variables, such as VIF and p-values, which were adopted in D20.
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3.3.3. Spatial Modelling

There were five classes of spatial or spatio-temporal modeling employed in selected
studies, namely weighting, statistics, linear regression, Bayesian models, and machine
learning. Only four studies applied a weighting method. The geographical weighting
regression (GWR) and MaxEnt model were employed in three studies for mapping epidemic
dengue risk. In terms of entomological risk, the MaxEnt model and generalized linear
model (GLM) with negative binomial distribution are dominant models. There are four
kinds of Bayesian models recorded, namely Bayesian maximum entropy, normal Bayesian
models, conditional autoregressive (CAR) or Leroux CAR, and Markov random fields.
Regarding the outcome of mapping, only D4, D5, and D20 developed the early warning
system (EWS) for dengue outbreaks by ScSAT or Bayesian models.

In addition, almost all studies applied distance-based spatial connectivity assumptions
in modeling, except in D3 and A8. D3 employed cellphone tracking data cooperating with
blood meal hunting behavior of Aedes albopictus to assess the probability of acquiring the
DF virus as the indicator of importation risk. A8 was the only study that used a mechanistic
model. An agent-based model was adopted to simulate the spread of mosquito population
as the key predictor for GLM to evaluate the potential invasion of dengue fever mosquitoes.

3.3.4. Calibration and Validations

Almost all studies applied various statistical metrics to evaluate the predictive perfor-
mance according to the type of model, except D10. Wen et al. [27] and Desjardins et al. [34]
employed the Akaike information criterion (AIC) and deviance information criterion (DIC)
to select the best-fitted model. For the weighting method and linear regression, the r,
R-squared, and standard deviation of the residuals, namely RMSE and MAE, were the
main indices. Almost all machine learning models applied the area under the receiver
operating characteristic (AUC) or weighted Kappa (Kw) to evaluate their outcome models.
Additionally, some studies applied cross-validation for r, measuring the performance of a
predictive model, such as leave-one-out and k-fold cross-validation [28,33,35,38].

3.4. Influential Factors
3.4.1. Climatic Variables

As shown in Table 3, air temperature, LST, and precipitation were the most common
determinants in modeling dengue-related risk. There were nine and seven studies that
developed their final model by air temperature and LST, respectively. However, their effects
on dengue-related risk were not consistent with each other. Surprisingly, only D20 found
the temperature positively related to dengue risk, whereas such correlations in D7 and D18
were nonlinear. Similarly, the effects of LST on dengue risk were positive in three studies
and negative in four studies. In terms of entomological risk, A3 and A4 reported positive
relationships between air temperature and mosquito abundance. However, A6 found that
the relation was nonlinear. Regarding precipitation, 11 studies applied this variable in
developing their models. Mosquito abundance was positively associated with rainfall in
all studies about entomological risk, except it was nonlinear in A3. However, only three
studies about dengue risk reported the positive impact of precipitation, whereas D14 and
D18 indicated negative correlations. Other variables were less employed in modeling
and demonstrated few controversies, except in the daily temperature range (DTR), which
positively correlated with dengue risk in D14 but negatively in A3. In addition, the lag effect
of meteorological data on DF risk or mosquito abundance was only considered in D14.
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Table 3. Effect of climatic variables on dengue-related risk.

Variables Positive Negative Nonlinear Unknown

Air temperature
D20 (monthly);
A3 (monthly),
A4 (monthly),

D14 * (weekly),
D7 (warmest month);

D18 (seasonally),
A6 (seasonally)

D3, D15

Daily temperature
range D14 * (weekly) A3 (monthly),

Cool days (<18 ◦C) D14 * (weekly)

Warm days (>32 ◦C) D14 * (weekly)

LST D8, D9, D10 (>25 ◦C) D12, D13, D17, D19

nLST D6 (<20 ◦C)

Relative humidity D8 (yearly);
A1 (daily), A4 (monthly)

Water vapor pressure D20 (monthly);

Precipitation

D8 (yearly), D19 (seasonally),
D20 (monthly);

A1 (daily), A4 (monthly),
A6 (seasonally),
A8 (monthly)

D18 (monthly),
D14 * (weekly)

D7 (warmest month);
A3 (monthly), D3, D15

Solar radiation D20 (monthly)

* Lagged weather variables.

3.4.2. Built Environmental Variables

Built-up/impervious areas, normalized difference vegetation index or enhanced vege-
tation index (NDVI or EVI), greening area, road density, proximity to water, and establish-
ments were the most popular variables in modeling dengue risk. Especially for built-up
or impervious areas, seven studies reported its positive association with both epidemic
and entomological risk (Table 4). Only A1 and A6 indicated non-positive effects. Relevant
variables about built-up areas such as residential use, road density, and proximity to specific
establishments, including tire shop and cemeteries, increased dengue risk in an urban area.

The effects of vegetation and water were more complicated. Four studies found that
dengue risk was negatively correlated with NDVI, whereas a positive relation was reported
in two studies investigating entomological risk and one for epidemic risk. The effects of
greening area were only investigated in the studies modeling entomological risk. Greening
area presented either positive or nonlinear correlations with entomological risk. Variables
about water, such as the normalized difference water index (NDWI) and proximity to water
bodies, demonstrated similar conflicting results.

Urban areas with insufficient infrastructures could be located by factors such as
vacant use, unplanned areas, and specific facilities such as containers, water tanks, and
drain networks. The above variables were positively associated with both epidemic and
entomological dengue risk. However, the effects of artificial container types on dengue risk
varied with types, according to the research in D19.

Regarding other determinants, the property size on an urban block was the only
variable referring to urban morphology applied in selected studies and was negatively
associated with mosquito abundance. Three variables of topography were investigated,
including flow accumulation, elevation, and slope. The elevation demonstrated a nonlinear
correlation with dengue-related risk in two studies and was positive in D13.
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Table 4. Effect of built environmental variables on dengue-related risk.

Types Variables Positive Negative Nonlinear Unknown

Land Cover

Built-up/
impervious area

D7, D8 *, D17, D18 *;
A2, A5, A6 A1 (asphalt) A6 *

NDVI (EVI) D17;
A5, A7

D8 *, D9, D11,
D13

D7 (warm season);
A6 * D15

Trees density/canopy D14 A6 *

NDWI A2 A4 * A6 *

Land Use

Residential use D11, D13;
A4 *

Open space use A4 *

Greenings A3, A4 A1, A6 *

Vacant use A2

Unplanned area D13; A4

Morphology Property size A8

Landscape

Proximity to
parks/managed vegetation D3 *

Proximity to water
bodies/rivers

D13;
A5 D14; D3 *

Road
Road density D8 *, D11, D7, D18 D3 *

Road length A8

Establishment Proximity to specific
establishment

D14 (tires and plant
nurseries);

A5 (cemeteries, tires)

D6
(hospital)

D2 (species),
D3 * (workplaces)

Infrastructure

Container density D19 (types)

Water tanks A8

Drain network D13

Topography

Flow accumulation A6 *

Elevation D13 D3; A3 A6 *

Slope A6 *

* Aedes albopictus.

3.4.3. Socio-Economic Variables

As shown in Table 5, variables about the population, namely population and house-
hold density, were dominant in developing dengue-related risk models. These two variables
mainly demonstrated a positive influence on epidemic and entomological risk. However,
D14 found that population density was negatively related to dengue risk, whereas D7 and
A6 indicated the relationships were nonlinear. In general, urban areas with high GDP,
elders, schooling, and unemployed people were explored for dengue risk. Surprisingly, D6
and D14 reported higher education levels and income demonstrated a greater possibility
for infection. In addition, districts with infection history, low neighborhood quality, and no
piped water increased the risk of dengue outbreaks and mosquito breeding. However, A6
found that the impact of vacant housing on mosquito abundance was nonlinear.
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Table 5. Effect of socio-economic variables on dengue-related risk.

Types Variables Positive Negative Nonlinear Unknown

Population
Population density D8 *, D19, D18 *;

A7, A8 D14 D7;
A6 * A3

Household density
(households/100/km2) D11; A5, A6 *

Development GDP D8 *, D18 *

Demography

Age > 65/60 D14

Age < 14/15/school D14

Low education D6, D14 A6 *

Low income D14 A6 *

Rate of unemployment D14 D6

Living
conditions

Infection history D11

Vacant housing A6 *

Neighborhood quality A5 A6 *

Without piped water A5

* Aedes albopictus.

4. Discussion

Compared with the reviewed papers in Louis et al. [12], our review about predictive
maps for DF risk in urban settings demonstrated significant evaluations in recent years,
including widely expanded study areas, applications of emerging big data and data-mining
techniques, and novel modelling approaches.

4.1. Study Areas

The dengue fever risk in the cities of India, Nepal, and Pakistan, which are in the
frequent or continuous dengue risk level were investigated (Figure 2); there were no studies
on these areas reviewed by Louis et al. [12]. However, many areas in Africa demonstrating
high possibility for dengue outbreaks are still lacking. Even though Attaway et al. [53]
developed a valuable map for dengue suitability for the entire African continent with a
fine spatial resolution, there have been almost no detailed studies on any city or urban
agglomerated zone in Africa.

In addition, three studies, i.e., A4, A6, and A8, investigated no evidence risk zones
to present the spatial entomological risk as a precaution for vector-borne diseases. A8,
which predicted scenarios of Aedes mosquito invasion in Brisbane (Australia) rather than
modeling by surveillance data such as in A4 and A6, is an especially innovative example
that could be applied to other cities located in suitable zones for future mosquito risk.
In Louis et al. [12], only one case studied a no evidence risk zone, namely Hu et al. [54],
in which the spatial pattern of dengue fever transmission in Queensland (Australia) was
investigated.

4.2. Effective Predictors
4.2.1. Entomological Data

A significant improvement in data application was found for aspects of entomological
data. As reported in Louis et al. [12], though the house-, container- or Breteau-indices
were commonly used, the association between these entomological indicators and dengue
cases were often not detected [55], due to the low efficiency of the dengue vector sampling
method. In recent years, with the wide utilization of adult mosquito captures, such as
Ovitraps (D2) and Gravidtraps (D11), entomological data has played a primary role in
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modeling the spatial distribution of dengue incident ratios. Surveillance data about adult
mosquito abundance can be employed for assessing entomological dengue fever risk as
well, such as in A4 and A6.

4.2.2. Climatic Data

Louis et al. [12] addressed the sparse distribution of meteorological observations that
hindered the spatial resolution of the final generated maps. Though the remote sensing
data used as a proxy for temperature, such as the LST or LSTn, had high spatial resolution,
their influences on dengue risk were feeble [28,39,48]. This may be due to fewer temporal
characteristics and lower accuracy of remote sensing data compared with meteorological
records. In addition, both types of climatic data demonstrated a complicated impact on
DF risk. Though warm and wet conditions with moderate rainfall are favored by both DF
outbreaks and mosquito breeding, some studies found that air temperature and rainfall
were negatively correlated with DF risk. As discussed in D14, a frequent short-lived rain
before a dengue epidemic destroyed the microhabitats of mosquitoes by washing eggs and
larvae of vectors away. Therefore, many studies reported that the effects of temperature
and precipitation were nonlinear [41,42,46]. To improve the performance of the model, a
set of climatic indicators to describe the climate pattern in a region might be much better
than employing individual meteorological variables [34].

4.2.3. Built Environmental Data

The built environmental data for mapping dengue fever risk in urban settings were
mainly based on remotely sensed data, such as land cover, land use, landscape, topography, etc.
The controversial variables mainly referred to vegetation and water. The complex impact
of vegetation may have resulted from different preferences between Aedes species. As an
endophilic species, the Aedes aegypti, investigated in D9, D11, and D13, is more abundant
in compact districts with high building coverage and less greening. However, the Aedes
albopictus is fond of environments with more vegetation to offer them sufficient shelter,
shade, and humid outdoor places to feed or breed [56]. Many previous studies found Aedes
albopictus nonlinearly correlated with vegetation [41,57]. In terms of water bodies, mosquito
larvae were not found on open surfaces of large bodies of deep freshwater (e.g., lakes,
ponds, rivers, or reservoirs), but were concentrated along the shallow edges, such as most
waterfront in urban spaces. Thus, the status of water bodies determined the probability of
mosquito presence and dengue virus (DENV) transmission [58].

Except for the conventional remote sensing and administrative data, the street view
images dataset from Google was first utilized in D19 for detecting artificial container types
in the outdoor environment. As female Aedes mosquitoes feed on the blood of their hosts
(e.g., humans and other mammals) and breed in any containers with standing water, the
lifestyle of residents impacts entomological dengue risk [2]. The data from the street view
images may be an important supplement for data from satellite imagery to display the
microhabitat environment of mosquitoes. However, some inaccessible zones would be
missing data for evaluation, as street view images are only captured along the road [49].

4.2.4. Socio-Economic Data

As much of the socio-economic data applied in mapping DF risk in urban environ-
ments were collected from the local census, the spatial resolution of the generated maps
were often related to the basic census unit, such as neighborhoods, wards, or districts. The
conflicting results regarding the effect of population density on DF risk may relate to the
different Aedes species as well. The Aedes aegypti prefers high population density, which
results in a high risk of DENV transmission, whereas Aedes albopictus is the opposite and
shows nonlinear association. Though many studies reported both children and elders were
vulnerable to environmental disasters, school-aged teenagers and young adults were highly
exposed to dengue transmission because they had to visit school buses, workplaces, or
other districts with high DF risk [38,59,60].



Int. J. Environ. Res. Public Health 2022, 19, 15265 13 of 20

One research gap mentioned in Louis et al. [12] was that the impact of human mo-
bility and movements on dengue transmission risk could not be captured well using the
demographic data, which are commonly applied as a proxy for population mobility. Even
though the variables about roads and public establishments were positively associated with
dengue risk, as shown in Wen et al. [27] and Ong et al. [26], they only represent the mobility
in urban zones indirectly. Tracking individual mobility patterns using cell phone data is an
effective dataset for evaluating the human movement. In D3, the local transmission risk
was represented by the visited time of every cellphone tower, which is more accurate for
evaluating human movement and detecting hot spots for dengue burden.

4.3. Modeling Techniques
4.3.1. Predictive Models

Similar to the results in Louis et al. [12], our findings demonstrated that the most
popular modelling algorithms for developing a predictive map were the MaxEnt model
and GLM. At the same time, other novel modelling methods, including machine learning,
GWR, and Bayesian approaches, have been extensively employed for both epidemic and
entomological dengue risk mapping in recent years.

The different specialties between models are significant. All the machine learning
methods applied in reviewed studies were supervised learning algorithms, which requires
a large amount of data for training the final model. Though machine learning methods
achieved the most accurate predictions by developing complex models with large variables,
the internal association between predictors may not be clearly demonstrated as in a Bayesian
model [61]. As an extension of the traditional multiple linear regression, GWR was often
used for examining the potential spatial autocorrelation and dealing with non-stationary
data [62]. However, the explanatory power of GWR was limited to estimating the spatio-
temporal relationship between associations of incidence and predictors as it was not
suitable for making temporal inferences [34]. In contrast, Bayesian models could estimate
the relationship between incidence and predictors spatially and temporally based on
locally weighted regressions in both geographic and attribute spaces. The CAR was
the most popular Bayesian model for predicting dengue risk, according to a review by
Aswi et al. [11]. Unlike machine learning methods, Bayesian models can minimize the
variance of the estimators, especially in places where the population is small [63]. In
addition, Bayesian approaches can predict the lag effect of climate. Therefore, EWS was
mainly developed using Bayesian models, such as in D4 and D20. However, Bayesian
approaches require highly skilled users with advanced statistics, as this method is too
complicated and the spatial resolutions are often limited to districts or due to the large
scale [64].

4.3.2. Calibration and Validation

Calibration and validation are the fundamental steps toward creating reliable pre-
dictive maps. Our findings presented multiple statistical metrics applied for calibration
or validation. However, some studies used a single metric as the absolute performance
measure, such as in D7, D13, D18, A2, and A6, which may result in serious drawbacks. For
instance, the AUC is one of the most commonly used statistics to assess model performance
developed by machine learning algorithms [65]. The AUC interprets probability that a
presence cell has a higher predicted value than a pseudo-absence, but ignores the different
weights in commission and omission errors. To eliminate possible deviations of the AUC
value, using more than one accuracy measure to seek the reliability of the MaxEnt model is
necessary [66].

4.4. Mapping Methodology Design

Though mapping approaches differed in reviewed articles, the design of mapping
methods and selection of modeling techniques were generally related to data availability
and application purposes. Data, especially from the surveillance of dengue cases, played



Int. J. Environ. Res. Public Health 2022, 19, 15265 14 of 20

a big role in both the modelling algorithm and spatial resolution. In cases with sufficient
surveillance and geographic data, DF risk could be detected at fine spatial and temporal
scales by data-driven machine learning algorithms, such as A1 that successfully detected
the entomological dengue risk for each building. In contrast, D16 could only predict dengue
burden at the township level in the Mekong delta region, Vietnam, due to a lack of detailed
geolocation information in dengue surveillance data. In D10, a case without any geocoded
dengue case information, the authors employed a GIS-based analytical hierarchy process
to predict dengue risk zones using a set of environmental and socio-economic variables.
Though the outcome of D10 was unvalidated, the map was still helpful for policymakers
by providing potential hot spots for dengue outbreaks.

In addition, the application purposes of predictive maps determine the modelling
approach as well. In the case of a fine resolution map being needed to spatially display the
hot spots of DF burden to support public health actions, the GWR and machine learning
methods were often a priority, due to their specialties in predicting spatial autocorrelation
and dealing with multifactorial datasets. However, in the case of developing an EWS for
the local government to support health system preparedness for DF outbreaks, Bayesian
models were commonly adopted, as they allowed for optimal resource allocation and
steering of interventions in space and time.

4.5. Improvement Suggestions

First, even though it was one of the weaknesses mentioned in Louis et al. [12], the
impacts of the serology profile and virus genetic diversity on the spatial pattern of DF
risk were still ignored in all selected studies. Both the host immunity and serotyping of
the dengue virus play an important role in diffusion models [67]. To integrate dengue
serotyping data for detecting spatial patterns, cohort studies on both entomological and
epidemical dengue data may be necessary to understand the transmission dynamics and
determinants within urban environments [68].

Secondly, the datasets for socio-economic factors applied in selected studies were
limited and had low spatio-temporal resolutions. Both D14 and D18 reported a more
significant impact of socio-economic factors on dengue transmission than that of climatic
and built environmental aspects, due to the huge spatial heterogeneity among socio-
economic groups in high density cities. Restricted by the number and range of samplings,
a questionnaire-based survey on socio-economic status cannot meet the requirement of
mapping DF risk for an entire urban environment [69]. A combination of data mining and
crowdsourcing may be an effective solution to support socio-economic analysis in future
studies [70].

Lastly, almost all selected papers adopted a distance-based assumption on spatial
connectivity for generating predictive maps, which significantly simplified the transmission
process, but may have missed some heterogeneity in connectivity in urban spaces [23].
Only D3 applied cellphone data to track individual mobility to describe spatial connectivity
in a city and found that long-distance connections may also be important for disease
transmission, especially for regions under a high risk of importation. However, cellphone
data are commonly unavailable for major regions due to ethical considerations. Therefore,
retrieving data from social media [71] or public transportation [72] may be an adequate
data source to demonstrate human commuting behaviors for future research.

4.6. Limitations

Some limitations of this research included: (1) The restriction of language to English-
only papers. (2) This review solely focused on dengue-related risk, without considering
other, potentially similar vector-borne diseases, such as Zika, West Nile, etc. (3) Some details
about spatial models, such as integration effects in Bayesian models and distributions, were
not collected and compared in this review as they had already been investigated by previous
studies [11,23].
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5. Conclusions

This review focused on the modelling approaches and influential factors used to
develop predictive maps for DF risk in urban settings. Both the data sources and mapping
techniques were significantly improved compared with Louis et al. [12]. Big data and
emerging data-mining techniques, such as cellphone and street view images, have been
innovatively introduced for mapping DF risk in urban settings, as they can offer more
details about human mobility behavior and micro-habitats for mosquito breeding. There
was clear trend preferring the use of Bayesian approaches and machine learning algo-
rithms for modeling dengue-related risk in recent years. Temperature and rainfall-related
climatic factors, land use and land cover information, and demographic data were the
most significant predictors for generating the DF risk map. The impacts of influential
factors summarized in our study can be a reference for future studies. So far, the analysis
pattern for developing a predictive map of DF risk is beginning to take shape. Mapping
methodologies are largely determined by data availability and the purpose of application.
Last but not least, to enhance current abilities in detecting transmission dynamics and
heterogenous spatial distribution of DF risk in urban settings, future models need to con-
sider integrating information about host serological profiles, promoting data availability
on socio-economic factors, and employing adequate spatial connectivity assumptions in
the process of modeling. Having robust predictive maps on DF risk will be crucial for
supporting local public health units in controlling the spread of the dengue virus, especially
in the context of global warming that expands suitable niches for mosquitoes and raises the
risk of dengue transmission.
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Appendix A

Table A1. The information about data characters in references.

No.
Mapping

Spatial
Unit *

Surveillance

Species ** Buffer
(m)

Predictors ***

Epidemic Entomologic Climatic
(Time)

Built Environmental Variables Socio-Economic Variables Other
VariablesLULC MOR LS ROAD EST INFRA TOPO POP DEV DEMO CONDI

D1 250 m Aeg and Alb (month)

D2 300 m Aeg and Alb

D3 100 m Alb (month)
Cellphone

data

D4 District Aeg (day)

D5 District

D6 District Aeg (month)

D7 1 km (season)

D8 2 km Alb (year)

D9 District Aeg (year)

D10 30 m Aeg 200 (year)

D11 1 km Aeg and Alb 150

D12 District (day)

D13 30 m Aeg (month)

D14 Neighborhood Aeg and Alb (week)

D15 200 m Aeg (month)

D16 Township (month)

D17 250 m Aeg (year)
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Table A1. Cont.

No.
Mapping

Spatial
Unit *

Surveillance

Species ** Buffer
(m)

Predictors ***

Epidemic Entomologic Climatic
(Time)

Built Environmental Variables Socio-Economic Variables Other
VariablesLULC MOR LS ROAD EST INFRA TOPO POP DEV DEMO CONDI

D19 District Aeg and Alb (season)
Artificial

containers

D18 1 km Alb (month)
Future

scenario

D20 District Aeg and Alb (month)

A1 Building Aeg 50 (day)

A2 10 m Aeg 150

A3 30 m Aeg (season)

A4 District Alb 200 (month)

A5 Neighborhood Aeg 500

A6 232 m Alb 250 (month)

A7 30 m Culex 250 (month)

A8 District Aeg 75 Rainwater
tank

* District contains wards and census units in an urban area. ** Species of mosquito investigated. Alb: Aedes albopictus; Aeg: Aedes aegypti; the blank means the mosquito species was not
mentioned or indicated in studies. *** LULC: land use and land cover; MOR: urban morphology; LS: landscape; EST: commercial or public establishments; INFRA: infrastructure; TOPO:

topology; POP: population; DEV: development; DEMO: demographic variables; CONDI: living conditions. represents the data applied for modeling. represents applied remote
sensing data for climatic variables, including land surface temperature in daytime and nighttime.
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